cdk-comprehend-s3olap 2.0.89 → 2.0.92

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. package/.jsii +3 -3
  2. package/lib/cdk-comprehend-s3olap.js +2 -2
  3. package/lib/comprehend-lambdas.js +2 -2
  4. package/lib/iam-roles.js +4 -4
  5. package/node_modules/aws-sdk/CHANGELOG.md +16 -1
  6. package/node_modules/aws-sdk/README.md +1 -1
  7. package/node_modules/aws-sdk/apis/cloudtrail-2013-11-01.min.json +81 -8
  8. package/node_modules/aws-sdk/apis/cloudtrail-2013-11-01.paginators.json +5 -0
  9. package/node_modules/aws-sdk/apis/ec2-2016-11-15.min.json +4 -0
  10. package/node_modules/aws-sdk/apis/emr-containers-2020-10-01.min.json +34 -19
  11. package/node_modules/aws-sdk/apis/lookoutmetrics-2017-07-25.min.json +39 -11
  12. package/node_modules/aws-sdk/apis/medialive-2017-10-14.min.json +249 -213
  13. package/node_modules/aws-sdk/apis/models.lex.v2-2020-08-07.min.json +217 -122
  14. package/node_modules/aws-sdk/apis/runtime.lex.v2-2020-08-07.min.json +64 -40
  15. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +696 -695
  16. package/node_modules/aws-sdk/apis/ssm-2014-11-06.min.json +3 -0
  17. package/node_modules/aws-sdk/clients/cloudtrail.d.ts +108 -6
  18. package/node_modules/aws-sdk/clients/ec2.d.ts +47 -39
  19. package/node_modules/aws-sdk/clients/emrcontainers.d.ts +16 -1
  20. package/node_modules/aws-sdk/clients/lexmodelsv2.d.ts +90 -2
  21. package/node_modules/aws-sdk/clients/lexruntimev2.d.ts +25 -3
  22. package/node_modules/aws-sdk/clients/lookoutmetrics.d.ts +35 -0
  23. package/node_modules/aws-sdk/clients/medialive.d.ts +38 -0
  24. package/node_modules/aws-sdk/clients/redshift.d.ts +15 -15
  25. package/node_modules/aws-sdk/clients/route53.d.ts +2 -2
  26. package/node_modules/aws-sdk/clients/sagemaker.d.ts +10 -5
  27. package/node_modules/aws-sdk/clients/ssm.d.ts +10 -6
  28. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  29. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +11 -11
  30. package/node_modules/aws-sdk/dist/aws-sdk.js +160 -51
  31. package/node_modules/aws-sdk/dist/aws-sdk.min.js +82 -82
  32. package/node_modules/aws-sdk/lib/core.js +1 -1
  33. package/node_modules/aws-sdk/package.json +1 -1
  34. package/package.json +4 -4
@@ -1095,6 +1095,12 @@ declare namespace LexModelsV2 {
1095
1095
  export interface CodeHookSpecification {
1096
1096
  lambdaCodeHook: LambdaCodeHook;
1097
1097
  }
1098
+ export interface CompositeSlotTypeSetting {
1099
+ /**
1100
+ * Subslots in the composite slot.
1101
+ */
1102
+ subSlots?: SubSlotTypeList;
1103
+ }
1098
1104
  export interface Condition {
1099
1105
  /**
1100
1106
  * The expression string that is evaluated.
@@ -1670,6 +1676,10 @@ declare namespace LexModelsV2 {
1670
1676
  * Indicates whether the slot returns multiple values in one response. Multi-value slots are only available in the en-US locale. If you set this value to true in any other locale, Amazon Lex throws a ValidationException. If the multipleValuesSetting is not set, the default value is false.
1671
1677
  */
1672
1678
  multipleValuesSetting?: MultipleValuesSetting;
1679
+ /**
1680
+ * Specifications for the constituent sub slots and the expression for the composite slot.
1681
+ */
1682
+ subSlotSetting?: SubSlotSetting;
1673
1683
  }
1674
1684
  export interface CreateSlotResponse {
1675
1685
  /**
@@ -1720,6 +1730,10 @@ declare namespace LexModelsV2 {
1720
1730
  * Indicates whether the slot returns multiple values in one response.
1721
1731
  */
1722
1732
  multipleValuesSetting?: MultipleValuesSetting;
1733
+ /**
1734
+ * Specifications for the constituent sub slots and the expression for the composite slot.
1735
+ */
1736
+ subSlotSetting?: SubSlotSetting;
1723
1737
  }
1724
1738
  export interface CreateSlotTypeRequest {
1725
1739
  /**
@@ -1758,6 +1772,10 @@ declare namespace LexModelsV2 {
1758
1772
  * Sets the type of external information used to create the slot type.
1759
1773
  */
1760
1774
  externalSourceSetting?: ExternalSourceSetting;
1775
+ /**
1776
+ * Specifications for a composite slot type.
1777
+ */
1778
+ compositeSlotTypeSetting?: CompositeSlotTypeSetting;
1761
1779
  }
1762
1780
  export interface CreateSlotTypeResponse {
1763
1781
  /**
@@ -1804,6 +1822,10 @@ declare namespace LexModelsV2 {
1804
1822
  * The type of external information used to create the slot type.
1805
1823
  */
1806
1824
  externalSourceSetting?: ExternalSourceSetting;
1825
+ /**
1826
+ * Specifications for a composite slot type.
1827
+ */
1828
+ compositeSlotTypeSetting?: CompositeSlotTypeSetting;
1807
1829
  }
1808
1830
  export interface CreateUploadUrlRequest {
1809
1831
  }
@@ -2782,6 +2804,10 @@ declare namespace LexModelsV2 {
2782
2804
  * Indicates whether the slot accepts multiple values in a single utterance. If the multipleValuesSetting is not set, the default value is false.
2783
2805
  */
2784
2806
  multipleValuesSetting?: MultipleValuesSetting;
2807
+ /**
2808
+ * Specifications for the constituent sub slots and the expression for the composite slot.
2809
+ */
2810
+ subSlotSetting?: SubSlotSetting;
2785
2811
  }
2786
2812
  export interface DescribeSlotTypeRequest {
2787
2813
  /**
@@ -2847,6 +2873,10 @@ declare namespace LexModelsV2 {
2847
2873
  */
2848
2874
  lastUpdatedDateTime?: Timestamp;
2849
2875
  externalSourceSetting?: ExternalSourceSetting;
2876
+ /**
2877
+ * Specifications for a composite slot type.
2878
+ */
2879
+ compositeSlotTypeSetting?: CompositeSlotTypeSetting;
2850
2880
  }
2851
2881
  export type Description = string;
2852
2882
  export interface DialogAction {
@@ -4499,7 +4529,7 @@ declare namespace LexModelsV2 {
4499
4529
  lastUpdatedDateTime?: Timestamp;
4500
4530
  }
4501
4531
  export type SlotSummaryList = SlotSummary[];
4502
- export type SlotTypeCategory = "Custom"|"Extended"|"ExternalGrammar"|string;
4532
+ export type SlotTypeCategory = "Custom"|"Extended"|"ExternalGrammar"|"Composite"|string;
4503
4533
  export interface SlotTypeFilter {
4504
4534
  /**
4505
4535
  * The name of the field to use for filtering.
@@ -4623,7 +4653,7 @@ declare namespace LexModelsV2 {
4623
4653
  */
4624
4654
  pattern: RegexPattern;
4625
4655
  }
4626
- export type SlotValueResolutionStrategy = "OriginalValue"|"TopResolution"|string;
4656
+ export type SlotValueResolutionStrategy = "OriginalValue"|"TopResolution"|"Concatenation"|string;
4627
4657
  export interface SlotValueSelectionSetting {
4628
4658
  /**
4629
4659
  * Determines the slot resolution strategy that Amazon Lex uses to return slot type values. The field can be set to one of the following values: OriginalValue - Returns the value entered by the user, if the user value is similar to the slot value. TopResolution - If there is a resolution list for the slot, return the first value in the resolution list as the slot type value. If there is no resolution list, null is returned. If you don't specify the valueSelectionStrategy, the default is OriginalValue.
@@ -4640,6 +4670,16 @@ declare namespace LexModelsV2 {
4640
4670
  }
4641
4671
  export type SlotValues = SlotValueOverride[];
4642
4672
  export type SortOrder = "Ascending"|"Descending"|string;
4673
+ export interface Specifications {
4674
+ /**
4675
+ * The unique identifier assigned to the slot type.
4676
+ */
4677
+ slotTypeId: BuiltInOrCustomSlotTypeId;
4678
+ /**
4679
+ * Specifies the elicitation setting details for constituent sub slots of a composite slot.
4680
+ */
4681
+ valueElicitationSetting: SubSlotValueElicitationSetting;
4682
+ }
4643
4683
  export interface StartBotRecommendationRequest {
4644
4684
  /**
4645
4685
  * The unique identifier of the bot containing the bot recommendation.
@@ -4798,6 +4838,38 @@ declare namespace LexModelsV2 {
4798
4838
  }
4799
4839
  export type String = string;
4800
4840
  export type StringMap = {[key: string]: String};
4841
+ export type SubSlotExpression = string;
4842
+ export interface SubSlotSetting {
4843
+ /**
4844
+ * The expression text for defining the constituent sub slots in the composite slot using logical AND and OR operators.
4845
+ */
4846
+ expression?: SubSlotExpression;
4847
+ /**
4848
+ * Specifications for the constituent sub slots of a composite slot.
4849
+ */
4850
+ slotSpecifications?: SubSlotSpecificationMap;
4851
+ }
4852
+ export type SubSlotSpecificationMap = {[key: string]: Specifications};
4853
+ export interface SubSlotTypeComposition {
4854
+ /**
4855
+ * Name of a constituent sub slot inside a composite slot.
4856
+ */
4857
+ name: Name;
4858
+ /**
4859
+ * The unique identifier assigned to a slot type. This refers to either a built-in slot type or the unique slotTypeId of a custom slot type.
4860
+ */
4861
+ slotTypeId: BuiltInOrCustomSlotTypeId;
4862
+ }
4863
+ export type SubSlotTypeList = SubSlotTypeComposition[];
4864
+ export interface SubSlotValueElicitationSetting {
4865
+ defaultValueSpecification?: SlotDefaultValueSpecification;
4866
+ promptSpecification: PromptSpecification;
4867
+ /**
4868
+ * If you know a specific pattern that users might respond to an Amazon Lex request for a sub slot value, you can provide those utterances to improve accuracy. This is optional. In most cases Amazon Lex is capable of understanding user utterances. This is similar to SampleUtterances for slots.
4869
+ */
4870
+ sampleUtterances?: SampleUtterancesList;
4871
+ waitAndContinueSpecification?: WaitAndContinueSpecification;
4872
+ }
4801
4873
  export type SynonymList = SampleValue[];
4802
4874
  export type TagKey = string;
4803
4875
  export type TagKeyList = TagKey[];
@@ -5385,6 +5457,10 @@ declare namespace LexModelsV2 {
5385
5457
  * Determines whether the slot accepts multiple values in one response. Multiple value slots are only available in the en-US locale. If you set this value to true in any other locale, Amazon Lex throws a ValidationException. If the multipleValuesSetting is not set, the default value is false.
5386
5458
  */
5387
5459
  multipleValuesSetting?: MultipleValuesSetting;
5460
+ /**
5461
+ * Specifications for the constituent sub slots and the expression for the composite slot.
5462
+ */
5463
+ subSlotSetting?: SubSlotSetting;
5388
5464
  }
5389
5465
  export interface UpdateSlotResponse {
5390
5466
  /**
@@ -5439,6 +5515,10 @@ declare namespace LexModelsV2 {
5439
5515
  * Indicates whether the slot accepts multiple values in one response.
5440
5516
  */
5441
5517
  multipleValuesSetting?: MultipleValuesSetting;
5518
+ /**
5519
+ * Specifications for the constituent sub slots and the expression for the composite slot.
5520
+ */
5521
+ subSlotSetting?: SubSlotSetting;
5442
5522
  }
5443
5523
  export interface UpdateSlotTypeRequest {
5444
5524
  /**
@@ -5478,6 +5558,10 @@ declare namespace LexModelsV2 {
5478
5558
  */
5479
5559
  localeId: LocaleId;
5480
5560
  externalSourceSetting?: ExternalSourceSetting;
5561
+ /**
5562
+ * Specifications for a composite slot type.
5563
+ */
5564
+ compositeSlotTypeSetting?: CompositeSlotTypeSetting;
5481
5565
  }
5482
5566
  export interface UpdateSlotTypeResponse {
5483
5567
  /**
@@ -5525,6 +5609,10 @@ declare namespace LexModelsV2 {
5525
5609
  */
5526
5610
  lastUpdatedDateTime?: Timestamp;
5527
5611
  externalSourceSetting?: ExternalSourceSetting;
5612
+ /**
5613
+ * Specifications for a composite slot type.
5614
+ */
5615
+ compositeSlotTypeSetting?: CompositeSlotTypeSetting;
5528
5616
  }
5529
5617
  export type Utterance = string;
5530
5618
  export interface UtteranceAggregationDuration {
@@ -146,7 +146,7 @@ declare namespace LexRuntimeV2 {
146
146
  }
147
147
  export interface DialogAction {
148
148
  /**
149
- * The next action that the bot should take in its interaction with the user. The possible values are: Close - Indicates that there will not be a response from the user. For example, the statement "Your order has been placed" does not require a response. ConfirmIntent - The next action is asking the user if the intent is complete and ready to be fulfilled. This is a yes/no question such as "Place the order?" Delegate - The next action is determined by Amazon Lex V2. ElicitSlot - The next action is to elicit a slot value from the user.
149
+ * The next action that the bot should take in its interaction with the user. The possible values are: Close - Indicates that there will not be a response from the user. For example, the statement "Your order has been placed" does not require a response. ConfirmIntent - The next action is asking the user if the intent is complete and ready to be fulfilled. This is a yes/no question such as "Place the order?" Delegate - The next action is determined by Amazon Lex V2. ElicitIntent - The next action is to elicit an intent from the user. ElicitSlot - The next action is to elicit a slot value from the user.
150
150
  */
151
151
  type: DialogActionType;
152
152
  /**
@@ -157,9 +157,23 @@ declare namespace LexRuntimeV2 {
157
157
  * Configures the slot to use spell-by-letter or spell-by-word style. When you use a style on a slot, users can spell out their input to make it clear to your bot. Spell by letter - "b" "o" "b" Spell by word - "b as in boy" "o as in oscar" "b as in boy" For more information, see Using spelling to enter slot values .
158
158
  */
159
159
  slotElicitationStyle?: StyleType;
160
+ /**
161
+ * The name of the constituent sub slot of the composite slot specified in slotToElicit that should be elicited from the user.
162
+ */
163
+ subSlotToElicit?: ElicitSubSlot;
160
164
  }
161
165
  export type DialogActionType = "Close"|"ConfirmIntent"|"Delegate"|"ElicitIntent"|"ElicitSlot"|"None"|string;
162
166
  export type Double = number;
167
+ export interface ElicitSubSlot {
168
+ /**
169
+ * The name of the slot that should be elicited from the user.
170
+ */
171
+ name: NonEmptyString;
172
+ /**
173
+ * The field is not supported.
174
+ */
175
+ subSlotToElicit?: ElicitSubSlot;
176
+ }
163
177
  export interface GetSessionRequest {
164
178
  /**
165
179
  * The identifier of the bot that contains the session data.
@@ -457,7 +471,11 @@ declare namespace LexRuntimeV2 {
457
471
  /**
458
472
  * One or more strings that Amazon Lex V2 should look for in the input to the bot. Each phrase is given preference when deciding on slot values.
459
473
  */
460
- runtimeHintValues: RuntimeHintValuesList;
474
+ runtimeHintValues?: RuntimeHintValuesList;
475
+ /**
476
+ * A map of constituent sub slot names inside a composite slot in the intent and the phrases that should be added for each sub slot. Inside each composite slot hints, this structure provides a mechanism to add granular sub slot phrases. Only sub slot hints are supported for composite slots. The intent name, composite slot name and the constituent sub slot names must exist.
477
+ */
478
+ subSlotHints?: SlotHintsSlotMap;
461
479
  }
462
480
  export type RuntimeHintPhrase = string;
463
481
  export interface RuntimeHintValue {
@@ -527,7 +545,7 @@ declare namespace LexRuntimeV2 {
527
545
  */
528
546
  runtimeHints?: RuntimeHints;
529
547
  }
530
- export type Shape = "Scalar"|"List"|string;
548
+ export type Shape = "Scalar"|"List"|"Composite"|string;
531
549
  export interface Slot {
532
550
  /**
533
551
  * The current value of the slot.
@@ -541,6 +559,10 @@ declare namespace LexRuntimeV2 {
541
559
  * A list of one or more values that the user provided for the slot. For example, if a for a slot that elicits pizza toppings, the values might be "pepperoni" and "pineapple."
542
560
  */
543
561
  values?: Values;
562
+ /**
563
+ * The constituent sub slots of a composite slot.
564
+ */
565
+ subSlots?: Slots;
544
566
  }
545
567
  export type SlotHintsIntentMap = {[key: string]: SlotHintsSlotMap};
546
568
  export type SlotHintsSlotMap = {[key: string]: RuntimeHintDetails};
@@ -752,6 +752,10 @@ declare namespace LookoutMetrics {
752
752
  * A list of tags to apply to the dataset.
753
753
  */
754
754
  Tags?: TagMap;
755
+ /**
756
+ * A list of filters that specify which data is kept for anomaly detection.
757
+ */
758
+ DimensionFilterList?: MetricSetDimensionFilterList;
755
759
  }
756
760
  export interface CreateMetricSetResponse {
757
761
  /**
@@ -982,6 +986,10 @@ declare namespace LookoutMetrics {
982
986
  * Contains information about the dataset's source data.
983
987
  */
984
988
  MetricSource?: MetricSource;
989
+ /**
990
+ * The dimensions and their values that were used to filter the dataset.
991
+ */
992
+ DimensionFilterList?: MetricSetDimensionFilterList;
985
993
  }
986
994
  export interface DetectMetricSetConfigRequest {
987
995
  /**
@@ -1159,6 +1167,18 @@ declare namespace LookoutMetrics {
1159
1167
  */
1160
1168
  JsonFormatDescriptor?: JsonFormatDescriptor;
1161
1169
  }
1170
+ export interface Filter {
1171
+ /**
1172
+ * The value that you want to include in the filter.
1173
+ */
1174
+ DimensionValue?: DimensionValue;
1175
+ /**
1176
+ * The condition to apply.
1177
+ */
1178
+ FilterOperation?: FilterOperation;
1179
+ }
1180
+ export type FilterList = Filter[];
1181
+ export type FilterOperation = "EQUALS"|string;
1162
1182
  export type FlowName = string;
1163
1183
  export type Frequency = "P1D"|"PT1H"|"PT10M"|"PT5M"|string;
1164
1184
  export interface GetAnomalyGroupRequest {
@@ -1530,6 +1550,17 @@ declare namespace LookoutMetrics {
1530
1550
  }
1531
1551
  export type MetricSetDataQualityMetricList = MetricSetDataQualityMetric[];
1532
1552
  export type MetricSetDescription = string;
1553
+ export interface MetricSetDimensionFilter {
1554
+ /**
1555
+ * The dimension that you want to filter on.
1556
+ */
1557
+ Name?: ColumnName;
1558
+ /**
1559
+ * The list of filters that you are applying.
1560
+ */
1561
+ FilterList?: FilterList;
1562
+ }
1563
+ export type MetricSetDimensionFilterList = MetricSetDimensionFilter[];
1533
1564
  export type MetricSetName = string;
1534
1565
  export interface MetricSetSummary {
1535
1566
  /**
@@ -1893,6 +1924,10 @@ declare namespace LookoutMetrics {
1893
1924
  */
1894
1925
  MetricSetFrequency?: Frequency;
1895
1926
  MetricSource?: MetricSource;
1927
+ /**
1928
+ * Describes a list of filters for choosing specific dimensions and specific values. Each filter consists of the dimension and one of its values that you want to include. When multiple dimensions or values are specified, the dimensions are joined with an AND operation and the values are joined with an OR operation.
1929
+ */
1930
+ DimensionFilterList?: MetricSetDimensionFilterList;
1896
1931
  }
1897
1932
  export interface UpdateMetricSetResponse {
1898
1933
  /**
@@ -731,6 +731,7 @@ Leave set to "normal" when input does not contain pre-mixed audio + AD.
731
731
  export interface AudioCodecSettings {
732
732
  AacSettings?: AacSettings;
733
733
  Ac3Settings?: Ac3Settings;
734
+ Eac3AtmosSettings?: Eac3AtmosSettings;
734
735
  Eac3Settings?: Eac3Settings;
735
736
  Mp2Settings?: Mp2Settings;
736
737
  PassThroughSettings?: PassThroughSettings;
@@ -2447,6 +2448,8 @@ during input switch actions. Presently, this functionality only works with MP4_F
2447
2448
  }
2448
2449
  export type DeviceSettingsSyncState = "SYNCED"|"SYNCING"|string;
2449
2450
  export type DeviceUpdateStatus = "UP_TO_DATE"|"NOT_UP_TO_DATE"|"UPDATING"|string;
2451
+ export interface DolbyVision81Settings {
2452
+ }
2450
2453
  export interface DvbNitSettings {
2451
2454
  /**
2452
2455
  * The numeric value placed in the Network Information Table (NIT).
@@ -2574,6 +2577,40 @@ provide the language to consider when translating the image-based source to text
2574
2577
  */
2575
2578
  RepInterval?: __integerMin1000Max30000;
2576
2579
  }
2580
+ export type Eac3AtmosCodingMode = "CODING_MODE_5_1_4"|"CODING_MODE_7_1_4"|"CODING_MODE_9_1_6"|string;
2581
+ export type Eac3AtmosDrcLine = "FILM_LIGHT"|"FILM_STANDARD"|"MUSIC_LIGHT"|"MUSIC_STANDARD"|"NONE"|"SPEECH"|string;
2582
+ export type Eac3AtmosDrcRf = "FILM_LIGHT"|"FILM_STANDARD"|"MUSIC_LIGHT"|"MUSIC_STANDARD"|"NONE"|"SPEECH"|string;
2583
+ export interface Eac3AtmosSettings {
2584
+ /**
2585
+ * Average bitrate in bits/second. Valid bitrates depend on the coding mode.
2586
+ // * @affectsRightSizing true
2587
+ */
2588
+ Bitrate?: __double;
2589
+ /**
2590
+ * Dolby Digital Plus with Dolby Atmos coding mode. Determines number of channels.
2591
+ */
2592
+ CodingMode?: Eac3AtmosCodingMode;
2593
+ /**
2594
+ * Sets the dialnorm for the output. Default 23.
2595
+ */
2596
+ Dialnorm?: __integerMin1Max31;
2597
+ /**
2598
+ * Sets the Dolby dynamic range compression profile.
2599
+ */
2600
+ DrcLine?: Eac3AtmosDrcLine;
2601
+ /**
2602
+ * Sets the profile for heavy Dolby dynamic range compression, ensures that the instantaneous signal peaks do not exceed specified levels.
2603
+ */
2604
+ DrcRf?: Eac3AtmosDrcRf;
2605
+ /**
2606
+ * Height dimensional trim. Sets the maximum amount to attenuate the height channels when the downstream player isn??t configured to handle Dolby Digital Plus with Dolby Atmos and must remix the channels.
2607
+ */
2608
+ HeightTrim?: __double;
2609
+ /**
2610
+ * Surround dimensional trim. Sets the maximum amount to attenuate the surround channels when the downstream player isn't configured to handle Dolby Digital Plus with Dolby Atmos and must remix the channels.
2611
+ */
2612
+ SurroundTrim?: __double;
2613
+ }
2577
2614
  export type Eac3AttenuationControl = "ATTENUATE_3_DB"|"NONE"|string;
2578
2615
  export type Eac3BitstreamMode = "COMMENTARY"|"COMPLETE_MAIN"|"EMERGENCY"|"HEARING_IMPAIRED"|"VISUALLY_IMPAIRED"|string;
2579
2616
  export type Eac3CodingMode = "CODING_MODE_1_0"|"CODING_MODE_2_0"|"CODING_MODE_3_2"|string;
@@ -3145,6 +3182,7 @@ This field is optional; when no value is specified the encoder will choose the n
3145
3182
  export type H265ColorMetadata = "IGNORE"|"INSERT"|string;
3146
3183
  export interface H265ColorSpaceSettings {
3147
3184
  ColorSpacePassthroughSettings?: ColorSpacePassthroughSettings;
3185
+ DolbyVision81Settings?: DolbyVision81Settings;
3148
3186
  Hdr10Settings?: Hdr10Settings;
3149
3187
  Rec601Settings?: Rec601Settings;
3150
3188
  Rec709Settings?: Rec709Settings;
@@ -721,11 +721,11 @@ declare class Redshift extends Service {
721
721
  */
722
722
  getReservedNodeExchangeOfferings(callback?: (err: AWSError, data: Redshift.Types.GetReservedNodeExchangeOfferingsOutputMessage) => void): Request<Redshift.Types.GetReservedNodeExchangeOfferingsOutputMessage, AWSError>;
723
723
  /**
724
- * Modifies whether a cluster can use AQUA (Advanced Query Accelerator).
724
+ * This operation is retired. Calling this operation does not change AQUA configuration. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
725
725
  */
726
726
  modifyAquaConfiguration(params: Redshift.Types.ModifyAquaInputMessage, callback?: (err: AWSError, data: Redshift.Types.ModifyAquaOutputMessage) => void): Request<Redshift.Types.ModifyAquaOutputMessage, AWSError>;
727
727
  /**
728
- * Modifies whether a cluster can use AQUA (Advanced Query Accelerator).
728
+ * This operation is retired. Calling this operation does not change AQUA configuration. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
729
729
  */
730
730
  modifyAquaConfiguration(callback?: (err: AWSError, data: Redshift.Types.ModifyAquaOutputMessage) => void): Request<Redshift.Types.ModifyAquaOutputMessage, AWSError>;
731
731
  /**
@@ -1040,11 +1040,11 @@ declare namespace Redshift {
1040
1040
  export type ActionType = "restore-cluster"|"recommend-node-config"|"resize-cluster"|string;
1041
1041
  export interface AquaConfiguration {
1042
1042
  /**
1043
- * The value indicates the status of AQUA on the cluster. Possible values include the following. enabled - AQUA is enabled. disabled - AQUA is not enabled. applying - AQUA status is being applied.
1043
+ * This field is retired. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
1044
1044
  */
1045
1045
  AquaStatus?: AquaStatus;
1046
1046
  /**
1047
- * The value represents how the cluster is configured to use AQUA. Possible values include the following. enabled - Use AQUA if it is available for the current Amazon Web Services Region and Amazon Redshift node type. disabled - Don't use AQUA. auto - Amazon Redshift determines whether to use AQUA.
1047
+ * This field is retired. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
1048
1048
  */
1049
1049
  AquaConfigurationStatus?: AquaConfigurationStatus;
1050
1050
  }
@@ -1416,7 +1416,7 @@ declare namespace Redshift {
1416
1416
  */
1417
1417
  TotalStorageCapacityInMegaBytes?: LongOptional;
1418
1418
  /**
1419
- * The AQUA (Advanced Query Accelerator) configuration of the cluster.
1419
+ * This field is retired. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
1420
1420
  */
1421
1421
  AquaConfiguration?: AquaConfiguration;
1422
1422
  /**
@@ -1870,7 +1870,7 @@ declare namespace Redshift {
1870
1870
  */
1871
1871
  HsmConfigurationIdentifier?: String;
1872
1872
  /**
1873
- * The Elastic IP (EIP) address for the cluster. You don't have to specify the EIP for a publicly accessible cluster with AvailabilityZoneRelocation turned on. Constraints: The cluster must be provisioned in EC2-VPC and publicly-accessible through an Internet gateway. For more information about provisioning clusters in EC2-VPC, go to Supported Platforms to Launch Your Cluster in the Amazon Redshift Cluster Management Guide.
1873
+ * The Elastic IP (EIP) address for the cluster. Constraints: The cluster must be provisioned in EC2-VPC and publicly-accessible through an Internet gateway. For more information about provisioning clusters in EC2-VPC, go to Supported Platforms to Launch Your Cluster in the Amazon Redshift Cluster Management Guide.
1874
1874
  */
1875
1875
  ElasticIp?: String;
1876
1876
  /**
@@ -1906,7 +1906,7 @@ declare namespace Redshift {
1906
1906
  */
1907
1907
  AvailabilityZoneRelocation?: BooleanOptional;
1908
1908
  /**
1909
- * The value represents how the cluster is configured to use AQUA (Advanced Query Accelerator) when it is created. Possible values include the following. enabled - Use AQUA if it is available for the current Amazon Web Services Region and Amazon Redshift node type. disabled - Don't use AQUA. auto - Amazon Redshift determines whether to use AQUA.
1909
+ * This parameter is retired. It does not set the AQUA configuration status. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
1910
1910
  */
1911
1911
  AquaConfigurationStatus?: AquaConfigurationStatus;
1912
1912
  /**
@@ -3614,11 +3614,11 @@ declare namespace Redshift {
3614
3614
  }
3615
3615
  export interface GetClusterCredentialsMessage {
3616
3616
  /**
3617
- * The name of a database user. If a user name matching DbUser exists in the database, the temporary user credentials have the same permissions as the existing user. If DbUser doesn't exist in the database and Autocreate is True, a new user is created using the value for DbUser with PUBLIC permissions. If a database user matching the value for DbUser doesn't exist and Autocreate is False, then the command succeeds but the connection attempt will fail because the user doesn't exist in the database. For more information, see CREATE USER in the Amazon Redshift Database Developer Guide. Constraints: Must be 1 to 64 alphanumeric characters or hyphens. The user name can't be PUBLIC. Must contain only lowercase letters, numbers, underscore, plus sign, period (dot), at symbol (@), or hyphen. First character must be a letter. Must not contain a colon ( : ) or slash ( / ). Cannot be a reserved word. A list of reserved words can be found in Reserved Words in the Amazon Redshift Database Developer Guide.
3617
+ * The name of a database user. If a user name matching DbUser exists in the database, the temporary user credentials have the same permissions as the existing user. If DbUser doesn't exist in the database and Autocreate is True, a new user is created using the value for DbUser with PUBLIC permissions. If a database user matching the value for DbUser doesn't exist and Autocreate is False, then the command succeeds but the connection attempt will fail because the user doesn't exist in the database. For more information, see CREATE USER in the Amazon Redshift Database Developer Guide. Constraints: Must be 1 to 64 alphanumeric characters or hyphens. The user name can't be PUBLIC. Must contain uppercase or lowercase letters, numbers, underscore, plus sign, period (dot), at symbol (@), or hyphen. First character must be a letter. Must not contain a colon ( : ) or slash ( / ). Cannot be a reserved word. A list of reserved words can be found in Reserved Words in the Amazon Redshift Database Developer Guide.
3618
3618
  */
3619
3619
  DbUser: String;
3620
3620
  /**
3621
- * The name of a database that DbUser is authorized to log on to. If DbName is not specified, DbUser can log on to any existing database. Constraints: Must be 1 to 64 alphanumeric characters or hyphens Must contain only lowercase letters, numbers, underscore, plus sign, period (dot), at symbol (@), or hyphen. First character must be a letter. Must not contain a colon ( : ) or slash ( / ). Cannot be a reserved word. A list of reserved words can be found in Reserved Words in the Amazon Redshift Database Developer Guide.
3621
+ * The name of a database that DbUser is authorized to log on to. If DbName is not specified, DbUser can log on to any existing database. Constraints: Must be 1 to 64 alphanumeric characters or hyphens Must contain uppercase or lowercase letters, numbers, underscore, plus sign, period (dot), at symbol (@), or hyphen. First character must be a letter. Must not contain a colon ( : ) or slash ( / ). Cannot be a reserved word. A list of reserved words can be found in Reserved Words in the Amazon Redshift Database Developer Guide.
3622
3622
  */
3623
3623
  DbName?: String;
3624
3624
  /**
@@ -3860,13 +3860,13 @@ declare namespace Redshift {
3860
3860
  */
3861
3861
  ClusterIdentifier: String;
3862
3862
  /**
3863
- * The new value of AQUA configuration status. Possible values include the following. enabled - Use AQUA if it is available for the current Amazon Web Services Region and Amazon Redshift node type. disabled - Don't use AQUA. auto - Amazon Redshift determines whether to use AQUA.
3863
+ * This parameter is retired. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
3864
3864
  */
3865
3865
  AquaConfigurationStatus?: AquaConfigurationStatus;
3866
3866
  }
3867
3867
  export interface ModifyAquaOutputMessage {
3868
3868
  /**
3869
- * The updated AQUA configuration of the cluster.
3869
+ * This parameter is retired. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
3870
3870
  */
3871
3871
  AquaConfiguration?: AquaConfiguration;
3872
3872
  }
@@ -4820,11 +4820,11 @@ declare namespace Redshift {
4820
4820
  */
4821
4821
  ClusterIdentifier: String;
4822
4822
  /**
4823
- * The name of the snapshot from which to create the new cluster. This parameter isn't case sensitive. Example: my-snapshot-id
4823
+ * The name of the snapshot from which to create the new cluster. This parameter isn't case sensitive. You can specify this parameter or snapshotArn, but not both. Example: my-snapshot-id
4824
4824
  */
4825
4825
  SnapshotIdentifier?: String;
4826
4826
  /**
4827
- * The Amazon Resource Name (ARN) of the snapshot associated with the message to restore from a cluster.
4827
+ * The Amazon Resource Name (ARN) of the snapshot associated with the message to restore from a cluster. You can specify this parameter or snapshotIdentifier, but not both.
4828
4828
  */
4829
4829
  SnapshotArn?: String;
4830
4830
  /**
@@ -4864,7 +4864,7 @@ declare namespace Redshift {
4864
4864
  */
4865
4865
  HsmConfigurationIdentifier?: String;
4866
4866
  /**
4867
- * The elastic IP (EIP) address for the cluster. You don't have to specify the EIP for a publicly accessible cluster with AvailabilityZoneRelocation turned on.
4867
+ * The elastic IP (EIP) address for the cluster.
4868
4868
  */
4869
4869
  ElasticIp?: String;
4870
4870
  /**
@@ -4928,7 +4928,7 @@ declare namespace Redshift {
4928
4928
  */
4929
4929
  AvailabilityZoneRelocation?: BooleanOptional;
4930
4930
  /**
4931
- * The value represents how the cluster is configured to use AQUA (Advanced Query Accelerator) after the cluster is restored. Possible values include the following. enabled - Use AQUA if it is available for the current Amazon Web Services Region and Amazon Redshift node type. disabled - Don't use AQUA. auto - Amazon Redshift determines whether to use AQUA.
4931
+ * This parameter is retired. It does not set the AQUA configuration status. Amazon Redshift automatically determines whether to use AQUA (Advanced Query Accelerator).
4932
4932
  */
4933
4933
  AquaConfigurationStatus?: AquaConfigurationStatus;
4934
4934
  /**
@@ -850,7 +850,7 @@ declare namespace Route53 {
850
850
  Dimensions?: DimensionList;
851
851
  }
852
852
  export type CloudWatchLogsLogGroupArn = string;
853
- export type CloudWatchRegion = "us-east-1"|"us-east-2"|"us-west-1"|"us-west-2"|"ca-central-1"|"eu-central-1"|"eu-west-1"|"eu-west-2"|"eu-west-3"|"ap-east-1"|"me-south-1"|"ap-south-1"|"ap-southeast-1"|"ap-southeast-2"|"ap-southeast-3"|"ap-northeast-1"|"ap-northeast-2"|"ap-northeast-3"|"eu-north-1"|"sa-east-1"|"cn-northwest-1"|"cn-north-1"|"af-south-1"|"eu-south-1"|"us-gov-west-1"|"us-gov-east-1"|"us-iso-east-1"|"us-iso-west-1"|"us-isob-east-1"|string;
853
+ export type CloudWatchRegion = "us-east-1"|"us-east-2"|"us-west-1"|"us-west-2"|"ca-central-1"|"eu-central-1"|"eu-west-1"|"eu-west-2"|"eu-west-3"|"ap-east-1"|"me-south-1"|"me-central-1"|"ap-south-1"|"ap-southeast-1"|"ap-southeast-2"|"ap-southeast-3"|"ap-northeast-1"|"ap-northeast-2"|"ap-northeast-3"|"eu-north-1"|"sa-east-1"|"cn-northwest-1"|"cn-north-1"|"af-south-1"|"eu-south-1"|"us-gov-west-1"|"us-gov-east-1"|"us-iso-east-1"|"us-iso-west-1"|"us-isob-east-1"|string;
854
854
  export type CollectionName = string;
855
855
  export type CollectionSummaries = CollectionSummary[];
856
856
  export interface CollectionSummary {
@@ -2991,7 +2991,7 @@ declare namespace Route53 {
2991
2991
  VPCId?: VPCId;
2992
2992
  }
2993
2993
  export type VPCId = string;
2994
- export type VPCRegion = "us-east-1"|"us-east-2"|"us-west-1"|"us-west-2"|"eu-west-1"|"eu-west-2"|"eu-west-3"|"eu-central-1"|"ap-east-1"|"me-south-1"|"us-gov-west-1"|"us-gov-east-1"|"us-iso-east-1"|"us-iso-west-1"|"us-isob-east-1"|"ap-southeast-1"|"ap-southeast-2"|"ap-southeast-3"|"ap-south-1"|"ap-northeast-1"|"ap-northeast-2"|"ap-northeast-3"|"eu-north-1"|"sa-east-1"|"ca-central-1"|"cn-north-1"|"af-south-1"|"eu-south-1"|string;
2994
+ export type VPCRegion = "us-east-1"|"us-east-2"|"us-west-1"|"us-west-2"|"eu-west-1"|"eu-west-2"|"eu-west-3"|"eu-central-1"|"ap-east-1"|"me-south-1"|"us-gov-west-1"|"us-gov-east-1"|"us-iso-east-1"|"us-iso-west-1"|"us-isob-east-1"|"me-central-1"|"ap-southeast-1"|"ap-southeast-2"|"ap-southeast-3"|"ap-south-1"|"ap-northeast-1"|"ap-northeast-2"|"ap-northeast-3"|"eu-north-1"|"sa-east-1"|"ca-central-1"|"cn-north-1"|"af-south-1"|"eu-south-1"|string;
2995
2995
  export type VPCs = VPC[];
2996
2996
  /**
2997
2997
  * A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
@@ -373,11 +373,11 @@ declare class SageMaker extends Service {
373
373
  */
374
374
  createStudioLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateStudioLifecycleConfigResponse) => void): Request<SageMaker.Types.CreateStudioLifecycleConfigResponse, AWSError>;
375
375
  /**
376
- * Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
376
+ * Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You must not include any security-sensitive information, such as account access IDs, secrets, and tokens, in the dictionary for configuring hyperparameters. SageMaker rejects the training job request and returns an exception error for detected credentials, if such user input is found. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
377
377
  */
378
378
  createTrainingJob(params: SageMaker.Types.CreateTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
379
379
  /**
380
- * Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
380
+ * Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You must not include any security-sensitive information, such as account access IDs, secrets, and tokens, in the dictionary for configuring hyperparameters. SageMaker rejects the training job request and returns an exception error for detected credentials, if such user input is found. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
381
381
  */
382
382
  createTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
383
383
  /**
@@ -2876,6 +2876,10 @@ declare namespace SageMaker {
2876
2876
  * The configuration for generating a candidate for an AutoML job (optional).
2877
2877
  */
2878
2878
  CandidateGenerationConfig?: AutoMLCandidateGenerationConfig;
2879
+ /**
2880
+ * The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO will automatically select an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
2881
+ */
2882
+ Mode?: AutoMLMode;
2879
2883
  }
2880
2884
  export type AutoMLJobName = string;
2881
2885
  export interface AutoMLJobObjective {
@@ -2929,6 +2933,7 @@ declare namespace SageMaker {
2929
2933
  export type AutoMLMaxResults = number;
2930
2934
  export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|string;
2931
2935
  export type AutoMLMetricExtendedEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|string;
2936
+ export type AutoMLMode = "AUTO"|"ENSEMBLING"|"HYPERPARAMETER_TUNING"|string;
2932
2937
  export type AutoMLNameContains = string;
2933
2938
  export interface AutoMLOutputDataConfig {
2934
2939
  /**
@@ -4927,7 +4932,7 @@ declare namespace SageMaker {
4927
4932
  */
4928
4933
  TrainingJobName: TrainingJobName;
4929
4934
  /**
4930
- * Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint.
4935
+ * Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint. You must not include any security-sensitive information, such as account access IDs, secrets, and tokens, in the dictionary for configuring hyperparameters. SageMaker rejects the training job request and returns an exception error for detected credentials, if such user input is found.
4931
4936
  */
4932
4937
  HyperParameters?: HyperParameters;
4933
4938
  /**
@@ -15569,11 +15574,11 @@ declare namespace SageMaker {
15569
15574
  */
15570
15575
  VolumeSizeInGB?: ProductionVariantVolumeSizeInGB;
15571
15576
  /**
15572
- * The timeout value, in seconds, to download and extract customer model artifact from Amazon S3 to individual inference instance associated with this production variant.
15577
+ * The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
15573
15578
  */
15574
15579
  ModelDataDownloadTimeoutInSeconds?: ProductionVariantModelDataDownloadTimeoutInSeconds;
15575
15580
  /**
15576
- * The timeout value, in seconds, for the customer inference container to pass health check by SageMaker Hosting. For more information on health check, see How Your Container Should Respond to Health Check (Ping) Requests.
15581
+ * The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
15577
15582
  */
15578
15583
  ContainerStartupHealthCheckTimeoutInSeconds?: ProductionVariantContainerStartupHealthCheckTimeoutInSeconds;
15579
15584
  }