cdk-comprehend-s3olap 2.0.130 → 2.0.132

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/.jsii +3 -3
  2. package/lib/cdk-comprehend-s3olap.js +2 -2
  3. package/lib/comprehend-lambdas.js +2 -2
  4. package/lib/iam-roles.js +4 -4
  5. package/node_modules/aws-sdk/CHANGELOG.md +23 -1
  6. package/node_modules/aws-sdk/README.md +1 -1
  7. package/node_modules/aws-sdk/apis/chime-2018-05-01.min.json +32 -28
  8. package/node_modules/aws-sdk/apis/chime-sdk-media-pipelines-2021-07-15.min.json +2 -1
  9. package/node_modules/aws-sdk/apis/chime-sdk-meetings-2021-07-15.min.json +3 -1
  10. package/node_modules/aws-sdk/apis/comprehend-2017-11-27.min.json +181 -154
  11. package/node_modules/aws-sdk/apis/connect-2017-08-08.min.json +239 -199
  12. package/node_modules/aws-sdk/apis/fms-2018-01-01.min.json +245 -95
  13. package/node_modules/aws-sdk/apis/fms-2018-01-01.paginators.json +12 -0
  14. package/node_modules/aws-sdk/apis/guardduty-2017-11-28.min.json +106 -53
  15. package/node_modules/aws-sdk/apis/iot-2015-05-28.min.json +1 -1
  16. package/node_modules/aws-sdk/apis/iot-2015-05-28.paginators.json +12 -0
  17. package/node_modules/aws-sdk/apis/ram-2018-01-04.min.json +396 -66
  18. package/node_modules/aws-sdk/apis/ram-2018-01-04.paginators.json +10 -0
  19. package/node_modules/aws-sdk/apis/s3-2006-03-01.examples.json +94 -94
  20. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +710 -703
  21. package/node_modules/aws-sdk/apis/secretsmanager-2017-10-17.examples.json +32 -0
  22. package/node_modules/aws-sdk/apis/securityhub-2018-10-26.examples.json +1516 -0
  23. package/node_modules/aws-sdk/apis/snowball-2016-06-30.min.json +79 -52
  24. package/node_modules/aws-sdk/apis/wafv2-2019-07-29.min.json +159 -73
  25. package/node_modules/aws-sdk/clients/chime.d.ts +94 -42
  26. package/node_modules/aws-sdk/clients/chimesdkmediapipelines.d.ts +14 -10
  27. package/node_modules/aws-sdk/clients/chimesdkmeetings.d.ts +33 -24
  28. package/node_modules/aws-sdk/clients/comprehend.d.ts +45 -5
  29. package/node_modules/aws-sdk/clients/connect.d.ts +59 -1
  30. package/node_modules/aws-sdk/clients/ecs.d.ts +9 -9
  31. package/node_modules/aws-sdk/clients/fms.d.ts +225 -21
  32. package/node_modules/aws-sdk/clients/gamelift.d.ts +240 -240
  33. package/node_modules/aws-sdk/clients/guardduty.d.ts +61 -4
  34. package/node_modules/aws-sdk/clients/iot.d.ts +1 -1
  35. package/node_modules/aws-sdk/clients/ram.d.ts +538 -91
  36. package/node_modules/aws-sdk/clients/rds.d.ts +16 -16
  37. package/node_modules/aws-sdk/clients/s3.d.ts +117 -117
  38. package/node_modules/aws-sdk/clients/sagemaker.d.ts +53 -39
  39. package/node_modules/aws-sdk/clients/secretsmanager.d.ts +10 -10
  40. package/node_modules/aws-sdk/clients/snowball.d.ts +56 -9
  41. package/node_modules/aws-sdk/clients/wafv2.d.ts +120 -10
  42. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  43. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +16 -16
  44. package/node_modules/aws-sdk/dist/aws-sdk.js +436 -357
  45. package/node_modules/aws-sdk/dist/aws-sdk.min.js +82 -82
  46. package/node_modules/aws-sdk/lib/core.js +1 -1
  47. package/node_modules/aws-sdk/package.json +1 -1
  48. package/package.json +5 -5
@@ -461,11 +461,11 @@ declare class SageMaker extends Service {
461
461
  */
462
462
  createUserProfile(callback?: (err: AWSError, data: SageMaker.Types.CreateUserProfileResponse) => void): Request<SageMaker.Types.CreateUserProfileResponse, AWSError>;
463
463
  /**
464
- * Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).
464
+ * Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the DeleteWorkforce API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).
465
465
  */
466
466
  createWorkforce(params: SageMaker.Types.CreateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateWorkforceResponse) => void): Request<SageMaker.Types.CreateWorkforceResponse, AWSError>;
467
467
  /**
468
- * Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).
468
+ * Use this operation to create a workforce. This operation will return an error if a workforce already exists in the Amazon Web Services Region that you specify. You can only create one workforce in each Amazon Web Services Region per Amazon Web Services account. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use the DeleteWorkforce API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito). To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).
469
469
  */
470
470
  createWorkforce(callback?: (err: AWSError, data: SageMaker.Types.CreateWorkforceResponse) => void): Request<SageMaker.Types.CreateWorkforceResponse, AWSError>;
471
471
  /**
@@ -637,11 +637,11 @@ declare class SageMaker extends Service {
637
637
  */
638
638
  deleteHubContent(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
639
639
  /**
640
- * Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
640
+ * Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use ListHumanTaskUis. When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
641
641
  */
642
642
  deleteHumanTaskUi(params: SageMaker.Types.DeleteHumanTaskUiRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteHumanTaskUiResponse) => void): Request<SageMaker.Types.DeleteHumanTaskUiResponse, AWSError>;
643
643
  /**
644
- * Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
644
+ * Use this operation to delete a human task user interface (worker task template). To see a list of human task user interfaces (work task templates) in your account, use ListHumanTaskUis. When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.
645
645
  */
646
646
  deleteHumanTaskUi(callback?: (err: AWSError, data: SageMaker.Types.DeleteHumanTaskUiResponse) => void): Request<SageMaker.Types.DeleteHumanTaskUiResponse, AWSError>;
647
647
  /**
@@ -821,11 +821,11 @@ declare class SageMaker extends Service {
821
821
  */
822
822
  deleteUserProfile(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
823
823
  /**
824
- * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce. If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
824
+ * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
825
825
  */
826
826
  deleteWorkforce(params: SageMaker.Types.DeleteWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
827
827
  /**
828
- * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce. If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
828
+ * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
829
829
  */
830
830
  deleteWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
831
831
  /**
@@ -2061,11 +2061,11 @@ declare class SageMaker extends Service {
2061
2061
  */
2062
2062
  stopAutoMLJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2063
2063
  /**
2064
- * Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.
2064
+ * Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobStatus to Stopped.
2065
2065
  */
2066
2066
  stopCompilationJob(params: SageMaker.Types.StopCompilationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2067
2067
  /**
2068
- * Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.
2068
+ * Stops a model compilation job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal. When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobStatus to Stopped.
2069
2069
  */
2070
2070
  stopCompilationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2071
2071
  /**
@@ -2293,11 +2293,11 @@ declare class SageMaker extends Service {
2293
2293
  */
2294
2294
  updateImageVersion(callback?: (err: AWSError, data: SageMaker.Types.UpdateImageVersionResponse) => void): Request<SageMaker.Types.UpdateImageVersionResponse, AWSError>;
2295
2295
  /**
2296
- * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperimentResponse$Status.
2296
+ * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperiment.
2297
2297
  */
2298
2298
  updateInferenceExperiment(params: SageMaker.Types.UpdateInferenceExperimentRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceExperimentResponse) => void): Request<SageMaker.Types.UpdateInferenceExperimentResponse, AWSError>;
2299
2299
  /**
2300
- * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperimentResponse$Status.
2300
+ * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperiment.
2301
2301
  */
2302
2302
  updateInferenceExperiment(callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceExperimentResponse) => void): Request<SageMaker.Types.UpdateInferenceExperimentResponse, AWSError>;
2303
2303
  /**
@@ -2413,11 +2413,11 @@ declare class SageMaker extends Service {
2413
2413
  */
2414
2414
  updateUserProfile(callback?: (err: AWSError, data: SageMaker.Types.UpdateUserProfileResponse) => void): Request<SageMaker.Types.UpdateUserProfileResponse, AWSError>;
2415
2415
  /**
2416
- * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. The worker portal is now supported in VPC and public internet. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "10.0.0.0/16". Amazon SageMaker does not support Source Ip restriction for worker portals in VPC. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
2416
+ * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. The worker portal is now supported in VPC and public internet. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "10.0.0.0/16". Amazon SageMaker does not support Source Ip restriction for worker portals in VPC. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the DeleteWorkteam operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the DescribeWorkforce operation. This operation only applies to private workforces.
2417
2417
  */
2418
2418
  updateWorkforce(params: SageMaker.Types.UpdateWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
2419
2419
  /**
2420
- * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. The worker portal is now supported in VPC and public internet. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "10.0.0.0/16". Amazon SageMaker does not support Source Ip restriction for worker portals in VPC. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation. This operation only applies to private workforces.
2420
+ * Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration. The worker portal is now supported in VPC and public internet. Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal. To restrict access to all the workers in public internet, add the SourceIpConfig CIDR value as "10.0.0.0/16". Amazon SageMaker does not support Source Ip restriction for worker portals in VPC. Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP. You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the DeleteWorkteam operation. After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the DescribeWorkforce operation. This operation only applies to private workforces.
2421
2421
  */
2422
2422
  updateWorkforce(callback?: (err: AWSError, data: SageMaker.Types.UpdateWorkforceResponse) => void): Request<SageMaker.Types.UpdateWorkforceResponse, AWSError>;
2423
2423
  /**
@@ -3006,7 +3006,7 @@ declare namespace SageMaker {
3006
3006
  */
3007
3007
  ErrorTopic?: SnsTopicArn;
3008
3008
  /**
3009
- * The Amazon SNS topics where you want the inference response to be included.
3009
+ * The Amazon SNS topics where you want the inference response to be included. The inference response is included only if the response size is less than or equal to 128 KB.
3010
3010
  */
3011
3011
  IncludeInferenceResponseIn?: AsyncNotificationTopicTypeList;
3012
3012
  }
@@ -3588,9 +3588,13 @@ declare namespace SageMaker {
3588
3588
  export type CandidateSteps = AutoMLCandidateStep[];
3589
3589
  export interface CanvasAppSettings {
3590
3590
  /**
3591
- * Time series forecast settings for the Canvas app.
3591
+ * Time series forecast settings for the Canvas application.
3592
3592
  */
3593
3593
  TimeSeriesForecastingSettings?: TimeSeriesForecastingSettings;
3594
+ /**
3595
+ * The model registry settings for the SageMaker Canvas application.
3596
+ */
3597
+ ModelRegisterSettings?: ModelRegisterSettings;
3594
3598
  }
3595
3599
  export interface CapacitySize {
3596
3600
  /**
@@ -4737,7 +4741,7 @@ declare namespace SageMaker {
4737
4741
  }
4738
4742
  export interface CreateEndpointInput {
4739
4743
  /**
4740
- * The name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in CreateEndpoint, but the case is preserved and must be matched in .
4744
+ * The name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in CreateEndpoint, but the case is preserved and must be matched in InvokeEndpoint.
4741
4745
  */
4742
4746
  EndpointName: EndpointName;
4743
4747
  /**
@@ -4798,7 +4802,7 @@ declare namespace SageMaker {
4798
4802
  */
4799
4803
  FeatureDefinitions: FeatureDefinitions;
4800
4804
  /**
4801
- * You can turn the OnlineStore on or off by specifying True for the EnableOnlineStore flag in OnlineStoreConfig; the default value is False. You can also include an Amazon Web Services KMS key ID (KMSKeyId) for at-rest encryption of the OnlineStore.
4805
+ * You can turn the OnlineStore on or off by specifying True for the EnableOnlineStore flag in OnlineStoreConfig. You can also include an Amazon Web Services KMS key ID (KMSKeyId) for at-rest encryption of the OnlineStore. The default value is False.
4802
4806
  */
4803
4807
  OnlineStoreConfig?: OnlineStoreConfig;
4804
4808
  /**
@@ -5075,7 +5079,7 @@ declare namespace SageMaker {
5075
5079
  }
5076
5080
  export interface CreateInferenceRecommendationsJobRequest {
5077
5081
  /**
5078
- * A name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.
5082
+ * A name for the recommendation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account. The job name is passed down to the resources created by the recommendation job. The names of resources (such as the model, endpoint configuration, endpoint, and compilation) that are prefixed with the job name are truncated at 40 characters.
5079
5083
  */
5080
5084
  JobName: RecommendationJobName;
5081
5085
  /**
@@ -6344,11 +6348,11 @@ declare namespace SageMaker {
6344
6348
  export type DefaultGid = number;
6345
6349
  export interface DefaultSpaceSettings {
6346
6350
  /**
6347
- * The execution role for the space.
6351
+ * The ARN of the execution role for the space.
6348
6352
  */
6349
6353
  ExecutionRole?: RoleArn;
6350
6354
  /**
6351
- * The security groups for the Amazon Virtual Private Cloud that the space uses for communication.
6355
+ * The security group IDs for the Amazon Virtual Private Cloud that the space uses for communication.
6352
6356
  */
6353
6357
  SecurityGroups?: SecurityGroupIds;
6354
6358
  JupyterServerAppSettings?: JupyterServerAppSettings;
@@ -7311,7 +7315,7 @@ declare namespace SageMaker {
7311
7315
  */
7312
7316
  CompilationJobStatus: CompilationJobStatus;
7313
7317
  /**
7314
- * The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the DescribeCompilationJobResponse$CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.
7318
+ * The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container.
7315
7319
  */
7316
7320
  CompilationStartTime?: Timestamp;
7317
7321
  /**
@@ -7842,7 +7846,7 @@ declare namespace SageMaker {
7842
7846
  ProductionVariants?: ProductionVariantSummaryList;
7843
7847
  DataCaptureConfig?: DataCaptureConfigSummary;
7844
7848
  /**
7845
- * The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
7849
+ * The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use the FailureReason value returned by DescribeEndpoint for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint.
7846
7850
  */
7847
7851
  EndpointStatus: EndpointStatus;
7848
7852
  /**
@@ -8516,7 +8520,7 @@ declare namespace SageMaker {
8516
8520
  */
8517
8521
  ShadowModeConfig?: ShadowModeConfig;
8518
8522
  /**
8519
- * The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperimentRequest$KmsKey.
8523
+ * The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. For more information, see CreateInferenceExperiment.
8520
8524
  */
8521
8525
  KmsKey?: KmsKeyId;
8522
8526
  }
@@ -10794,7 +10798,7 @@ declare namespace SageMaker {
10794
10798
  */
10795
10799
  EndpointConfigName?: EndpointConfigName;
10796
10800
  /**
10797
- * The status of the endpoint. For possible values of the status of an endpoint, see EndpointSummary$EndpointStatus.
10801
+ * The status of the endpoint. For possible values of the status of an endpoint, see EndpointSummary.
10798
10802
  */
10799
10803
  EndpointStatus?: EndpointStatus;
10800
10804
  /**
@@ -10850,7 +10854,7 @@ declare namespace SageMaker {
10850
10854
  */
10851
10855
  LastModifiedTime: Timestamp;
10852
10856
  /**
10853
- * The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint. To get a list of endpoints with a specified status, use the ListEndpointsInput$StatusEquals filter.
10857
+ * The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use DescribeEndpointOutput$FailureReason for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint. To get a list of endpoints with a specified status, use the StatusEquals filter with a call to ListEndpoints.
10854
10858
  */
10855
10859
  EndpointStatus: EndpointStatus;
10856
10860
  }
@@ -12429,7 +12433,7 @@ declare namespace SageMaker {
12429
12433
  */
12430
12434
  S3Uri: S3Uri;
12431
12435
  /**
12432
- * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific. TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input":[1,1024,1024,3]} If using the CLI, {\"input\":[1,1024,1024,3]} Examples for two inputs: If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input_1":[1,3,224,224]} If using the CLI, {\"input_1\":[1,3,224,224]} Examples for two inputs: If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"data":[1,3,1024,1024]} If using the CLI, {\"data\":[1,3,1024,1024]} Examples for two inputs: If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same. Examples for one input in dictionary format: If using the console, {"input0":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224]} Example for one input in list format: [[1,3,224,224]] Examples for two inputs in dictionary format: If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] XGBOOST: input data name and shape are not needed. DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format): shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes: Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}} Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale. bias: If the input type is an Image, you need to provide the bias vector. scale: If the input type is an Image, you need to provide a scale factor. CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples: Tensor type input: "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} Tensor type input without input name (PyTorch): "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] Image type input: "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} Image type input without input name (PyTorch): "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice. For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example: "DataInputConfig": {"inputs": [1, 224, 224, 3]} "CompilerOptions": {"signature_def_key": "serving_custom"} For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example: "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]} "CompilerOptions": {"output_names": ["output_tensor:0"]}
12436
+ * Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific. TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input":[1,1024,1024,3]} If using the CLI, {\"input\":[1,1024,1024,3]} Examples for two inputs: If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]} If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]} KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"input_1":[1,3,224,224]} If using the CLI, {\"input_1\":[1,3,224,224]} Examples for two inputs: If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]} If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]} MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different. Examples for one input: If using the console, {"data":[1,3,1024,1024]} If using the CLI, {\"data\":[1,3,1024,1024]} Examples for two inputs: If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]} If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]} PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same. Examples for one input in dictionary format: If using the console, {"input0":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224]} Example for one input in list format: [[1,3,224,224]] Examples for two inputs in dictionary format: If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]} If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]] XGBOOST: input data name and shape are not needed. DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format): shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes: Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}} Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}} default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}} type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale. bias: If the input type is an Image, you need to provide the bias vector. scale: If the input type is an Image, you need to provide a scale factor. CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples: Tensor type input: "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}} Tensor type input without input name (PyTorch): "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}] Image type input: "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}} "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} Image type input without input name (PyTorch): "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}] "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"} Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice. For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example: "DataInputConfig": {"inputs": [1, 224, 224, 3]} "CompilerOptions": {"signature_def_key": "serving_custom"} For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example: "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]} "CompilerOptions": {"output_names": ["output_tensor:0"]}
12433
12437
  */
12434
12438
  DataInputConfig: DataInputConfig;
12435
12439
  /**
@@ -13302,7 +13306,7 @@ declare namespace SageMaker {
13302
13306
  */
13303
13307
  NameContains?: NameContains;
13304
13308
  /**
13305
- * A filter that retrieves model compilation jobs with a specific DescribeCompilationJobResponse$CompilationJobStatus status.
13309
+ * A filter that retrieves model compilation jobs with a specific CompilationJobStatus status.
13306
13310
  */
13307
13311
  StatusEquals?: CompilationJobStatus;
13308
13312
  /**
@@ -14174,11 +14178,11 @@ declare namespace SageMaker {
14174
14178
  */
14175
14179
  NameContains?: NameContains;
14176
14180
  /**
14177
- * Selects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperimentRequest$Type.
14181
+ * Selects inference experiments of this type. For the possible types of inference experiments, see CreateInferenceExperiment.
14178
14182
  */
14179
14183
  Type?: InferenceExperimentType;
14180
14184
  /**
14181
- * Selects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperimentResponse$Status.
14185
+ * Selects inference experiments which are in this status. For the possible statuses, see DescribeInferenceExperiment.
14182
14186
  */
14183
14187
  StatusEquals?: InferenceExperimentStatus;
14184
14188
  /**
@@ -16928,6 +16932,16 @@ declare namespace SageMaker {
16928
16932
  */
16929
16933
  GroundTruthS3Input: MonitoringGroundTruthS3Input;
16930
16934
  }
16935
+ export interface ModelRegisterSettings {
16936
+ /**
16937
+ * Describes whether the integration to the model registry is enabled or disabled in the Canvas application.
16938
+ */
16939
+ Status?: FeatureStatus;
16940
+ /**
16941
+ * The Amazon Resource Name (ARN) of the SageMaker model registry account. Required only to register model versions created by a different SageMaker Canvas AWS account than the AWS account in which SageMaker model registry is set up.
16942
+ */
16943
+ CrossAccountModelRegisterRoleArn?: RoleArn;
16944
+ }
16931
16945
  export type ModelSortKey = "Name"|"CreationTime"|string;
16932
16946
  export interface ModelStepMetadata {
16933
16947
  /**
@@ -17584,7 +17598,7 @@ declare namespace SageMaker {
17584
17598
  */
17585
17599
  S3StorageConfig: S3StorageConfig;
17586
17600
  /**
17587
- * Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore.
17601
+ * Set to True to disable the automatic creation of an Amazon Web Services Glue table when configuring an OfflineStore. If set to False, Feature Store will name the OfflineStore Glue table following Athena's naming recommendations. The default value is False.
17588
17602
  */
17589
17603
  DisableGlueTableCreation?: Boolean;
17590
17604
  /**
@@ -17714,7 +17728,7 @@ declare namespace SageMaker {
17714
17728
  */
17715
17729
  TargetPlatform?: TargetPlatform;
17716
17730
  /**
17717
- * Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI. CoreML: Compilation for the CoreML OutputConfig$TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines. EIA: Compilation for the Elastic Inference Accelerator supports the following compiler options: precision_mode: Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32". Default is "FP32". signature_def_key: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key. output_names: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names. For example: {"precision_mode": "FP32", "output_names": ["output:0"]}
17731
+ * Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines. EIA: Compilation for the Elastic Inference Accelerator supports the following compiler options: precision_mode: Specifies the precision of compiled artifacts. Supported values are "FP16" and "FP32". Default is "FP32". signature_def_key: Specifies the signature to use for models in SavedModel format. Defaults is TensorFlow's default signature def key. output_names: Specifies a list of output tensor names for models in FrozenGraph format. Set at most one API field, either: signature_def_key or output_names. For example: {"precision_mode": "FP32", "output_names": ["output:0"]}
17718
17732
  */
17719
17733
  CompilerOptions?: CompilerOptions;
17720
17734
  /**
@@ -17844,7 +17858,7 @@ declare namespace SageMaker {
17844
17858
  */
17845
17859
  CurrentWeight?: VariantWeight;
17846
17860
  /**
17847
- * The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
17861
+ * The requested weight for the variant in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
17848
17862
  */
17849
17863
  DesiredWeight?: VariantWeight;
17850
17864
  /**
@@ -17852,7 +17866,7 @@ declare namespace SageMaker {
17852
17866
  */
17853
17867
  CurrentInstanceCount?: TaskCount;
17854
17868
  /**
17855
- * The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
17869
+ * The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
17856
17870
  */
17857
17871
  DesiredInstanceCount?: TaskCount;
17858
17872
  /**
@@ -20108,11 +20122,11 @@ declare namespace SageMaker {
20108
20122
  export type ThingName = string;
20109
20123
  export interface TimeSeriesForecastingSettings {
20110
20124
  /**
20111
- * Describes whether time series forecasting is enabled or disabled in the Canvas app.
20125
+ * Describes whether time series forecasting is enabled or disabled in the Canvas application.
20112
20126
  */
20113
20127
  Status?: FeatureStatus;
20114
20128
  /**
20115
- * The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas app. If an execution role is not specified in the UserProfile, Canvas uses the execution role specified in the Domain that owns the UserProfile. To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
20129
+ * The IAM role that Canvas passes to Amazon Forecast for time series forecasting. By default, Canvas uses the execution role specified in the UserProfile that launches the Canvas application. If an execution role is not specified in the UserProfile, Canvas uses the execution role specified in the Domain that owns the UserProfile. To allow time series forecasting, this IAM role should have the AmazonSageMakerCanvasForecastAccess policy attached and forecast.amazonaws.com added in the trust relationship as a service principal.
20116
20130
  */
20117
20131
  AmazonForecastRoleArn?: RoleArn;
20118
20132
  }
@@ -21212,7 +21226,7 @@ declare namespace SageMaker {
21212
21226
  */
21213
21227
  RetainAllVariantProperties?: Boolean;
21214
21228
  /**
21215
- * When you are updating endpoint resources with UpdateEndpointInput$RetainAllVariantProperties, whose value is set to true, ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig. If you don't specify a value for ExcludeRetainedVariantProperties, no variant properties are overridden.
21229
+ * When you are updating endpoint resources with RetainAllVariantProperties, whose value is set to true, ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig. If you don't specify a value for ExcludeRetainedVariantProperties, no variant properties are overridden.
21216
21230
  */
21217
21231
  ExcludeRetainedVariantProperties?: VariantPropertyList;
21218
21232
  /**
@@ -21834,7 +21848,7 @@ declare namespace SageMaker {
21834
21848
  }
21835
21849
  export interface UpdateWorkforceRequest {
21836
21850
  /**
21837
- * The name of the private workforce that you want to update. You can find your workforce name by using the operation.
21851
+ * The name of the private workforce that you want to update. You can find your workforce name by using the ListWorkforces operation.
21838
21852
  */
21839
21853
  WorkforceName: WorkforceName;
21840
21854
  /**
@@ -21932,7 +21946,7 @@ declare namespace SageMaker {
21932
21946
  */
21933
21947
  ExecutionRole?: RoleArn;
21934
21948
  /**
21935
- * The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly. Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
21949
+ * The security groups for the Amazon Virtual Private Cloud (VPC) that Studio uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
21936
21950
  */
21937
21951
  SecurityGroups?: SecurityGroupIds;
21938
21952
  /**
@@ -21969,7 +21983,7 @@ declare namespace SageMaker {
21969
21983
  export type VariantName = string;
21970
21984
  export interface VariantProperty {
21971
21985
  /**
21972
- * The type of variant property. The supported values are: DesiredInstanceCount: Overrides the existing variant instance counts using the ProductionVariant$InitialInstanceCount values in the CreateEndpointConfigInput$ProductionVariants. DesiredWeight: Overrides the existing variant weights using the ProductionVariant$InitialVariantWeight values in the CreateEndpointConfigInput$ProductionVariants. DataCaptureConfig: (Not currently supported.)
21986
+ * The type of variant property. The supported values are: DesiredInstanceCount: Overrides the existing variant instance counts using the InitialInstanceCount values in the ProductionVariants of CreateEndpointConfig. DesiredWeight: Overrides the existing variant weights using the InitialVariantWeight values in the ProductionVariants of CreateEndpointConfig. DataCaptureConfig: (Not currently supported.)
21973
21987
  */
21974
21988
  VariantPropertyType: VariantPropertyType;
21975
21989
  }
@@ -22035,7 +22049,7 @@ declare namespace SageMaker {
22035
22049
  */
22036
22050
  WorkforceArn: WorkforceArn;
22037
22051
  /**
22038
- * The most recent date that was used to successfully add one or more IP address ranges (CIDRs) to a private workforce's allow list.
22052
+ * The most recent date that UpdateWorkforce was used to successfully add one or more IP address ranges (CIDRs) to a private workforce's allow list.
22039
22053
  */
22040
22054
  LastUpdatedDate?: Timestamp;
22041
22055
  /**
@@ -180,11 +180,11 @@ declare class SecretsManager extends Service {
180
180
  */
181
181
  updateSecretVersionStage(callback?: (err: AWSError, data: SecretsManager.Types.UpdateSecretVersionStageResponse) => void): Request<SecretsManager.Types.UpdateSecretVersionStageResponse, AWSError>;
182
182
  /**
183
- * Validates that a resource policy does not grant a wide range of principals access to your secret. A resource-based policy is optional for secrets. The API performs three checks when validating the policy: Sends a call to Zelkova, an automated reasoning engine, to ensure your resource policy does not allow broad access to your secret, for example policies that use a wildcard for the principal. Checks for correct syntax in a policy. Verifies the policy does not lock out a caller. Secrets Manager generates a CloudTrail log entry when you call this action. Do not include sensitive information in request parameters because it might be logged. For more information, see Logging Secrets Manager events with CloudTrail. Required permissions: secretsmanager:ValidateResourcePolicy. For more information, see IAM policy actions for Secrets Manager and Authentication and access control in Secrets Manager.
183
+ * Validates that a resource policy does not grant a wide range of principals access to your secret. A resource-based policy is optional for secrets. The API performs three checks when validating the policy: Sends a call to Zelkova, an automated reasoning engine, to ensure your resource policy does not allow broad access to your secret, for example policies that use a wildcard for the principal. Checks for correct syntax in a policy. Verifies the policy does not lock out a caller. Secrets Manager generates a CloudTrail log entry when you call this action. Do not include sensitive information in request parameters because it might be logged. For more information, see Logging Secrets Manager events with CloudTrail. Required permissions: secretsmanager:ValidateResourcePolicy and secretsmanager:PutResourcePolicy. For more information, see IAM policy actions for Secrets Manager and Authentication and access control in Secrets Manager.
184
184
  */
185
185
  validateResourcePolicy(params: SecretsManager.Types.ValidateResourcePolicyRequest, callback?: (err: AWSError, data: SecretsManager.Types.ValidateResourcePolicyResponse) => void): Request<SecretsManager.Types.ValidateResourcePolicyResponse, AWSError>;
186
186
  /**
187
- * Validates that a resource policy does not grant a wide range of principals access to your secret. A resource-based policy is optional for secrets. The API performs three checks when validating the policy: Sends a call to Zelkova, an automated reasoning engine, to ensure your resource policy does not allow broad access to your secret, for example policies that use a wildcard for the principal. Checks for correct syntax in a policy. Verifies the policy does not lock out a caller. Secrets Manager generates a CloudTrail log entry when you call this action. Do not include sensitive information in request parameters because it might be logged. For more information, see Logging Secrets Manager events with CloudTrail. Required permissions: secretsmanager:ValidateResourcePolicy. For more information, see IAM policy actions for Secrets Manager and Authentication and access control in Secrets Manager.
187
+ * Validates that a resource policy does not grant a wide range of principals access to your secret. A resource-based policy is optional for secrets. The API performs three checks when validating the policy: Sends a call to Zelkova, an automated reasoning engine, to ensure your resource policy does not allow broad access to your secret, for example policies that use a wildcard for the principal. Checks for correct syntax in a policy. Verifies the policy does not lock out a caller. Secrets Manager generates a CloudTrail log entry when you call this action. Do not include sensitive information in request parameters because it might be logged. For more information, see Logging Secrets Manager events with CloudTrail. Required permissions: secretsmanager:ValidateResourcePolicy and secretsmanager:PutResourcePolicy. For more information, see IAM policy actions for Secrets Manager and Authentication and access control in Secrets Manager.
188
188
  */
189
189
  validateResourcePolicy(callback?: (err: AWSError, data: SecretsManager.Types.ValidateResourcePolicyResponse) => void): Request<SecretsManager.Types.ValidateResourcePolicyResponse, AWSError>;
190
190
  }
@@ -247,7 +247,7 @@ declare namespace SecretsManager {
247
247
  */
248
248
  AddReplicaRegions?: AddReplicaRegionListType;
249
249
  /**
250
- * Specifies whether to overwrite a secret with the same name in the destination Region.
250
+ * Specifies whether to overwrite a secret with the same name in the destination Region. By default, secrets aren't overwritten.
251
251
  */
252
252
  ForceOverwriteReplicaSecret?: BooleanType;
253
253
  }
@@ -292,11 +292,11 @@ declare namespace SecretsManager {
292
292
  */
293
293
  SecretId: SecretIdType;
294
294
  /**
295
- * The number of days from 7 to 30 that Secrets Manager waits before permanently deleting the secret. You can't use both this parameter and ForceDeleteWithoutRecovery in the same call. If you don't use either, then Secrets Manager defaults to a 30 day recovery window.
295
+ * The number of days from 7 to 30 that Secrets Manager waits before permanently deleting the secret. You can't use both this parameter and ForceDeleteWithoutRecovery in the same call. If you don't use either, then by default Secrets Manager uses a 30 day recovery window.
296
296
  */
297
297
  RecoveryWindowInDays?: RecoveryWindowInDaysType;
298
298
  /**
299
- * Specifies whether to delete the secret without any recovery window. You can't use both this parameter and RecoveryWindowInDays in the same call. If you don't use either, then Secrets Manager defaults to a 30 day recovery window. Secrets Manager performs the actual deletion with an asynchronous background process, so there might be a short delay before the secret is permanently deleted. If you delete a secret and then immediately create a secret with the same name, use appropriate back off and retry logic. Use this parameter with caution. This parameter causes the operation to skip the normal recovery window before the permanent deletion that Secrets Manager would normally impose with the RecoveryWindowInDays parameter. If you delete a secret with the ForceDeleteWithoutRecovery parameter, then you have no opportunity to recover the secret. You lose the secret permanently.
299
+ * Specifies whether to delete the secret without any recovery window. You can't use both this parameter and RecoveryWindowInDays in the same call. If you don't use either, then by default Secrets Manager uses a 30 day recovery window. Secrets Manager performs the actual deletion with an asynchronous background process, so there might be a short delay before the secret is permanently deleted. If you delete a secret and then immediately create a secret with the same name, use appropriate back off and retry logic. Use this parameter with caution. This parameter causes the operation to skip the normal recovery window before the permanent deletion that Secrets Manager would normally impose with the RecoveryWindowInDays parameter. If you delete a secret with the ForceDeleteWithoutRecovery parameter, then you have no opportunity to recover the secret. You lose the secret permanently.
300
300
  */
301
301
  ForceDeleteWithoutRecovery?: BooleanType;
302
302
  }
@@ -542,7 +542,7 @@ declare namespace SecretsManager {
542
542
  */
543
543
  NextToken?: NextTokenType;
544
544
  /**
545
- * Specifies whether to include versions of secrets that don't have any staging labels attached to them. Versions without staging labels are considered deprecated and are subject to deletion by Secrets Manager.
545
+ * Specifies whether to include versions of secrets that don't have any staging labels attached to them. Versions without staging labels are considered deprecated and are subject to deletion by Secrets Manager. By default, versions without staging labels aren't included.
546
546
  */
547
547
  IncludeDeprecated?: BooleanType;
548
548
  }
@@ -566,7 +566,7 @@ declare namespace SecretsManager {
566
566
  }
567
567
  export interface ListSecretsRequest {
568
568
  /**
569
- * Specifies whether to include secrets scheduled for deletion.
569
+ * Specifies whether to include secrets scheduled for deletion. By default, secrets scheduled for deletion aren't included.
570
570
  */
571
571
  IncludePlannedDeletion?: BooleanType;
572
572
  /**
@@ -613,7 +613,7 @@ declare namespace SecretsManager {
613
613
  */
614
614
  ResourcePolicy: NonEmptyResourcePolicyType;
615
615
  /**
616
- * Specifies whether to block resource-based policies that allow broad access to the secret, for example those that use a wildcard for the principal.
616
+ * Specifies whether to block resource-based policies that allow broad access to the secret, for example those that use a wildcard for the principal. By default, public policies aren't blocked.
617
617
  */
618
618
  BlockPublicPolicy?: BooleanType;
619
619
  }
@@ -711,7 +711,7 @@ declare namespace SecretsManager {
711
711
  */
712
712
  AddReplicaRegions: AddReplicaRegionListType;
713
713
  /**
714
- * Specifies whether to overwrite a secret with the same name in the destination Region.
714
+ * Specifies whether to overwrite a secret with the same name in the destination Region. By default, secrets aren't overwritten.
715
715
  */
716
716
  ForceOverwriteReplicaSecret?: BooleanType;
717
717
  }
@@ -783,7 +783,7 @@ declare namespace SecretsManager {
783
783
  */
784
784
  RotationRules?: RotationRulesType;
785
785
  /**
786
- * Specifies whether to rotate the secret immediately or wait until the next scheduled rotation window. The rotation schedule is defined in RotateSecretRequest$RotationRules. For secrets that use a Lambda rotation function to rotate, if you don't immediately rotate the secret, Secrets Manager tests the rotation configuration by running the testSecret step of the Lambda rotation function. The test creates an AWSPENDING version of the secret and then removes it. If you don't specify this value, then by default, Secrets Manager rotates the secret immediately.
786
+ * Specifies whether to rotate the secret immediately or wait until the next scheduled rotation window. The rotation schedule is defined in RotateSecretRequest$RotationRules. For secrets that use a Lambda rotation function to rotate, if you don't immediately rotate the secret, Secrets Manager tests the rotation configuration by running the testSecret step of the Lambda rotation function. The test creates an AWSPENDING version of the secret and then removes it. By default, Secrets Manager rotates the secret immediately.
787
787
  */
788
788
  RotateImmediately?: BooleanType;
789
789
  }