cdk-comprehend-s3olap 2.0.62 → 2.0.63
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.jsii +3 -3
- package/lib/cdk-comprehend-s3olap.js +2 -2
- package/lib/comprehend-lambdas.js +2 -2
- package/lib/iam-roles.js +4 -4
- package/node_modules/aws-sdk/CHANGELOG.md +7 -1
- package/node_modules/aws-sdk/README.md +1 -1
- package/node_modules/aws-sdk/apis/location-2020-11-19.min.json +60 -44
- package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +501 -468
- package/node_modules/aws-sdk/apis/sagemaker-a2i-runtime-2019-11-07.min.json +12 -8
- package/node_modules/aws-sdk/clients/cloudwatch.d.ts +7 -7
- package/node_modules/aws-sdk/clients/location.d.ts +27 -13
- package/node_modules/aws-sdk/clients/sagemaker.d.ts +51 -5
- package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
- package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +4 -4
- package/node_modules/aws-sdk/dist/aws-sdk.js +63 -47
- package/node_modules/aws-sdk/dist/aws-sdk.min.js +35 -35
- package/node_modules/aws-sdk/lib/core.js +1 -1
- package/node_modules/aws-sdk/package.json +1 -1
- package/package.json +4 -4
@@ -3,7 +3,6 @@
|
|
3
3
|
"metadata": {
|
4
4
|
"apiVersion": "2019-11-07",
|
5
5
|
"endpointPrefix": "a2i-runtime.sagemaker",
|
6
|
-
"jsonVersion": "1.1",
|
7
6
|
"protocol": "rest-json",
|
8
7
|
"serviceFullName": "Amazon Augmented AI Runtime",
|
9
8
|
"serviceId": "SageMaker A2I Runtime",
|
@@ -62,7 +61,7 @@
|
|
62
61
|
],
|
63
62
|
"members": {
|
64
63
|
"CreationTime": {
|
65
|
-
"
|
64
|
+
"shape": "S6"
|
66
65
|
},
|
67
66
|
"FailureReason": {},
|
68
67
|
"FailureCode": {},
|
@@ -94,14 +93,14 @@
|
|
94
93
|
],
|
95
94
|
"members": {
|
96
95
|
"CreationTimeAfter": {
|
96
|
+
"shape": "S6",
|
97
97
|
"location": "querystring",
|
98
|
-
"locationName": "CreationTimeAfter"
|
99
|
-
"type": "timestamp"
|
98
|
+
"locationName": "CreationTimeAfter"
|
100
99
|
},
|
101
100
|
"CreationTimeBefore": {
|
101
|
+
"shape": "S6",
|
102
102
|
"location": "querystring",
|
103
|
-
"locationName": "CreationTimeBefore"
|
104
|
-
"type": "timestamp"
|
103
|
+
"locationName": "CreationTimeBefore"
|
105
104
|
},
|
106
105
|
"FlowDefinitionArn": {
|
107
106
|
"location": "querystring",
|
@@ -136,7 +135,7 @@
|
|
136
135
|
"HumanLoopName": {},
|
137
136
|
"HumanLoopStatus": {},
|
138
137
|
"CreationTime": {
|
139
|
-
"
|
138
|
+
"shape": "S6"
|
140
139
|
},
|
141
140
|
"FailureReason": {},
|
142
141
|
"FlowDefinitionArn": {}
|
@@ -210,5 +209,10 @@
|
|
210
209
|
}
|
211
210
|
}
|
212
211
|
},
|
213
|
-
"shapes": {
|
212
|
+
"shapes": {
|
213
|
+
"S6": {
|
214
|
+
"type": "timestamp",
|
215
|
+
"timestampFormat": "iso8601"
|
216
|
+
}
|
217
|
+
}
|
214
218
|
}
|
@@ -21,11 +21,11 @@ declare class CloudWatch extends Service {
|
|
21
21
|
*/
|
22
22
|
deleteAlarms(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
23
23
|
/**
|
24
|
-
*
|
24
|
+
* Deletes the specified anomaly detection model from your account. For more information about how to delete an anomaly detection model, see Deleting an anomaly detection model in the CloudWatch User Guide.
|
25
25
|
*/
|
26
26
|
deleteAnomalyDetector(params: CloudWatch.Types.DeleteAnomalyDetectorInput, callback?: (err: AWSError, data: CloudWatch.Types.DeleteAnomalyDetectorOutput) => void): Request<CloudWatch.Types.DeleteAnomalyDetectorOutput, AWSError>;
|
27
27
|
/**
|
28
|
-
*
|
28
|
+
* Deletes the specified anomaly detection model from your account. For more information about how to delete an anomaly detection model, see Deleting an anomaly detection model in the CloudWatch User Guide.
|
29
29
|
*/
|
30
30
|
deleteAnomalyDetector(callback?: (err: AWSError, data: CloudWatch.Types.DeleteAnomalyDetectorOutput) => void): Request<CloudWatch.Types.DeleteAnomalyDetectorOutput, AWSError>;
|
31
31
|
/**
|
@@ -245,11 +245,11 @@ declare class CloudWatch extends Service {
|
|
245
245
|
*/
|
246
246
|
putMetricAlarm(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
247
247
|
/**
|
248
|
-
* Publishes metric data points to Amazon CloudWatch. CloudWatch associates the data points with the specified metric. If the specified metric does not exist, CloudWatch creates the metric. When CloudWatch creates a metric, it can take up to fifteen minutes for the metric to appear in calls to ListMetrics. You can publish either individual data points in the Value field, or arrays of values and the number of times each value occurred during the period by using the Values and Counts fields in the MetricDatum structure. Using the Values and Counts method enables you to publish up to 150 values per metric with one PutMetricData request, and supports retrieving percentile statistics on this data. Each PutMetricData request is limited to
|
248
|
+
* Publishes metric data points to Amazon CloudWatch. CloudWatch associates the data points with the specified metric. If the specified metric does not exist, CloudWatch creates the metric. When CloudWatch creates a metric, it can take up to fifteen minutes for the metric to appear in calls to ListMetrics. You can publish either individual data points in the Value field, or arrays of values and the number of times each value occurred during the period by using the Values and Counts fields in the MetricDatum structure. Using the Values and Counts method enables you to publish up to 150 values per metric with one PutMetricData request, and supports retrieving percentile statistics on this data. Each PutMetricData request is limited to 1 MB in size for HTTP POST requests. You can send a payload compressed by gzip. Each request is also limited to no more than 1000 different metrics. Although the Value parameter accepts numbers of type Double, CloudWatch rejects values that are either too small or too large. Values must be in the range of -2^360 to 2^360. In addition, special values (for example, NaN, +Infinity, -Infinity) are not supported. You can use up to 30 dimensions per metric to further clarify what data the metric collects. Each dimension consists of a Name and Value pair. For more information about specifying dimensions, see Publishing Metrics in the Amazon CloudWatch User Guide. You specify the time stamp to be associated with each data point. You can specify time stamps that are as much as two weeks before the current date, and as much as 2 hours after the current day and time. Data points with time stamps from 24 hours ago or longer can take at least 48 hours to become available for GetMetricData or GetMetricStatistics from the time they are submitted. Data points with time stamps between 3 and 24 hours ago can take as much as 2 hours to become available for for GetMetricData or GetMetricStatistics. CloudWatch needs raw data points to calculate percentile statistics. If you publish data using a statistic set instead, you can only retrieve percentile statistics for this data if one of the following conditions is true: The SampleCount value of the statistic set is 1 and Min, Max, and Sum are all equal. The Min and Max are equal, and Sum is equal to Min multiplied by SampleCount.
|
249
249
|
*/
|
250
250
|
putMetricData(params: CloudWatch.Types.PutMetricDataInput, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
251
251
|
/**
|
252
|
-
* Publishes metric data points to Amazon CloudWatch. CloudWatch associates the data points with the specified metric. If the specified metric does not exist, CloudWatch creates the metric. When CloudWatch creates a metric, it can take up to fifteen minutes for the metric to appear in calls to ListMetrics. You can publish either individual data points in the Value field, or arrays of values and the number of times each value occurred during the period by using the Values and Counts fields in the MetricDatum structure. Using the Values and Counts method enables you to publish up to 150 values per metric with one PutMetricData request, and supports retrieving percentile statistics on this data. Each PutMetricData request is limited to
|
252
|
+
* Publishes metric data points to Amazon CloudWatch. CloudWatch associates the data points with the specified metric. If the specified metric does not exist, CloudWatch creates the metric. When CloudWatch creates a metric, it can take up to fifteen minutes for the metric to appear in calls to ListMetrics. You can publish either individual data points in the Value field, or arrays of values and the number of times each value occurred during the period by using the Values and Counts fields in the MetricDatum structure. Using the Values and Counts method enables you to publish up to 150 values per metric with one PutMetricData request, and supports retrieving percentile statistics on this data. Each PutMetricData request is limited to 1 MB in size for HTTP POST requests. You can send a payload compressed by gzip. Each request is also limited to no more than 1000 different metrics. Although the Value parameter accepts numbers of type Double, CloudWatch rejects values that are either too small or too large. Values must be in the range of -2^360 to 2^360. In addition, special values (for example, NaN, +Infinity, -Infinity) are not supported. You can use up to 30 dimensions per metric to further clarify what data the metric collects. Each dimension consists of a Name and Value pair. For more information about specifying dimensions, see Publishing Metrics in the Amazon CloudWatch User Guide. You specify the time stamp to be associated with each data point. You can specify time stamps that are as much as two weeks before the current date, and as much as 2 hours after the current day and time. Data points with time stamps from 24 hours ago or longer can take at least 48 hours to become available for GetMetricData or GetMetricStatistics from the time they are submitted. Data points with time stamps between 3 and 24 hours ago can take as much as 2 hours to become available for for GetMetricData or GetMetricStatistics. CloudWatch needs raw data points to calculate percentile statistics. If you publish data using a statistic set instead, you can only retrieve percentile statistics for this data if one of the following conditions is true: The SampleCount value of the statistic set is 1 and Min, Max, and Sum are all equal. The Min and Max are equal, and Sum is equal to Min multiplied by SampleCount.
|
253
253
|
*/
|
254
254
|
putMetricData(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
|
255
255
|
/**
|
@@ -1537,7 +1537,7 @@ declare namespace CloudWatch {
|
|
1537
1537
|
*/
|
1538
1538
|
StatisticValues?: StatisticSet;
|
1539
1539
|
/**
|
1540
|
-
* Array of numbers representing the values for the metric during the period. Each unique value is listed just once in this array, and the corresponding number in the Counts array specifies the number of times that value occurred during the period. You can include up to
|
1540
|
+
* Array of numbers representing the values for the metric during the period. Each unique value is listed just once in this array, and the corresponding number in the Counts array specifies the number of times that value occurred during the period. You can include up to 500 unique values in each PutMetricData action that specifies a Values array. Although the Values array accepts numbers of type Double, CloudWatch rejects values that are either too small or too large. Values must be in the range of -2^360 to 2^360. In addition, special values (for example, NaN, +Infinity, -Infinity) are not supported.
|
1541
1541
|
*/
|
1542
1542
|
Values?: Values;
|
1543
1543
|
/**
|
@@ -1836,7 +1836,7 @@ declare namespace CloudWatch {
|
|
1836
1836
|
*/
|
1837
1837
|
Period?: Period;
|
1838
1838
|
/**
|
1839
|
-
* The unit of measure for the statistic. For example, the units for the Amazon EC2 NetworkIn metric are Bytes because NetworkIn tracks the number of bytes that an instance receives on all network interfaces. You can also specify a unit when you create a custom metric. Units help provide conceptual meaning to your data. Metric data points that specify a unit of measure, such as Percent, are aggregated separately. If you don't specify Unit, CloudWatch retrieves all unit types that have been published for the metric and attempts to evaluate the alarm. Usually, metrics are published with only one unit, so the alarm works as intended. However, if the metric is published with multiple types of units and you don't specify a unit, the alarm's behavior is not defined and it behaves
|
1839
|
+
* The unit of measure for the statistic. For example, the units for the Amazon EC2 NetworkIn metric are Bytes because NetworkIn tracks the number of bytes that an instance receives on all network interfaces. You can also specify a unit when you create a custom metric. Units help provide conceptual meaning to your data. Metric data points that specify a unit of measure, such as Percent, are aggregated separately. If you don't specify Unit, CloudWatch retrieves all unit types that have been published for the metric and attempts to evaluate the alarm. Usually, metrics are published with only one unit, so the alarm works as intended. However, if the metric is published with multiple types of units and you don't specify a unit, the alarm's behavior is not defined and it behaves unpredictably. We recommend omitting Unit so that you don't inadvertently specify an incorrect unit that is not published for this metric. Doing so causes the alarm to be stuck in the INSUFFICIENT DATA state.
|
1840
1840
|
*/
|
1841
1841
|
Unit?: StandardUnit;
|
1842
1842
|
/**
|
@@ -1882,7 +1882,7 @@ declare namespace CloudWatch {
|
|
1882
1882
|
*/
|
1883
1883
|
Namespace: Namespace;
|
1884
1884
|
/**
|
1885
|
-
* The data for the metric. The array can include no more than
|
1885
|
+
* The data for the metric. The array can include no more than 1000 metrics per call.
|
1886
1886
|
*/
|
1887
1887
|
MetricData: MetricData;
|
1888
1888
|
}
|
@@ -68,11 +68,11 @@ declare class Location extends Service {
|
|
68
68
|
*/
|
69
69
|
batchUpdateDevicePosition(callback?: (err: AWSError, data: Location.Types.BatchUpdateDevicePositionResponse) => void): Request<Location.Types.BatchUpdateDevicePositionResponse, AWSError>;
|
70
70
|
/**
|
71
|
-
* Calculates a route given the following required parameters: DeparturePosition and DestinationPosition. Requires that you first create a route calculator resource. By default, a request that doesn't specify a departure time uses the best time of day to travel with the best traffic conditions when calculating the route. Additional options include: Specifying a departure time using either DepartureTime or DepartNow. This calculates a route based on predictive traffic data at the given time. You can't specify both DepartureTime and DepartNow in a single request. Specifying both parameters returns a validation error. Specifying a travel mode using TravelMode sets the transportation mode used to calculate the routes. This also lets you specify additional route preferences in CarModeOptions if traveling by Car, or TruckModeOptions if traveling by Truck.
|
71
|
+
* Calculates a route given the following required parameters: DeparturePosition and DestinationPosition. Requires that you first create a route calculator resource. By default, a request that doesn't specify a departure time uses the best time of day to travel with the best traffic conditions when calculating the route. Additional options include: Specifying a departure time using either DepartureTime or DepartNow. This calculates a route based on predictive traffic data at the given time. You can't specify both DepartureTime and DepartNow in a single request. Specifying both parameters returns a validation error. Specifying a travel mode using TravelMode sets the transportation mode used to calculate the routes. This also lets you specify additional route preferences in CarModeOptions if traveling by Car, or TruckModeOptions if traveling by Truck. If you specify walking for the travel mode and your data provider is Esri, the start and destination must be within 40km.
|
72
72
|
*/
|
73
73
|
calculateRoute(params: Location.Types.CalculateRouteRequest, callback?: (err: AWSError, data: Location.Types.CalculateRouteResponse) => void): Request<Location.Types.CalculateRouteResponse, AWSError>;
|
74
74
|
/**
|
75
|
-
* Calculates a route given the following required parameters: DeparturePosition and DestinationPosition. Requires that you first create a route calculator resource. By default, a request that doesn't specify a departure time uses the best time of day to travel with the best traffic conditions when calculating the route. Additional options include: Specifying a departure time using either DepartureTime or DepartNow. This calculates a route based on predictive traffic data at the given time. You can't specify both DepartureTime and DepartNow in a single request. Specifying both parameters returns a validation error. Specifying a travel mode using TravelMode sets the transportation mode used to calculate the routes. This also lets you specify additional route preferences in CarModeOptions if traveling by Car, or TruckModeOptions if traveling by Truck.
|
75
|
+
* Calculates a route given the following required parameters: DeparturePosition and DestinationPosition. Requires that you first create a route calculator resource. By default, a request that doesn't specify a departure time uses the best time of day to travel with the best traffic conditions when calculating the route. Additional options include: Specifying a departure time using either DepartureTime or DepartNow. This calculates a route based on predictive traffic data at the given time. You can't specify both DepartureTime and DepartNow in a single request. Specifying both parameters returns a validation error. Specifying a travel mode using TravelMode sets the transportation mode used to calculate the routes. This also lets you specify additional route preferences in CarModeOptions if traveling by Car, or TruckModeOptions if traveling by Truck. If you specify walking for the travel mode and your data provider is Esri, the start and destination must be within 40km.
|
76
76
|
*/
|
77
77
|
calculateRoute(callback?: (err: AWSError, data: Location.Types.CalculateRouteResponse) => void): Request<Location.Types.CalculateRouteResponse, AWSError>;
|
78
78
|
/**
|
@@ -600,7 +600,7 @@ declare namespace Location {
|
|
600
600
|
*/
|
601
601
|
GeofenceId: Id;
|
602
602
|
/**
|
603
|
-
* Contains the
|
603
|
+
* Contains the details of the position of the geofence. Can be either a polygon or a circle. Including both will return a validation error. Each geofence polygon can have a maximum of 1,000 vertices.
|
604
604
|
*/
|
605
605
|
Geometry: GeofenceGeometry;
|
606
606
|
}
|
@@ -788,7 +788,7 @@ declare namespace Location {
|
|
788
788
|
*/
|
789
789
|
IncludeLegGeometry?: Boolean;
|
790
790
|
/**
|
791
|
-
* Specifies the mode of transport when calculating a route. Used in estimating the speed of travel and road compatibility. The TravelMode you specify also determines how you specify route preferences: If traveling by Car use the CarModeOptions parameter. If traveling by Truck use the TruckModeOptions parameter. Default Value: Car
|
791
|
+
* Specifies the mode of transport when calculating a route. Used in estimating the speed of travel and road compatibility. You can choose Car, Truck, or Walking as options for the TravelMode. The TravelMode you specify also determines how you specify route preferences: If traveling by Car use the CarModeOptions parameter. If traveling by Truck use the TruckModeOptions parameter. Default Value: Car
|
792
792
|
*/
|
793
793
|
TravelMode?: TravelMode;
|
794
794
|
/**
|
@@ -853,6 +853,16 @@ declare namespace Location {
|
|
853
853
|
*/
|
854
854
|
Weight?: TruckWeight;
|
855
855
|
}
|
856
|
+
export interface Circle {
|
857
|
+
/**
|
858
|
+
* A single point geometry, specifying the center of the circle, using WGS 84 coordinates, in the form [longitude, latitude].
|
859
|
+
*/
|
860
|
+
Center: Position;
|
861
|
+
/**
|
862
|
+
* The radius of the circle in meters. Must be greater than zero and no larger than 100,000 (100 kilometers).
|
863
|
+
*/
|
864
|
+
Radius: Double;
|
865
|
+
}
|
856
866
|
export type CountryCode = string;
|
857
867
|
export type CountryCodeList = CountryCode[];
|
858
868
|
export interface CreateGeofenceCollectionRequest {
|
@@ -1383,7 +1393,11 @@ declare namespace Location {
|
|
1383
1393
|
export type Double = number;
|
1384
1394
|
export interface GeofenceGeometry {
|
1385
1395
|
/**
|
1386
|
-
*
|
1396
|
+
* A circle on the earth, as defined by a center point and a radius.
|
1397
|
+
*/
|
1398
|
+
Circle?: Circle;
|
1399
|
+
/**
|
1400
|
+
* An array of 1 or more linear rings. A linear ring is an array of 4 or more vertices, where the first and last vertex are the same to form a closed boundary. Each vertex is a 2-dimensional point of the form: [longitude, latitude]. The first linear ring is an outer ring, describing the polygon's boundary. Subsequent linear rings may be inner or outer rings to describe holes and islands. Outer rings must list their vertices in counter-clockwise order around the ring's center, where the left side is the polygon's exterior. Inner rings must list their vertices in clockwise order, where the left side is the polygon's interior. A geofence polygon can consist of between 4 and 1,000 vertices.
|
1387
1401
|
*/
|
1388
1402
|
Polygon?: LinearRings;
|
1389
1403
|
}
|
@@ -1480,7 +1494,7 @@ declare namespace Location {
|
|
1480
1494
|
*/
|
1481
1495
|
GeofenceId: Id;
|
1482
1496
|
/**
|
1483
|
-
* Contains the geofence geometry details describing a polygon.
|
1497
|
+
* Contains the geofence geometry details describing a polygon or a circle.
|
1484
1498
|
*/
|
1485
1499
|
Geometry: GeofenceGeometry;
|
1486
1500
|
/**
|
@@ -1494,7 +1508,7 @@ declare namespace Location {
|
|
1494
1508
|
}
|
1495
1509
|
export interface GetMapGlyphsRequest {
|
1496
1510
|
/**
|
1497
|
-
* A comma-separated list of fonts to load glyphs from in order of preference. For example, Noto Sans Regular, Arial Unicode. Valid fonts stacks for Esri styles: VectorEsriDarkGrayCanvas – Ubuntu Medium Italic | Ubuntu Medium | Ubuntu Italic | Ubuntu Regular | Ubuntu Bold VectorEsriLightGrayCanvas – Ubuntu Italic | Ubuntu Regular | Ubuntu Light | Ubuntu Bold VectorEsriTopographic – Noto Sans Italic | Noto Sans Regular | Noto Sans Bold | Noto Serif Regular | Roboto Condensed Light Italic VectorEsriStreets – Arial Regular | Arial Italic | Arial Bold VectorEsriNavigation – Arial Regular | Arial Italic | Arial Bold Valid font stacks for HERE Technologies styles:
|
1511
|
+
* A comma-separated list of fonts to load glyphs from in order of preference. For example, Noto Sans Regular, Arial Unicode. Valid fonts stacks for Esri styles: VectorEsriDarkGrayCanvas – Ubuntu Medium Italic | Ubuntu Medium | Ubuntu Italic | Ubuntu Regular | Ubuntu Bold VectorEsriLightGrayCanvas – Ubuntu Italic | Ubuntu Regular | Ubuntu Light | Ubuntu Bold VectorEsriTopographic – Noto Sans Italic | Noto Sans Regular | Noto Sans Bold | Noto Serif Regular | Roboto Condensed Light Italic VectorEsriStreets – Arial Regular | Arial Italic | Arial Bold VectorEsriNavigation – Arial Regular | Arial Italic | Arial Bold Valid font stacks for HERE Technologies styles: VectorHereContrast – Fira GO Regular | Fira GO Bold VectorHereExplore, VectorHereExploreTruck – Firo GO Italic | Fira GO Map | Fira GO Map Bold | Noto Sans CJK JP Bold | Noto Sans CJK JP Light | Noto Sans CJK JP Regular
|
1498
1512
|
*/
|
1499
1513
|
FontStack: String;
|
1500
1514
|
/**
|
@@ -1734,7 +1748,7 @@ declare namespace Location {
|
|
1734
1748
|
*/
|
1735
1749
|
GeofenceId: Id;
|
1736
1750
|
/**
|
1737
|
-
* Contains the geofence geometry details describing a polygon.
|
1751
|
+
* Contains the geofence geometry details describing a polygon or a circle.
|
1738
1752
|
*/
|
1739
1753
|
Geometry: GeofenceGeometry;
|
1740
1754
|
/**
|
@@ -2003,7 +2017,7 @@ declare namespace Location {
|
|
2003
2017
|
export type ListTrackersResponseEntryList = ListTrackersResponseEntry[];
|
2004
2018
|
export interface MapConfiguration {
|
2005
2019
|
/**
|
2006
|
-
* Specifies the map style selected from an available data provider. Valid Esri map styles: VectorEsriDarkGrayCanvas – The Esri Dark Gray Canvas map style. A vector basemap with a dark gray, neutral background with minimal colors, labels, and features that's designed to draw attention to your thematic content. RasterEsriImagery – The Esri Imagery map style. A raster basemap that provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. VectorEsriLightGrayCanvas – The Esri Light Gray Canvas map style, which provides a detailed vector basemap with a light gray, neutral background style with minimal colors, labels, and features that's designed to draw attention to your thematic content. VectorEsriTopographic – The Esri Light map style, which provides a detailed vector basemap with a classic Esri map style. VectorEsriStreets – The Esri World Streets map style, which provides a detailed vector basemap for the world symbolized with a classic Esri street map style. The vector tile layer is similar in content and style to the World Street Map raster map. VectorEsriNavigation – The Esri World Navigation map style, which provides a detailed basemap for the world symbolized with a custom navigation map style that's designed for use during the day in mobile devices. Valid HERE Technologies map styles:
|
2020
|
+
* Specifies the map style selected from an available data provider. Valid Esri map styles: VectorEsriDarkGrayCanvas – The Esri Dark Gray Canvas map style. A vector basemap with a dark gray, neutral background with minimal colors, labels, and features that's designed to draw attention to your thematic content. RasterEsriImagery – The Esri Imagery map style. A raster basemap that provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. VectorEsriLightGrayCanvas – The Esri Light Gray Canvas map style, which provides a detailed vector basemap with a light gray, neutral background style with minimal colors, labels, and features that's designed to draw attention to your thematic content. VectorEsriTopographic – The Esri Light map style, which provides a detailed vector basemap with a classic Esri map style. VectorEsriStreets – The Esri World Streets map style, which provides a detailed vector basemap for the world symbolized with a classic Esri street map style. The vector tile layer is similar in content and style to the World Street Map raster map. VectorEsriNavigation – The Esri World Navigation map style, which provides a detailed basemap for the world symbolized with a custom navigation map style that's designed for use during the day in mobile devices. Valid HERE Technologies map styles: VectorHereContrast – The HERE Contrast (Berlin) map style is a high contrast detailed base map of the world that blends 3D and 2D rendering. VectorHereExplore – A default HERE map style containing a neutral, global map and its features including roads, buildings, landmarks, and water features. It also now includes a fully designed map of Japan. VectorHereExploreTruck – A global map containing truck restrictions and attributes (e.g. width / height / HAZMAT) symbolized with highlighted segments and icons on top of HERE Explore to support use cases within transport and logistics. The VectorHereContrast style has been renamed from VectorHereBerlin. VectorHereBerlin has been deprecated, but will continue to work in applications that use it.
|
2007
2021
|
*/
|
2008
2022
|
Style: MapStyle;
|
2009
2023
|
}
|
@@ -2085,7 +2099,7 @@ declare namespace Location {
|
|
2085
2099
|
*/
|
2086
2100
|
GeofenceId: Id;
|
2087
2101
|
/**
|
2088
|
-
* Contains the
|
2102
|
+
* Contains the details to specify the position of the geofence. Can be either a polygon or a circle. Including both will return a validation error. Each geofence polygon can have a maximum of 1,000 vertices.
|
2089
2103
|
*/
|
2090
2104
|
Geometry: GeofenceGeometry;
|
2091
2105
|
}
|
@@ -2422,11 +2436,11 @@ declare namespace Location {
|
|
2422
2436
|
export type TravelMode = "Car"|"Truck"|"Walking"|string;
|
2423
2437
|
export interface TruckDimensions {
|
2424
2438
|
/**
|
2425
|
-
* The height of the truck. For example, 4.5.
|
2439
|
+
* The height of the truck. For example, 4.5. For routes calculated with a HERE resource, this value must be between 0 and 50 meters.
|
2426
2440
|
*/
|
2427
2441
|
Height?: TruckDimensionsHeightDouble;
|
2428
2442
|
/**
|
2429
|
-
* The length of the truck. For example, 15.5.
|
2443
|
+
* The length of the truck. For example, 15.5. For routes calculated with a HERE resource, this value must be between 0 and 300 meters.
|
2430
2444
|
*/
|
2431
2445
|
Length?: TruckDimensionsLengthDouble;
|
2432
2446
|
/**
|
@@ -2434,7 +2448,7 @@ declare namespace Location {
|
|
2434
2448
|
*/
|
2435
2449
|
Unit?: DimensionUnit;
|
2436
2450
|
/**
|
2437
|
-
* The width of the truck. For example, 4.5.
|
2451
|
+
* The width of the truck. For example, 4.5. For routes calculated with a HERE resource, this value must be between 0 and 50 meters.
|
2438
2452
|
*/
|
2439
2453
|
Width?: TruckDimensionsWidthDouble;
|
2440
2454
|
}
|
@@ -3627,7 +3627,7 @@ declare namespace SageMaker {
|
|
3627
3627
|
*/
|
3628
3628
|
Tags?: TagList;
|
3629
3629
|
/**
|
3630
|
-
* The KernelGatewayImageConfig.
|
3630
|
+
* The KernelGatewayImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel will be shown to users before the image starts. Once the image runs, all kernels are visible in JupyterLab.
|
3631
3631
|
*/
|
3632
3632
|
KernelGatewayImageConfig?: KernelGatewayImageConfig;
|
3633
3633
|
}
|
@@ -10081,9 +10081,9 @@ declare namespace SageMaker {
|
|
10081
10081
|
*/
|
10082
10082
|
OutputDataConfig: OutputDataConfig;
|
10083
10083
|
/**
|
10084
|
-
* The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
|
10084
|
+
* The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches. Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1. If you want to use hyperparameter optimization with instance type flexibility, use HyperParameterTuningResourceConfig instead.
|
10085
10085
|
*/
|
10086
|
-
ResourceConfig
|
10086
|
+
ResourceConfig?: ResourceConfig;
|
10087
10087
|
/**
|
10088
10088
|
* Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.
|
10089
10089
|
*/
|
@@ -10105,6 +10105,10 @@ declare namespace SageMaker {
|
|
10105
10105
|
* The number of times to retry the job when the job fails due to an InternalServerError.
|
10106
10106
|
*/
|
10107
10107
|
RetryStrategy?: RetryStrategy;
|
10108
|
+
/**
|
10109
|
+
* The configuration for the hyperparameter tuning resources, including the compute instances and storage volumes, used for training jobs launched by the tuning job. By default, storage volumes hold model artifacts and incremental states. Choose File for TrainingInputMode in the AlgorithmSpecificationparameter to additionally store training data in the storage volume (optional).
|
10110
|
+
*/
|
10111
|
+
HyperParameterTuningResourceConfig?: HyperParameterTuningResourceConfig;
|
10108
10112
|
}
|
10109
10113
|
export type HyperParameterTrainingJobDefinitionName = string;
|
10110
10114
|
export type HyperParameterTrainingJobDefinitions = HyperParameterTrainingJobDefinition[];
|
@@ -10159,6 +10163,22 @@ declare namespace SageMaker {
|
|
10159
10163
|
*/
|
10160
10164
|
ObjectiveStatus?: ObjectiveStatus;
|
10161
10165
|
}
|
10166
|
+
export type HyperParameterTuningAllocationStrategy = "Prioritized"|string;
|
10167
|
+
export interface HyperParameterTuningInstanceConfig {
|
10168
|
+
/**
|
10169
|
+
* The instance type used for processing of hyperparameter optimization jobs. Choose from general purpose (no GPUs) instance types: ml.m5.xlarge, ml.m5.2xlarge, and ml.m5.4xlarge or compute optimized (no GPUs) instance types: ml.c5.xlarge and ml.c5.2xlarge. For more information about instance types, see instance type descriptions.
|
10170
|
+
*/
|
10171
|
+
InstanceType: TrainingInstanceType;
|
10172
|
+
/**
|
10173
|
+
* The number of instances of the type specified by InstanceType. Choose an instance count larger than 1 for distributed training algorithms. See SageMaker distributed training jobs for more information.
|
10174
|
+
*/
|
10175
|
+
InstanceCount: TrainingInstanceCount;
|
10176
|
+
/**
|
10177
|
+
* The volume size in GB of the data to be processed for hyperparameter optimization (optional).
|
10178
|
+
*/
|
10179
|
+
VolumeSizeInGB: VolumeSizeInGB;
|
10180
|
+
}
|
10181
|
+
export type HyperParameterTuningInstanceConfigs = HyperParameterTuningInstanceConfig[];
|
10162
10182
|
export type HyperParameterTuningJobArn = string;
|
10163
10183
|
export interface HyperParameterTuningJobConfig {
|
10164
10184
|
/**
|
@@ -10256,6 +10276,32 @@ declare namespace SageMaker {
|
|
10256
10276
|
WarmStartType: HyperParameterTuningJobWarmStartType;
|
10257
10277
|
}
|
10258
10278
|
export type HyperParameterTuningJobWarmStartType = "IdenticalDataAndAlgorithm"|"TransferLearning"|string;
|
10279
|
+
export interface HyperParameterTuningResourceConfig {
|
10280
|
+
/**
|
10281
|
+
* The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.
|
10282
|
+
*/
|
10283
|
+
InstanceType?: TrainingInstanceType;
|
10284
|
+
/**
|
10285
|
+
* The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.
|
10286
|
+
*/
|
10287
|
+
InstanceCount?: TrainingInstanceCount;
|
10288
|
+
/**
|
10289
|
+
* The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified. Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes. SageMaker supports only the General Purpose SSD (gp2) storage volume type.
|
10290
|
+
*/
|
10291
|
+
VolumeSizeInGB?: OptionalVolumeSizeInGB;
|
10292
|
+
/**
|
10293
|
+
* A key used by AWS Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key. KMS Key ID: "1234abcd-12ab-34cd-56ef-1234567890ab" Amazon Resource Name (ARN) of a AWS KMS key: "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId. For a list of instance types that use local storage, see instance store volumes. For more information about AWS Key Management Service, see AWS KMS encryption for more information.
|
10294
|
+
*/
|
10295
|
+
VolumeKmsKeyId?: KmsKeyId;
|
10296
|
+
/**
|
10297
|
+
* The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.
|
10298
|
+
*/
|
10299
|
+
AllocationStrategy?: HyperParameterTuningAllocationStrategy;
|
10300
|
+
/**
|
10301
|
+
* A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used. If you only want to use a single InstanceConfig inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs. Instead, use InstanceType, VolumeSizeInGB and InstanceCount. If you use InstanceConfigs, do not provide values for InstanceType, VolumeSizeInGB or InstanceCount.
|
10302
|
+
*/
|
10303
|
+
InstanceConfigs?: HyperParameterTuningInstanceConfigs;
|
10304
|
+
}
|
10259
10305
|
export type HyperParameterValue = string;
|
10260
10306
|
export type HyperParameters = {[key: string]: HyperParameterValue};
|
10261
10307
|
export type IdempotencyToken = string;
|
@@ -17920,7 +17966,7 @@ declare namespace SageMaker {
|
|
17920
17966
|
*/
|
17921
17967
|
FeatureGroupName: FeatureGroupName;
|
17922
17968
|
/**
|
17923
|
-
*
|
17969
|
+
* Updates the feature group. Updating a feature group is an asynchronous operation. When you get an HTTP 200 response, you've made a valid request. It takes some time after you've made a valid request for Feature Store to update the feature group.
|
17924
17970
|
*/
|
17925
17971
|
FeatureAdditions?: FeatureAdditions;
|
17926
17972
|
}
|
@@ -18178,7 +18224,7 @@ declare namespace SageMaker {
|
|
18178
18224
|
*/
|
18179
18225
|
ServiceCatalogProvisioningUpdateDetails?: ServiceCatalogProvisioningUpdateDetails;
|
18180
18226
|
/**
|
18181
|
-
* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
|
18227
|
+
* An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources. In addition, the project must have tag update constraints set in order to include this parameter in the request. For more information, see Amazon Web Services Service Catalog Tag Update Constraints.
|
18182
18228
|
*/
|
18183
18229
|
Tags?: TagList;
|
18184
18230
|
}
|