cdk-comprehend-s3olap 2.0.42 → 2.0.45

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (44) hide show
  1. package/.jsii +3 -3
  2. package/lib/cdk-comprehend-s3olap.js +2 -2
  3. package/lib/comprehend-lambdas.js +2 -2
  4. package/lib/iam-roles.js +4 -4
  5. package/node_modules/aws-sdk/CHANGELOG.md +22 -1
  6. package/node_modules/aws-sdk/README.md +1 -1
  7. package/node_modules/aws-sdk/apis/account-2021-02-01.min.json +101 -0
  8. package/node_modules/aws-sdk/apis/athena-2017-05-18.min.json +117 -6
  9. package/node_modules/aws-sdk/apis/athena-2017-05-18.paginators.json +5 -0
  10. package/node_modules/aws-sdk/apis/docdb-2014-10-31.min.json +11 -0
  11. package/node_modules/aws-sdk/apis/frauddetector-2019-11-15.min.json +249 -94
  12. package/node_modules/aws-sdk/apis/iot-2015-05-28.min.json +56 -47
  13. package/node_modules/aws-sdk/apis/iotdeviceadvisor-2020-09-18.min.json +33 -12
  14. package/node_modules/aws-sdk/apis/iotsitewise-2019-12-02.min.json +260 -59
  15. package/node_modules/aws-sdk/apis/iotsitewise-2019-12-02.paginators.json +6 -0
  16. package/node_modules/aws-sdk/apis/kendra-2019-02-03.min.json +73 -72
  17. package/node_modules/aws-sdk/apis/medialive-2017-10-14.min.json +50 -3
  18. package/node_modules/aws-sdk/apis/monitoring-2010-08-01.min.json +54 -29
  19. package/node_modules/aws-sdk/apis/network-firewall-2020-11-12.min.json +91 -48
  20. package/node_modules/aws-sdk/apis/rds-2014-10-31.min.json +143 -119
  21. package/node_modules/aws-sdk/apis/transcribe-2017-10-26.min.json +2 -1
  22. package/node_modules/aws-sdk/clients/account.d.ts +104 -6
  23. package/node_modules/aws-sdk/clients/acmpca.d.ts +2 -2
  24. package/node_modules/aws-sdk/clients/athena.d.ts +127 -0
  25. package/node_modules/aws-sdk/clients/cloudwatch.d.ts +40 -1
  26. package/node_modules/aws-sdk/clients/dms.d.ts +2 -2
  27. package/node_modules/aws-sdk/clients/docdb.d.ts +20 -0
  28. package/node_modules/aws-sdk/clients/ec2.d.ts +1 -1
  29. package/node_modules/aws-sdk/clients/frauddetector.d.ts +176 -5
  30. package/node_modules/aws-sdk/clients/iot.d.ts +14 -2
  31. package/node_modules/aws-sdk/clients/iotdeviceadvisor.d.ts +49 -0
  32. package/node_modules/aws-sdk/clients/iotsitewise.d.ts +192 -0
  33. package/node_modules/aws-sdk/clients/kendra.d.ts +12 -7
  34. package/node_modules/aws-sdk/clients/medialive.d.ts +37 -0
  35. package/node_modules/aws-sdk/clients/networkfirewall.d.ts +53 -2
  36. package/node_modules/aws-sdk/clients/rds.d.ts +137 -87
  37. package/node_modules/aws-sdk/clients/transcribeservice.d.ts +2 -2
  38. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  39. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +16 -16
  40. package/node_modules/aws-sdk/dist/aws-sdk.js +378 -204
  41. package/node_modules/aws-sdk/dist/aws-sdk.min.js +93 -93
  42. package/node_modules/aws-sdk/lib/core.js +1 -1
  43. package/node_modules/aws-sdk/package.json +1 -1
  44. package/package.json +3 -3
@@ -553,6 +553,71 @@ declare class FraudDetector extends Service {
553
553
  updateVariable(callback?: (err: AWSError, data: FraudDetector.Types.UpdateVariableResult) => void): Request<FraudDetector.Types.UpdateVariableResult, AWSError>;
554
554
  }
555
555
  declare namespace FraudDetector {
556
+ export interface ATIMetricDataPoint {
557
+ /**
558
+ * The challenge rate. This indicates the percentage of login events that the model recommends to challenge such as one-time password, multi-factor authentication, and investigations.
559
+ */
560
+ cr?: float;
561
+ /**
562
+ * The anomaly discovery rate. This metric quantifies the percentage of anomalies that can be detected by the model at the selected score threshold. A lower score threshold increases the percentage of anomalies captured by the model, but would also require challenging a larger percentage of login events, leading to a higher customer friction.
563
+ */
564
+ adr?: float;
565
+ /**
566
+ * The model's threshold that specifies an acceptable fraud capture rate. For example, a threshold of 500 means any model score 500 or above is labeled as fraud.
567
+ */
568
+ threshold?: float;
569
+ /**
570
+ * The account takeover discovery rate. This metric quantifies the percentage of account compromise events that can be detected by the model at the selected score threshold. This metric is only available if 50 or more entities with at-least one labeled account takeover event is present in the ingested dataset.
571
+ */
572
+ atodr?: float;
573
+ }
574
+ export type ATIMetricDataPointsList = ATIMetricDataPoint[];
575
+ export interface ATIModelPerformance {
576
+ /**
577
+ * The anomaly separation index (ASI) score. This metric summarizes the overall ability of the model to separate anomalous activities from the normal behavior. Depending on the business, a large fraction of these anomalous activities can be malicious and correspond to the account takeover attacks. A model with no separability power will have the lowest possible ASI score of 0.5, whereas the a model with a high separability power will have the highest possible ASI score of 1.0
578
+ */
579
+ asi?: float;
580
+ }
581
+ export interface ATITrainingMetricsValue {
582
+ /**
583
+ * The model's performance metrics data points.
584
+ */
585
+ metricDataPoints?: ATIMetricDataPointsList;
586
+ /**
587
+ * The model's overall performance scores.
588
+ */
589
+ modelPerformance?: ATIModelPerformance;
590
+ }
591
+ export interface AggregatedLogOddsMetric {
592
+ /**
593
+ * The names of all the variables.
594
+ */
595
+ variableNames: ListOfStrings;
596
+ /**
597
+ * The relative importance of the variables in the list to the other event variable.
598
+ */
599
+ aggregatedVariablesImportance: float;
600
+ }
601
+ export interface AggregatedVariablesImpactExplanation {
602
+ /**
603
+ * The names of all the event variables that were used to derive the aggregated variables.
604
+ */
605
+ eventVariableNames?: ListOfStrings;
606
+ /**
607
+ * The relative impact of the aggregated variables in terms of magnitude on the prediction scores.
608
+ */
609
+ relativeImpact?: string;
610
+ /**
611
+ * The raw, uninterpreted value represented as log-odds of the fraud. These values are usually between -10 to +10, but range from -infinity to +infinity. A positive value indicates that the variables drove the risk score up. A negative value indicates that the variables drove the risk score down.
612
+ */
613
+ logOddsImpact?: float;
614
+ }
615
+ export interface AggregatedVariablesImportanceMetrics {
616
+ /**
617
+ * List of variables' metrics.
618
+ */
619
+ logOddsMetrics?: ListOfAggregatedLogOddsMetrics;
620
+ }
556
621
  export type AsyncJobStatus = "IN_PROGRESS_INITIALIZING"|"IN_PROGRESS"|"CANCEL_IN_PROGRESS"|"CANCELED"|"COMPLETE"|"FAILED"|string;
557
622
  export interface BatchCreateVariableError {
558
623
  /**
@@ -1004,7 +1069,7 @@ declare namespace FraudDetector {
1004
1069
  export type DataType = "STRING"|"INTEGER"|"FLOAT"|"BOOLEAN"|string;
1005
1070
  export interface DataValidationMetrics {
1006
1071
  /**
1007
- * The file-specific model training validation messages.
1072
+ * The file-specific model training data validation messages.
1008
1073
  */
1009
1074
  fileLevelMessages?: fileValidationMessageList;
1010
1075
  /**
@@ -2231,7 +2296,7 @@ declare namespace FraudDetector {
2231
2296
  /**
2232
2297
  * The label mapper maps the Amazon Fraud Detector supported model classification labels (FRAUD, LEGIT) to the appropriate event type labels. For example, if "FRAUD" and "LEGIT" are Amazon Fraud Detector supported labels, this mapper could be: {"FRAUD" =&gt; ["0"], "LEGIT" =&gt; ["1"]} or {"FRAUD" =&gt; ["false"], "LEGIT" =&gt; ["true"]} or {"FRAUD" =&gt; ["fraud", "abuse"], "LEGIT" =&gt; ["legit", "safe"]}. The value part of the mapper is a list, because you may have multiple label variants from your event type for a single Amazon Fraud Detector label.
2233
2298
  */
2234
- labelMapper: labelMapper;
2299
+ labelMapper?: labelMapper;
2235
2300
  /**
2236
2301
  * The action to take for unlabeled events.
2237
2302
  */
@@ -2278,6 +2343,8 @@ declare namespace FraudDetector {
2278
2343
  */
2279
2344
  nextToken?: string;
2280
2345
  }
2346
+ export type ListOfAggregatedLogOddsMetrics = AggregatedLogOddsMetric[];
2347
+ export type ListOfAggregatedVariablesImpactExplanations = AggregatedVariablesImpactExplanation[];
2281
2348
  export type ListOfEvaluatedExternalModels = EvaluatedExternalModel[];
2282
2349
  export type ListOfEvaluatedModelVersions = EvaluatedModelVersion[];
2283
2350
  export type ListOfEventPredictionSummaries = EventPredictionSummary[];
@@ -2438,7 +2505,7 @@ declare namespace FraudDetector {
2438
2505
  scores?: ModelPredictionMap;
2439
2506
  }
2440
2507
  export type ModelSource = "SAGEMAKER"|string;
2441
- export type ModelTypeEnum = "ONLINE_FRAUD_INSIGHTS"|"TRANSACTION_FRAUD_INSIGHTS"|string;
2508
+ export type ModelTypeEnum = "ONLINE_FRAUD_INSIGHTS"|"TRANSACTION_FRAUD_INSIGHTS"|"ACCOUNT_TAKEOVER_INSIGHTS"|string;
2442
2509
  export interface ModelVersion {
2443
2510
  /**
2444
2511
  * The model ID.
@@ -2506,6 +2573,10 @@ declare namespace FraudDetector {
2506
2573
  * The model version ARN.
2507
2574
  */
2508
2575
  arn?: fraudDetectorArn;
2576
+ /**
2577
+ * The training result details. The details include the relative importance of the variables.
2578
+ */
2579
+ trainingResultV2?: TrainingResultV2;
2509
2580
  }
2510
2581
  export interface ModelVersionEvaluation {
2511
2582
  /**
@@ -2524,6 +2595,41 @@ declare namespace FraudDetector {
2524
2595
  export type ModelVersionStatus = "ACTIVE"|"INACTIVE"|"TRAINING_CANCELLED"|string;
2525
2596
  export type NameList = string[];
2526
2597
  export type NonEmptyListOfStrings = string[];
2598
+ export interface OFIMetricDataPoint {
2599
+ /**
2600
+ * The false positive rate. This is the percentage of total legitimate events that are incorrectly predicted as fraud.
2601
+ */
2602
+ fpr?: float;
2603
+ /**
2604
+ * The percentage of fraud events correctly predicted as fraudulent as compared to all events predicted as fraudulent.
2605
+ */
2606
+ precision?: float;
2607
+ /**
2608
+ * The true positive rate. This is the percentage of total fraud the model detects. Also known as capture rate.
2609
+ */
2610
+ tpr?: float;
2611
+ /**
2612
+ * The model threshold that specifies an acceptable fraud capture rate. For example, a threshold of 500 means any model score 500 or above is labeled as fraud.
2613
+ */
2614
+ threshold?: float;
2615
+ }
2616
+ export type OFIMetricDataPointsList = OFIMetricDataPoint[];
2617
+ export interface OFIModelPerformance {
2618
+ /**
2619
+ * The area under the curve (auc). This summarizes the total positive rate (tpr) and false positive rate (FPR) across all possible model score thresholds.
2620
+ */
2621
+ auc?: float;
2622
+ }
2623
+ export interface OFITrainingMetricsValue {
2624
+ /**
2625
+ * The model's performance metrics data points.
2626
+ */
2627
+ metricDataPoints?: OFIMetricDataPointsList;
2628
+ /**
2629
+ * The model's overall performance score.
2630
+ */
2631
+ modelPerformance?: OFIModelPerformance;
2632
+ }
2527
2633
  export interface Outcome {
2528
2634
  /**
2529
2635
  * The outcome name.
@@ -2553,6 +2659,10 @@ declare namespace FraudDetector {
2553
2659
  * The details of the event variable's impact on the prediction score.
2554
2660
  */
2555
2661
  variableImpactExplanations?: listOfVariableImpactExplanations;
2662
+ /**
2663
+ * The details of the aggregated variables impact on the prediction score. Account Takeover Insights (ATI) model uses event variables from the login data you provide to continuously calculate a set of variables (aggregated variables) based on historical events. For example, your ATI model might calculate the number of times an user has logged in using the same IP address. In this case, event variables used to derive the aggregated variables are IP address and user.
2664
+ */
2665
+ aggregatedVariablesImpactExplanations?: ListOfAggregatedVariablesImpactExplanations;
2556
2666
  }
2557
2667
  export interface PredictionTimeRange {
2558
2668
  /**
@@ -2806,6 +2916,41 @@ declare namespace FraudDetector {
2806
2916
  }
2807
2917
  export interface SendEventResult {
2808
2918
  }
2919
+ export interface TFIMetricDataPoint {
2920
+ /**
2921
+ * The false positive rate. This is the percentage of total legitimate events that are incorrectly predicted as fraud.
2922
+ */
2923
+ fpr?: float;
2924
+ /**
2925
+ * The percentage of fraud events correctly predicted as fraudulent as compared to all events predicted as fraudulent.
2926
+ */
2927
+ precision?: float;
2928
+ /**
2929
+ * The true positive rate. This is the percentage of total fraud the model detects. Also known as capture rate.
2930
+ */
2931
+ tpr?: float;
2932
+ /**
2933
+ * The model threshold that specifies an acceptable fraud capture rate. For example, a threshold of 500 means any model score 500 or above is labeled as fraud.
2934
+ */
2935
+ threshold?: float;
2936
+ }
2937
+ export type TFIMetricDataPointsList = TFIMetricDataPoint[];
2938
+ export interface TFIModelPerformance {
2939
+ /**
2940
+ * The area under the curve (auc). This summarizes the total positive rate (tpr) and false positive rate (FPR) across all possible model score thresholds.
2941
+ */
2942
+ auc?: float;
2943
+ }
2944
+ export interface TFITrainingMetricsValue {
2945
+ /**
2946
+ * The model's performance metrics data points.
2947
+ */
2948
+ metricDataPoints?: TFIMetricDataPointsList;
2949
+ /**
2950
+ * The model performance score.
2951
+ */
2952
+ modelPerformance?: TFIModelPerformance;
2953
+ }
2809
2954
  export interface Tag {
2810
2955
  /**
2811
2956
  * A tag key.
@@ -2834,7 +2979,7 @@ declare namespace FraudDetector {
2834
2979
  * The training data schema variables.
2835
2980
  */
2836
2981
  modelVariables: ListOfStrings;
2837
- labelSchema: LabelSchema;
2982
+ labelSchema?: LabelSchema;
2838
2983
  }
2839
2984
  export type TrainingDataSourceEnum = "EXTERNAL_EVENTS"|"INGESTED_EVENTS"|string;
2840
2985
  export interface TrainingMetrics {
@@ -2847,6 +2992,20 @@ declare namespace FraudDetector {
2847
2992
  */
2848
2993
  metricDataPoints?: metricDataPointsList;
2849
2994
  }
2995
+ export interface TrainingMetricsV2 {
2996
+ /**
2997
+ * The Online Fraud Insights (OFI) model training metric details.
2998
+ */
2999
+ ofi?: OFITrainingMetricsValue;
3000
+ /**
3001
+ * The Transaction Fraud Insights (TFI) model training metric details.
3002
+ */
3003
+ tfi?: TFITrainingMetricsValue;
3004
+ /**
3005
+ * The Account Takeover Insights (ATI) model training metric details.
3006
+ */
3007
+ ati?: ATITrainingMetricsValue;
3008
+ }
2850
3009
  export interface TrainingResult {
2851
3010
  /**
2852
3011
  * The validation metrics.
@@ -2861,6 +3020,18 @@ declare namespace FraudDetector {
2861
3020
  */
2862
3021
  variableImportanceMetrics?: VariableImportanceMetrics;
2863
3022
  }
3023
+ export interface TrainingResultV2 {
3024
+ dataValidationMetrics?: DataValidationMetrics;
3025
+ /**
3026
+ * The training metric details.
3027
+ */
3028
+ trainingMetricsV2?: TrainingMetricsV2;
3029
+ variableImportanceMetrics?: VariableImportanceMetrics;
3030
+ /**
3031
+ * The variable importance metrics of the aggregated variables. Account Takeover Insights (ATI) model uses event variables from the login data you provide to continuously calculate a set of variables (aggregated variables) based on historical events. For example, your ATI model might calculate the number of times an user has logged in using the same IP address. In this case, event variables used to derive the aggregated variables are IP address and user.
3032
+ */
3033
+ aggregatedVariablesImportanceMetrics?: AggregatedVariablesImportanceMetrics;
3034
+ }
2864
3035
  export type UnlabeledEventsTreatment = "IGNORE"|"FRAUD"|"LEGIT"|string;
2865
3036
  export interface UntagResourceRequest {
2866
3037
  /**
@@ -3212,7 +3383,7 @@ declare namespace FraudDetector {
3212
3383
  export type identifier = string;
3213
3384
  export type integer = number;
3214
3385
  export type labelList = Label[];
3215
- export type labelMapper = {[key: string]: NonEmptyListOfStrings};
3386
+ export type labelMapper = {[key: string]: ListOfStrings};
3216
3387
  export type labelsMaxResults = number;
3217
3388
  export type listOfEntities = Entity[];
3218
3389
  export type listOfVariableImpactExplanations = VariableImpactExplanation[];
@@ -52,11 +52,11 @@ declare class Iot extends Service {
52
52
  */
53
53
  attachPolicy(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
54
54
  /**
55
- * Attaches the specified policy to the specified principal (certificate or other credential). Note: This action is deprecated. Please use AttachPolicy instead. Requires permission to access the AttachPrincipalPolicy action.
55
+ * Attaches the specified policy to the specified principal (certificate or other credential). Note: This action is deprecated and works as expected for backward compatibility, but we won't add enhancements. Use AttachPolicy instead. Requires permission to access the AttachPrincipalPolicy action.
56
56
  */
57
57
  attachPrincipalPolicy(params: Iot.Types.AttachPrincipalPolicyRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
58
58
  /**
59
- * Attaches the specified policy to the specified principal (certificate or other credential). Note: This action is deprecated. Please use AttachPolicy instead. Requires permission to access the AttachPrincipalPolicy action.
59
+ * Attaches the specified policy to the specified principal (certificate or other credential). Note: This action is deprecated and works as expected for backward compatibility, but we won't add enhancements. Use AttachPolicy instead. Requires permission to access the AttachPrincipalPolicy action.
60
60
  */
61
61
  attachPrincipalPolicy(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
62
62
  /**
@@ -6395,6 +6395,12 @@ declare namespace Iot {
6395
6395
  export type IndexNamesList = IndexName[];
6396
6396
  export type IndexSchema = string;
6397
6397
  export type IndexStatus = "ACTIVE"|"BUILDING"|"REBUILDING"|string;
6398
+ export interface IndexingFilter {
6399
+ /**
6400
+ * The shadow names that you select to index. The default maximum number of shadow names for indexing is 10. To increase the limit, see Amazon Web Services IoT Device Management Quotas in the Amazon Web Services General Reference.
6401
+ */
6402
+ namedShadowNames?: NamedShadowNamesFilter;
6403
+ }
6398
6404
  export type InlineDocument = string;
6399
6405
  export type InputName = string;
6400
6406
  export interface IotAnalyticsAction {
@@ -8574,6 +8580,7 @@ declare namespace Iot {
8574
8580
  export type MqttPassword = Buffer|Uint8Array|Blob|string;
8575
8581
  export type MqttUsername = string;
8576
8582
  export type NamedShadowIndexingMode = "OFF"|"ON"|string;
8583
+ export type NamedShadowNamesFilter = ShadowName[];
8577
8584
  export type NamespaceId = string;
8578
8585
  export type NextToken = string;
8579
8586
  export type NonCompliantChecksCount = number;
@@ -9539,6 +9546,7 @@ declare namespace Iot {
9539
9546
  */
9540
9547
  disableAllLogs?: DisableAllLogs;
9541
9548
  }
9549
+ export type ShadowName = string;
9542
9550
  export interface SigV4Authorization {
9543
9551
  /**
9544
9552
  * The signing region.
@@ -10219,6 +10227,10 @@ declare namespace Iot {
10219
10227
  * Contains custom field names and their data type.
10220
10228
  */
10221
10229
  customFields?: Fields;
10230
+ /**
10231
+ * Provides additional filters for specific data sources. Named shadow is the only data source that currently supports and requires a filter. To add named shadows to your fleet indexing configuration, set namedShadowIndexingMode to be ON and specify your shadow names in filter.
10232
+ */
10233
+ filter?: IndexingFilter;
10222
10234
  }
10223
10235
  export type ThingIndexingMode = "OFF"|"REGISTRY"|"REGISTRY_AND_SHADOW"|string;
10224
10236
  export type ThingName = string;
@@ -325,6 +325,7 @@ declare namespace IotDeviceAdvisor {
325
325
  }
326
326
  export type GroupResultList = GroupResult[];
327
327
  export type IntendedForQualificationBoolean = boolean;
328
+ export type IsLongDurationTestBoolean = boolean;
328
329
  export interface ListSuiteDefinitionsRequest {
329
330
  /**
330
331
  * The maximum number of results to return at once.
@@ -388,6 +389,7 @@ declare namespace IotDeviceAdvisor {
388
389
  export type LogUrl = string;
389
390
  export type MaxResults = number;
390
391
  export type ParallelRun = boolean;
392
+ export type Protocol = "MqttV3_1_1"|"MqttV5"|string;
391
393
  export type QualificationReportDownloadUrl = string;
392
394
  export type RootGroup = string;
393
395
  export type SelectedTestList = UUID[];
@@ -451,6 +453,10 @@ declare namespace IotDeviceAdvisor {
451
453
  * Gets the tests intended for qualification in a suite.
452
454
  */
453
455
  intendedForQualification?: IntendedForQualificationBoolean;
456
+ /**
457
+ * Verifies if the test suite is a long duration test.
458
+ */
459
+ isLongDurationTest?: IsLongDurationTestBoolean;
454
460
  /**
455
461
  * Gets test suite root group.
456
462
  */
@@ -459,6 +465,10 @@ declare namespace IotDeviceAdvisor {
459
465
  * Gets the device permission ARN.
460
466
  */
461
467
  devicePermissionRoleArn?: AmazonResourceName;
468
+ /**
469
+ * Gets the MQTT protocol that is configured in the suite definition.
470
+ */
471
+ protocol?: Protocol;
462
472
  }
463
473
  export interface SuiteDefinitionInformation {
464
474
  /**
@@ -477,6 +487,14 @@ declare namespace IotDeviceAdvisor {
477
487
  * Specifies if the test suite is intended for qualification.
478
488
  */
479
489
  intendedForQualification?: IntendedForQualificationBoolean;
490
+ /**
491
+ * Verifies if the test suite is a long duration test.
492
+ */
493
+ isLongDurationTest?: IsLongDurationTestBoolean;
494
+ /**
495
+ * Gets the MQTT protocol that is configured in the suite definition.
496
+ */
497
+ protocol?: Protocol;
480
498
  /**
481
499
  * Date (in Unix epoch time) when the test suite was created.
482
500
  */
@@ -544,6 +562,7 @@ declare namespace IotDeviceAdvisor {
544
562
  export type SuiteRunResultCount = number;
545
563
  export type SuiteRunStatus = "PASS"|"FAIL"|"CANCELED"|"PENDING"|"RUNNING"|"STOPPING"|"STOPPED"|"PASS_WITH_WARNINGS"|"ERROR"|string;
546
564
  export type SuiteRunsList = SuiteRunInformation[];
565
+ export type SystemMessage = string;
547
566
  export type TagKeyList = String128[];
548
567
  export type TagMap = {[key: string]: String256};
549
568
  export interface TagResourceRequest {
@@ -596,8 +615,38 @@ declare namespace IotDeviceAdvisor {
596
615
  * Provides test case run failure result.
597
616
  */
598
617
  failure?: Failure;
618
+ /**
619
+ * Provides the test scenarios for the test case run.
620
+ */
621
+ testScenarios?: TestCaseScenariosList;
599
622
  }
600
623
  export type TestCaseRuns = TestCaseRun[];
624
+ export interface TestCaseScenario {
625
+ /**
626
+ * Provides test case scenario ID.
627
+ */
628
+ testCaseScenarioId?: TestCaseScenarioId;
629
+ /**
630
+ * Provides test case scenario type. Type is one of the following: Advanced Basic
631
+ */
632
+ testCaseScenarioType?: TestCaseScenarioType;
633
+ /**
634
+ * Provides the test case scenario status. Status is one of the following: PASS: Test passed. FAIL: Test failed. PENDING: Test has not started running but is scheduled. RUNNING: Test is running. STOPPING: Test is performing cleanup steps. You will see this status only if you stop a suite run. STOPPED Test is stopped. You will see this status only if you stop a suite run. PASS_WITH_WARNINGS: Test passed with warnings. ERORR: Test faced an error when running due to an internal issue.
635
+ */
636
+ status?: TestCaseScenarioStatus;
637
+ /**
638
+ * Provides test case scenario failure result.
639
+ */
640
+ failure?: Failure;
641
+ /**
642
+ *
643
+ */
644
+ systemMessage?: SystemMessage;
645
+ }
646
+ export type TestCaseScenarioId = string;
647
+ export type TestCaseScenarioStatus = "PASS"|"FAIL"|"CANCELED"|"PENDING"|"RUNNING"|"STOPPING"|"STOPPED"|"PASS_WITH_WARNINGS"|"ERROR"|string;
648
+ export type TestCaseScenarioType = "Advanced"|"Basic"|string;
649
+ export type TestCaseScenariosList = TestCaseScenario[];
601
650
  export interface TestResult {
602
651
  /**
603
652
  * Show each group of test results.