cdk-comprehend-s3olap 2.0.115 → 2.0.117

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. package/.jsii +4 -4
  2. package/lib/cdk-comprehend-s3olap.js +2 -2
  3. package/lib/comprehend-lambdas.js +2 -2
  4. package/lib/iam-roles.js +4 -4
  5. package/node_modules/aws-sdk/CHANGELOG.md +17 -1
  6. package/node_modules/aws-sdk/README.md +1 -1
  7. package/node_modules/aws-sdk/apis/amplifyuibuilder-2021-08-11.min.json +563 -490
  8. package/node_modules/aws-sdk/apis/amplifyuibuilder-2021-08-11.waiters2.json +5 -0
  9. package/node_modules/aws-sdk/apis/ivs-realtime-2020-07-14.min.json +6 -2
  10. package/node_modules/aws-sdk/apis/runtime.sagemaker-2017-05-13.min.json +4 -0
  11. package/node_modules/aws-sdk/apis/sagemaker-2017-07-24.min.json +657 -655
  12. package/node_modules/aws-sdk/apis/wafv2-2019-07-29.min.json +28 -55
  13. package/node_modules/aws-sdk/clients/amplifyuibuilder.d.ts +451 -350
  14. package/node_modules/aws-sdk/clients/amplifyuibuilder.js +1 -0
  15. package/node_modules/aws-sdk/clients/autoscaling.d.ts +18 -18
  16. package/node_modules/aws-sdk/clients/configservice.d.ts +2 -2
  17. package/node_modules/aws-sdk/clients/ec2.d.ts +1 -1
  18. package/node_modules/aws-sdk/clients/ecs.d.ts +10 -10
  19. package/node_modules/aws-sdk/clients/elasticinference.d.ts +12 -12
  20. package/node_modules/aws-sdk/clients/identitystore.d.ts +27 -27
  21. package/node_modules/aws-sdk/clients/networkfirewall.d.ts +1 -1
  22. package/node_modules/aws-sdk/clients/sagemaker.d.ts +30 -20
  23. package/node_modules/aws-sdk/clients/sagemakerruntime.d.ts +4 -0
  24. package/node_modules/aws-sdk/clients/servicecatalog.d.ts +2 -2
  25. package/node_modules/aws-sdk/clients/vpclattice.d.ts +18 -18
  26. package/node_modules/aws-sdk/clients/wafv2.d.ts +62 -89
  27. package/node_modules/aws-sdk/dist/aws-sdk-core-react-native.js +1 -1
  28. package/node_modules/aws-sdk/dist/aws-sdk-react-native.js +294 -287
  29. package/node_modules/aws-sdk/dist/aws-sdk.js +3 -3
  30. package/node_modules/aws-sdk/dist/aws-sdk.min.js +2 -2
  31. package/node_modules/aws-sdk/lib/core.js +1 -1
  32. package/node_modules/aws-sdk/package.json +1 -1
  33. package/package.json +5 -5
@@ -9,6 +9,7 @@ Object.defineProperty(apiLoader.services['amplifyuibuilder'], '2021-08-11', {
9
9
  get: function get() {
10
10
  var model = require('../apis/amplifyuibuilder-2021-08-11.min.json');
11
11
  model.paginators = require('../apis/amplifyuibuilder-2021-08-11.paginators.json').pagination;
12
+ model.waiters = require('../apis/amplifyuibuilder-2021-08-11.waiters2.json').waiters;
12
13
  return model;
13
14
  },
14
15
  enumerable: true,
@@ -20,27 +20,27 @@ declare class AutoScaling extends Service {
20
20
  */
21
21
  attachInstances(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
22
22
  /**
23
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancerTargetGroups, and you can use both the original AttachLoadBalancerTargetGroups API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
23
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancerTargetGroups. You can use both the original AttachLoadBalancerTargetGroups API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
24
24
  */
25
25
  attachLoadBalancerTargetGroups(params: AutoScaling.Types.AttachLoadBalancerTargetGroupsType, callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType, AWSError>;
26
26
  /**
27
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancerTargetGroups, and you can use both the original AttachLoadBalancerTargetGroups API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
27
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancerTargetGroups. You can use both the original AttachLoadBalancerTargetGroups API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
28
28
  */
29
29
  attachLoadBalancerTargetGroups(callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType, AWSError>;
30
30
  /**
31
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancers, and you can use both the original AttachLoadBalancers API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
31
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancers. You can use both the original AttachLoadBalancers API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
32
32
  */
33
33
  attachLoadBalancers(params: AutoScaling.Types.AttachLoadBalancersType, callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancersResultType) => void): Request<AutoScaling.Types.AttachLoadBalancersResultType, AWSError>;
34
34
  /**
35
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancers, and you can use both the original AttachLoadBalancers API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
35
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancers. You can use both the original AttachLoadBalancers API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
36
36
  */
37
37
  attachLoadBalancers(callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancersResultType) => void): Request<AutoScaling.Types.AttachLoadBalancersResultType, AWSError>;
38
38
  /**
39
- * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Network Load Balancer Gateway Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
39
+ * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Gateway Load Balancer Network Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
40
40
  */
41
41
  attachTrafficSources(params: AutoScaling.Types.AttachTrafficSourcesType, callback?: (err: AWSError, data: AutoScaling.Types.AttachTrafficSourcesResultType) => void): Request<AutoScaling.Types.AttachTrafficSourcesResultType, AWSError>;
42
42
  /**
43
- * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Network Load Balancer Gateway Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
43
+ * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Gateway Load Balancer Network Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
44
44
  */
45
45
  attachTrafficSources(callback?: (err: AWSError, data: AutoScaling.Types.AttachTrafficSourcesResultType) => void): Request<AutoScaling.Types.AttachTrafficSourcesResultType, AWSError>;
46
46
  /**
@@ -220,19 +220,19 @@ declare class AutoScaling extends Service {
220
220
  */
221
221
  describeLifecycleHooks(callback?: (err: AWSError, data: AutoScaling.Types.DescribeLifecycleHooksAnswer) => void): Request<AutoScaling.Types.DescribeLifecycleHooksAnswer, AWSError>;
222
222
  /**
223
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancerTargetGroups, and you can use both the original DescribeLoadBalancerTargetGroups API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
223
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancerTargetGroups. You can use both the original DescribeLoadBalancerTargetGroups API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
224
224
  */
225
225
  describeLoadBalancerTargetGroups(params: AutoScaling.Types.DescribeLoadBalancerTargetGroupsRequest, callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse, AWSError>;
226
226
  /**
227
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancerTargetGroups, and you can use both the original DescribeLoadBalancerTargetGroups API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
227
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancerTargetGroups. You can use both the original DescribeLoadBalancerTargetGroups API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
228
228
  */
229
229
  describeLoadBalancerTargetGroups(callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse, AWSError>;
230
230
  /**
231
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancers, and you can use both the original DescribeLoadBalancers API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
231
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DescribeTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancers. You can use both the original DescribeLoadBalancers API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
232
232
  */
233
233
  describeLoadBalancers(params: AutoScaling.Types.DescribeLoadBalancersRequest, callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancersResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancersResponse, AWSError>;
234
234
  /**
235
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancers, and you can use both the original DescribeLoadBalancers API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
235
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DescribeTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancers. You can use both the original DescribeLoadBalancers API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
236
236
  */
237
237
  describeLoadBalancers(callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancersResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancersResponse, AWSError>;
238
238
  /**
@@ -312,19 +312,19 @@ declare class AutoScaling extends Service {
312
312
  */
313
313
  detachInstances(callback?: (err: AWSError, data: AutoScaling.Types.DetachInstancesAnswer) => void): Request<AutoScaling.Types.DetachInstancesAnswer, AWSError>;
314
314
  /**
315
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancerTargetGroups, and you can use both the original DetachLoadBalancerTargetGroups API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
315
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancerTargetGroups. You can use both the original DetachLoadBalancerTargetGroups API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
316
316
  */
317
317
  detachLoadBalancerTargetGroups(params: AutoScaling.Types.DetachLoadBalancerTargetGroupsType, callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType, AWSError>;
318
318
  /**
319
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancerTargetGroups, and you can use both the original DetachLoadBalancerTargetGroups API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
319
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancerTargetGroups. You can use both the original DetachLoadBalancerTargetGroups API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
320
320
  */
321
321
  detachLoadBalancerTargetGroups(callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType, AWSError>;
322
322
  /**
323
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancers, and you can use both the original DetachLoadBalancers API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
323
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancers. You can use both the original DetachLoadBalancers API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
324
324
  */
325
325
  detachLoadBalancers(params: AutoScaling.Types.DetachLoadBalancersType, callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancersResultType) => void): Request<AutoScaling.Types.DetachLoadBalancersResultType, AWSError>;
326
326
  /**
327
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancers, and you can use both the original DetachLoadBalancers API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
327
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancers. You can use both the original DetachLoadBalancers API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
328
328
  */
329
329
  detachLoadBalancers(callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancersResultType) => void): Request<AutoScaling.Types.DetachLoadBalancersResultType, AWSError>;
330
330
  /**
@@ -722,7 +722,7 @@ declare namespace AutoScaling {
722
722
  */
723
723
  TargetGroupARNs?: TargetGroupARNs;
724
724
  /**
725
- * A comma-separated list of one or more health check types.
725
+ * A comma-separated value string of one or more health check types.
726
726
  */
727
727
  HealthCheckType: XmlStringMaxLen32;
728
728
  /**
@@ -1069,7 +1069,7 @@ declare namespace AutoScaling {
1069
1069
  */
1070
1070
  TargetGroupARNs?: TargetGroupARNs;
1071
1071
  /**
1072
- * A comma-separated list of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide.
1072
+ * A comma-separated value string of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide. Only specify EC2 if you must clear a value that was previously set.
1073
1073
  */
1074
1074
  HealthCheckType?: XmlStringMaxLen32;
1075
1075
  /**
@@ -1694,7 +1694,7 @@ declare namespace AutoScaling {
1694
1694
  */
1695
1695
  AutoScalingGroupName: XmlStringMaxLen255;
1696
1696
  /**
1697
- * The unique identifiers of one or more traffic sources you are detaching. You can specify up to 10 traffic sources.
1697
+ * The unique identifiers of one or more traffic sources. You can specify up to 10 traffic sources.
1698
1698
  */
1699
1699
  TrafficSources: TrafficSources;
1700
1700
  }
@@ -3515,7 +3515,7 @@ declare namespace AutoScaling {
3515
3515
  */
3516
3516
  AvailabilityZones?: AvailabilityZones;
3517
3517
  /**
3518
- * A comma-separated list of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide.
3518
+ * A comma-separated value string of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide. Only specify EC2 if you must clear a value that was previously set.
3519
3519
  */
3520
3520
  HealthCheckType?: XmlStringMaxLen32;
3521
3521
  /**
@@ -4089,7 +4089,7 @@ declare namespace ConfigService {
4089
4089
  */
4090
4090
  TargetType: RemediationTargetType;
4091
4091
  /**
4092
- * Target ID is the name of the public document.
4092
+ * Target ID is the name of the SSM document.
4093
4093
  */
4094
4094
  TargetId: StringWithCharLimit256;
4095
4095
  /**
@@ -4352,7 +4352,7 @@ declare namespace ConfigService {
4352
4352
  }
4353
4353
  export type ResourceKeys = ResourceKey[];
4354
4354
  export type ResourceName = string;
4355
- export type ResourceType = "AWS::EC2::CustomerGateway"|"AWS::EC2::EIP"|"AWS::EC2::Host"|"AWS::EC2::Instance"|"AWS::EC2::InternetGateway"|"AWS::EC2::NetworkAcl"|"AWS::EC2::NetworkInterface"|"AWS::EC2::RouteTable"|"AWS::EC2::SecurityGroup"|"AWS::EC2::Subnet"|"AWS::CloudTrail::Trail"|"AWS::EC2::Volume"|"AWS::EC2::VPC"|"AWS::EC2::VPNConnection"|"AWS::EC2::VPNGateway"|"AWS::EC2::RegisteredHAInstance"|"AWS::EC2::NatGateway"|"AWS::EC2::EgressOnlyInternetGateway"|"AWS::EC2::VPCEndpoint"|"AWS::EC2::VPCEndpointService"|"AWS::EC2::FlowLog"|"AWS::EC2::VPCPeeringConnection"|"AWS::Elasticsearch::Domain"|"AWS::IAM::Group"|"AWS::IAM::Policy"|"AWS::IAM::Role"|"AWS::IAM::User"|"AWS::ElasticLoadBalancingV2::LoadBalancer"|"AWS::ACM::Certificate"|"AWS::RDS::DBInstance"|"AWS::RDS::DBSubnetGroup"|"AWS::RDS::DBSecurityGroup"|"AWS::RDS::DBSnapshot"|"AWS::RDS::DBCluster"|"AWS::RDS::DBClusterSnapshot"|"AWS::RDS::EventSubscription"|"AWS::S3::Bucket"|"AWS::S3::AccountPublicAccessBlock"|"AWS::Redshift::Cluster"|"AWS::Redshift::ClusterSnapshot"|"AWS::Redshift::ClusterParameterGroup"|"AWS::Redshift::ClusterSecurityGroup"|"AWS::Redshift::ClusterSubnetGroup"|"AWS::Redshift::EventSubscription"|"AWS::SSM::ManagedInstanceInventory"|"AWS::CloudWatch::Alarm"|"AWS::CloudFormation::Stack"|"AWS::ElasticLoadBalancing::LoadBalancer"|"AWS::AutoScaling::AutoScalingGroup"|"AWS::AutoScaling::LaunchConfiguration"|"AWS::AutoScaling::ScalingPolicy"|"AWS::AutoScaling::ScheduledAction"|"AWS::DynamoDB::Table"|"AWS::CodeBuild::Project"|"AWS::WAF::RateBasedRule"|"AWS::WAF::Rule"|"AWS::WAF::RuleGroup"|"AWS::WAF::WebACL"|"AWS::WAFRegional::RateBasedRule"|"AWS::WAFRegional::Rule"|"AWS::WAFRegional::RuleGroup"|"AWS::WAFRegional::WebACL"|"AWS::CloudFront::Distribution"|"AWS::CloudFront::StreamingDistribution"|"AWS::Lambda::Function"|"AWS::NetworkFirewall::Firewall"|"AWS::NetworkFirewall::FirewallPolicy"|"AWS::NetworkFirewall::RuleGroup"|"AWS::ElasticBeanstalk::Application"|"AWS::ElasticBeanstalk::ApplicationVersion"|"AWS::ElasticBeanstalk::Environment"|"AWS::WAFv2::WebACL"|"AWS::WAFv2::RuleGroup"|"AWS::WAFv2::IPSet"|"AWS::WAFv2::RegexPatternSet"|"AWS::WAFv2::ManagedRuleSet"|"AWS::XRay::EncryptionConfig"|"AWS::SSM::AssociationCompliance"|"AWS::SSM::PatchCompliance"|"AWS::Shield::Protection"|"AWS::ShieldRegional::Protection"|"AWS::Config::ConformancePackCompliance"|"AWS::Config::ResourceCompliance"|"AWS::ApiGateway::Stage"|"AWS::ApiGateway::RestApi"|"AWS::ApiGatewayV2::Stage"|"AWS::ApiGatewayV2::Api"|"AWS::CodePipeline::Pipeline"|"AWS::ServiceCatalog::CloudFormationProvisionedProduct"|"AWS::ServiceCatalog::CloudFormationProduct"|"AWS::ServiceCatalog::Portfolio"|"AWS::SQS::Queue"|"AWS::KMS::Key"|"AWS::QLDB::Ledger"|"AWS::SecretsManager::Secret"|"AWS::SNS::Topic"|"AWS::SSM::FileData"|"AWS::Backup::BackupPlan"|"AWS::Backup::BackupSelection"|"AWS::Backup::BackupVault"|"AWS::Backup::RecoveryPoint"|"AWS::ECR::Repository"|"AWS::ECS::Cluster"|"AWS::ECS::Service"|"AWS::ECS::TaskDefinition"|"AWS::EFS::AccessPoint"|"AWS::EFS::FileSystem"|"AWS::EKS::Cluster"|"AWS::OpenSearch::Domain"|"AWS::EC2::TransitGateway"|"AWS::Kinesis::Stream"|"AWS::Kinesis::StreamConsumer"|"AWS::CodeDeploy::Application"|"AWS::CodeDeploy::DeploymentConfig"|"AWS::CodeDeploy::DeploymentGroup"|"AWS::EC2::LaunchTemplate"|"AWS::ECR::PublicRepository"|"AWS::GuardDuty::Detector"|"AWS::EMR::SecurityConfiguration"|"AWS::SageMaker::CodeRepository"|"AWS::Route53Resolver::ResolverEndpoint"|"AWS::Route53Resolver::ResolverRule"|"AWS::Route53Resolver::ResolverRuleAssociation"|"AWS::DMS::ReplicationSubnetGroup"|"AWS::DMS::EventSubscription"|"AWS::MSK::Cluster"|"AWS::StepFunctions::Activity"|"AWS::WorkSpaces::Workspace"|"AWS::WorkSpaces::ConnectionAlias"|"AWS::SageMaker::Model"|"AWS::ElasticLoadBalancingV2::Listener"|"AWS::StepFunctions::StateMachine"|"AWS::Batch::JobQueue"|"AWS::Batch::ComputeEnvironment"|"AWS::AccessAnalyzer::Analyzer"|"AWS::Athena::WorkGroup"|"AWS::Athena::DataCatalog"|"AWS::Detective::Graph"|"AWS::GlobalAccelerator::Accelerator"|"AWS::GlobalAccelerator::EndpointGroup"|"AWS::GlobalAccelerator::Listener"|"AWS::EC2::TransitGatewayAttachment"|"AWS::EC2::TransitGatewayRouteTable"|"AWS::DMS::Certificate"|"AWS::AppConfig::Application"|"AWS::AppSync::GraphQLApi"|"AWS::DataSync::LocationSMB"|"AWS::DataSync::LocationFSxLustre"|"AWS::DataSync::LocationS3"|"AWS::DataSync::LocationEFS"|"AWS::DataSync::Task"|"AWS::DataSync::LocationNFS"|"AWS::EC2::NetworkInsightsAccessScopeAnalysis"|"AWS::EKS::FargateProfile"|"AWS::Glue::Job"|"AWS::GuardDuty::ThreatIntelSet"|"AWS::GuardDuty::IPSet"|"AWS::SageMaker::Workteam"|"AWS::SageMaker::NotebookInstanceLifecycleConfig"|"AWS::ServiceDiscovery::Service"|"AWS::ServiceDiscovery::PublicDnsNamespace"|"AWS::SES::ContactList"|"AWS::SES::ConfigurationSet"|"AWS::Route53::HostedZone"|"AWS::IoTEvents::Input"|"AWS::IoTEvents::DetectorModel"|"AWS::IoTEvents::AlarmModel"|"AWS::ServiceDiscovery::HttpNamespace"|"AWS::Events::EventBus"|"AWS::ImageBuilder::ContainerRecipe"|"AWS::ImageBuilder::DistributionConfiguration"|"AWS::ImageBuilder::InfrastructureConfiguration"|"AWS::DataSync::LocationObjectStorage"|"AWS::DataSync::LocationHDFS"|"AWS::Glue::Classifier"|"AWS::Route53RecoveryReadiness::Cell"|"AWS::Route53RecoveryReadiness::ReadinessCheck"|"AWS::ECR::RegistryPolicy"|"AWS::Backup::ReportPlan"|"AWS::Lightsail::Certificate"|"AWS::RUM::AppMonitor"|"AWS::Events::Endpoint"|"AWS::SES::ReceiptRuleSet"|"AWS::Events::Archive"|"AWS::Events::ApiDestination"|"AWS::Lightsail::Disk"|"AWS::FIS::ExperimentTemplate"|"AWS::DataSync::LocationFSxWindows"|"AWS::SES::ReceiptFilter"|"AWS::GuardDuty::Filter"|"AWS::SES::Template"|"AWS::AmazonMQ::Broker"|"AWS::AppConfig::Environment"|"AWS::AppConfig::ConfigurationProfile"|"AWS::Cloud9::EnvironmentEC2"|"AWS::EventSchemas::Registry"|"AWS::EventSchemas::RegistryPolicy"|"AWS::EventSchemas::Discoverer"|"AWS::FraudDetector::Label"|"AWS::FraudDetector::EntityType"|"AWS::FraudDetector::Variable"|"AWS::FraudDetector::Outcome"|"AWS::IoT::Authorizer"|"AWS::IoT::SecurityProfile"|"AWS::IoT::RoleAlias"|"AWS::IoT::Dimension"|"AWS::IoTAnalytics::Datastore"|"AWS::Lightsail::Bucket"|"AWS::Lightsail::StaticIp"|"AWS::MediaPackage::PackagingGroup"|"AWS::Route53RecoveryReadiness::RecoveryGroup"|"AWS::ResilienceHub::ResiliencyPolicy"|"AWS::Transfer::Workflow"|"AWS::EKS::IdentityProviderConfig"|"AWS::EKS::Addon"|"AWS::Glue::MLTransform"|"AWS::IoT::Policy"|"AWS::IoT::MitigationAction"|"AWS::IoTTwinMaker::Workspace"|"AWS::IoTTwinMaker::Entity"|"AWS::IoTAnalytics::Dataset"|"AWS::IoTAnalytics::Pipeline"|"AWS::IoTAnalytics::Channel"|"AWS::IoTSiteWise::Dashboard"|"AWS::IoTSiteWise::Project"|"AWS::IoTSiteWise::Portal"|"AWS::IoTSiteWise::AssetModel"|"AWS::IVS::Channel"|"AWS::IVS::RecordingConfiguration"|"AWS::IVS::PlaybackKeyPair"|"AWS::KinesisAnalyticsV2::Application"|"AWS::RDS::GlobalCluster"|"AWS::S3::MultiRegionAccessPoint"|"AWS::DeviceFarm::TestGridProject"|"AWS::Budgets::BudgetsAction"|"AWS::Lex::Bot"|"AWS::CodeGuruReviewer::RepositoryAssociation"|"AWS::IoT::CustomMetric"|"AWS::Route53Resolver::FirewallDomainList"|"AWS::RoboMaker::RobotApplicationVersion"|"AWS::EC2::TrafficMirrorSession"|"AWS::IoTSiteWise::Gateway"|"AWS::Lex::BotAlias"|"AWS::LookoutMetrics::Alert"|"AWS::IoT::AccountAuditConfiguration"|"AWS::EC2::TrafficMirrorTarget"|"AWS::S3::StorageLens"|"AWS::IoT::ScheduledAudit"|"AWS::Events::Connection"|"AWS::EventSchemas::Schema"|"AWS::MediaPackage::PackagingConfiguration"|string;
4355
+ export type ResourceType = "AWS::EC2::CustomerGateway"|"AWS::EC2::EIP"|"AWS::EC2::Host"|"AWS::EC2::Instance"|"AWS::EC2::InternetGateway"|"AWS::EC2::NetworkAcl"|"AWS::EC2::NetworkInterface"|"AWS::EC2::RouteTable"|"AWS::EC2::SecurityGroup"|"AWS::EC2::Subnet"|"AWS::CloudTrail::Trail"|"AWS::EC2::Volume"|"AWS::EC2::VPC"|"AWS::EC2::VPNConnection"|"AWS::EC2::VPNGateway"|"AWS::EC2::RegisteredHAInstance"|"AWS::EC2::NatGateway"|"AWS::EC2::EgressOnlyInternetGateway"|"AWS::EC2::VPCEndpoint"|"AWS::EC2::VPCEndpointService"|"AWS::EC2::FlowLog"|"AWS::EC2::VPCPeeringConnection"|"AWS::Elasticsearch::Domain"|"AWS::IAM::Group"|"AWS::IAM::Policy"|"AWS::IAM::Role"|"AWS::IAM::User"|"AWS::ElasticLoadBalancingV2::LoadBalancer"|"AWS::ACM::Certificate"|"AWS::RDS::DBInstance"|"AWS::RDS::DBSubnetGroup"|"AWS::RDS::DBSecurityGroup"|"AWS::RDS::DBSnapshot"|"AWS::RDS::DBCluster"|"AWS::RDS::DBClusterSnapshot"|"AWS::RDS::EventSubscription"|"AWS::S3::Bucket"|"AWS::S3::AccountPublicAccessBlock"|"AWS::Redshift::Cluster"|"AWS::Redshift::ClusterSnapshot"|"AWS::Redshift::ClusterParameterGroup"|"AWS::Redshift::ClusterSecurityGroup"|"AWS::Redshift::ClusterSubnetGroup"|"AWS::Redshift::EventSubscription"|"AWS::SSM::ManagedInstanceInventory"|"AWS::CloudWatch::Alarm"|"AWS::CloudFormation::Stack"|"AWS::ElasticLoadBalancing::LoadBalancer"|"AWS::AutoScaling::AutoScalingGroup"|"AWS::AutoScaling::LaunchConfiguration"|"AWS::AutoScaling::ScalingPolicy"|"AWS::AutoScaling::ScheduledAction"|"AWS::DynamoDB::Table"|"AWS::CodeBuild::Project"|"AWS::WAF::RateBasedRule"|"AWS::WAF::Rule"|"AWS::WAF::RuleGroup"|"AWS::WAF::WebACL"|"AWS::WAFRegional::RateBasedRule"|"AWS::WAFRegional::Rule"|"AWS::WAFRegional::RuleGroup"|"AWS::WAFRegional::WebACL"|"AWS::CloudFront::Distribution"|"AWS::CloudFront::StreamingDistribution"|"AWS::Lambda::Function"|"AWS::NetworkFirewall::Firewall"|"AWS::NetworkFirewall::FirewallPolicy"|"AWS::NetworkFirewall::RuleGroup"|"AWS::ElasticBeanstalk::Application"|"AWS::ElasticBeanstalk::ApplicationVersion"|"AWS::ElasticBeanstalk::Environment"|"AWS::WAFv2::WebACL"|"AWS::WAFv2::RuleGroup"|"AWS::WAFv2::IPSet"|"AWS::WAFv2::RegexPatternSet"|"AWS::WAFv2::ManagedRuleSet"|"AWS::XRay::EncryptionConfig"|"AWS::SSM::AssociationCompliance"|"AWS::SSM::PatchCompliance"|"AWS::Shield::Protection"|"AWS::ShieldRegional::Protection"|"AWS::Config::ConformancePackCompliance"|"AWS::Config::ResourceCompliance"|"AWS::ApiGateway::Stage"|"AWS::ApiGateway::RestApi"|"AWS::ApiGatewayV2::Stage"|"AWS::ApiGatewayV2::Api"|"AWS::CodePipeline::Pipeline"|"AWS::ServiceCatalog::CloudFormationProvisionedProduct"|"AWS::ServiceCatalog::CloudFormationProduct"|"AWS::ServiceCatalog::Portfolio"|"AWS::SQS::Queue"|"AWS::KMS::Key"|"AWS::QLDB::Ledger"|"AWS::SecretsManager::Secret"|"AWS::SNS::Topic"|"AWS::SSM::FileData"|"AWS::Backup::BackupPlan"|"AWS::Backup::BackupSelection"|"AWS::Backup::BackupVault"|"AWS::Backup::RecoveryPoint"|"AWS::ECR::Repository"|"AWS::ECS::Cluster"|"AWS::ECS::Service"|"AWS::ECS::TaskDefinition"|"AWS::EFS::AccessPoint"|"AWS::EFS::FileSystem"|"AWS::EKS::Cluster"|"AWS::OpenSearch::Domain"|"AWS::EC2::TransitGateway"|"AWS::Kinesis::Stream"|"AWS::Kinesis::StreamConsumer"|"AWS::CodeDeploy::Application"|"AWS::CodeDeploy::DeploymentConfig"|"AWS::CodeDeploy::DeploymentGroup"|"AWS::EC2::LaunchTemplate"|"AWS::ECR::PublicRepository"|"AWS::GuardDuty::Detector"|"AWS::EMR::SecurityConfiguration"|"AWS::SageMaker::CodeRepository"|"AWS::Route53Resolver::ResolverEndpoint"|"AWS::Route53Resolver::ResolverRule"|"AWS::Route53Resolver::ResolverRuleAssociation"|"AWS::DMS::ReplicationSubnetGroup"|"AWS::DMS::EventSubscription"|"AWS::MSK::Cluster"|"AWS::StepFunctions::Activity"|"AWS::WorkSpaces::Workspace"|"AWS::WorkSpaces::ConnectionAlias"|"AWS::SageMaker::Model"|"AWS::ElasticLoadBalancingV2::Listener"|"AWS::StepFunctions::StateMachine"|"AWS::Batch::JobQueue"|"AWS::Batch::ComputeEnvironment"|"AWS::AccessAnalyzer::Analyzer"|"AWS::Athena::WorkGroup"|"AWS::Athena::DataCatalog"|"AWS::Detective::Graph"|"AWS::GlobalAccelerator::Accelerator"|"AWS::GlobalAccelerator::EndpointGroup"|"AWS::GlobalAccelerator::Listener"|"AWS::EC2::TransitGatewayAttachment"|"AWS::EC2::TransitGatewayRouteTable"|"AWS::DMS::Certificate"|"AWS::AppConfig::Application"|"AWS::AppSync::GraphQLApi"|"AWS::DataSync::LocationSMB"|"AWS::DataSync::LocationFSxLustre"|"AWS::DataSync::LocationS3"|"AWS::DataSync::LocationEFS"|"AWS::DataSync::Task"|"AWS::DataSync::LocationNFS"|"AWS::EC2::NetworkInsightsAccessScopeAnalysis"|"AWS::EKS::FargateProfile"|"AWS::Glue::Job"|"AWS::GuardDuty::ThreatIntelSet"|"AWS::GuardDuty::IPSet"|"AWS::SageMaker::Workteam"|"AWS::SageMaker::NotebookInstanceLifecycleConfig"|"AWS::ServiceDiscovery::Service"|"AWS::ServiceDiscovery::PublicDnsNamespace"|"AWS::SES::ContactList"|"AWS::SES::ConfigurationSet"|"AWS::Route53::HostedZone"|"AWS::IoTEvents::Input"|"AWS::IoTEvents::DetectorModel"|"AWS::IoTEvents::AlarmModel"|"AWS::ServiceDiscovery::HttpNamespace"|"AWS::Events::EventBus"|"AWS::ImageBuilder::ContainerRecipe"|"AWS::ImageBuilder::DistributionConfiguration"|"AWS::ImageBuilder::InfrastructureConfiguration"|"AWS::DataSync::LocationObjectStorage"|"AWS::DataSync::LocationHDFS"|"AWS::Glue::Classifier"|"AWS::Route53RecoveryReadiness::Cell"|"AWS::Route53RecoveryReadiness::ReadinessCheck"|"AWS::ECR::RegistryPolicy"|"AWS::Backup::ReportPlan"|"AWS::Lightsail::Certificate"|"AWS::RUM::AppMonitor"|"AWS::Events::Endpoint"|"AWS::SES::ReceiptRuleSet"|"AWS::Events::Archive"|"AWS::Events::ApiDestination"|"AWS::Lightsail::Disk"|"AWS::FIS::ExperimentTemplate"|"AWS::DataSync::LocationFSxWindows"|"AWS::SES::ReceiptFilter"|"AWS::GuardDuty::Filter"|"AWS::SES::Template"|"AWS::AmazonMQ::Broker"|"AWS::AppConfig::Environment"|"AWS::AppConfig::ConfigurationProfile"|"AWS::Cloud9::EnvironmentEC2"|"AWS::EventSchemas::Registry"|"AWS::EventSchemas::RegistryPolicy"|"AWS::EventSchemas::Discoverer"|"AWS::FraudDetector::Label"|"AWS::FraudDetector::EntityType"|"AWS::FraudDetector::Variable"|"AWS::FraudDetector::Outcome"|"AWS::IoT::Authorizer"|"AWS::IoT::SecurityProfile"|"AWS::IoT::RoleAlias"|"AWS::IoT::Dimension"|"AWS::IoTAnalytics::Datastore"|"AWS::Lightsail::Bucket"|"AWS::Lightsail::StaticIp"|"AWS::MediaPackage::PackagingGroup"|"AWS::Route53RecoveryReadiness::RecoveryGroup"|"AWS::ResilienceHub::ResiliencyPolicy"|"AWS::Transfer::Workflow"|"AWS::EKS::IdentityProviderConfig"|"AWS::EKS::Addon"|"AWS::Glue::MLTransform"|"AWS::IoT::Policy"|"AWS::IoT::MitigationAction"|"AWS::IoTTwinMaker::Workspace"|"AWS::IoTTwinMaker::Entity"|"AWS::IoTAnalytics::Dataset"|"AWS::IoTAnalytics::Pipeline"|"AWS::IoTAnalytics::Channel"|"AWS::IoTSiteWise::Dashboard"|"AWS::IoTSiteWise::Project"|"AWS::IoTSiteWise::Portal"|"AWS::IoTSiteWise::AssetModel"|"AWS::IVS::Channel"|"AWS::IVS::RecordingConfiguration"|"AWS::IVS::PlaybackKeyPair"|"AWS::KinesisAnalyticsV2::Application"|"AWS::RDS::GlobalCluster"|"AWS::S3::MultiRegionAccessPoint"|"AWS::DeviceFarm::TestGridProject"|"AWS::Budgets::BudgetsAction"|"AWS::Lex::Bot"|"AWS::CodeGuruReviewer::RepositoryAssociation"|"AWS::IoT::CustomMetric"|"AWS::Route53Resolver::FirewallDomainList"|"AWS::RoboMaker::RobotApplicationVersion"|"AWS::EC2::TrafficMirrorSession"|"AWS::IoTSiteWise::Gateway"|"AWS::Lex::BotAlias"|"AWS::LookoutMetrics::Alert"|"AWS::IoT::AccountAuditConfiguration"|"AWS::EC2::TrafficMirrorTarget"|"AWS::S3::StorageLens"|"AWS::IoT::ScheduledAudit"|"AWS::Events::Connection"|"AWS::EventSchemas::Schema"|"AWS::MediaPackage::PackagingConfiguration"|"AWS::KinesisVideo::SignalingChannel"|"AWS::AppStream::DirectoryConfig"|"AWS::LookoutVision::Project"|"AWS::Route53RecoveryControl::Cluster"|"AWS::Route53RecoveryControl::SafetyRule"|"AWS::Route53RecoveryControl::ControlPanel"|"AWS::Route53RecoveryControl::RoutingControl"|"AWS::Route53RecoveryReadiness::ResourceSet"|"AWS::RoboMaker::SimulationApplication"|"AWS::RoboMaker::RobotApplication"|"AWS::HealthLake::FHIRDatastore"|"AWS::Pinpoint::Segment"|"AWS::Pinpoint::ApplicationSettings"|"AWS::Events::Rule"|"AWS::EC2::DHCPOptions"|"AWS::EC2::NetworkInsightsPath"|"AWS::EC2::TrafficMirrorFilter"|"AWS::EC2::IPAM"|"AWS::IoTTwinMaker::Scene"|"AWS::NetworkManager::TransitGatewayRegistration"|"AWS::CustomerProfiles::Domain"|"AWS::AutoScaling::WarmPool"|"AWS::Connect::PhoneNumber"|string;
4356
4356
  export type ResourceTypeList = ResourceType[];
4357
4357
  export type ResourceTypeString = string;
4358
4358
  export type ResourceTypes = StringWithCharLimit256[];
@@ -23962,7 +23962,7 @@ declare namespace EC2 {
23962
23962
  */
23963
23963
  IncludeAllTagsOfInstance?: Boolean;
23964
23964
  }
23965
- export type InstanceType = "a1.medium"|"a1.large"|"a1.xlarge"|"a1.2xlarge"|"a1.4xlarge"|"a1.metal"|"c1.medium"|"c1.xlarge"|"c3.large"|"c3.xlarge"|"c3.2xlarge"|"c3.4xlarge"|"c3.8xlarge"|"c4.large"|"c4.xlarge"|"c4.2xlarge"|"c4.4xlarge"|"c4.8xlarge"|"c5.large"|"c5.xlarge"|"c5.2xlarge"|"c5.4xlarge"|"c5.9xlarge"|"c5.12xlarge"|"c5.18xlarge"|"c5.24xlarge"|"c5.metal"|"c5a.large"|"c5a.xlarge"|"c5a.2xlarge"|"c5a.4xlarge"|"c5a.8xlarge"|"c5a.12xlarge"|"c5a.16xlarge"|"c5a.24xlarge"|"c5ad.large"|"c5ad.xlarge"|"c5ad.2xlarge"|"c5ad.4xlarge"|"c5ad.8xlarge"|"c5ad.12xlarge"|"c5ad.16xlarge"|"c5ad.24xlarge"|"c5d.large"|"c5d.xlarge"|"c5d.2xlarge"|"c5d.4xlarge"|"c5d.9xlarge"|"c5d.12xlarge"|"c5d.18xlarge"|"c5d.24xlarge"|"c5d.metal"|"c5n.large"|"c5n.xlarge"|"c5n.2xlarge"|"c5n.4xlarge"|"c5n.9xlarge"|"c5n.18xlarge"|"c5n.metal"|"c6g.medium"|"c6g.large"|"c6g.xlarge"|"c6g.2xlarge"|"c6g.4xlarge"|"c6g.8xlarge"|"c6g.12xlarge"|"c6g.16xlarge"|"c6g.metal"|"c6gd.medium"|"c6gd.large"|"c6gd.xlarge"|"c6gd.2xlarge"|"c6gd.4xlarge"|"c6gd.8xlarge"|"c6gd.12xlarge"|"c6gd.16xlarge"|"c6gd.metal"|"c6gn.medium"|"c6gn.large"|"c6gn.xlarge"|"c6gn.2xlarge"|"c6gn.4xlarge"|"c6gn.8xlarge"|"c6gn.12xlarge"|"c6gn.16xlarge"|"c6i.large"|"c6i.xlarge"|"c6i.2xlarge"|"c6i.4xlarge"|"c6i.8xlarge"|"c6i.12xlarge"|"c6i.16xlarge"|"c6i.24xlarge"|"c6i.32xlarge"|"c6i.metal"|"cc1.4xlarge"|"cc2.8xlarge"|"cg1.4xlarge"|"cr1.8xlarge"|"d2.xlarge"|"d2.2xlarge"|"d2.4xlarge"|"d2.8xlarge"|"d3.xlarge"|"d3.2xlarge"|"d3.4xlarge"|"d3.8xlarge"|"d3en.xlarge"|"d3en.2xlarge"|"d3en.4xlarge"|"d3en.6xlarge"|"d3en.8xlarge"|"d3en.12xlarge"|"dl1.24xlarge"|"f1.2xlarge"|"f1.4xlarge"|"f1.16xlarge"|"g2.2xlarge"|"g2.8xlarge"|"g3.4xlarge"|"g3.8xlarge"|"g3.16xlarge"|"g3s.xlarge"|"g4ad.xlarge"|"g4ad.2xlarge"|"g4ad.4xlarge"|"g4ad.8xlarge"|"g4ad.16xlarge"|"g4dn.xlarge"|"g4dn.2xlarge"|"g4dn.4xlarge"|"g4dn.8xlarge"|"g4dn.12xlarge"|"g4dn.16xlarge"|"g4dn.metal"|"g5.xlarge"|"g5.2xlarge"|"g5.4xlarge"|"g5.8xlarge"|"g5.12xlarge"|"g5.16xlarge"|"g5.24xlarge"|"g5.48xlarge"|"g5g.xlarge"|"g5g.2xlarge"|"g5g.4xlarge"|"g5g.8xlarge"|"g5g.16xlarge"|"g5g.metal"|"hi1.4xlarge"|"hpc6a.48xlarge"|"hs1.8xlarge"|"h1.2xlarge"|"h1.4xlarge"|"h1.8xlarge"|"h1.16xlarge"|"i2.xlarge"|"i2.2xlarge"|"i2.4xlarge"|"i2.8xlarge"|"i3.large"|"i3.xlarge"|"i3.2xlarge"|"i3.4xlarge"|"i3.8xlarge"|"i3.16xlarge"|"i3.metal"|"i3en.large"|"i3en.xlarge"|"i3en.2xlarge"|"i3en.3xlarge"|"i3en.6xlarge"|"i3en.12xlarge"|"i3en.24xlarge"|"i3en.metal"|"im4gn.large"|"im4gn.xlarge"|"im4gn.2xlarge"|"im4gn.4xlarge"|"im4gn.8xlarge"|"im4gn.16xlarge"|"inf1.xlarge"|"inf1.2xlarge"|"inf1.6xlarge"|"inf1.24xlarge"|"is4gen.medium"|"is4gen.large"|"is4gen.xlarge"|"is4gen.2xlarge"|"is4gen.4xlarge"|"is4gen.8xlarge"|"m1.small"|"m1.medium"|"m1.large"|"m1.xlarge"|"m2.xlarge"|"m2.2xlarge"|"m2.4xlarge"|"m3.medium"|"m3.large"|"m3.xlarge"|"m3.2xlarge"|"m4.large"|"m4.xlarge"|"m4.2xlarge"|"m4.4xlarge"|"m4.10xlarge"|"m4.16xlarge"|"m5.large"|"m5.xlarge"|"m5.2xlarge"|"m5.4xlarge"|"m5.8xlarge"|"m5.12xlarge"|"m5.16xlarge"|"m5.24xlarge"|"m5.metal"|"m5a.large"|"m5a.xlarge"|"m5a.2xlarge"|"m5a.4xlarge"|"m5a.8xlarge"|"m5a.12xlarge"|"m5a.16xlarge"|"m5a.24xlarge"|"m5ad.large"|"m5ad.xlarge"|"m5ad.2xlarge"|"m5ad.4xlarge"|"m5ad.8xlarge"|"m5ad.12xlarge"|"m5ad.16xlarge"|"m5ad.24xlarge"|"m5d.large"|"m5d.xlarge"|"m5d.2xlarge"|"m5d.4xlarge"|"m5d.8xlarge"|"m5d.12xlarge"|"m5d.16xlarge"|"m5d.24xlarge"|"m5d.metal"|"m5dn.large"|"m5dn.xlarge"|"m5dn.2xlarge"|"m5dn.4xlarge"|"m5dn.8xlarge"|"m5dn.12xlarge"|"m5dn.16xlarge"|"m5dn.24xlarge"|"m5dn.metal"|"m5n.large"|"m5n.xlarge"|"m5n.2xlarge"|"m5n.4xlarge"|"m5n.8xlarge"|"m5n.12xlarge"|"m5n.16xlarge"|"m5n.24xlarge"|"m5n.metal"|"m5zn.large"|"m5zn.xlarge"|"m5zn.2xlarge"|"m5zn.3xlarge"|"m5zn.6xlarge"|"m5zn.12xlarge"|"m5zn.metal"|"m6a.large"|"m6a.xlarge"|"m6a.2xlarge"|"m6a.4xlarge"|"m6a.8xlarge"|"m6a.12xlarge"|"m6a.16xlarge"|"m6a.24xlarge"|"m6a.32xlarge"|"m6a.48xlarge"|"m6g.metal"|"m6g.medium"|"m6g.large"|"m6g.xlarge"|"m6g.2xlarge"|"m6g.4xlarge"|"m6g.8xlarge"|"m6g.12xlarge"|"m6g.16xlarge"|"m6gd.metal"|"m6gd.medium"|"m6gd.large"|"m6gd.xlarge"|"m6gd.2xlarge"|"m6gd.4xlarge"|"m6gd.8xlarge"|"m6gd.12xlarge"|"m6gd.16xlarge"|"m6i.large"|"m6i.xlarge"|"m6i.2xlarge"|"m6i.4xlarge"|"m6i.8xlarge"|"m6i.12xlarge"|"m6i.16xlarge"|"m6i.24xlarge"|"m6i.32xlarge"|"m6i.metal"|"mac1.metal"|"p2.xlarge"|"p2.8xlarge"|"p2.16xlarge"|"p3.2xlarge"|"p3.8xlarge"|"p3.16xlarge"|"p3dn.24xlarge"|"p4d.24xlarge"|"r3.large"|"r3.xlarge"|"r3.2xlarge"|"r3.4xlarge"|"r3.8xlarge"|"r4.large"|"r4.xlarge"|"r4.2xlarge"|"r4.4xlarge"|"r4.8xlarge"|"r4.16xlarge"|"r5.large"|"r5.xlarge"|"r5.2xlarge"|"r5.4xlarge"|"r5.8xlarge"|"r5.12xlarge"|"r5.16xlarge"|"r5.24xlarge"|"r5.metal"|"r5a.large"|"r5a.xlarge"|"r5a.2xlarge"|"r5a.4xlarge"|"r5a.8xlarge"|"r5a.12xlarge"|"r5a.16xlarge"|"r5a.24xlarge"|"r5ad.large"|"r5ad.xlarge"|"r5ad.2xlarge"|"r5ad.4xlarge"|"r5ad.8xlarge"|"r5ad.12xlarge"|"r5ad.16xlarge"|"r5ad.24xlarge"|"r5b.large"|"r5b.xlarge"|"r5b.2xlarge"|"r5b.4xlarge"|"r5b.8xlarge"|"r5b.12xlarge"|"r5b.16xlarge"|"r5b.24xlarge"|"r5b.metal"|"r5d.large"|"r5d.xlarge"|"r5d.2xlarge"|"r5d.4xlarge"|"r5d.8xlarge"|"r5d.12xlarge"|"r5d.16xlarge"|"r5d.24xlarge"|"r5d.metal"|"r5dn.large"|"r5dn.xlarge"|"r5dn.2xlarge"|"r5dn.4xlarge"|"r5dn.8xlarge"|"r5dn.12xlarge"|"r5dn.16xlarge"|"r5dn.24xlarge"|"r5dn.metal"|"r5n.large"|"r5n.xlarge"|"r5n.2xlarge"|"r5n.4xlarge"|"r5n.8xlarge"|"r5n.12xlarge"|"r5n.16xlarge"|"r5n.24xlarge"|"r5n.metal"|"r6g.medium"|"r6g.large"|"r6g.xlarge"|"r6g.2xlarge"|"r6g.4xlarge"|"r6g.8xlarge"|"r6g.12xlarge"|"r6g.16xlarge"|"r6g.metal"|"r6gd.medium"|"r6gd.large"|"r6gd.xlarge"|"r6gd.2xlarge"|"r6gd.4xlarge"|"r6gd.8xlarge"|"r6gd.12xlarge"|"r6gd.16xlarge"|"r6gd.metal"|"r6i.large"|"r6i.xlarge"|"r6i.2xlarge"|"r6i.4xlarge"|"r6i.8xlarge"|"r6i.12xlarge"|"r6i.16xlarge"|"r6i.24xlarge"|"r6i.32xlarge"|"r6i.metal"|"t1.micro"|"t2.nano"|"t2.micro"|"t2.small"|"t2.medium"|"t2.large"|"t2.xlarge"|"t2.2xlarge"|"t3.nano"|"t3.micro"|"t3.small"|"t3.medium"|"t3.large"|"t3.xlarge"|"t3.2xlarge"|"t3a.nano"|"t3a.micro"|"t3a.small"|"t3a.medium"|"t3a.large"|"t3a.xlarge"|"t3a.2xlarge"|"t4g.nano"|"t4g.micro"|"t4g.small"|"t4g.medium"|"t4g.large"|"t4g.xlarge"|"t4g.2xlarge"|"u-6tb1.56xlarge"|"u-6tb1.112xlarge"|"u-9tb1.112xlarge"|"u-12tb1.112xlarge"|"u-6tb1.metal"|"u-9tb1.metal"|"u-12tb1.metal"|"u-18tb1.metal"|"u-24tb1.metal"|"vt1.3xlarge"|"vt1.6xlarge"|"vt1.24xlarge"|"x1.16xlarge"|"x1.32xlarge"|"x1e.xlarge"|"x1e.2xlarge"|"x1e.4xlarge"|"x1e.8xlarge"|"x1e.16xlarge"|"x1e.32xlarge"|"x2iezn.2xlarge"|"x2iezn.4xlarge"|"x2iezn.6xlarge"|"x2iezn.8xlarge"|"x2iezn.12xlarge"|"x2iezn.metal"|"x2gd.medium"|"x2gd.large"|"x2gd.xlarge"|"x2gd.2xlarge"|"x2gd.4xlarge"|"x2gd.8xlarge"|"x2gd.12xlarge"|"x2gd.16xlarge"|"x2gd.metal"|"z1d.large"|"z1d.xlarge"|"z1d.2xlarge"|"z1d.3xlarge"|"z1d.6xlarge"|"z1d.12xlarge"|"z1d.metal"|"x2idn.16xlarge"|"x2idn.24xlarge"|"x2idn.32xlarge"|"x2iedn.xlarge"|"x2iedn.2xlarge"|"x2iedn.4xlarge"|"x2iedn.8xlarge"|"x2iedn.16xlarge"|"x2iedn.24xlarge"|"x2iedn.32xlarge"|"c6a.large"|"c6a.xlarge"|"c6a.2xlarge"|"c6a.4xlarge"|"c6a.8xlarge"|"c6a.12xlarge"|"c6a.16xlarge"|"c6a.24xlarge"|"c6a.32xlarge"|"c6a.48xlarge"|"c6a.metal"|"m6a.metal"|"i4i.large"|"i4i.xlarge"|"i4i.2xlarge"|"i4i.4xlarge"|"i4i.8xlarge"|"i4i.16xlarge"|"i4i.32xlarge"|"i4i.metal"|"x2idn.metal"|"x2iedn.metal"|"c7g.medium"|"c7g.large"|"c7g.xlarge"|"c7g.2xlarge"|"c7g.4xlarge"|"c7g.8xlarge"|"c7g.12xlarge"|"c7g.16xlarge"|"mac2.metal"|"c6id.large"|"c6id.xlarge"|"c6id.2xlarge"|"c6id.4xlarge"|"c6id.8xlarge"|"c6id.12xlarge"|"c6id.16xlarge"|"c6id.24xlarge"|"c6id.32xlarge"|"c6id.metal"|"m6id.large"|"m6id.xlarge"|"m6id.2xlarge"|"m6id.4xlarge"|"m6id.8xlarge"|"m6id.12xlarge"|"m6id.16xlarge"|"m6id.24xlarge"|"m6id.32xlarge"|"m6id.metal"|"r6id.large"|"r6id.xlarge"|"r6id.2xlarge"|"r6id.4xlarge"|"r6id.8xlarge"|"r6id.12xlarge"|"r6id.16xlarge"|"r6id.24xlarge"|"r6id.32xlarge"|"r6id.metal"|"r6a.large"|"r6a.xlarge"|"r6a.2xlarge"|"r6a.4xlarge"|"r6a.8xlarge"|"r6a.12xlarge"|"r6a.16xlarge"|"r6a.24xlarge"|"r6a.32xlarge"|"r6a.48xlarge"|"r6a.metal"|"p4de.24xlarge"|"u-3tb1.56xlarge"|"u-18tb1.112xlarge"|"u-24tb1.112xlarge"|"trn1.2xlarge"|"trn1.32xlarge"|"hpc6id.32xlarge"|"c6in.large"|"c6in.xlarge"|"c6in.2xlarge"|"c6in.4xlarge"|"c6in.8xlarge"|"c6in.12xlarge"|"c6in.16xlarge"|"c6in.24xlarge"|"c6in.32xlarge"|"m6in.large"|"m6in.xlarge"|"m6in.2xlarge"|"m6in.4xlarge"|"m6in.8xlarge"|"m6in.12xlarge"|"m6in.16xlarge"|"m6in.24xlarge"|"m6in.32xlarge"|"m6idn.large"|"m6idn.xlarge"|"m6idn.2xlarge"|"m6idn.4xlarge"|"m6idn.8xlarge"|"m6idn.12xlarge"|"m6idn.16xlarge"|"m6idn.24xlarge"|"m6idn.32xlarge"|"r6in.large"|"r6in.xlarge"|"r6in.2xlarge"|"r6in.4xlarge"|"r6in.8xlarge"|"r6in.12xlarge"|"r6in.16xlarge"|"r6in.24xlarge"|"r6in.32xlarge"|"r6idn.large"|"r6idn.xlarge"|"r6idn.2xlarge"|"r6idn.4xlarge"|"r6idn.8xlarge"|"r6idn.12xlarge"|"r6idn.16xlarge"|"r6idn.24xlarge"|"r6idn.32xlarge"|"c7g.metal"|"m7g.medium"|"m7g.large"|"m7g.xlarge"|"m7g.2xlarge"|"m7g.4xlarge"|"m7g.8xlarge"|"m7g.12xlarge"|"m7g.16xlarge"|"m7g.metal"|"r7g.medium"|"r7g.large"|"r7g.xlarge"|"r7g.2xlarge"|"r7g.4xlarge"|"r7g.8xlarge"|"r7g.12xlarge"|"r7g.16xlarge"|"r7g.metal"|string;
23965
+ export type InstanceType = "a1.medium"|"a1.large"|"a1.xlarge"|"a1.2xlarge"|"a1.4xlarge"|"a1.metal"|"c1.medium"|"c1.xlarge"|"c3.large"|"c3.xlarge"|"c3.2xlarge"|"c3.4xlarge"|"c3.8xlarge"|"c4.large"|"c4.xlarge"|"c4.2xlarge"|"c4.4xlarge"|"c4.8xlarge"|"c5.large"|"c5.xlarge"|"c5.2xlarge"|"c5.4xlarge"|"c5.9xlarge"|"c5.12xlarge"|"c5.18xlarge"|"c5.24xlarge"|"c5.metal"|"c5a.large"|"c5a.xlarge"|"c5a.2xlarge"|"c5a.4xlarge"|"c5a.8xlarge"|"c5a.12xlarge"|"c5a.16xlarge"|"c5a.24xlarge"|"c5ad.large"|"c5ad.xlarge"|"c5ad.2xlarge"|"c5ad.4xlarge"|"c5ad.8xlarge"|"c5ad.12xlarge"|"c5ad.16xlarge"|"c5ad.24xlarge"|"c5d.large"|"c5d.xlarge"|"c5d.2xlarge"|"c5d.4xlarge"|"c5d.9xlarge"|"c5d.12xlarge"|"c5d.18xlarge"|"c5d.24xlarge"|"c5d.metal"|"c5n.large"|"c5n.xlarge"|"c5n.2xlarge"|"c5n.4xlarge"|"c5n.9xlarge"|"c5n.18xlarge"|"c5n.metal"|"c6g.medium"|"c6g.large"|"c6g.xlarge"|"c6g.2xlarge"|"c6g.4xlarge"|"c6g.8xlarge"|"c6g.12xlarge"|"c6g.16xlarge"|"c6g.metal"|"c6gd.medium"|"c6gd.large"|"c6gd.xlarge"|"c6gd.2xlarge"|"c6gd.4xlarge"|"c6gd.8xlarge"|"c6gd.12xlarge"|"c6gd.16xlarge"|"c6gd.metal"|"c6gn.medium"|"c6gn.large"|"c6gn.xlarge"|"c6gn.2xlarge"|"c6gn.4xlarge"|"c6gn.8xlarge"|"c6gn.12xlarge"|"c6gn.16xlarge"|"c6i.large"|"c6i.xlarge"|"c6i.2xlarge"|"c6i.4xlarge"|"c6i.8xlarge"|"c6i.12xlarge"|"c6i.16xlarge"|"c6i.24xlarge"|"c6i.32xlarge"|"c6i.metal"|"cc1.4xlarge"|"cc2.8xlarge"|"cg1.4xlarge"|"cr1.8xlarge"|"d2.xlarge"|"d2.2xlarge"|"d2.4xlarge"|"d2.8xlarge"|"d3.xlarge"|"d3.2xlarge"|"d3.4xlarge"|"d3.8xlarge"|"d3en.xlarge"|"d3en.2xlarge"|"d3en.4xlarge"|"d3en.6xlarge"|"d3en.8xlarge"|"d3en.12xlarge"|"dl1.24xlarge"|"f1.2xlarge"|"f1.4xlarge"|"f1.16xlarge"|"g2.2xlarge"|"g2.8xlarge"|"g3.4xlarge"|"g3.8xlarge"|"g3.16xlarge"|"g3s.xlarge"|"g4ad.xlarge"|"g4ad.2xlarge"|"g4ad.4xlarge"|"g4ad.8xlarge"|"g4ad.16xlarge"|"g4dn.xlarge"|"g4dn.2xlarge"|"g4dn.4xlarge"|"g4dn.8xlarge"|"g4dn.12xlarge"|"g4dn.16xlarge"|"g4dn.metal"|"g5.xlarge"|"g5.2xlarge"|"g5.4xlarge"|"g5.8xlarge"|"g5.12xlarge"|"g5.16xlarge"|"g5.24xlarge"|"g5.48xlarge"|"g5g.xlarge"|"g5g.2xlarge"|"g5g.4xlarge"|"g5g.8xlarge"|"g5g.16xlarge"|"g5g.metal"|"hi1.4xlarge"|"hpc6a.48xlarge"|"hs1.8xlarge"|"h1.2xlarge"|"h1.4xlarge"|"h1.8xlarge"|"h1.16xlarge"|"i2.xlarge"|"i2.2xlarge"|"i2.4xlarge"|"i2.8xlarge"|"i3.large"|"i3.xlarge"|"i3.2xlarge"|"i3.4xlarge"|"i3.8xlarge"|"i3.16xlarge"|"i3.metal"|"i3en.large"|"i3en.xlarge"|"i3en.2xlarge"|"i3en.3xlarge"|"i3en.6xlarge"|"i3en.12xlarge"|"i3en.24xlarge"|"i3en.metal"|"im4gn.large"|"im4gn.xlarge"|"im4gn.2xlarge"|"im4gn.4xlarge"|"im4gn.8xlarge"|"im4gn.16xlarge"|"inf1.xlarge"|"inf1.2xlarge"|"inf1.6xlarge"|"inf1.24xlarge"|"is4gen.medium"|"is4gen.large"|"is4gen.xlarge"|"is4gen.2xlarge"|"is4gen.4xlarge"|"is4gen.8xlarge"|"m1.small"|"m1.medium"|"m1.large"|"m1.xlarge"|"m2.xlarge"|"m2.2xlarge"|"m2.4xlarge"|"m3.medium"|"m3.large"|"m3.xlarge"|"m3.2xlarge"|"m4.large"|"m4.xlarge"|"m4.2xlarge"|"m4.4xlarge"|"m4.10xlarge"|"m4.16xlarge"|"m5.large"|"m5.xlarge"|"m5.2xlarge"|"m5.4xlarge"|"m5.8xlarge"|"m5.12xlarge"|"m5.16xlarge"|"m5.24xlarge"|"m5.metal"|"m5a.large"|"m5a.xlarge"|"m5a.2xlarge"|"m5a.4xlarge"|"m5a.8xlarge"|"m5a.12xlarge"|"m5a.16xlarge"|"m5a.24xlarge"|"m5ad.large"|"m5ad.xlarge"|"m5ad.2xlarge"|"m5ad.4xlarge"|"m5ad.8xlarge"|"m5ad.12xlarge"|"m5ad.16xlarge"|"m5ad.24xlarge"|"m5d.large"|"m5d.xlarge"|"m5d.2xlarge"|"m5d.4xlarge"|"m5d.8xlarge"|"m5d.12xlarge"|"m5d.16xlarge"|"m5d.24xlarge"|"m5d.metal"|"m5dn.large"|"m5dn.xlarge"|"m5dn.2xlarge"|"m5dn.4xlarge"|"m5dn.8xlarge"|"m5dn.12xlarge"|"m5dn.16xlarge"|"m5dn.24xlarge"|"m5dn.metal"|"m5n.large"|"m5n.xlarge"|"m5n.2xlarge"|"m5n.4xlarge"|"m5n.8xlarge"|"m5n.12xlarge"|"m5n.16xlarge"|"m5n.24xlarge"|"m5n.metal"|"m5zn.large"|"m5zn.xlarge"|"m5zn.2xlarge"|"m5zn.3xlarge"|"m5zn.6xlarge"|"m5zn.12xlarge"|"m5zn.metal"|"m6a.large"|"m6a.xlarge"|"m6a.2xlarge"|"m6a.4xlarge"|"m6a.8xlarge"|"m6a.12xlarge"|"m6a.16xlarge"|"m6a.24xlarge"|"m6a.32xlarge"|"m6a.48xlarge"|"m6g.metal"|"m6g.medium"|"m6g.large"|"m6g.xlarge"|"m6g.2xlarge"|"m6g.4xlarge"|"m6g.8xlarge"|"m6g.12xlarge"|"m6g.16xlarge"|"m6gd.metal"|"m6gd.medium"|"m6gd.large"|"m6gd.xlarge"|"m6gd.2xlarge"|"m6gd.4xlarge"|"m6gd.8xlarge"|"m6gd.12xlarge"|"m6gd.16xlarge"|"m6i.large"|"m6i.xlarge"|"m6i.2xlarge"|"m6i.4xlarge"|"m6i.8xlarge"|"m6i.12xlarge"|"m6i.16xlarge"|"m6i.24xlarge"|"m6i.32xlarge"|"m6i.metal"|"mac1.metal"|"p2.xlarge"|"p2.8xlarge"|"p2.16xlarge"|"p3.2xlarge"|"p3.8xlarge"|"p3.16xlarge"|"p3dn.24xlarge"|"p4d.24xlarge"|"r3.large"|"r3.xlarge"|"r3.2xlarge"|"r3.4xlarge"|"r3.8xlarge"|"r4.large"|"r4.xlarge"|"r4.2xlarge"|"r4.4xlarge"|"r4.8xlarge"|"r4.16xlarge"|"r5.large"|"r5.xlarge"|"r5.2xlarge"|"r5.4xlarge"|"r5.8xlarge"|"r5.12xlarge"|"r5.16xlarge"|"r5.24xlarge"|"r5.metal"|"r5a.large"|"r5a.xlarge"|"r5a.2xlarge"|"r5a.4xlarge"|"r5a.8xlarge"|"r5a.12xlarge"|"r5a.16xlarge"|"r5a.24xlarge"|"r5ad.large"|"r5ad.xlarge"|"r5ad.2xlarge"|"r5ad.4xlarge"|"r5ad.8xlarge"|"r5ad.12xlarge"|"r5ad.16xlarge"|"r5ad.24xlarge"|"r5b.large"|"r5b.xlarge"|"r5b.2xlarge"|"r5b.4xlarge"|"r5b.8xlarge"|"r5b.12xlarge"|"r5b.16xlarge"|"r5b.24xlarge"|"r5b.metal"|"r5d.large"|"r5d.xlarge"|"r5d.2xlarge"|"r5d.4xlarge"|"r5d.8xlarge"|"r5d.12xlarge"|"r5d.16xlarge"|"r5d.24xlarge"|"r5d.metal"|"r5dn.large"|"r5dn.xlarge"|"r5dn.2xlarge"|"r5dn.4xlarge"|"r5dn.8xlarge"|"r5dn.12xlarge"|"r5dn.16xlarge"|"r5dn.24xlarge"|"r5dn.metal"|"r5n.large"|"r5n.xlarge"|"r5n.2xlarge"|"r5n.4xlarge"|"r5n.8xlarge"|"r5n.12xlarge"|"r5n.16xlarge"|"r5n.24xlarge"|"r5n.metal"|"r6g.medium"|"r6g.large"|"r6g.xlarge"|"r6g.2xlarge"|"r6g.4xlarge"|"r6g.8xlarge"|"r6g.12xlarge"|"r6g.16xlarge"|"r6g.metal"|"r6gd.medium"|"r6gd.large"|"r6gd.xlarge"|"r6gd.2xlarge"|"r6gd.4xlarge"|"r6gd.8xlarge"|"r6gd.12xlarge"|"r6gd.16xlarge"|"r6gd.metal"|"r6i.large"|"r6i.xlarge"|"r6i.2xlarge"|"r6i.4xlarge"|"r6i.8xlarge"|"r6i.12xlarge"|"r6i.16xlarge"|"r6i.24xlarge"|"r6i.32xlarge"|"r6i.metal"|"t1.micro"|"t2.nano"|"t2.micro"|"t2.small"|"t2.medium"|"t2.large"|"t2.xlarge"|"t2.2xlarge"|"t3.nano"|"t3.micro"|"t3.small"|"t3.medium"|"t3.large"|"t3.xlarge"|"t3.2xlarge"|"t3a.nano"|"t3a.micro"|"t3a.small"|"t3a.medium"|"t3a.large"|"t3a.xlarge"|"t3a.2xlarge"|"t4g.nano"|"t4g.micro"|"t4g.small"|"t4g.medium"|"t4g.large"|"t4g.xlarge"|"t4g.2xlarge"|"u-6tb1.56xlarge"|"u-6tb1.112xlarge"|"u-9tb1.112xlarge"|"u-12tb1.112xlarge"|"u-6tb1.metal"|"u-9tb1.metal"|"u-12tb1.metal"|"u-18tb1.metal"|"u-24tb1.metal"|"vt1.3xlarge"|"vt1.6xlarge"|"vt1.24xlarge"|"x1.16xlarge"|"x1.32xlarge"|"x1e.xlarge"|"x1e.2xlarge"|"x1e.4xlarge"|"x1e.8xlarge"|"x1e.16xlarge"|"x1e.32xlarge"|"x2iezn.2xlarge"|"x2iezn.4xlarge"|"x2iezn.6xlarge"|"x2iezn.8xlarge"|"x2iezn.12xlarge"|"x2iezn.metal"|"x2gd.medium"|"x2gd.large"|"x2gd.xlarge"|"x2gd.2xlarge"|"x2gd.4xlarge"|"x2gd.8xlarge"|"x2gd.12xlarge"|"x2gd.16xlarge"|"x2gd.metal"|"z1d.large"|"z1d.xlarge"|"z1d.2xlarge"|"z1d.3xlarge"|"z1d.6xlarge"|"z1d.12xlarge"|"z1d.metal"|"x2idn.16xlarge"|"x2idn.24xlarge"|"x2idn.32xlarge"|"x2iedn.xlarge"|"x2iedn.2xlarge"|"x2iedn.4xlarge"|"x2iedn.8xlarge"|"x2iedn.16xlarge"|"x2iedn.24xlarge"|"x2iedn.32xlarge"|"c6a.large"|"c6a.xlarge"|"c6a.2xlarge"|"c6a.4xlarge"|"c6a.8xlarge"|"c6a.12xlarge"|"c6a.16xlarge"|"c6a.24xlarge"|"c6a.32xlarge"|"c6a.48xlarge"|"c6a.metal"|"m6a.metal"|"i4i.large"|"i4i.xlarge"|"i4i.2xlarge"|"i4i.4xlarge"|"i4i.8xlarge"|"i4i.16xlarge"|"i4i.32xlarge"|"i4i.metal"|"x2idn.metal"|"x2iedn.metal"|"c7g.medium"|"c7g.large"|"c7g.xlarge"|"c7g.2xlarge"|"c7g.4xlarge"|"c7g.8xlarge"|"c7g.12xlarge"|"c7g.16xlarge"|"mac2.metal"|"c6id.large"|"c6id.xlarge"|"c6id.2xlarge"|"c6id.4xlarge"|"c6id.8xlarge"|"c6id.12xlarge"|"c6id.16xlarge"|"c6id.24xlarge"|"c6id.32xlarge"|"c6id.metal"|"m6id.large"|"m6id.xlarge"|"m6id.2xlarge"|"m6id.4xlarge"|"m6id.8xlarge"|"m6id.12xlarge"|"m6id.16xlarge"|"m6id.24xlarge"|"m6id.32xlarge"|"m6id.metal"|"r6id.large"|"r6id.xlarge"|"r6id.2xlarge"|"r6id.4xlarge"|"r6id.8xlarge"|"r6id.12xlarge"|"r6id.16xlarge"|"r6id.24xlarge"|"r6id.32xlarge"|"r6id.metal"|"r6a.large"|"r6a.xlarge"|"r6a.2xlarge"|"r6a.4xlarge"|"r6a.8xlarge"|"r6a.12xlarge"|"r6a.16xlarge"|"r6a.24xlarge"|"r6a.32xlarge"|"r6a.48xlarge"|"r6a.metal"|"p4de.24xlarge"|"u-3tb1.56xlarge"|"u-18tb1.112xlarge"|"u-24tb1.112xlarge"|"trn1.2xlarge"|"trn1.32xlarge"|"hpc6id.32xlarge"|"c6in.large"|"c6in.xlarge"|"c6in.2xlarge"|"c6in.4xlarge"|"c6in.8xlarge"|"c6in.12xlarge"|"c6in.16xlarge"|"c6in.24xlarge"|"c6in.32xlarge"|"m6in.large"|"m6in.xlarge"|"m6in.2xlarge"|"m6in.4xlarge"|"m6in.8xlarge"|"m6in.12xlarge"|"m6in.16xlarge"|"m6in.24xlarge"|"m6in.32xlarge"|"m6idn.large"|"m6idn.xlarge"|"m6idn.2xlarge"|"m6idn.4xlarge"|"m6idn.8xlarge"|"m6idn.12xlarge"|"m6idn.16xlarge"|"m6idn.24xlarge"|"m6idn.32xlarge"|"r6in.large"|"r6in.xlarge"|"r6in.2xlarge"|"r6in.4xlarge"|"r6in.8xlarge"|"r6in.12xlarge"|"r6in.16xlarge"|"r6in.24xlarge"|"r6in.32xlarge"|"r6idn.large"|"r6idn.xlarge"|"r6idn.2xlarge"|"r6idn.4xlarge"|"r6idn.8xlarge"|"r6idn.12xlarge"|"r6idn.16xlarge"|"r6idn.24xlarge"|"r6idn.32xlarge"|"c7g.metal"|"m7g.medium"|"m7g.large"|"m7g.xlarge"|"m7g.2xlarge"|"m7g.4xlarge"|"m7g.8xlarge"|"m7g.12xlarge"|"m7g.16xlarge"|"m7g.metal"|"r7g.medium"|"r7g.large"|"r7g.xlarge"|"r7g.2xlarge"|"r7g.4xlarge"|"r7g.8xlarge"|"r7g.12xlarge"|"r7g.16xlarge"|"r7g.metal"|"c6in.metal"|"m6in.metal"|"m6idn.metal"|"r6in.metal"|"r6idn.metal"|string;
23966
23966
  export type InstanceTypeHypervisor = "nitro"|"xen"|string;
23967
23967
  export interface InstanceTypeInfo {
23968
23968
  /**
@@ -29,11 +29,11 @@ declare class ECS extends Service {
29
29
  */
30
30
  createCluster(callback?: (err: AWSError, data: ECS.Types.CreateClusterResponse) => void): Request<ECS.Types.CreateClusterResponse, AWSError>;
31
31
  /**
32
- * Runs and maintains your desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the desiredCount, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action. In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service load balancing in the Amazon Elastic Container Service Developer Guide. Tasks for services that don't use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer. There are two service scheduler strategies available: REPLICA - The replica scheduling strategy places and maintains your desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. DAEMON - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It also stops tasks that don't meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. You can optionally specify a deployment configuration for your service. The deployment is initiated by changing properties. For example, the deployment might be initiated by the task definition or by your desired count of a service. This is done with an UpdateService operation. The default value for a replica service for minimumHealthyPercent is 100%. The default value for a daemon service for minimumHealthyPercent is 0%. If a service uses the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment. Specifically, it represents it as a percentage of your desired number of tasks (rounded up to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can deploy without using additional cluster capacity. For example, if you set your service to have desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. If they're in the RUNNING state, tasks for services that don't use a load balancer are considered healthy . If they're in the RUNNING state and reported as healthy by the load balancer, tasks for services that do use a load balancer are considered healthy . The default value for minimum healthy percent is 100%. If a service uses the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment. Specifically, it represents it as a percentage of the desired number of tasks (rounded down to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%. If a service uses either the CODE_DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the minimum healthy percent and maximum percent values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state. This is while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used. This is the case even if they're currently visible when describing your service. When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide. When the service scheduler launches new tasks, it determines task placement. For information about task placement and task placement strategies, see Amazon ECS task placement in the Amazon Elastic Container Service Developer Guide.
32
+ * Runs and maintains your desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the desiredCount, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action. Starting April 15, 2023, Amazon Web Services will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service. In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service load balancing in the Amazon Elastic Container Service Developer Guide. Tasks for services that don't use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer. There are two service scheduler strategies available: REPLICA - The replica scheduling strategy places and maintains your desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. DAEMON - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It also stops tasks that don't meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. You can optionally specify a deployment configuration for your service. The deployment is initiated by changing properties. For example, the deployment might be initiated by the task definition or by your desired count of a service. This is done with an UpdateService operation. The default value for a replica service for minimumHealthyPercent is 100%. The default value for a daemon service for minimumHealthyPercent is 0%. If a service uses the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment. Specifically, it represents it as a percentage of your desired number of tasks (rounded up to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can deploy without using additional cluster capacity. For example, if you set your service to have desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. If they're in the RUNNING state, tasks for services that don't use a load balancer are considered healthy . If they're in the RUNNING state and reported as healthy by the load balancer, tasks for services that do use a load balancer are considered healthy . The default value for minimum healthy percent is 100%. If a service uses the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment. Specifically, it represents it as a percentage of the desired number of tasks (rounded down to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%. If a service uses either the CODE_DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the minimum healthy percent and maximum percent values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state. This is while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used. This is the case even if they're currently visible when describing your service. When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide. When the service scheduler launches new tasks, it determines task placement. For information about task placement and task placement strategies, see Amazon ECS task placement in the Amazon Elastic Container Service Developer Guide.
33
33
  */
34
34
  createService(params: ECS.Types.CreateServiceRequest, callback?: (err: AWSError, data: ECS.Types.CreateServiceResponse) => void): Request<ECS.Types.CreateServiceResponse, AWSError>;
35
35
  /**
36
- * Runs and maintains your desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the desiredCount, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action. In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service load balancing in the Amazon Elastic Container Service Developer Guide. Tasks for services that don't use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer. There are two service scheduler strategies available: REPLICA - The replica scheduling strategy places and maintains your desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. DAEMON - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It also stops tasks that don't meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. You can optionally specify a deployment configuration for your service. The deployment is initiated by changing properties. For example, the deployment might be initiated by the task definition or by your desired count of a service. This is done with an UpdateService operation. The default value for a replica service for minimumHealthyPercent is 100%. The default value for a daemon service for minimumHealthyPercent is 0%. If a service uses the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment. Specifically, it represents it as a percentage of your desired number of tasks (rounded up to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can deploy without using additional cluster capacity. For example, if you set your service to have desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. If they're in the RUNNING state, tasks for services that don't use a load balancer are considered healthy . If they're in the RUNNING state and reported as healthy by the load balancer, tasks for services that do use a load balancer are considered healthy . The default value for minimum healthy percent is 100%. If a service uses the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment. Specifically, it represents it as a percentage of the desired number of tasks (rounded down to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%. If a service uses either the CODE_DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the minimum healthy percent and maximum percent values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state. This is while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used. This is the case even if they're currently visible when describing your service. When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide. When the service scheduler launches new tasks, it determines task placement. For information about task placement and task placement strategies, see Amazon ECS task placement in the Amazon Elastic Container Service Developer Guide.
36
+ * Runs and maintains your desired number of tasks from a specified task definition. If the number of tasks running in a service drops below the desiredCount, Amazon ECS runs another copy of the task in the specified cluster. To update an existing service, see the UpdateService action. Starting April 15, 2023, Amazon Web Services will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service. In addition to maintaining the desired count of tasks in your service, you can optionally run your service behind one or more load balancers. The load balancers distribute traffic across the tasks that are associated with the service. For more information, see Service load balancing in the Amazon Elastic Container Service Developer Guide. Tasks for services that don't use a load balancer are considered healthy if they're in the RUNNING state. Tasks for services that use a load balancer are considered healthy if they're in the RUNNING state and are reported as healthy by the load balancer. There are two service scheduler strategies available: REPLICA - The replica scheduling strategy places and maintains your desired number of tasks across your cluster. By default, the service scheduler spreads tasks across Availability Zones. You can use task placement strategies and constraints to customize task placement decisions. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. DAEMON - The daemon scheduling strategy deploys exactly one task on each active container instance that meets all of the task placement constraints that you specify in your cluster. The service scheduler also evaluates the task placement constraints for running tasks. It also stops tasks that don't meet the placement constraints. When using this strategy, you don't need to specify a desired number of tasks, a task placement strategy, or use Service Auto Scaling policies. For more information, see Service scheduler concepts in the Amazon Elastic Container Service Developer Guide. You can optionally specify a deployment configuration for your service. The deployment is initiated by changing properties. For example, the deployment might be initiated by the task definition or by your desired count of a service. This is done with an UpdateService operation. The default value for a replica service for minimumHealthyPercent is 100%. The default value for a daemon service for minimumHealthyPercent is 0%. If a service uses the ECS deployment controller, the minimum healthy percent represents a lower limit on the number of tasks in a service that must remain in the RUNNING state during a deployment. Specifically, it represents it as a percentage of your desired number of tasks (rounded up to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can deploy without using additional cluster capacity. For example, if you set your service to have desired number of four tasks and a minimum healthy percent of 50%, the scheduler might stop two existing tasks to free up cluster capacity before starting two new tasks. If they're in the RUNNING state, tasks for services that don't use a load balancer are considered healthy . If they're in the RUNNING state and reported as healthy by the load balancer, tasks for services that do use a load balancer are considered healthy . The default value for minimum healthy percent is 100%. If a service uses the ECS deployment controller, the maximum percent parameter represents an upper limit on the number of tasks in a service that are allowed in the RUNNING or PENDING state during a deployment. Specifically, it represents it as a percentage of the desired number of tasks (rounded down to the nearest integer). This happens when any of your container instances are in the DRAINING state if the service contains tasks using the EC2 launch type. Using this parameter, you can define the deployment batch size. For example, if your service has a desired number of four tasks and a maximum percent value of 200%, the scheduler may start four new tasks before stopping the four older tasks (provided that the cluster resources required to do this are available). The default value for maximum percent is 200%. If a service uses either the CODE_DEPLOY or EXTERNAL deployment controller types and tasks that use the EC2 launch type, the minimum healthy percent and maximum percent values are used only to define the lower and upper limit on the number of the tasks in the service that remain in the RUNNING state. This is while the container instances are in the DRAINING state. If the tasks in the service use the Fargate launch type, the minimum healthy percent and maximum percent values aren't used. This is the case even if they're currently visible when describing your service. When creating a service that uses the EXTERNAL deployment controller, you can specify only parameters that aren't controlled at the task set level. The only required parameter is the service name. You control your services using the CreateTaskSet operation. For more information, see Amazon ECS deployment types in the Amazon Elastic Container Service Developer Guide. When the service scheduler launches new tasks, it determines task placement. For information about task placement and task placement strategies, see Amazon ECS task placement in the Amazon Elastic Container Service Developer Guide.
37
37
  */
38
38
  createService(callback?: (err: AWSError, data: ECS.Types.CreateServiceResponse) => void): Request<ECS.Types.CreateServiceResponse, AWSError>;
39
39
  /**
@@ -325,19 +325,19 @@ declare class ECS extends Service {
325
325
  */
326
326
  registerTaskDefinition(callback?: (err: AWSError, data: ECS.Types.RegisterTaskDefinitionResponse) => void): Request<ECS.Types.RegisterTaskDefinitionResponse, AWSError>;
327
327
  /**
328
- * Starts a new task using the specified task definition. You can allow Amazon ECS to place tasks for you, or you can customize how Amazon ECS places tasks using placement constraints and placement strategies. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide. Alternatively, you can use StartTask to use your own scheduler or place tasks manually on specific container instances. The Amazon ECS API follows an eventual consistency model. This is because of the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your Amazon ECS resources might not be immediately visible to all subsequent commands you run. Keep this in mind when you carry out an API command that immediately follows a previous API command. To manage eventual consistency, you can do the following: Confirm the state of the resource before you run a command to modify it. Run the DescribeTasks command using an exponential backoff algorithm to ensure that you allow enough time for the previous command to propagate through the system. To do this, run the DescribeTasks command repeatedly, starting with a couple of seconds of wait time and increasing gradually up to five minutes of wait time. Add wait time between subsequent commands, even if the DescribeTasks command returns an accurate response. Apply an exponential backoff algorithm starting with a couple of seconds of wait time, and increase gradually up to about five minutes of wait time.
328
+ * Starts a new task using the specified task definition. You can allow Amazon ECS to place tasks for you, or you can customize how Amazon ECS places tasks using placement constraints and placement strategies. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide. Alternatively, you can use StartTask to use your own scheduler or place tasks manually on specific container instances. Starting April 15, 2023, Amazon Web Services will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service. The Amazon ECS API follows an eventual consistency model. This is because of the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your Amazon ECS resources might not be immediately visible to all subsequent commands you run. Keep this in mind when you carry out an API command that immediately follows a previous API command. To manage eventual consistency, you can do the following: Confirm the state of the resource before you run a command to modify it. Run the DescribeTasks command using an exponential backoff algorithm to ensure that you allow enough time for the previous command to propagate through the system. To do this, run the DescribeTasks command repeatedly, starting with a couple of seconds of wait time and increasing gradually up to five minutes of wait time. Add wait time between subsequent commands, even if the DescribeTasks command returns an accurate response. Apply an exponential backoff algorithm starting with a couple of seconds of wait time, and increase gradually up to about five minutes of wait time.
329
329
  */
330
330
  runTask(params: ECS.Types.RunTaskRequest, callback?: (err: AWSError, data: ECS.Types.RunTaskResponse) => void): Request<ECS.Types.RunTaskResponse, AWSError>;
331
331
  /**
332
- * Starts a new task using the specified task definition. You can allow Amazon ECS to place tasks for you, or you can customize how Amazon ECS places tasks using placement constraints and placement strategies. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide. Alternatively, you can use StartTask to use your own scheduler or place tasks manually on specific container instances. The Amazon ECS API follows an eventual consistency model. This is because of the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your Amazon ECS resources might not be immediately visible to all subsequent commands you run. Keep this in mind when you carry out an API command that immediately follows a previous API command. To manage eventual consistency, you can do the following: Confirm the state of the resource before you run a command to modify it. Run the DescribeTasks command using an exponential backoff algorithm to ensure that you allow enough time for the previous command to propagate through the system. To do this, run the DescribeTasks command repeatedly, starting with a couple of seconds of wait time and increasing gradually up to five minutes of wait time. Add wait time between subsequent commands, even if the DescribeTasks command returns an accurate response. Apply an exponential backoff algorithm starting with a couple of seconds of wait time, and increase gradually up to about five minutes of wait time.
332
+ * Starts a new task using the specified task definition. You can allow Amazon ECS to place tasks for you, or you can customize how Amazon ECS places tasks using placement constraints and placement strategies. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide. Alternatively, you can use StartTask to use your own scheduler or place tasks manually on specific container instances. Starting April 15, 2023, Amazon Web Services will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service. The Amazon ECS API follows an eventual consistency model. This is because of the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your Amazon ECS resources might not be immediately visible to all subsequent commands you run. Keep this in mind when you carry out an API command that immediately follows a previous API command. To manage eventual consistency, you can do the following: Confirm the state of the resource before you run a command to modify it. Run the DescribeTasks command using an exponential backoff algorithm to ensure that you allow enough time for the previous command to propagate through the system. To do this, run the DescribeTasks command repeatedly, starting with a couple of seconds of wait time and increasing gradually up to five minutes of wait time. Add wait time between subsequent commands, even if the DescribeTasks command returns an accurate response. Apply an exponential backoff algorithm starting with a couple of seconds of wait time, and increase gradually up to about five minutes of wait time.
333
333
  */
334
334
  runTask(callback?: (err: AWSError, data: ECS.Types.RunTaskResponse) => void): Request<ECS.Types.RunTaskResponse, AWSError>;
335
335
  /**
336
- * Starts a new task from the specified task definition on the specified container instance or instances. Alternatively, you can use RunTask to place tasks for you. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.
336
+ * Starts a new task from the specified task definition on the specified container instance or instances. Starting April 15, 2023, Amazon Web Services will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service. Alternatively, you can use RunTask to place tasks for you. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.
337
337
  */
338
338
  startTask(params: ECS.Types.StartTaskRequest, callback?: (err: AWSError, data: ECS.Types.StartTaskResponse) => void): Request<ECS.Types.StartTaskResponse, AWSError>;
339
339
  /**
340
- * Starts a new task from the specified task definition on the specified container instance or instances. Alternatively, you can use RunTask to place tasks for you. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.
340
+ * Starts a new task from the specified task definition on the specified container instance or instances. Starting April 15, 2023, Amazon Web Services will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service. Alternatively, you can use RunTask to place tasks for you. For more information, see Scheduling Tasks in the Amazon Elastic Container Service Developer Guide.
341
341
  */
342
342
  startTask(callback?: (err: AWSError, data: ECS.Types.StartTaskResponse) => void): Request<ECS.Types.StartTaskResponse, AWSError>;
343
343
  /**
@@ -2593,7 +2593,7 @@ declare namespace ECS {
2593
2593
  */
2594
2594
  status?: ManagedScalingStatus;
2595
2595
  /**
2596
- * The target capacity value for the capacity provider. The specified value must be greater than 0 and less than or equal to 100. A value of 100 results in the Amazon EC2 instances in your Auto Scaling group being completely used.
2596
+ * The target capacity utilization as a percentage for the capacity provider. The specified value must be greater than 0 and less than or equal to 100. For example, if you want the capacity provider to maintain 10% spare capacity, then that means the utilization is 90%, so use a targetCapacity of 90. The default value of 100 percent results in the Amazon EC2 instances in your Auto Scaling group being completely used.
2597
2597
  */
2598
2598
  targetCapacity?: ManagedScalingTargetCapacity;
2599
2599
  /**
@@ -3291,7 +3291,7 @@ declare namespace ECS {
3291
3291
  */
3292
3292
  portName: String;
3293
3293
  /**
3294
- * The discoveryName is the name of the new Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen. If this parameter isn't specified, the default value of discoveryName.namespace is used. If the discoveryName isn't specified, the port mapping name from the task definition is used in portName.namespace.
3294
+ * The discoveryName is the name of the new Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen. If the discoveryName isn't specified, the port mapping name from the task definition is used in portName.namespace.
3295
3295
  */
3296
3296
  discoveryName?: String;
3297
3297
  /**
@@ -3306,7 +3306,7 @@ declare namespace ECS {
3306
3306
  export type ServiceConnectServiceList = ServiceConnectService[];
3307
3307
  export interface ServiceConnectServiceResource {
3308
3308
  /**
3309
- * The discovery name of this Service Connect resource. The discoveryName is the name of the new Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen. If this parameter isn't specified, the default value of discoveryName.namespace is used. If the discoveryName isn't specified, the port mapping name from the task definition is used in portName.namespace.
3309
+ * The discovery name of this Service Connect resource. The discoveryName is the name of the new Cloud Map service that Amazon ECS creates for this Amazon ECS service. This must be unique within the Cloud Map namespace. The name can contain up to 64 characters. The name can include lowercase letters, numbers, underscores (_), and hyphens (-). The name can't start with a hyphen. If the discoveryName isn't specified, the port mapping name from the task definition is used in portName.namespace.
3310
3310
  */
3311
3311
  discoveryName?: String;
3312
3312
  /**
@@ -3810,7 +3810,7 @@ declare namespace ECS {
3810
3810
  */
3811
3811
  runtimePlatform?: RuntimePlatform;
3812
3812
  /**
3813
- * The task launch types the task definition was validated against. To determine which task launch types the task definition is validated for, see the TaskDefinition$compatibilities parameter.
3813
+ * The task launch types the task definition was validated against. For more information, see Amazon ECS launch types in the Amazon Elastic Container Service Developer Guide.
3814
3814
  */
3815
3815
  requiresCompatibilities?: CompatibilityList;
3816
3816
  /**
@@ -12,51 +12,51 @@ declare class ElasticInference extends Service {
12
12
  constructor(options?: ElasticInference.Types.ClientConfiguration)
13
13
  config: Config & ElasticInference.Types.ClientConfiguration;
14
14
  /**
15
- * Describes the locations in which a given accelerator type or set of types is present in a given region.
15
+ * Describes the locations in which a given accelerator type or set of types is present in a given region. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
16
16
  */
17
17
  describeAcceleratorOfferings(params: ElasticInference.Types.DescribeAcceleratorOfferingsRequest, callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorOfferingsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorOfferingsResponse, AWSError>;
18
18
  /**
19
- * Describes the locations in which a given accelerator type or set of types is present in a given region.
19
+ * Describes the locations in which a given accelerator type or set of types is present in a given region. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
20
20
  */
21
21
  describeAcceleratorOfferings(callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorOfferingsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorOfferingsResponse, AWSError>;
22
22
  /**
23
- * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput.
23
+ * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
24
24
  */
25
25
  describeAcceleratorTypes(params: ElasticInference.Types.DescribeAcceleratorTypesRequest, callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorTypesResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorTypesResponse, AWSError>;
26
26
  /**
27
- * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput.
27
+ * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
28
28
  */
29
29
  describeAcceleratorTypes(callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorTypesResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorTypesResponse, AWSError>;
30
30
  /**
31
- * Describes information over a provided set of accelerators belonging to an account.
31
+ * Describes information over a provided set of accelerators belonging to an account. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
32
32
  */
33
33
  describeAccelerators(params: ElasticInference.Types.DescribeAcceleratorsRequest, callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorsResponse, AWSError>;
34
34
  /**
35
- * Describes information over a provided set of accelerators belonging to an account.
35
+ * Describes information over a provided set of accelerators belonging to an account. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
36
36
  */
37
37
  describeAccelerators(callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorsResponse, AWSError>;
38
38
  /**
39
- * Returns all tags of an Elastic Inference Accelerator.
39
+ * Returns all tags of an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
40
40
  */
41
41
  listTagsForResource(params: ElasticInference.Types.ListTagsForResourceRequest, callback?: (err: AWSError, data: ElasticInference.Types.ListTagsForResourceResult) => void): Request<ElasticInference.Types.ListTagsForResourceResult, AWSError>;
42
42
  /**
43
- * Returns all tags of an Elastic Inference Accelerator.
43
+ * Returns all tags of an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
44
44
  */
45
45
  listTagsForResource(callback?: (err: AWSError, data: ElasticInference.Types.ListTagsForResourceResult) => void): Request<ElasticInference.Types.ListTagsForResourceResult, AWSError>;
46
46
  /**
47
- * Adds the specified tags to an Elastic Inference Accelerator.
47
+ * Adds the specified tags to an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
48
48
  */
49
49
  tagResource(params: ElasticInference.Types.TagResourceRequest, callback?: (err: AWSError, data: ElasticInference.Types.TagResourceResult) => void): Request<ElasticInference.Types.TagResourceResult, AWSError>;
50
50
  /**
51
- * Adds the specified tags to an Elastic Inference Accelerator.
51
+ * Adds the specified tags to an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
52
52
  */
53
53
  tagResource(callback?: (err: AWSError, data: ElasticInference.Types.TagResourceResult) => void): Request<ElasticInference.Types.TagResourceResult, AWSError>;
54
54
  /**
55
- * Removes the specified tags from an Elastic Inference Accelerator.
55
+ * Removes the specified tags from an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
56
56
  */
57
57
  untagResource(params: ElasticInference.Types.UntagResourceRequest, callback?: (err: AWSError, data: ElasticInference.Types.UntagResourceResult) => void): Request<ElasticInference.Types.UntagResourceResult, AWSError>;
58
58
  /**
59
- * Removes the specified tags from an Elastic Inference Accelerator.
59
+ * Removes the specified tags from an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
60
60
  */
61
61
  untagResource(callback?: (err: AWSError, data: ElasticInference.Types.UntagResourceResult) => void): Request<ElasticInference.Types.UntagResourceResult, AWSError>;
62
62
  }