cdk-comprehend-s3olap 2.0.16 → 2.0.17

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -237,11 +237,11 @@ declare class SageMaker extends Service {
237
237
  */
238
238
  createLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
239
239
  /**
240
- * Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (Amazon Web Services SDK for Python (Boto 3)). To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
240
+ * Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to SageMaker hosting services, see Create a Model (Amazon Web Services SDK for Python (Boto 3)). To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
241
241
  */
242
242
  createModel(params: SageMaker.Types.CreateModelInput, callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
243
243
  /**
244
- * Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (Amazon Web Services SDK for Python (Boto 3)). To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
244
+ * Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. For an example that calls this method when deploying a model to SageMaker hosting services, see Create a Model (Amazon Web Services SDK for Python (Boto 3)). To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
245
245
  */
246
246
  createModel(callback?: (err: AWSError, data: SageMaker.Types.CreateModelOutput) => void): Request<SageMaker.Types.CreateModelOutput, AWSError>;
247
247
  /**
@@ -2005,11 +2005,11 @@ declare class SageMaker extends Service {
2005
2005
  */
2006
2006
  updateUserProfile(callback?: (err: AWSError, data: SageMaker.Types.UpdateUserProfileResponse) => void): Request<SageMaker.Types.UpdateUserProfileResponse, AWSError>;
2007
2007
  /**
2008
- * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
2008
+ * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. The worker portal is now supported in VPC and public internet. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "0.0.0.0/0". Amazon SageMaker does not support Source Ip restriction for worker portals in VPC. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
2009
2009
  */
2010
2010
  updateWorkforce(params: SageMaker.Types.UpdateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
2011
2011
  /**
2012
- * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
2012
+ * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. The worker portal is now supported in VPC and public internet. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "0.0.0.0/0". Amazon SageMaker does not support Source Ip restriction for worker portals in VPC. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
2013
2013
  */
2014
2014
  updateWorkforce(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
2015
2015
  /**
@@ -2726,7 +2726,7 @@ declare namespace SageMaker {
2726
2726
  export type AutoMLContainerDefinitions = AutoMLContainerDefinition[];
2727
2727
  export interface AutoMLDataSource {
2728
2728
  /**
2729
- * The Amazon S3 location of the input data. The input data must be in CSV format and contain at least 500 rows.
2729
+ * The Amazon S3 location of the input data.
2730
2730
  */
2731
2731
  S3DataSource: AutoMLS3DataSource;
2732
2732
  }
@@ -2853,7 +2853,7 @@ declare namespace SageMaker {
2853
2853
  export type AutoMLPartialFailureReasons = AutoMLPartialFailureReason[];
2854
2854
  export interface AutoMLS3DataSource {
2855
2855
  /**
2856
- * The data type.
2856
+ * The data type. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] An S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE
2857
2857
  */
2858
2858
  S3DataType: AutoMLS3DataType;
2859
2859
  /**
@@ -3557,7 +3557,7 @@ declare namespace SageMaker {
3557
3557
  */
3558
3558
  Tags?: TagList;
3559
3559
  /**
3560
- * The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
3560
+ * The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
3561
3561
  */
3562
3562
  ResourceSpec?: ResourceSpec;
3563
3563
  }
@@ -5042,6 +5042,10 @@ declare namespace SageMaker {
5042
5042
  * An array of key-value pairs that contain metadata to help you categorize and organize our workforce. Each tag consists of a key and a value, both of which you define.
5043
5043
  */
5044
5044
  Tags?: TagList;
5045
+ /**
5046
+ * Use this parameter to configure a workforce using VPC.
5047
+ */
5048
+ WorkforceVpcConfig?: WorkforceVpcConfigRequest;
5045
5049
  }
5046
5050
  export interface CreateWorkforceResponse {
5047
5051
  /**
@@ -10162,6 +10166,7 @@ declare namespace SageMaker {
10162
10166
  * The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training and inference jobs used for automated data labeling. You can only specify a VolumeKmsKeyId when you create a labeling job with automated data labeling enabled using the API operation CreateLabelingJob. You cannot specify an Amazon Web Services KMS key to encrypt the storage volume used for automated data labeling model training and inference when you create a labeling job using the console. To learn more, see Output Data and Storage Volume Encryption. The VolumeKmsKeyId can be any of the following formats: KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
10163
10167
  */
10164
10168
  VolumeKmsKeyId?: KmsKeyId;
10169
+ VpcConfig?: VpcConfig;
10165
10170
  }
10166
10171
  export interface LabelingJobS3DataSource {
10167
10172
  /**
@@ -15479,7 +15484,7 @@ declare namespace SageMaker {
15479
15484
  */
15480
15485
  SageMakerImageVersionArn?: ImageVersionArn;
15481
15486
  /**
15482
- * The instance type that the image version runs on. JupyterServer Apps only support the system value. KernelGateway Apps do not support the system value, but support all other values for available instance types.
15487
+ * The instance type that the image version runs on. JupyterServer apps only support the system value. For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.
15483
15488
  */
15484
15489
  InstanceType?: AppInstanceType;
15485
15490
  /**
@@ -17563,6 +17568,10 @@ declare namespace SageMaker {
17563
17568
  * Use this parameter to update your OIDC Identity Provider (IdP) configuration for a workforce made using your own IdP.
17564
17569
  */
17565
17570
  OidcConfig?: OidcConfig;
17571
+ /**
17572
+ * Use this parameter to update your VPC configuration for a workforce.
17573
+ */
17574
+ WorkforceVpcConfig?: WorkforceVpcConfigRequest;
17566
17575
  }
17567
17576
  export interface UpdateWorkforceResponse {
17568
17577
  /**
@@ -17747,9 +17756,61 @@ declare namespace SageMaker {
17747
17756
  * The date that the workforce is created.
17748
17757
  */
17749
17758
  CreateDate?: Timestamp;
17759
+ /**
17760
+ * The configuration of a VPC workforce.
17761
+ */
17762
+ WorkforceVpcConfig?: WorkforceVpcConfigResponse;
17763
+ /**
17764
+ * The status of your workforce.
17765
+ */
17766
+ Status?: WorkforceStatus;
17767
+ /**
17768
+ * The reason your workforce failed.
17769
+ */
17770
+ FailureReason?: WorkforceFailureReason;
17750
17771
  }
17751
17772
  export type WorkforceArn = string;
17773
+ export type WorkforceFailureReason = string;
17752
17774
  export type WorkforceName = string;
17775
+ export type WorkforceSecurityGroupId = string;
17776
+ export type WorkforceSecurityGroupIds = WorkforceSecurityGroupId[];
17777
+ export type WorkforceStatus = "Initializing"|"Updating"|"Deleting"|"Failed"|"Active"|string;
17778
+ export type WorkforceSubnetId = string;
17779
+ export type WorkforceSubnets = WorkforceSubnetId[];
17780
+ export interface WorkforceVpcConfigRequest {
17781
+ /**
17782
+ * The ID of the VPC that the workforce uses for communication.
17783
+ */
17784
+ VpcId?: WorkforceVpcId;
17785
+ /**
17786
+ * The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
17787
+ */
17788
+ SecurityGroupIds?: WorkforceSecurityGroupIds;
17789
+ /**
17790
+ * The ID of the subnets in the VPC that you want to connect.
17791
+ */
17792
+ Subnets?: WorkforceSubnets;
17793
+ }
17794
+ export interface WorkforceVpcConfigResponse {
17795
+ /**
17796
+ * The ID of the VPC that the workforce uses for communication.
17797
+ */
17798
+ VpcId: WorkforceVpcId;
17799
+ /**
17800
+ * The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
17801
+ */
17802
+ SecurityGroupIds: WorkforceSecurityGroupIds;
17803
+ /**
17804
+ * The ID of the subnets in the VPC that you want to connect.
17805
+ */
17806
+ Subnets: WorkforceSubnets;
17807
+ /**
17808
+ * The IDs for the VPC service endpoints of your VPC workforce when it is created and updated.
17809
+ */
17810
+ VpcEndpointId?: WorkforceVpcEndpointId;
17811
+ }
17812
+ export type WorkforceVpcEndpointId = string;
17813
+ export type WorkforceVpcId = string;
17753
17814
  export type Workforces = Workforce[];
17754
17815
  export interface Workteam {
17755
17816
  /**
@@ -83,7 +83,7 @@ return /******/ (function(modules) { // webpackBootstrap
83
83
  /**
84
84
  * @constant
85
85
  */
86
- VERSION: '2.1160.0',
86
+ VERSION: '2.1161.0',
87
87
 
88
88
  /**
89
89
  * @api private