cdk-comprehend-s3olap 2.0.87 → 2.0.90
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.jsii +4 -4
- package/lib/cdk-comprehend-s3olap.js +2 -2
- package/lib/comprehend-lambdas.js +2 -2
- package/lib/iam-roles.js +4 -4
- package/node_modules/aws-sdk/CHANGELOG.md +23 -1
- package/node_modules/aws-sdk/README.md +1 -1
- package/node_modules/aws-sdk/apis/dataexchange-2017-07-25.examples.json +5 -0
- package/node_modules/aws-sdk/apis/dataexchange-2017-07-25.min.json +337 -335
- package/node_modules/aws-sdk/apis/dataexchange-2017-07-25.paginators.json +1 -1
- package/node_modules/aws-sdk/apis/dataexchange-2017-07-25.waiters2.json +5 -0
- package/node_modules/aws-sdk/apis/ec2-2016-11-15.min.json +4 -0
- package/node_modules/aws-sdk/apis/emr-containers-2020-10-01.min.json +34 -19
- package/node_modules/aws-sdk/apis/inspector2-2020-06-08.min.json +10 -2
- package/node_modules/aws-sdk/apis/iotsitewise-2019-12-02.min.json +2 -1
- package/node_modules/aws-sdk/apis/lookoutmetrics-2017-07-25.min.json +39 -11
- package/node_modules/aws-sdk/apis/medialive-2017-10-14.min.json +249 -213
- package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +742 -687
- package/node_modules/aws-sdk/apis/sns-2010-03-31.min.json +42 -10
- package/node_modules/aws-sdk/apis/ssm-2014-11-06.min.json +3 -0
- package/node_modules/aws-sdk/clients/dataexchange.d.ts +13 -13
- package/node_modules/aws-sdk/clients/dataexchange.js +1 -0
- package/node_modules/aws-sdk/clients/ec2.d.ts +48 -40
- package/node_modules/aws-sdk/clients/eks.d.ts +7 -7
- package/node_modules/aws-sdk/clients/emrcontainers.d.ts +16 -1
- package/node_modules/aws-sdk/clients/fsx.d.ts +2 -2
- package/node_modules/aws-sdk/clients/identitystore.d.ts +34 -34
- package/node_modules/aws-sdk/clients/inspector2.d.ts +16 -2
- package/node_modules/aws-sdk/clients/iotsitewise.d.ts +12 -8
- package/node_modules/aws-sdk/clients/lookoutmetrics.d.ts +35 -0
- package/node_modules/aws-sdk/clients/medialive.d.ts +38 -0
- package/node_modules/aws-sdk/clients/route53.d.ts +2 -2
- package/node_modules/aws-sdk/clients/sagemaker.d.ts +73 -4
- package/node_modules/aws-sdk/clients/sns.d.ts +42 -0
- package/node_modules/aws-sdk/clients/ssm.d.ts +10 -6
- package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
- package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +755 -748
- package/node_modules/aws-sdk/dist/aws-sdk.js +52 -13
- package/node_modules/aws-sdk/dist/aws-sdk.min.js +69 -69
- package/node_modules/aws-sdk/lib/core.js +1 -1
- package/node_modules/aws-sdk/lib/credentials/sso_credentials.d.ts +2 -0
- package/node_modules/aws-sdk/lib/credentials/sso_credentials.js +5 -1
- package/node_modules/aws-sdk/package.json +1 -1
- package/node_modules/esbuild/bin/esbuild +1 -1
- package/node_modules/esbuild/install.js +5 -5
- package/node_modules/esbuild/lib/main.js +14 -13
- package/node_modules/esbuild/package.json +22 -22
- package/node_modules/esbuild-linux-64/bin/esbuild +0 -0
- package/node_modules/esbuild-linux-64/package.json +1 -1
- package/package.json +11 -10
@@ -373,11 +373,11 @@ declare class SageMaker extends Service {
|
|
373
373
|
*/
|
374
374
|
createStudioLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateStudioLifecycleConfigResponse) => void): Request<SageMaker.Types.CreateStudioLifecycleConfigResponse, AWSError>;
|
375
375
|
/**
|
376
|
-
* Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
|
376
|
+
* Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You must not include any security-sensitive information, such as account access IDs, secrets, and tokens, in the dictionary for configuring hyperparameters. SageMaker rejects the training job request and returns an exception error for detected credentials, if such user input is found. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
|
377
377
|
*/
|
378
378
|
createTrainingJob(params: SageMaker.Types.CreateTrainingJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
|
379
379
|
/**
|
380
|
-
* Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
|
380
|
+
* Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. In the request body, you provide the following: AlgorithmSpecification - Identifies the training algorithm to use. HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You must not include any security-sensitive information, such as account access IDs, secrets, and tokens, in the dictionary for configuring hyperparameters. SageMaker rejects the training job request and returns an exception error for detected credentials, if such user input is found. InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored. OutputDataConfig - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training. RoleArn - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long a managed spot training job has to complete. Environment - The environment variables to set in the Docker container. RetryStrategy - The number of times to retry the job when the job fails due to an InternalServerError. For more information about SageMaker, see How It Works.
|
381
381
|
*/
|
382
382
|
createTrainingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateTrainingJobResponse) => void): Request<SageMaker.Types.CreateTrainingJobResponse, AWSError>;
|
383
383
|
/**
|
@@ -2876,6 +2876,10 @@ declare namespace SageMaker {
|
|
2876
2876
|
* The configuration for generating a candidate for an AutoML job (optional).
|
2877
2877
|
*/
|
2878
2878
|
CandidateGenerationConfig?: AutoMLCandidateGenerationConfig;
|
2879
|
+
/**
|
2880
|
+
* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO will automatically select an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
|
2881
|
+
*/
|
2882
|
+
Mode?: AutoMLMode;
|
2879
2883
|
}
|
2880
2884
|
export type AutoMLJobName = string;
|
2881
2885
|
export interface AutoMLJobObjective {
|
@@ -2929,6 +2933,7 @@ declare namespace SageMaker {
|
|
2929
2933
|
export type AutoMLMaxResults = number;
|
2930
2934
|
export type AutoMLMetricEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|string;
|
2931
2935
|
export type AutoMLMetricExtendedEnum = "Accuracy"|"MSE"|"F1"|"F1macro"|"AUC"|"RMSE"|"MAE"|"R2"|"BalancedAccuracy"|"Precision"|"PrecisionMacro"|"Recall"|"RecallMacro"|"LogLoss"|string;
|
2936
|
+
export type AutoMLMode = "AUTO"|"ENSEMBLING"|"HYPERPARAMETER_TUNING"|string;
|
2932
2937
|
export type AutoMLNameContains = string;
|
2933
2938
|
export interface AutoMLOutputDataConfig {
|
2934
2939
|
/**
|
@@ -4927,7 +4932,7 @@ declare namespace SageMaker {
|
|
4927
4932
|
*/
|
4928
4933
|
TrainingJobName: TrainingJobName;
|
4929
4934
|
/**
|
4930
|
-
* Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint.
|
4935
|
+
* Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint. You must not include any security-sensitive information, such as account access IDs, secrets, and tokens, in the dictionary for configuring hyperparameters. SageMaker rejects the training job request and returns an exception error for detected credentials, if such user input is found.
|
4931
4936
|
*/
|
4932
4937
|
HyperParameters?: HyperParameters;
|
4933
4938
|
/**
|
@@ -10228,6 +10233,51 @@ declare namespace SageMaker {
|
|
10228
10233
|
}
|
10229
10234
|
export type HyperParameterTuningJobObjectiveType = "Maximize"|"Minimize"|string;
|
10230
10235
|
export type HyperParameterTuningJobObjectives = HyperParameterTuningJobObjective[];
|
10236
|
+
export interface HyperParameterTuningJobSearchEntity {
|
10237
|
+
/**
|
10238
|
+
* The name of a hyperparameter tuning job.
|
10239
|
+
*/
|
10240
|
+
HyperParameterTuningJobName?: HyperParameterTuningJobName;
|
10241
|
+
/**
|
10242
|
+
* The Amazon Resource Name (ARN) of a hyperparameter tuning job.
|
10243
|
+
*/
|
10244
|
+
HyperParameterTuningJobArn?: HyperParameterTuningJobArn;
|
10245
|
+
HyperParameterTuningJobConfig?: HyperParameterTuningJobConfig;
|
10246
|
+
TrainingJobDefinition?: HyperParameterTrainingJobDefinition;
|
10247
|
+
/**
|
10248
|
+
* The job definitions included in a hyperparameter tuning job.
|
10249
|
+
*/
|
10250
|
+
TrainingJobDefinitions?: HyperParameterTrainingJobDefinitions;
|
10251
|
+
/**
|
10252
|
+
* The status of a hyperparameter tuning job.
|
10253
|
+
*/
|
10254
|
+
HyperParameterTuningJobStatus?: HyperParameterTuningJobStatus;
|
10255
|
+
/**
|
10256
|
+
* The time that a hyperparameter tuning job was created.
|
10257
|
+
*/
|
10258
|
+
CreationTime?: Timestamp;
|
10259
|
+
/**
|
10260
|
+
* The time that a hyperparameter tuning job ended.
|
10261
|
+
*/
|
10262
|
+
HyperParameterTuningEndTime?: Timestamp;
|
10263
|
+
/**
|
10264
|
+
* The time that a hyperparameter tuning job was last modified.
|
10265
|
+
*/
|
10266
|
+
LastModifiedTime?: Timestamp;
|
10267
|
+
TrainingJobStatusCounters?: TrainingJobStatusCounters;
|
10268
|
+
ObjectiveStatusCounters?: ObjectiveStatusCounters;
|
10269
|
+
BestTrainingJob?: HyperParameterTrainingJobSummary;
|
10270
|
+
OverallBestTrainingJob?: HyperParameterTrainingJobSummary;
|
10271
|
+
WarmStartConfig?: HyperParameterTuningJobWarmStartConfig;
|
10272
|
+
/**
|
10273
|
+
* The error that was created when a hyperparameter tuning job failed.
|
10274
|
+
*/
|
10275
|
+
FailureReason?: FailureReason;
|
10276
|
+
/**
|
10277
|
+
* The tags associated with a hyperparameter tuning job. For more information see Tagging Amazon Web Services resources.
|
10278
|
+
*/
|
10279
|
+
Tags?: TagList;
|
10280
|
+
}
|
10231
10281
|
export type HyperParameterTuningJobSortByOptions = "Name"|"Status"|"CreationTime"|string;
|
10232
10282
|
export type HyperParameterTuningJobStatus = "Completed"|"InProgress"|"Failed"|"Stopped"|"Stopping"|string;
|
10233
10283
|
export type HyperParameterTuningJobStrategyType = "Bayesian"|"Random"|string;
|
@@ -15519,8 +15569,21 @@ declare namespace SageMaker {
|
|
15519
15569
|
* The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
|
15520
15570
|
*/
|
15521
15571
|
ServerlessConfig?: ProductionVariantServerlessConfig;
|
15572
|
+
/**
|
15573
|
+
* The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currenly only Amazon EBS gp2 storage volumes are supported.
|
15574
|
+
*/
|
15575
|
+
VolumeSizeInGB?: ProductionVariantVolumeSizeInGB;
|
15576
|
+
/**
|
15577
|
+
* The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
|
15578
|
+
*/
|
15579
|
+
ModelDataDownloadTimeoutInSeconds?: ProductionVariantModelDataDownloadTimeoutInSeconds;
|
15580
|
+
/**
|
15581
|
+
* The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests.
|
15582
|
+
*/
|
15583
|
+
ContainerStartupHealthCheckTimeoutInSeconds?: ProductionVariantContainerStartupHealthCheckTimeoutInSeconds;
|
15522
15584
|
}
|
15523
15585
|
export type ProductionVariantAcceleratorType = "ml.eia1.medium"|"ml.eia1.large"|"ml.eia1.xlarge"|"ml.eia2.medium"|"ml.eia2.large"|"ml.eia2.xlarge"|string;
|
15586
|
+
export type ProductionVariantContainerStartupHealthCheckTimeoutInSeconds = number;
|
15524
15587
|
export interface ProductionVariantCoreDumpConfig {
|
15525
15588
|
/**
|
15526
15589
|
* The Amazon S3 bucket to send the core dump to.
|
@@ -15533,6 +15596,7 @@ declare namespace SageMaker {
|
|
15533
15596
|
}
|
15534
15597
|
export type ProductionVariantInstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.12xlarge"|"ml.m5d.24xlarge"|"ml.c4.large"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.large"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.12xlarge"|"ml.r5.24xlarge"|"ml.r5d.large"|"ml.r5d.xlarge"|"ml.r5d.2xlarge"|"ml.r5d.4xlarge"|"ml.r5d.12xlarge"|"ml.r5d.24xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.c6i.large"|"ml.c6i.xlarge"|"ml.c6i.2xlarge"|"ml.c6i.4xlarge"|"ml.c6i.8xlarge"|"ml.c6i.12xlarge"|"ml.c6i.16xlarge"|"ml.c6i.24xlarge"|"ml.c6i.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.p4d.24xlarge"|string;
|
15535
15598
|
export type ProductionVariantList = ProductionVariant[];
|
15599
|
+
export type ProductionVariantModelDataDownloadTimeoutInSeconds = number;
|
15536
15600
|
export interface ProductionVariantServerlessConfig {
|
15537
15601
|
/**
|
15538
15602
|
* The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
|
@@ -15597,6 +15661,7 @@ declare namespace SageMaker {
|
|
15597
15661
|
DesiredServerlessConfig?: ProductionVariantServerlessConfig;
|
15598
15662
|
}
|
15599
15663
|
export type ProductionVariantSummaryList = ProductionVariantSummary[];
|
15664
|
+
export type ProductionVariantVolumeSizeInGB = number;
|
15600
15665
|
export interface ProfilerConfig {
|
15601
15666
|
/**
|
15602
15667
|
* Path to Amazon S3 storage location for system and framework metrics.
|
@@ -16267,7 +16332,7 @@ declare namespace SageMaker {
|
|
16267
16332
|
*/
|
16268
16333
|
LifecycleConfigArn?: StudioLifecycleConfigArn;
|
16269
16334
|
}
|
16270
|
-
export type ResourceType = "TrainingJob"|"Experiment"|"ExperimentTrial"|"ExperimentTrialComponent"|"Endpoint"|"ModelPackage"|"ModelPackageGroup"|"Pipeline"|"PipelineExecution"|"FeatureGroup"|"Project"|"FeatureMetadata"|string;
|
16335
|
+
export type ResourceType = "TrainingJob"|"Experiment"|"ExperimentTrial"|"ExperimentTrialComponent"|"Endpoint"|"ModelPackage"|"ModelPackageGroup"|"Pipeline"|"PipelineExecution"|"FeatureGroup"|"Project"|"FeatureMetadata"|"HyperParameterTuningJob"|string;
|
16271
16336
|
export type ResponseMIMEType = string;
|
16272
16337
|
export type ResponseMIMETypes = ResponseMIMEType[];
|
16273
16338
|
export interface RetentionPolicy {
|
@@ -16407,6 +16472,10 @@ declare namespace SageMaker {
|
|
16407
16472
|
* The feature metadata used to search through the features.
|
16408
16473
|
*/
|
16409
16474
|
FeatureMetadata?: FeatureMetadata;
|
16475
|
+
/**
|
16476
|
+
* The properties of a hyperparameter tuning job.
|
16477
|
+
*/
|
16478
|
+
HyperParameterTuningJob?: HyperParameterTuningJobSearchEntity;
|
16410
16479
|
}
|
16411
16480
|
export interface SearchRequest {
|
16412
16481
|
/**
|
@@ -99,6 +99,14 @@ declare class SNS extends Service {
|
|
99
99
|
* Deletes a topic and all its subscriptions. Deleting a topic might prevent some messages previously sent to the topic from being delivered to subscribers. This action is idempotent, so deleting a topic that does not exist does not result in an error.
|
100
100
|
*/
|
101
101
|
deleteTopic(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
102
|
+
/**
|
103
|
+
* Retrieves the specified inline DataProtectionPolicy document that is stored in the specified Amazon SNS topic.
|
104
|
+
*/
|
105
|
+
getDataProtectionPolicy(params: SNS.Types.GetDataProtectionPolicyInput, callback?: (err: AWSError, data: SNS.Types.GetDataProtectionPolicyResponse) => void): Request<SNS.Types.GetDataProtectionPolicyResponse, AWSError>;
|
106
|
+
/**
|
107
|
+
* Retrieves the specified inline DataProtectionPolicy document that is stored in the specified Amazon SNS topic.
|
108
|
+
*/
|
109
|
+
getDataProtectionPolicy(callback?: (err: AWSError, data: SNS.Types.GetDataProtectionPolicyResponse) => void): Request<SNS.Types.GetDataProtectionPolicyResponse, AWSError>;
|
102
110
|
/**
|
103
111
|
* Retrieves the endpoint attributes for a device on one of the supported push notification services, such as GCM (Firebase Cloud Messaging) and APNS. For more information, see Using Amazon SNS Mobile Push Notifications.
|
104
112
|
*/
|
@@ -243,6 +251,14 @@ declare class SNS extends Service {
|
|
243
251
|
* Publishes up to ten messages to the specified topic. This is a batch version of Publish. For FIFO topics, multiple messages within a single batch are published in the order they are sent, and messages are deduplicated within the batch and across batches for 5 minutes. The result of publishing each message is reported individually in the response. Because the batch request can result in a combination of successful and unsuccessful actions, you should check for batch errors even when the call returns an HTTP status code of 200. The maximum allowed individual message size and the maximum total payload size (the sum of the individual lengths of all of the batched messages) are both 256 KB (262,144 bytes). Some actions take lists of parameters. These lists are specified using the param.n notation. Values of n are integers starting from 1. For example, a parameter list with two elements looks like this: &AttributeName.1=first &AttributeName.2=second If you send a batch message to a topic, Amazon SNS publishes the batch message to each endpoint that is subscribed to the topic. The format of the batch message depends on the notification protocol for each subscribed endpoint. When a messageId is returned, the batch message is saved and Amazon SNS immediately delivers the message to subscribers.
|
244
252
|
*/
|
245
253
|
publishBatch(callback?: (err: AWSError, data: SNS.Types.PublishBatchResponse) => void): Request<SNS.Types.PublishBatchResponse, AWSError>;
|
254
|
+
/**
|
255
|
+
* Adds or updates an inline policy document that is stored in the specified Amazon SNS topic.
|
256
|
+
*/
|
257
|
+
putDataProtectionPolicy(params: SNS.Types.PutDataProtectionPolicyInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
258
|
+
/**
|
259
|
+
* Adds or updates an inline policy document that is stored in the specified Amazon SNS topic.
|
260
|
+
*/
|
261
|
+
putDataProtectionPolicy(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
246
262
|
/**
|
247
263
|
* Removes a statement from a topic's access control policy.
|
248
264
|
*/
|
@@ -474,6 +490,10 @@ declare namespace SNS {
|
|
474
490
|
* The list of tags to add to a new topic. To be able to tag a topic on creation, you must have the sns:CreateTopic and sns:TagResource permissions.
|
475
491
|
*/
|
476
492
|
Tags?: TagList;
|
493
|
+
/**
|
494
|
+
* The body of the policy document you want to use for this topic. You can only add one policy per topic. The policy must be in JSON string format. Length Constraints: Maximum length of 30,720.
|
495
|
+
*/
|
496
|
+
DataProtectionPolicy?: attributeValue;
|
477
497
|
}
|
478
498
|
export interface CreateTopicResponse {
|
479
499
|
/**
|
@@ -518,6 +538,18 @@ declare namespace SNS {
|
|
518
538
|
*/
|
519
539
|
Attributes?: MapStringToString;
|
520
540
|
}
|
541
|
+
export interface GetDataProtectionPolicyInput {
|
542
|
+
/**
|
543
|
+
* The ARN of the topic whose DataProtectionPolicy you want to get. For more information about ARNs, see Amazon Resource Names (ARNs) in the Amazon Web Services General Reference.
|
544
|
+
*/
|
545
|
+
ResourceArn: topicARN;
|
546
|
+
}
|
547
|
+
export interface GetDataProtectionPolicyResponse {
|
548
|
+
/**
|
549
|
+
* Retrieves the DataProtectionPolicy in JSON string format.
|
550
|
+
*/
|
551
|
+
DataProtectionPolicy?: attributeValue;
|
552
|
+
}
|
521
553
|
export interface GetEndpointAttributesInput {
|
522
554
|
/**
|
523
555
|
* EndpointArn for GetEndpointAttributes input.
|
@@ -930,6 +962,16 @@ declare namespace SNS {
|
|
930
962
|
*/
|
931
963
|
SequenceNumber?: String;
|
932
964
|
}
|
965
|
+
export interface PutDataProtectionPolicyInput {
|
966
|
+
/**
|
967
|
+
* The ARN of the topic whose DataProtectionPolicy you want to add or update. For more information about ARNs, see Amazon Resource Names (ARNs) in the Amazon Web Services General Reference.
|
968
|
+
*/
|
969
|
+
ResourceArn: topicARN;
|
970
|
+
/**
|
971
|
+
* The JSON serialization of the topic's DataProtectionPolicy. The DataProtectionPolicy must be in JSON string format. Length Constraints: Maximum length of 30,720.
|
972
|
+
*/
|
973
|
+
DataProtectionPolicy: attributeValue;
|
974
|
+
}
|
933
975
|
export interface RemovePermissionInput {
|
934
976
|
/**
|
935
977
|
* The ARN of the topic whose access control policy you wish to modify.
|
@@ -2589,6 +2589,10 @@ declare namespace SSM {
|
|
2589
2589
|
* A key-value mapping of document parameters to target resources. Both Targets and TargetMaps can't be specified together.
|
2590
2590
|
*/
|
2591
2591
|
TargetMaps?: TargetMaps;
|
2592
|
+
/**
|
2593
|
+
* Adds or overwrites one or more tags for a State Manager association. Tags are metadata that you can assign to your Amazon Web Services resources. Tags enable you to categorize your resources in different ways, for example, by purpose, owner, or environment. Each tag consists of a key and an optional value, both of which you define.
|
2594
|
+
*/
|
2595
|
+
Tags?: TagList;
|
2592
2596
|
}
|
2593
2597
|
export interface CreateAssociationResult {
|
2594
2598
|
/**
|
@@ -2610,7 +2614,7 @@ declare namespace SSM {
|
|
2610
2614
|
*/
|
2611
2615
|
Attachments?: AttachmentsSourceList;
|
2612
2616
|
/**
|
2613
|
-
* A name for the SSM document. You can't use the following strings as document name prefixes. These are reserved by Amazon Web Services for use as document name prefixes: aws
|
2617
|
+
* A name for the SSM document. You can't use the following strings as document name prefixes. These are reserved by Amazon Web Services for use as document name prefixes: aws amazon amzn
|
2614
2618
|
*/
|
2615
2619
|
Name: DocumentName;
|
2616
2620
|
/**
|
@@ -3419,7 +3423,7 @@ declare namespace SSM {
|
|
3419
3423
|
*/
|
3420
3424
|
InstanceInformationFilterList?: InstanceInformationFilterList;
|
3421
3425
|
/**
|
3422
|
-
* One or more filters. Use a filter to return a more specific list of managed nodes. You can filter based on tags applied to
|
3426
|
+
* One or more filters. Use a filter to return a more specific list of managed nodes. You can filter based on tags applied to your managed nodes. Use this Filters data type instead of InstanceInformationFilterList, which is deprecated.
|
3423
3427
|
*/
|
3424
3428
|
Filters?: InstanceInformationStringFilterList;
|
3425
3429
|
/**
|
@@ -5537,7 +5541,7 @@ declare namespace SSM {
|
|
5537
5541
|
export type InstanceInformationList = InstanceInformation[];
|
5538
5542
|
export interface InstanceInformationStringFilter {
|
5539
5543
|
/**
|
5540
|
-
* The filter key name to describe your managed nodes. For example: "InstanceIds"|"AgentVersion"|"PingStatus"|"PlatformTypes"|"ActivationIds"|"IamRole"|"ResourceType"|"AssociationStatus"|"
|
5544
|
+
* The filter key name to describe your managed nodes. For example: "InstanceIds" | "AgentVersion" | "PingStatus" | "PlatformTypes" | "ActivationIds" | "IamRole" | "ResourceType" | "AssociationStatus" | "tag-key" | "tag:{keyname} Tag Key isn't a valid filter. You must specify either tag-key or tag:{keyname} and a string. Here are some valid examples: tag-key, tag:123, tag:al!, tag:Windows. Here are some invalid examples: tag-keys, Tag Key, tag:, tagKey, abc:keyname.
|
5541
5545
|
*/
|
5542
5546
|
Key: InstanceInformationStringFilterKey;
|
5543
5547
|
/**
|
@@ -8372,7 +8376,7 @@ declare namespace SSM {
|
|
8372
8376
|
export type ResourceDataSyncType = string;
|
8373
8377
|
export type ResourceId = string;
|
8374
8378
|
export type ResourceType = "ManagedInstance"|"Document"|"EC2Instance"|string;
|
8375
|
-
export type ResourceTypeForTagging = "Document"|"ManagedInstance"|"MaintenanceWindow"|"Parameter"|"PatchBaseline"|"OpsItem"|"OpsMetadata"|"Automation"|string;
|
8379
|
+
export type ResourceTypeForTagging = "Document"|"ManagedInstance"|"MaintenanceWindow"|"Parameter"|"PatchBaseline"|"OpsItem"|"OpsMetadata"|"Automation"|"Association"|string;
|
8376
8380
|
export type ResponseCode = number;
|
8377
8381
|
export interface ResultAttribute {
|
8378
8382
|
/**
|
@@ -8571,7 +8575,7 @@ declare namespace SSM {
|
|
8571
8575
|
*/
|
8572
8576
|
MaxErrors?: MaxErrors;
|
8573
8577
|
/**
|
8574
|
-
* The ARN of the Identity and Access Management (IAM) service role to use to publish Amazon Simple Notification Service (Amazon SNS) notifications for Run Command commands.
|
8578
|
+
* The ARN of the Identity and Access Management (IAM) service role to use to publish Amazon Simple Notification Service (Amazon SNS) notifications for Run Command commands. This role must provide the sns:Publish permission for your notification topic. For information about creating and using this service role, see Monitoring Systems Manager status changes using Amazon SNS notifications in the Amazon Web Services Systems Manager User Guide.
|
8575
8579
|
*/
|
8576
8580
|
ServiceRoleArn?: ServiceRole;
|
8577
8581
|
/**
|
@@ -8876,7 +8880,7 @@ declare namespace SSM {
|
|
8876
8880
|
*/
|
8877
8881
|
SessionId?: SessionId;
|
8878
8882
|
/**
|
8879
|
-
* An encrypted token value containing session and caller information.
|
8883
|
+
* An encrypted token value containing session and caller information. This token is used to authenticate the connection to the managed node, and is valid only long enough to ensure the connection is successful. Never share your session's token.
|
8880
8884
|
*/
|
8881
8885
|
TokenValue?: TokenValue;
|
8882
8886
|
/**
|