cdk-comprehend-s3olap 2.0.115 → 2.0.116

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -9,6 +9,7 @@ Object.defineProperty(apiLoader.services['amplifyuibuilder'], '2021-08-11', {
9
9
  get: function get() {
10
10
  var model = require('../apis/amplifyuibuilder-2021-08-11.min.json');
11
11
  model.paginators = require('../apis/amplifyuibuilder-2021-08-11.paginators.json').pagination;
12
+ model.waiters = require('../apis/amplifyuibuilder-2021-08-11.waiters2.json').waiters;
12
13
  return model;
13
14
  },
14
15
  enumerable: true,
@@ -20,27 +20,27 @@ declare class AutoScaling extends Service {
20
20
  */
21
21
  attachInstances(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
22
22
  /**
23
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancerTargetGroups, and you can use both the original AttachLoadBalancerTargetGroups API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
23
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancerTargetGroups. You can use both the original AttachLoadBalancerTargetGroups API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
24
24
  */
25
25
  attachLoadBalancerTargetGroups(params: AutoScaling.Types.AttachLoadBalancerTargetGroupsType, callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType, AWSError>;
26
26
  /**
27
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancerTargetGroups, and you can use both the original AttachLoadBalancerTargetGroups API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
27
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancerTargetGroups. You can use both the original AttachLoadBalancerTargetGroups API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more target groups to the specified Auto Scaling group. This operation is used with the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). To describe the target groups for an Auto Scaling group, call the DescribeLoadBalancerTargetGroups API. To detach the target group from the Auto Scaling group, call the DetachLoadBalancerTargetGroups API. This operation is additive and does not detach existing target groups or Classic Load Balancers from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
28
28
  */
29
29
  attachLoadBalancerTargetGroups(callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.AttachLoadBalancerTargetGroupsResultType, AWSError>;
30
30
  /**
31
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancers, and you can use both the original AttachLoadBalancers API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
31
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancers. You can use both the original AttachLoadBalancers API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
32
32
  */
33
33
  attachLoadBalancers(params: AutoScaling.Types.AttachLoadBalancersType, callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancersResultType) => void): Request<AutoScaling.Types.AttachLoadBalancersResultType, AWSError>;
34
34
  /**
35
- * This API call has been replaced with a new "traffic sources" API call (AttachTrafficSources) that can attach multiple traffic sources types. While we continue to support AttachLoadBalancers, and you can use both the original AttachLoadBalancers API call and the new AttachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
35
+ * This API operation is superseded by AttachTrafficSources, which can attach multiple traffic sources types. We recommend using AttachTrafficSources to simplify how you manage traffic sources. However, we continue to support AttachLoadBalancers. You can use both the original AttachLoadBalancers API operation and AttachTrafficSources on the same Auto Scaling group. Attaches one or more Classic Load Balancers to the specified Auto Scaling group. Amazon EC2 Auto Scaling registers the running instances with these Classic Load Balancers. To describe the load balancers for an Auto Scaling group, call the DescribeLoadBalancers API. To detach a load balancer from the Auto Scaling group, call the DetachLoadBalancers API. This operation is additive and does not detach existing Classic Load Balancers or target groups from the Auto Scaling group. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
36
36
  */
37
37
  attachLoadBalancers(callback?: (err: AWSError, data: AutoScaling.Types.AttachLoadBalancersResultType) => void): Request<AutoScaling.Types.AttachLoadBalancersResultType, AWSError>;
38
38
  /**
39
- * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Network Load Balancer Gateway Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
39
+ * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Gateway Load Balancer Network Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
40
40
  */
41
41
  attachTrafficSources(params: AutoScaling.Types.AttachTrafficSourcesType, callback?: (err: AWSError, data: AutoScaling.Types.AttachTrafficSourcesResultType) => void): Request<AutoScaling.Types.AttachTrafficSourcesResultType, AWSError>;
42
42
  /**
43
- * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Network Load Balancer Gateway Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
43
+ * Attaches one or more traffic sources to the specified Auto Scaling group. You can use any of the following as traffic sources for an Auto Scaling group: Application Load Balancer Classic Load Balancer Gateway Load Balancer Network Load Balancer VPC Lattice This operation is additive and does not detach existing traffic sources from the Auto Scaling group. After the operation completes, use the DescribeTrafficSources API to return details about the state of the attachments between traffic sources and your Auto Scaling group. To detach a traffic source from the Auto Scaling group, call the DetachTrafficSources API.
44
44
  */
45
45
  attachTrafficSources(callback?: (err: AWSError, data: AutoScaling.Types.AttachTrafficSourcesResultType) => void): Request<AutoScaling.Types.AttachTrafficSourcesResultType, AWSError>;
46
46
  /**
@@ -220,19 +220,19 @@ declare class AutoScaling extends Service {
220
220
  */
221
221
  describeLifecycleHooks(callback?: (err: AWSError, data: AutoScaling.Types.DescribeLifecycleHooksAnswer) => void): Request<AutoScaling.Types.DescribeLifecycleHooksAnswer, AWSError>;
222
222
  /**
223
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancerTargetGroups, and you can use both the original DescribeLoadBalancerTargetGroups API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
223
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancerTargetGroups. You can use both the original DescribeLoadBalancerTargetGroups API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
224
224
  */
225
225
  describeLoadBalancerTargetGroups(params: AutoScaling.Types.DescribeLoadBalancerTargetGroupsRequest, callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse, AWSError>;
226
226
  /**
227
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancerTargetGroups, and you can use both the original DescribeLoadBalancerTargetGroups API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
227
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancerTargetGroups. You can use both the original DescribeLoadBalancerTargetGroups API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the Elastic Load Balancing target groups for the specified Auto Scaling group. To determine the attachment status of the target group, use the State element in the response. When you attach a target group to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the target group. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the target group is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the target group doesn't enter the InService state. Target groups also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your target group state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide. You can use this operation to describe target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
228
228
  */
229
229
  describeLoadBalancerTargetGroups(callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancerTargetGroupsResponse, AWSError>;
230
230
  /**
231
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancers, and you can use both the original DescribeLoadBalancers API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
231
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DescribeTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancers. You can use both the original DescribeLoadBalancers API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
232
232
  */
233
233
  describeLoadBalancers(params: AutoScaling.Types.DescribeLoadBalancersRequest, callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancersResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancersResponse, AWSError>;
234
234
  /**
235
- * This API call has been replaced with a new "traffic sources" API call (DescribeTrafficSources) that can describe multiple traffic sources types. While we continue to support DescribeLoadBalancers, and you can use both the original DescribeLoadBalancers API call and the new DescribeTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
235
+ * This API operation is superseded by DescribeTrafficSources, which can describe multiple traffic sources types. We recommend using DescribeTrafficSources to simplify how you manage traffic sources. However, we continue to support DescribeLoadBalancers. You can use both the original DescribeLoadBalancers API operation and DescribeTrafficSources on the same Auto Scaling group. Gets information about the load balancers for the specified Auto Scaling group. This operation describes only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DescribeLoadBalancerTargetGroups API instead. To determine the attachment status of the load balancer, use the State element in the response. When you attach a load balancer to an Auto Scaling group, the initial State value is Adding. The state transitions to Added after all Auto Scaling instances are registered with the load balancer. If Elastic Load Balancing health checks are enabled for the Auto Scaling group, the state transitions to InService after at least one Auto Scaling instance passes the health check. When the load balancer is in the InService state, Amazon EC2 Auto Scaling can terminate and replace any instances that are reported as unhealthy. If no registered instances pass the health checks, the load balancer doesn't enter the InService state. Load balancers also have an InService state if you attach them in the CreateAutoScalingGroup API call. If your load balancer state is InService, but it is not working properly, check the scaling activities by calling DescribeScalingActivities and take any corrective actions necessary. For help with failed health checks, see Troubleshooting Amazon EC2 Auto Scaling: Health checks in the Amazon EC2 Auto Scaling User Guide. For more information, see Use Elastic Load Balancing to distribute traffic across the instances in your Auto Scaling group in the Amazon EC2 Auto Scaling User Guide.
236
236
  */
237
237
  describeLoadBalancers(callback?: (err: AWSError, data: AutoScaling.Types.DescribeLoadBalancersResponse) => void): Request<AutoScaling.Types.DescribeLoadBalancersResponse, AWSError>;
238
238
  /**
@@ -312,19 +312,19 @@ declare class AutoScaling extends Service {
312
312
  */
313
313
  detachInstances(callback?: (err: AWSError, data: AutoScaling.Types.DetachInstancesAnswer) => void): Request<AutoScaling.Types.DetachInstancesAnswer, AWSError>;
314
314
  /**
315
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancerTargetGroups, and you can use both the original DetachLoadBalancerTargetGroups API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
315
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancerTargetGroups. You can use both the original DetachLoadBalancerTargetGroups API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
316
316
  */
317
317
  detachLoadBalancerTargetGroups(params: AutoScaling.Types.DetachLoadBalancerTargetGroupsType, callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType, AWSError>;
318
318
  /**
319
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancerTargetGroups, and you can use both the original DetachLoadBalancerTargetGroups API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
319
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancerTargetGroups. You can use both the original DetachLoadBalancerTargetGroups API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more target groups from the specified Auto Scaling group. When you detach a target group, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the target group using the DescribeLoadBalancerTargetGroups API call. The instances remain running. You can use this operation to detach target groups that were attached by using AttachLoadBalancerTargetGroups, but not for target groups that were attached by using AttachTrafficSources.
320
320
  */
321
321
  detachLoadBalancerTargetGroups(callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType) => void): Request<AutoScaling.Types.DetachLoadBalancerTargetGroupsResultType, AWSError>;
322
322
  /**
323
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancers, and you can use both the original DetachLoadBalancers API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
323
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancers. You can use both the original DetachLoadBalancers API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
324
324
  */
325
325
  detachLoadBalancers(params: AutoScaling.Types.DetachLoadBalancersType, callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancersResultType) => void): Request<AutoScaling.Types.DetachLoadBalancersResultType, AWSError>;
326
326
  /**
327
- * This API call has been replaced with a new "traffic sources" API call (DetachTrafficSources) that can detach multiple traffic sources types. While we continue to support DetachLoadBalancers, and you can use both the original DetachLoadBalancers API call and the new DetachTrafficSources API call on the same Auto Scaling group, we recommend using the new "traffic sources" API call to simplify how you manage traffic sources. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
327
+ * This API operation is superseded by DetachTrafficSources, which can detach multiple traffic sources types. We recommend using DetachTrafficSources to simplify how you manage traffic sources. However, we continue to support DetachLoadBalancers. You can use both the original DetachLoadBalancers API operation and DetachTrafficSources on the same Auto Scaling group. Detaches one or more Classic Load Balancers from the specified Auto Scaling group. This operation detaches only Classic Load Balancers. If you have Application Load Balancers, Network Load Balancers, or Gateway Load Balancers, use the DetachLoadBalancerTargetGroups API instead. When you detach a load balancer, it enters the Removing state while deregistering the instances in the group. When all instances are deregistered, then you can no longer describe the load balancer using the DescribeLoadBalancers API call. The instances remain running.
328
328
  */
329
329
  detachLoadBalancers(callback?: (err: AWSError, data: AutoScaling.Types.DetachLoadBalancersResultType) => void): Request<AutoScaling.Types.DetachLoadBalancersResultType, AWSError>;
330
330
  /**
@@ -722,7 +722,7 @@ declare namespace AutoScaling {
722
722
  */
723
723
  TargetGroupARNs?: TargetGroupARNs;
724
724
  /**
725
- * A comma-separated list of one or more health check types.
725
+ * A comma-separated value string of one or more health check types.
726
726
  */
727
727
  HealthCheckType: XmlStringMaxLen32;
728
728
  /**
@@ -1069,7 +1069,7 @@ declare namespace AutoScaling {
1069
1069
  */
1070
1070
  TargetGroupARNs?: TargetGroupARNs;
1071
1071
  /**
1072
- * A comma-separated list of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide.
1072
+ * A comma-separated value string of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide. Only specify EC2 if you must clear a value that was previously set.
1073
1073
  */
1074
1074
  HealthCheckType?: XmlStringMaxLen32;
1075
1075
  /**
@@ -1694,7 +1694,7 @@ declare namespace AutoScaling {
1694
1694
  */
1695
1695
  AutoScalingGroupName: XmlStringMaxLen255;
1696
1696
  /**
1697
- * The unique identifiers of one or more traffic sources you are detaching. You can specify up to 10 traffic sources.
1697
+ * The unique identifiers of one or more traffic sources. You can specify up to 10 traffic sources.
1698
1698
  */
1699
1699
  TrafficSources: TrafficSources;
1700
1700
  }
@@ -3515,7 +3515,7 @@ declare namespace AutoScaling {
3515
3515
  */
3516
3516
  AvailabilityZones?: AvailabilityZones;
3517
3517
  /**
3518
- * A comma-separated list of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide.
3518
+ * A comma-separated value string of one or more health check types. The valid values are EC2, ELB, and VPC_LATTICE. EC2 is the default health check and cannot be disabled. For more information, see Health checks for Auto Scaling instances in the Amazon EC2 Auto Scaling User Guide. Only specify EC2 if you must clear a value that was previously set.
3519
3519
  */
3520
3520
  HealthCheckType?: XmlStringMaxLen32;
3521
3521
  /**
@@ -23962,7 +23962,7 @@ declare namespace EC2 {
23962
23962
  */
23963
23963
  IncludeAllTagsOfInstance?: Boolean;
23964
23964
  }
23965
- export type InstanceType = "a1.medium"|"a1.large"|"a1.xlarge"|"a1.2xlarge"|"a1.4xlarge"|"a1.metal"|"c1.medium"|"c1.xlarge"|"c3.large"|"c3.xlarge"|"c3.2xlarge"|"c3.4xlarge"|"c3.8xlarge"|"c4.large"|"c4.xlarge"|"c4.2xlarge"|"c4.4xlarge"|"c4.8xlarge"|"c5.large"|"c5.xlarge"|"c5.2xlarge"|"c5.4xlarge"|"c5.9xlarge"|"c5.12xlarge"|"c5.18xlarge"|"c5.24xlarge"|"c5.metal"|"c5a.large"|"c5a.xlarge"|"c5a.2xlarge"|"c5a.4xlarge"|"c5a.8xlarge"|"c5a.12xlarge"|"c5a.16xlarge"|"c5a.24xlarge"|"c5ad.large"|"c5ad.xlarge"|"c5ad.2xlarge"|"c5ad.4xlarge"|"c5ad.8xlarge"|"c5ad.12xlarge"|"c5ad.16xlarge"|"c5ad.24xlarge"|"c5d.large"|"c5d.xlarge"|"c5d.2xlarge"|"c5d.4xlarge"|"c5d.9xlarge"|"c5d.12xlarge"|"c5d.18xlarge"|"c5d.24xlarge"|"c5d.metal"|"c5n.large"|"c5n.xlarge"|"c5n.2xlarge"|"c5n.4xlarge"|"c5n.9xlarge"|"c5n.18xlarge"|"c5n.metal"|"c6g.medium"|"c6g.large"|"c6g.xlarge"|"c6g.2xlarge"|"c6g.4xlarge"|"c6g.8xlarge"|"c6g.12xlarge"|"c6g.16xlarge"|"c6g.metal"|"c6gd.medium"|"c6gd.large"|"c6gd.xlarge"|"c6gd.2xlarge"|"c6gd.4xlarge"|"c6gd.8xlarge"|"c6gd.12xlarge"|"c6gd.16xlarge"|"c6gd.metal"|"c6gn.medium"|"c6gn.large"|"c6gn.xlarge"|"c6gn.2xlarge"|"c6gn.4xlarge"|"c6gn.8xlarge"|"c6gn.12xlarge"|"c6gn.16xlarge"|"c6i.large"|"c6i.xlarge"|"c6i.2xlarge"|"c6i.4xlarge"|"c6i.8xlarge"|"c6i.12xlarge"|"c6i.16xlarge"|"c6i.24xlarge"|"c6i.32xlarge"|"c6i.metal"|"cc1.4xlarge"|"cc2.8xlarge"|"cg1.4xlarge"|"cr1.8xlarge"|"d2.xlarge"|"d2.2xlarge"|"d2.4xlarge"|"d2.8xlarge"|"d3.xlarge"|"d3.2xlarge"|"d3.4xlarge"|"d3.8xlarge"|"d3en.xlarge"|"d3en.2xlarge"|"d3en.4xlarge"|"d3en.6xlarge"|"d3en.8xlarge"|"d3en.12xlarge"|"dl1.24xlarge"|"f1.2xlarge"|"f1.4xlarge"|"f1.16xlarge"|"g2.2xlarge"|"g2.8xlarge"|"g3.4xlarge"|"g3.8xlarge"|"g3.16xlarge"|"g3s.xlarge"|"g4ad.xlarge"|"g4ad.2xlarge"|"g4ad.4xlarge"|"g4ad.8xlarge"|"g4ad.16xlarge"|"g4dn.xlarge"|"g4dn.2xlarge"|"g4dn.4xlarge"|"g4dn.8xlarge"|"g4dn.12xlarge"|"g4dn.16xlarge"|"g4dn.metal"|"g5.xlarge"|"g5.2xlarge"|"g5.4xlarge"|"g5.8xlarge"|"g5.12xlarge"|"g5.16xlarge"|"g5.24xlarge"|"g5.48xlarge"|"g5g.xlarge"|"g5g.2xlarge"|"g5g.4xlarge"|"g5g.8xlarge"|"g5g.16xlarge"|"g5g.metal"|"hi1.4xlarge"|"hpc6a.48xlarge"|"hs1.8xlarge"|"h1.2xlarge"|"h1.4xlarge"|"h1.8xlarge"|"h1.16xlarge"|"i2.xlarge"|"i2.2xlarge"|"i2.4xlarge"|"i2.8xlarge"|"i3.large"|"i3.xlarge"|"i3.2xlarge"|"i3.4xlarge"|"i3.8xlarge"|"i3.16xlarge"|"i3.metal"|"i3en.large"|"i3en.xlarge"|"i3en.2xlarge"|"i3en.3xlarge"|"i3en.6xlarge"|"i3en.12xlarge"|"i3en.24xlarge"|"i3en.metal"|"im4gn.large"|"im4gn.xlarge"|"im4gn.2xlarge"|"im4gn.4xlarge"|"im4gn.8xlarge"|"im4gn.16xlarge"|"inf1.xlarge"|"inf1.2xlarge"|"inf1.6xlarge"|"inf1.24xlarge"|"is4gen.medium"|"is4gen.large"|"is4gen.xlarge"|"is4gen.2xlarge"|"is4gen.4xlarge"|"is4gen.8xlarge"|"m1.small"|"m1.medium"|"m1.large"|"m1.xlarge"|"m2.xlarge"|"m2.2xlarge"|"m2.4xlarge"|"m3.medium"|"m3.large"|"m3.xlarge"|"m3.2xlarge"|"m4.large"|"m4.xlarge"|"m4.2xlarge"|"m4.4xlarge"|"m4.10xlarge"|"m4.16xlarge"|"m5.large"|"m5.xlarge"|"m5.2xlarge"|"m5.4xlarge"|"m5.8xlarge"|"m5.12xlarge"|"m5.16xlarge"|"m5.24xlarge"|"m5.metal"|"m5a.large"|"m5a.xlarge"|"m5a.2xlarge"|"m5a.4xlarge"|"m5a.8xlarge"|"m5a.12xlarge"|"m5a.16xlarge"|"m5a.24xlarge"|"m5ad.large"|"m5ad.xlarge"|"m5ad.2xlarge"|"m5ad.4xlarge"|"m5ad.8xlarge"|"m5ad.12xlarge"|"m5ad.16xlarge"|"m5ad.24xlarge"|"m5d.large"|"m5d.xlarge"|"m5d.2xlarge"|"m5d.4xlarge"|"m5d.8xlarge"|"m5d.12xlarge"|"m5d.16xlarge"|"m5d.24xlarge"|"m5d.metal"|"m5dn.large"|"m5dn.xlarge"|"m5dn.2xlarge"|"m5dn.4xlarge"|"m5dn.8xlarge"|"m5dn.12xlarge"|"m5dn.16xlarge"|"m5dn.24xlarge"|"m5dn.metal"|"m5n.large"|"m5n.xlarge"|"m5n.2xlarge"|"m5n.4xlarge"|"m5n.8xlarge"|"m5n.12xlarge"|"m5n.16xlarge"|"m5n.24xlarge"|"m5n.metal"|"m5zn.large"|"m5zn.xlarge"|"m5zn.2xlarge"|"m5zn.3xlarge"|"m5zn.6xlarge"|"m5zn.12xlarge"|"m5zn.metal"|"m6a.large"|"m6a.xlarge"|"m6a.2xlarge"|"m6a.4xlarge"|"m6a.8xlarge"|"m6a.12xlarge"|"m6a.16xlarge"|"m6a.24xlarge"|"m6a.32xlarge"|"m6a.48xlarge"|"m6g.metal"|"m6g.medium"|"m6g.large"|"m6g.xlarge"|"m6g.2xlarge"|"m6g.4xlarge"|"m6g.8xlarge"|"m6g.12xlarge"|"m6g.16xlarge"|"m6gd.metal"|"m6gd.medium"|"m6gd.large"|"m6gd.xlarge"|"m6gd.2xlarge"|"m6gd.4xlarge"|"m6gd.8xlarge"|"m6gd.12xlarge"|"m6gd.16xlarge"|"m6i.large"|"m6i.xlarge"|"m6i.2xlarge"|"m6i.4xlarge"|"m6i.8xlarge"|"m6i.12xlarge"|"m6i.16xlarge"|"m6i.24xlarge"|"m6i.32xlarge"|"m6i.metal"|"mac1.metal"|"p2.xlarge"|"p2.8xlarge"|"p2.16xlarge"|"p3.2xlarge"|"p3.8xlarge"|"p3.16xlarge"|"p3dn.24xlarge"|"p4d.24xlarge"|"r3.large"|"r3.xlarge"|"r3.2xlarge"|"r3.4xlarge"|"r3.8xlarge"|"r4.large"|"r4.xlarge"|"r4.2xlarge"|"r4.4xlarge"|"r4.8xlarge"|"r4.16xlarge"|"r5.large"|"r5.xlarge"|"r5.2xlarge"|"r5.4xlarge"|"r5.8xlarge"|"r5.12xlarge"|"r5.16xlarge"|"r5.24xlarge"|"r5.metal"|"r5a.large"|"r5a.xlarge"|"r5a.2xlarge"|"r5a.4xlarge"|"r5a.8xlarge"|"r5a.12xlarge"|"r5a.16xlarge"|"r5a.24xlarge"|"r5ad.large"|"r5ad.xlarge"|"r5ad.2xlarge"|"r5ad.4xlarge"|"r5ad.8xlarge"|"r5ad.12xlarge"|"r5ad.16xlarge"|"r5ad.24xlarge"|"r5b.large"|"r5b.xlarge"|"r5b.2xlarge"|"r5b.4xlarge"|"r5b.8xlarge"|"r5b.12xlarge"|"r5b.16xlarge"|"r5b.24xlarge"|"r5b.metal"|"r5d.large"|"r5d.xlarge"|"r5d.2xlarge"|"r5d.4xlarge"|"r5d.8xlarge"|"r5d.12xlarge"|"r5d.16xlarge"|"r5d.24xlarge"|"r5d.metal"|"r5dn.large"|"r5dn.xlarge"|"r5dn.2xlarge"|"r5dn.4xlarge"|"r5dn.8xlarge"|"r5dn.12xlarge"|"r5dn.16xlarge"|"r5dn.24xlarge"|"r5dn.metal"|"r5n.large"|"r5n.xlarge"|"r5n.2xlarge"|"r5n.4xlarge"|"r5n.8xlarge"|"r5n.12xlarge"|"r5n.16xlarge"|"r5n.24xlarge"|"r5n.metal"|"r6g.medium"|"r6g.large"|"r6g.xlarge"|"r6g.2xlarge"|"r6g.4xlarge"|"r6g.8xlarge"|"r6g.12xlarge"|"r6g.16xlarge"|"r6g.metal"|"r6gd.medium"|"r6gd.large"|"r6gd.xlarge"|"r6gd.2xlarge"|"r6gd.4xlarge"|"r6gd.8xlarge"|"r6gd.12xlarge"|"r6gd.16xlarge"|"r6gd.metal"|"r6i.large"|"r6i.xlarge"|"r6i.2xlarge"|"r6i.4xlarge"|"r6i.8xlarge"|"r6i.12xlarge"|"r6i.16xlarge"|"r6i.24xlarge"|"r6i.32xlarge"|"r6i.metal"|"t1.micro"|"t2.nano"|"t2.micro"|"t2.small"|"t2.medium"|"t2.large"|"t2.xlarge"|"t2.2xlarge"|"t3.nano"|"t3.micro"|"t3.small"|"t3.medium"|"t3.large"|"t3.xlarge"|"t3.2xlarge"|"t3a.nano"|"t3a.micro"|"t3a.small"|"t3a.medium"|"t3a.large"|"t3a.xlarge"|"t3a.2xlarge"|"t4g.nano"|"t4g.micro"|"t4g.small"|"t4g.medium"|"t4g.large"|"t4g.xlarge"|"t4g.2xlarge"|"u-6tb1.56xlarge"|"u-6tb1.112xlarge"|"u-9tb1.112xlarge"|"u-12tb1.112xlarge"|"u-6tb1.metal"|"u-9tb1.metal"|"u-12tb1.metal"|"u-18tb1.metal"|"u-24tb1.metal"|"vt1.3xlarge"|"vt1.6xlarge"|"vt1.24xlarge"|"x1.16xlarge"|"x1.32xlarge"|"x1e.xlarge"|"x1e.2xlarge"|"x1e.4xlarge"|"x1e.8xlarge"|"x1e.16xlarge"|"x1e.32xlarge"|"x2iezn.2xlarge"|"x2iezn.4xlarge"|"x2iezn.6xlarge"|"x2iezn.8xlarge"|"x2iezn.12xlarge"|"x2iezn.metal"|"x2gd.medium"|"x2gd.large"|"x2gd.xlarge"|"x2gd.2xlarge"|"x2gd.4xlarge"|"x2gd.8xlarge"|"x2gd.12xlarge"|"x2gd.16xlarge"|"x2gd.metal"|"z1d.large"|"z1d.xlarge"|"z1d.2xlarge"|"z1d.3xlarge"|"z1d.6xlarge"|"z1d.12xlarge"|"z1d.metal"|"x2idn.16xlarge"|"x2idn.24xlarge"|"x2idn.32xlarge"|"x2iedn.xlarge"|"x2iedn.2xlarge"|"x2iedn.4xlarge"|"x2iedn.8xlarge"|"x2iedn.16xlarge"|"x2iedn.24xlarge"|"x2iedn.32xlarge"|"c6a.large"|"c6a.xlarge"|"c6a.2xlarge"|"c6a.4xlarge"|"c6a.8xlarge"|"c6a.12xlarge"|"c6a.16xlarge"|"c6a.24xlarge"|"c6a.32xlarge"|"c6a.48xlarge"|"c6a.metal"|"m6a.metal"|"i4i.large"|"i4i.xlarge"|"i4i.2xlarge"|"i4i.4xlarge"|"i4i.8xlarge"|"i4i.16xlarge"|"i4i.32xlarge"|"i4i.metal"|"x2idn.metal"|"x2iedn.metal"|"c7g.medium"|"c7g.large"|"c7g.xlarge"|"c7g.2xlarge"|"c7g.4xlarge"|"c7g.8xlarge"|"c7g.12xlarge"|"c7g.16xlarge"|"mac2.metal"|"c6id.large"|"c6id.xlarge"|"c6id.2xlarge"|"c6id.4xlarge"|"c6id.8xlarge"|"c6id.12xlarge"|"c6id.16xlarge"|"c6id.24xlarge"|"c6id.32xlarge"|"c6id.metal"|"m6id.large"|"m6id.xlarge"|"m6id.2xlarge"|"m6id.4xlarge"|"m6id.8xlarge"|"m6id.12xlarge"|"m6id.16xlarge"|"m6id.24xlarge"|"m6id.32xlarge"|"m6id.metal"|"r6id.large"|"r6id.xlarge"|"r6id.2xlarge"|"r6id.4xlarge"|"r6id.8xlarge"|"r6id.12xlarge"|"r6id.16xlarge"|"r6id.24xlarge"|"r6id.32xlarge"|"r6id.metal"|"r6a.large"|"r6a.xlarge"|"r6a.2xlarge"|"r6a.4xlarge"|"r6a.8xlarge"|"r6a.12xlarge"|"r6a.16xlarge"|"r6a.24xlarge"|"r6a.32xlarge"|"r6a.48xlarge"|"r6a.metal"|"p4de.24xlarge"|"u-3tb1.56xlarge"|"u-18tb1.112xlarge"|"u-24tb1.112xlarge"|"trn1.2xlarge"|"trn1.32xlarge"|"hpc6id.32xlarge"|"c6in.large"|"c6in.xlarge"|"c6in.2xlarge"|"c6in.4xlarge"|"c6in.8xlarge"|"c6in.12xlarge"|"c6in.16xlarge"|"c6in.24xlarge"|"c6in.32xlarge"|"m6in.large"|"m6in.xlarge"|"m6in.2xlarge"|"m6in.4xlarge"|"m6in.8xlarge"|"m6in.12xlarge"|"m6in.16xlarge"|"m6in.24xlarge"|"m6in.32xlarge"|"m6idn.large"|"m6idn.xlarge"|"m6idn.2xlarge"|"m6idn.4xlarge"|"m6idn.8xlarge"|"m6idn.12xlarge"|"m6idn.16xlarge"|"m6idn.24xlarge"|"m6idn.32xlarge"|"r6in.large"|"r6in.xlarge"|"r6in.2xlarge"|"r6in.4xlarge"|"r6in.8xlarge"|"r6in.12xlarge"|"r6in.16xlarge"|"r6in.24xlarge"|"r6in.32xlarge"|"r6idn.large"|"r6idn.xlarge"|"r6idn.2xlarge"|"r6idn.4xlarge"|"r6idn.8xlarge"|"r6idn.12xlarge"|"r6idn.16xlarge"|"r6idn.24xlarge"|"r6idn.32xlarge"|"c7g.metal"|"m7g.medium"|"m7g.large"|"m7g.xlarge"|"m7g.2xlarge"|"m7g.4xlarge"|"m7g.8xlarge"|"m7g.12xlarge"|"m7g.16xlarge"|"m7g.metal"|"r7g.medium"|"r7g.large"|"r7g.xlarge"|"r7g.2xlarge"|"r7g.4xlarge"|"r7g.8xlarge"|"r7g.12xlarge"|"r7g.16xlarge"|"r7g.metal"|string;
23965
+ export type InstanceType = "a1.medium"|"a1.large"|"a1.xlarge"|"a1.2xlarge"|"a1.4xlarge"|"a1.metal"|"c1.medium"|"c1.xlarge"|"c3.large"|"c3.xlarge"|"c3.2xlarge"|"c3.4xlarge"|"c3.8xlarge"|"c4.large"|"c4.xlarge"|"c4.2xlarge"|"c4.4xlarge"|"c4.8xlarge"|"c5.large"|"c5.xlarge"|"c5.2xlarge"|"c5.4xlarge"|"c5.9xlarge"|"c5.12xlarge"|"c5.18xlarge"|"c5.24xlarge"|"c5.metal"|"c5a.large"|"c5a.xlarge"|"c5a.2xlarge"|"c5a.4xlarge"|"c5a.8xlarge"|"c5a.12xlarge"|"c5a.16xlarge"|"c5a.24xlarge"|"c5ad.large"|"c5ad.xlarge"|"c5ad.2xlarge"|"c5ad.4xlarge"|"c5ad.8xlarge"|"c5ad.12xlarge"|"c5ad.16xlarge"|"c5ad.24xlarge"|"c5d.large"|"c5d.xlarge"|"c5d.2xlarge"|"c5d.4xlarge"|"c5d.9xlarge"|"c5d.12xlarge"|"c5d.18xlarge"|"c5d.24xlarge"|"c5d.metal"|"c5n.large"|"c5n.xlarge"|"c5n.2xlarge"|"c5n.4xlarge"|"c5n.9xlarge"|"c5n.18xlarge"|"c5n.metal"|"c6g.medium"|"c6g.large"|"c6g.xlarge"|"c6g.2xlarge"|"c6g.4xlarge"|"c6g.8xlarge"|"c6g.12xlarge"|"c6g.16xlarge"|"c6g.metal"|"c6gd.medium"|"c6gd.large"|"c6gd.xlarge"|"c6gd.2xlarge"|"c6gd.4xlarge"|"c6gd.8xlarge"|"c6gd.12xlarge"|"c6gd.16xlarge"|"c6gd.metal"|"c6gn.medium"|"c6gn.large"|"c6gn.xlarge"|"c6gn.2xlarge"|"c6gn.4xlarge"|"c6gn.8xlarge"|"c6gn.12xlarge"|"c6gn.16xlarge"|"c6i.large"|"c6i.xlarge"|"c6i.2xlarge"|"c6i.4xlarge"|"c6i.8xlarge"|"c6i.12xlarge"|"c6i.16xlarge"|"c6i.24xlarge"|"c6i.32xlarge"|"c6i.metal"|"cc1.4xlarge"|"cc2.8xlarge"|"cg1.4xlarge"|"cr1.8xlarge"|"d2.xlarge"|"d2.2xlarge"|"d2.4xlarge"|"d2.8xlarge"|"d3.xlarge"|"d3.2xlarge"|"d3.4xlarge"|"d3.8xlarge"|"d3en.xlarge"|"d3en.2xlarge"|"d3en.4xlarge"|"d3en.6xlarge"|"d3en.8xlarge"|"d3en.12xlarge"|"dl1.24xlarge"|"f1.2xlarge"|"f1.4xlarge"|"f1.16xlarge"|"g2.2xlarge"|"g2.8xlarge"|"g3.4xlarge"|"g3.8xlarge"|"g3.16xlarge"|"g3s.xlarge"|"g4ad.xlarge"|"g4ad.2xlarge"|"g4ad.4xlarge"|"g4ad.8xlarge"|"g4ad.16xlarge"|"g4dn.xlarge"|"g4dn.2xlarge"|"g4dn.4xlarge"|"g4dn.8xlarge"|"g4dn.12xlarge"|"g4dn.16xlarge"|"g4dn.metal"|"g5.xlarge"|"g5.2xlarge"|"g5.4xlarge"|"g5.8xlarge"|"g5.12xlarge"|"g5.16xlarge"|"g5.24xlarge"|"g5.48xlarge"|"g5g.xlarge"|"g5g.2xlarge"|"g5g.4xlarge"|"g5g.8xlarge"|"g5g.16xlarge"|"g5g.metal"|"hi1.4xlarge"|"hpc6a.48xlarge"|"hs1.8xlarge"|"h1.2xlarge"|"h1.4xlarge"|"h1.8xlarge"|"h1.16xlarge"|"i2.xlarge"|"i2.2xlarge"|"i2.4xlarge"|"i2.8xlarge"|"i3.large"|"i3.xlarge"|"i3.2xlarge"|"i3.4xlarge"|"i3.8xlarge"|"i3.16xlarge"|"i3.metal"|"i3en.large"|"i3en.xlarge"|"i3en.2xlarge"|"i3en.3xlarge"|"i3en.6xlarge"|"i3en.12xlarge"|"i3en.24xlarge"|"i3en.metal"|"im4gn.large"|"im4gn.xlarge"|"im4gn.2xlarge"|"im4gn.4xlarge"|"im4gn.8xlarge"|"im4gn.16xlarge"|"inf1.xlarge"|"inf1.2xlarge"|"inf1.6xlarge"|"inf1.24xlarge"|"is4gen.medium"|"is4gen.large"|"is4gen.xlarge"|"is4gen.2xlarge"|"is4gen.4xlarge"|"is4gen.8xlarge"|"m1.small"|"m1.medium"|"m1.large"|"m1.xlarge"|"m2.xlarge"|"m2.2xlarge"|"m2.4xlarge"|"m3.medium"|"m3.large"|"m3.xlarge"|"m3.2xlarge"|"m4.large"|"m4.xlarge"|"m4.2xlarge"|"m4.4xlarge"|"m4.10xlarge"|"m4.16xlarge"|"m5.large"|"m5.xlarge"|"m5.2xlarge"|"m5.4xlarge"|"m5.8xlarge"|"m5.12xlarge"|"m5.16xlarge"|"m5.24xlarge"|"m5.metal"|"m5a.large"|"m5a.xlarge"|"m5a.2xlarge"|"m5a.4xlarge"|"m5a.8xlarge"|"m5a.12xlarge"|"m5a.16xlarge"|"m5a.24xlarge"|"m5ad.large"|"m5ad.xlarge"|"m5ad.2xlarge"|"m5ad.4xlarge"|"m5ad.8xlarge"|"m5ad.12xlarge"|"m5ad.16xlarge"|"m5ad.24xlarge"|"m5d.large"|"m5d.xlarge"|"m5d.2xlarge"|"m5d.4xlarge"|"m5d.8xlarge"|"m5d.12xlarge"|"m5d.16xlarge"|"m5d.24xlarge"|"m5d.metal"|"m5dn.large"|"m5dn.xlarge"|"m5dn.2xlarge"|"m5dn.4xlarge"|"m5dn.8xlarge"|"m5dn.12xlarge"|"m5dn.16xlarge"|"m5dn.24xlarge"|"m5dn.metal"|"m5n.large"|"m5n.xlarge"|"m5n.2xlarge"|"m5n.4xlarge"|"m5n.8xlarge"|"m5n.12xlarge"|"m5n.16xlarge"|"m5n.24xlarge"|"m5n.metal"|"m5zn.large"|"m5zn.xlarge"|"m5zn.2xlarge"|"m5zn.3xlarge"|"m5zn.6xlarge"|"m5zn.12xlarge"|"m5zn.metal"|"m6a.large"|"m6a.xlarge"|"m6a.2xlarge"|"m6a.4xlarge"|"m6a.8xlarge"|"m6a.12xlarge"|"m6a.16xlarge"|"m6a.24xlarge"|"m6a.32xlarge"|"m6a.48xlarge"|"m6g.metal"|"m6g.medium"|"m6g.large"|"m6g.xlarge"|"m6g.2xlarge"|"m6g.4xlarge"|"m6g.8xlarge"|"m6g.12xlarge"|"m6g.16xlarge"|"m6gd.metal"|"m6gd.medium"|"m6gd.large"|"m6gd.xlarge"|"m6gd.2xlarge"|"m6gd.4xlarge"|"m6gd.8xlarge"|"m6gd.12xlarge"|"m6gd.16xlarge"|"m6i.large"|"m6i.xlarge"|"m6i.2xlarge"|"m6i.4xlarge"|"m6i.8xlarge"|"m6i.12xlarge"|"m6i.16xlarge"|"m6i.24xlarge"|"m6i.32xlarge"|"m6i.metal"|"mac1.metal"|"p2.xlarge"|"p2.8xlarge"|"p2.16xlarge"|"p3.2xlarge"|"p3.8xlarge"|"p3.16xlarge"|"p3dn.24xlarge"|"p4d.24xlarge"|"r3.large"|"r3.xlarge"|"r3.2xlarge"|"r3.4xlarge"|"r3.8xlarge"|"r4.large"|"r4.xlarge"|"r4.2xlarge"|"r4.4xlarge"|"r4.8xlarge"|"r4.16xlarge"|"r5.large"|"r5.xlarge"|"r5.2xlarge"|"r5.4xlarge"|"r5.8xlarge"|"r5.12xlarge"|"r5.16xlarge"|"r5.24xlarge"|"r5.metal"|"r5a.large"|"r5a.xlarge"|"r5a.2xlarge"|"r5a.4xlarge"|"r5a.8xlarge"|"r5a.12xlarge"|"r5a.16xlarge"|"r5a.24xlarge"|"r5ad.large"|"r5ad.xlarge"|"r5ad.2xlarge"|"r5ad.4xlarge"|"r5ad.8xlarge"|"r5ad.12xlarge"|"r5ad.16xlarge"|"r5ad.24xlarge"|"r5b.large"|"r5b.xlarge"|"r5b.2xlarge"|"r5b.4xlarge"|"r5b.8xlarge"|"r5b.12xlarge"|"r5b.16xlarge"|"r5b.24xlarge"|"r5b.metal"|"r5d.large"|"r5d.xlarge"|"r5d.2xlarge"|"r5d.4xlarge"|"r5d.8xlarge"|"r5d.12xlarge"|"r5d.16xlarge"|"r5d.24xlarge"|"r5d.metal"|"r5dn.large"|"r5dn.xlarge"|"r5dn.2xlarge"|"r5dn.4xlarge"|"r5dn.8xlarge"|"r5dn.12xlarge"|"r5dn.16xlarge"|"r5dn.24xlarge"|"r5dn.metal"|"r5n.large"|"r5n.xlarge"|"r5n.2xlarge"|"r5n.4xlarge"|"r5n.8xlarge"|"r5n.12xlarge"|"r5n.16xlarge"|"r5n.24xlarge"|"r5n.metal"|"r6g.medium"|"r6g.large"|"r6g.xlarge"|"r6g.2xlarge"|"r6g.4xlarge"|"r6g.8xlarge"|"r6g.12xlarge"|"r6g.16xlarge"|"r6g.metal"|"r6gd.medium"|"r6gd.large"|"r6gd.xlarge"|"r6gd.2xlarge"|"r6gd.4xlarge"|"r6gd.8xlarge"|"r6gd.12xlarge"|"r6gd.16xlarge"|"r6gd.metal"|"r6i.large"|"r6i.xlarge"|"r6i.2xlarge"|"r6i.4xlarge"|"r6i.8xlarge"|"r6i.12xlarge"|"r6i.16xlarge"|"r6i.24xlarge"|"r6i.32xlarge"|"r6i.metal"|"t1.micro"|"t2.nano"|"t2.micro"|"t2.small"|"t2.medium"|"t2.large"|"t2.xlarge"|"t2.2xlarge"|"t3.nano"|"t3.micro"|"t3.small"|"t3.medium"|"t3.large"|"t3.xlarge"|"t3.2xlarge"|"t3a.nano"|"t3a.micro"|"t3a.small"|"t3a.medium"|"t3a.large"|"t3a.xlarge"|"t3a.2xlarge"|"t4g.nano"|"t4g.micro"|"t4g.small"|"t4g.medium"|"t4g.large"|"t4g.xlarge"|"t4g.2xlarge"|"u-6tb1.56xlarge"|"u-6tb1.112xlarge"|"u-9tb1.112xlarge"|"u-12tb1.112xlarge"|"u-6tb1.metal"|"u-9tb1.metal"|"u-12tb1.metal"|"u-18tb1.metal"|"u-24tb1.metal"|"vt1.3xlarge"|"vt1.6xlarge"|"vt1.24xlarge"|"x1.16xlarge"|"x1.32xlarge"|"x1e.xlarge"|"x1e.2xlarge"|"x1e.4xlarge"|"x1e.8xlarge"|"x1e.16xlarge"|"x1e.32xlarge"|"x2iezn.2xlarge"|"x2iezn.4xlarge"|"x2iezn.6xlarge"|"x2iezn.8xlarge"|"x2iezn.12xlarge"|"x2iezn.metal"|"x2gd.medium"|"x2gd.large"|"x2gd.xlarge"|"x2gd.2xlarge"|"x2gd.4xlarge"|"x2gd.8xlarge"|"x2gd.12xlarge"|"x2gd.16xlarge"|"x2gd.metal"|"z1d.large"|"z1d.xlarge"|"z1d.2xlarge"|"z1d.3xlarge"|"z1d.6xlarge"|"z1d.12xlarge"|"z1d.metal"|"x2idn.16xlarge"|"x2idn.24xlarge"|"x2idn.32xlarge"|"x2iedn.xlarge"|"x2iedn.2xlarge"|"x2iedn.4xlarge"|"x2iedn.8xlarge"|"x2iedn.16xlarge"|"x2iedn.24xlarge"|"x2iedn.32xlarge"|"c6a.large"|"c6a.xlarge"|"c6a.2xlarge"|"c6a.4xlarge"|"c6a.8xlarge"|"c6a.12xlarge"|"c6a.16xlarge"|"c6a.24xlarge"|"c6a.32xlarge"|"c6a.48xlarge"|"c6a.metal"|"m6a.metal"|"i4i.large"|"i4i.xlarge"|"i4i.2xlarge"|"i4i.4xlarge"|"i4i.8xlarge"|"i4i.16xlarge"|"i4i.32xlarge"|"i4i.metal"|"x2idn.metal"|"x2iedn.metal"|"c7g.medium"|"c7g.large"|"c7g.xlarge"|"c7g.2xlarge"|"c7g.4xlarge"|"c7g.8xlarge"|"c7g.12xlarge"|"c7g.16xlarge"|"mac2.metal"|"c6id.large"|"c6id.xlarge"|"c6id.2xlarge"|"c6id.4xlarge"|"c6id.8xlarge"|"c6id.12xlarge"|"c6id.16xlarge"|"c6id.24xlarge"|"c6id.32xlarge"|"c6id.metal"|"m6id.large"|"m6id.xlarge"|"m6id.2xlarge"|"m6id.4xlarge"|"m6id.8xlarge"|"m6id.12xlarge"|"m6id.16xlarge"|"m6id.24xlarge"|"m6id.32xlarge"|"m6id.metal"|"r6id.large"|"r6id.xlarge"|"r6id.2xlarge"|"r6id.4xlarge"|"r6id.8xlarge"|"r6id.12xlarge"|"r6id.16xlarge"|"r6id.24xlarge"|"r6id.32xlarge"|"r6id.metal"|"r6a.large"|"r6a.xlarge"|"r6a.2xlarge"|"r6a.4xlarge"|"r6a.8xlarge"|"r6a.12xlarge"|"r6a.16xlarge"|"r6a.24xlarge"|"r6a.32xlarge"|"r6a.48xlarge"|"r6a.metal"|"p4de.24xlarge"|"u-3tb1.56xlarge"|"u-18tb1.112xlarge"|"u-24tb1.112xlarge"|"trn1.2xlarge"|"trn1.32xlarge"|"hpc6id.32xlarge"|"c6in.large"|"c6in.xlarge"|"c6in.2xlarge"|"c6in.4xlarge"|"c6in.8xlarge"|"c6in.12xlarge"|"c6in.16xlarge"|"c6in.24xlarge"|"c6in.32xlarge"|"m6in.large"|"m6in.xlarge"|"m6in.2xlarge"|"m6in.4xlarge"|"m6in.8xlarge"|"m6in.12xlarge"|"m6in.16xlarge"|"m6in.24xlarge"|"m6in.32xlarge"|"m6idn.large"|"m6idn.xlarge"|"m6idn.2xlarge"|"m6idn.4xlarge"|"m6idn.8xlarge"|"m6idn.12xlarge"|"m6idn.16xlarge"|"m6idn.24xlarge"|"m6idn.32xlarge"|"r6in.large"|"r6in.xlarge"|"r6in.2xlarge"|"r6in.4xlarge"|"r6in.8xlarge"|"r6in.12xlarge"|"r6in.16xlarge"|"r6in.24xlarge"|"r6in.32xlarge"|"r6idn.large"|"r6idn.xlarge"|"r6idn.2xlarge"|"r6idn.4xlarge"|"r6idn.8xlarge"|"r6idn.12xlarge"|"r6idn.16xlarge"|"r6idn.24xlarge"|"r6idn.32xlarge"|"c7g.metal"|"m7g.medium"|"m7g.large"|"m7g.xlarge"|"m7g.2xlarge"|"m7g.4xlarge"|"m7g.8xlarge"|"m7g.12xlarge"|"m7g.16xlarge"|"m7g.metal"|"r7g.medium"|"r7g.large"|"r7g.xlarge"|"r7g.2xlarge"|"r7g.4xlarge"|"r7g.8xlarge"|"r7g.12xlarge"|"r7g.16xlarge"|"r7g.metal"|"c6in.metal"|"m6in.metal"|"m6idn.metal"|"r6in.metal"|"r6idn.metal"|string;
23966
23966
  export type InstanceTypeHypervisor = "nitro"|"xen"|string;
23967
23967
  export interface InstanceTypeInfo {
23968
23968
  /**
@@ -12,51 +12,51 @@ declare class ElasticInference extends Service {
12
12
  constructor(options?: ElasticInference.Types.ClientConfiguration)
13
13
  config: Config & ElasticInference.Types.ClientConfiguration;
14
14
  /**
15
- * Describes the locations in which a given accelerator type or set of types is present in a given region.
15
+ * Describes the locations in which a given accelerator type or set of types is present in a given region. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
16
16
  */
17
17
  describeAcceleratorOfferings(params: ElasticInference.Types.DescribeAcceleratorOfferingsRequest, callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorOfferingsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorOfferingsResponse, AWSError>;
18
18
  /**
19
- * Describes the locations in which a given accelerator type or set of types is present in a given region.
19
+ * Describes the locations in which a given accelerator type or set of types is present in a given region. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
20
20
  */
21
21
  describeAcceleratorOfferings(callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorOfferingsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorOfferingsResponse, AWSError>;
22
22
  /**
23
- * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput.
23
+ * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
24
24
  */
25
25
  describeAcceleratorTypes(params: ElasticInference.Types.DescribeAcceleratorTypesRequest, callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorTypesResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorTypesResponse, AWSError>;
26
26
  /**
27
- * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput.
27
+ * Describes the accelerator types available in a given region, as well as their characteristics, such as memory and throughput. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
28
28
  */
29
29
  describeAcceleratorTypes(callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorTypesResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorTypesResponse, AWSError>;
30
30
  /**
31
- * Describes information over a provided set of accelerators belonging to an account.
31
+ * Describes information over a provided set of accelerators belonging to an account. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
32
32
  */
33
33
  describeAccelerators(params: ElasticInference.Types.DescribeAcceleratorsRequest, callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorsResponse, AWSError>;
34
34
  /**
35
- * Describes information over a provided set of accelerators belonging to an account.
35
+ * Describes information over a provided set of accelerators belonging to an account. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
36
36
  */
37
37
  describeAccelerators(callback?: (err: AWSError, data: ElasticInference.Types.DescribeAcceleratorsResponse) => void): Request<ElasticInference.Types.DescribeAcceleratorsResponse, AWSError>;
38
38
  /**
39
- * Returns all tags of an Elastic Inference Accelerator.
39
+ * Returns all tags of an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
40
40
  */
41
41
  listTagsForResource(params: ElasticInference.Types.ListTagsForResourceRequest, callback?: (err: AWSError, data: ElasticInference.Types.ListTagsForResourceResult) => void): Request<ElasticInference.Types.ListTagsForResourceResult, AWSError>;
42
42
  /**
43
- * Returns all tags of an Elastic Inference Accelerator.
43
+ * Returns all tags of an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
44
44
  */
45
45
  listTagsForResource(callback?: (err: AWSError, data: ElasticInference.Types.ListTagsForResourceResult) => void): Request<ElasticInference.Types.ListTagsForResourceResult, AWSError>;
46
46
  /**
47
- * Adds the specified tags to an Elastic Inference Accelerator.
47
+ * Adds the specified tags to an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
48
48
  */
49
49
  tagResource(params: ElasticInference.Types.TagResourceRequest, callback?: (err: AWSError, data: ElasticInference.Types.TagResourceResult) => void): Request<ElasticInference.Types.TagResourceResult, AWSError>;
50
50
  /**
51
- * Adds the specified tags to an Elastic Inference Accelerator.
51
+ * Adds the specified tags to an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
52
52
  */
53
53
  tagResource(callback?: (err: AWSError, data: ElasticInference.Types.TagResourceResult) => void): Request<ElasticInference.Types.TagResourceResult, AWSError>;
54
54
  /**
55
- * Removes the specified tags from an Elastic Inference Accelerator.
55
+ * Removes the specified tags from an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
56
56
  */
57
57
  untagResource(params: ElasticInference.Types.UntagResourceRequest, callback?: (err: AWSError, data: ElasticInference.Types.UntagResourceResult) => void): Request<ElasticInference.Types.UntagResourceResult, AWSError>;
58
58
  /**
59
- * Removes the specified tags from an Elastic Inference Accelerator.
59
+ * Removes the specified tags from an Elastic Inference Accelerator. February 15, 2023: Starting April 15, 2023, AWS will not onboard new customers to Amazon Elastic Inference (EI), and will help current customers migrate their workloads to options that offer better price and performance. After April 15, 2023, new customers will not be able to launch instances with Amazon EI accelerators in Amazon SageMaker, Amazon ECS, or Amazon EC2. However, customers who have used Amazon EI at least once during the past 30-day period are considered current customers and will be able to continue using the service.
60
60
  */
61
61
  untagResource(callback?: (err: AWSError, data: ElasticInference.Types.UntagResourceResult) => void): Request<ElasticInference.Types.UntagResourceResult, AWSError>;
62
62
  }
@@ -85,19 +85,19 @@ declare class SageMaker extends Service {
85
85
  */
86
86
  createArtifact(callback?: (err: AWSError, data: SageMaker.Types.CreateArtifactResponse) => void): Request<SageMaker.Types.CreateArtifactResponse, AWSError>;
87
87
  /**
88
- * Creates an Autopilot job. Find the best-performing model after you run an Autopilot job by calling DescribeAutoMLJob . For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
88
+ * Creates an Autopilot job. Find the best-performing model after you run an Autopilot job by calling DescribeAutoMLJob. For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
89
89
  */
90
90
  createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
91
91
  /**
92
- * Creates an Autopilot job. Find the best-performing model after you run an Autopilot job by calling DescribeAutoMLJob . For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
92
+ * Creates an Autopilot job. Find the best-performing model after you run an Autopilot job by calling DescribeAutoMLJob. For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.
93
93
  */
94
94
  createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
95
95
  /**
96
- * Creates an Amazon SageMaker AutoML job that uses non-tabular data such as images or text for Computer Vision or Natural Language Processing problems. Find the resulting model after you run an AutoML job V2 by calling DescribeAutoMLJobV2 . To create an AutoMLJob using tabular data, see CreateAutoMLJob . This API action is callable through SageMaker Canvas only. Calling it directly from the CLI or an SDK results in an error.
96
+ * Creates an Amazon SageMaker AutoML job that uses non-tabular data such as images or text for Computer Vision or Natural Language Processing problems. Find the resulting model after you run an AutoML job V2 by calling DescribeAutoMLJobV2. To create an AutoMLJob using tabular data, see CreateAutoMLJob. This API action is callable through SageMaker Canvas only. Calling it directly from the CLI or an SDK results in an error.
97
97
  */
98
98
  createAutoMLJobV2(params: SageMaker.Types.CreateAutoMLJobV2Request, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
99
99
  /**
100
- * Creates an Amazon SageMaker AutoML job that uses non-tabular data such as images or text for Computer Vision or Natural Language Processing problems. Find the resulting model after you run an AutoML job V2 by calling DescribeAutoMLJobV2 . To create an AutoMLJob using tabular data, see CreateAutoMLJob . This API action is callable through SageMaker Canvas only. Calling it directly from the CLI or an SDK results in an error.
100
+ * Creates an Amazon SageMaker AutoML job that uses non-tabular data such as images or text for Computer Vision or Natural Language Processing problems. Find the resulting model after you run an AutoML job V2 by calling DescribeAutoMLJobV2. To create an AutoMLJob using tabular data, see CreateAutoMLJob. This API action is callable through SageMaker Canvas only. Calling it directly from the CLI or an SDK results in an error.
101
101
  */
102
102
  createAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
103
103
  /**
@@ -3005,6 +3005,10 @@ declare namespace SageMaker {
3005
3005
  * Amazon SNS topic to post a notification to when inference fails. If no topic is provided, no notification is sent on failure.
3006
3006
  */
3007
3007
  ErrorTopic?: SnsTopicArn;
3008
+ /**
3009
+ * The Amazon SNS topics where you want the inference response to be included.
3010
+ */
3011
+ IncludeInferenceResponseIn?: AsyncNotificationTopicTypeList;
3008
3012
  }
3009
3013
  export interface AsyncInferenceOutputConfig {
3010
3014
  /**
@@ -3014,12 +3018,18 @@ declare namespace SageMaker {
3014
3018
  /**
3015
3019
  * The Amazon S3 location to upload inference responses to.
3016
3020
  */
3017
- S3OutputPath: DestinationS3Uri;
3021
+ S3OutputPath?: DestinationS3Uri;
3018
3022
  /**
3019
3023
  * Specifies the configuration for notifications of inference results for asynchronous inference.
3020
3024
  */
3021
3025
  NotificationConfig?: AsyncInferenceNotificationConfig;
3026
+ /**
3027
+ * The Amazon S3 location to upload failure inference responses to.
3028
+ */
3029
+ S3FailurePath?: DestinationS3Uri;
3022
3030
  }
3031
+ export type AsyncNotificationTopicTypeList = AsyncNotificationTopicTypes[];
3032
+ export type AsyncNotificationTopicTypes = "SUCCESS_NOTIFICATION_TOPIC"|"ERROR_NOTIFICATION_TOPIC"|string;
3023
3033
  export type AthenaCatalog = string;
3024
3034
  export type AthenaDatabase = string;
3025
3035
  export interface AthenaDatasetDefinition {
@@ -3049,7 +3059,7 @@ declare namespace SageMaker {
3049
3059
  export type AutoMLAlgorithm = "xgboost"|"linear-learner"|"mlp"|"lightgbm"|"catboost"|"randomforest"|"extra-trees"|"nn-torch"|"fastai"|string;
3050
3060
  export interface AutoMLAlgorithmConfig {
3051
3061
  /**
3052
- * The selection of algorithms run on a dataset to train the model candidates of an Autopilot job. Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 algorithm. In ENSEMBLING mode: "catboost" "extra-trees" "fastai" "lightgbm" "linear-learner" "nn-torch" "randomforest" "xgboost" In HYPERPARAMETER_TUNING mode: "linear-learner" "mlp" "xgboost"
3062
+ * The selection of algorithms run on a dataset to train the model candidates of an Autopilot job. Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 algorithm. In ENSEMBLING mode: "catboost" "extra-trees" "fastai" "lightgbm" "linear-learner" "nn-torch" "randomforest" "xgboost" In HYPERPARAMETER_TUNING mode: "linear-learner" "mlp" "xgboost"
3053
3063
  */
3054
3064
  AutoMLAlgorithms: AutoMLAlgorithms;
3055
3065
  }
@@ -3108,7 +3118,7 @@ declare namespace SageMaker {
3108
3118
  */
3109
3119
  FeatureSpecificationS3Uri?: S3Uri;
3110
3120
  /**
3111
- * Stores the configuration information for the selection of algorithms used to train the model candidates. The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode . AlgorithmsConfig should not be set in AUTO training mode. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per training mode, see AutoMLAlgorithmConfig . For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
3121
+ * Stores the configuration information for the selection of algorithms used to train the model candidates. The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode . AlgorithmsConfig should not be set in AUTO training mode. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per training mode, see AutoMLAlgorithmConfig. For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
3112
3122
  */
3113
3123
  AlgorithmsConfig?: AutoMLAlgorithmsConfig;
3114
3124
  }
@@ -3145,22 +3155,22 @@ declare namespace SageMaker {
3145
3155
  */
3146
3156
  ContentType?: ContentType;
3147
3157
  /**
3148
- * The channel type (optional) is an enum string. The default value is training. Channels for training and validation must share the same ContentType and TargetAttributeName. For information on specifying training and validation channel types, see How to specify training and validation datasets .
3158
+ * The channel type (optional) is an enum string. The default value is training. Channels for training and validation must share the same ContentType and TargetAttributeName. For information on specifying training and validation channel types, see How to specify training and validation datasets.
3149
3159
  */
3150
3160
  ChannelType?: AutoMLChannelType;
3151
3161
  }
3152
3162
  export type AutoMLChannelType = "training"|"validation"|string;
3153
3163
  export interface AutoMLContainerDefinition {
3154
3164
  /**
3155
- * The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see ContainerDefinition .
3165
+ * The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see ContainerDefinition.
3156
3166
  */
3157
3167
  Image: ContainerImage;
3158
3168
  /**
3159
- * The location of the model artifacts. For more information, see ContainerDefinition .
3169
+ * The location of the model artifacts. For more information, see ContainerDefinition.
3160
3170
  */
3161
3171
  ModelDataUrl: Url;
3162
3172
  /**
3163
- * The environment variables to set in the container. For more information, see ContainerDefinition .
3173
+ * The environment variables to set in the container. For more information, see ContainerDefinition.
3164
3174
  */
3165
3175
  Environment?: EnvironmentMap;
3166
3176
  }
@@ -3215,7 +3225,7 @@ declare namespace SageMaker {
3215
3225
  */
3216
3226
  MaxCandidates?: MaxCandidates;
3217
3227
  /**
3218
- * The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action. For V2 jobs (jobs created by calling CreateAutoMLJobV2), this field controls the runtime of the job candidate.
3228
+ * The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action. For V2 jobs (jobs created by calling CreateAutoMLJobV2), this field controls the runtime of the job candidate.
3219
3229
  */
3220
3230
  MaxRuntimePerTrainingJobInSeconds?: MaxRuntimePerTrainingJobInSeconds;
3221
3231
  /**
@@ -4024,11 +4034,11 @@ declare namespace SageMaker {
4024
4034
  */
4025
4035
  ContainerHostname?: ContainerHostname;
4026
4036
  /**
4027
- * The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker
4037
+ * The path where inference code is stored. This can be either in Amazon EC2 Container Registry or in a Docker registry that is accessible from the same VPC that you configure for your endpoint. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker. The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.
4028
4038
  */
4029
4039
  Image?: ContainerImage;
4030
4040
  /**
4031
- * Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers
4041
+ * Specifies whether the model container is in Amazon ECR or a private Docker registry accessible from your Amazon Virtual Private Cloud (VPC). For information about storing containers in a private Docker registry, see Use a Private Docker Registry for Real-Time Inference Containers. The model artifacts in an Amazon S3 bucket and the Docker image for inference container in Amazon EC2 Container Registry must be in the same region as the model or endpoint you are creating.
4032
4042
  */
4033
4043
  ImageConfig?: ImageConfig;
4034
4044
  /**
@@ -4309,7 +4319,7 @@ declare namespace SageMaker {
4309
4319
  */
4310
4320
  AutoMLJobName: AutoMLJobName;
4311
4321
  /**
4312
- * An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition . Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
4322
+ * An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
4313
4323
  */
4314
4324
  InputDataConfig: AutoMLInputDataConfig;
4315
4325
  /**
@@ -4321,7 +4331,7 @@ declare namespace SageMaker {
4321
4331
  */
4322
4332
  ProblemType?: ProblemType;
4323
4333
  /**
4324
- * Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. For CreateAutoMLJobV2 , only Accuracy is supported.
4334
+ * Defines the objective metric used to measure the predictive quality of an AutoML job. You provide an AutoMLJobObjective$MetricName and Autopilot infers whether to minimize or maximize it. For CreateAutoMLJobV2, only Accuracy is supported.
4325
4335
  */
4326
4336
  AutoMLJobObjective?: AutoMLJobObjective;
4327
4337
  /**
@@ -4357,7 +4367,7 @@ declare namespace SageMaker {
4357
4367
  */
4358
4368
  AutoMLJobName: AutoMLJobName;
4359
4369
  /**
4360
- * An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type: ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile TextClassification: S3Prefix
4370
+ * An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type: ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile TextClassification: S3Prefix
4361
4371
  */
4362
4372
  AutoMLJobInputDataConfig: AutoMLJobInputDataConfig;
4363
4373
  /**
@@ -4381,7 +4391,7 @@ declare namespace SageMaker {
4381
4391
  */
4382
4392
  SecurityConfig?: AutoMLSecurityConfig;
4383
4393
  /**
4384
- * Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2 , only Accuracy is supported.
4394
+ * Specifies a metric to minimize or maximize as the objective of a job. For CreateAutoMLJobV2, only Accuracy is supported.
4385
4395
  */
4386
4396
  AutoMLJobObjective?: AutoMLJobObjective;
4387
4397
  /**
@@ -11213,7 +11223,7 @@ declare namespace SageMaker {
11213
11223
  */
11214
11224
  Type?: AutoMLJobObjectiveType;
11215
11225
  /**
11216
- * The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName .
11226
+ * The name of the metric with the best result. For a description of the possible objective metrics, see AutoMLJobObjective$MetricName.
11217
11227
  */
11218
11228
  MetricName: AutoMLMetricEnum;
11219
11229
  /**
@@ -12040,7 +12050,7 @@ declare namespace SageMaker {
12040
12050
  */
12041
12051
  MinResource?: HyperbandStrategyMinResource;
12042
12052
  /**
12043
- * The maximum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. Once a job reaches the MaxResource value, it is stopped. If a value for MaxResource is not provided, and Hyperband is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts to infer MaxResource from the following keys (if present) in StaticsHyperParameters : epochs numepochs n-epochs n_epochs num_epochs If HyperbandStrategyConfig is unable to infer a value for MaxResource, it generates a validation error. The maximum value is 20,000 epochs. All metrics that correspond to an objective metric are used to derive early stopping decisions. For distributive training jobs, ensure that duplicate metrics are not printed in the logs across the individual nodes in a training job. If multiple nodes are publishing duplicate or incorrect metrics, training jobs may make an incorrect stopping decision and stop the job prematurely.
12053
+ * The maximum number of resources (such as epochs) that can be used by a training job launched by a hyperparameter tuning job. Once a job reaches the MaxResource value, it is stopped. If a value for MaxResource is not provided, and Hyperband is selected as the hyperparameter tuning strategy, HyperbandTrainingJ attempts to infer MaxResource from the following keys (if present) in StaticsHyperParameters: epochs numepochs n-epochs n_epochs num_epochs If HyperbandStrategyConfig is unable to infer a value for MaxResource, it generates a validation error. The maximum value is 20,000 epochs. All metrics that correspond to an objective metric are used to derive early stopping decisions. For distributive training jobs, ensure that duplicate metrics are not printed in the logs across the individual nodes in a training job. If multiple nodes are publishing duplicate or incorrect metrics, training jobs may make an incorrect stopping decision and stop the job prematurely.
12044
12054
  */
12045
12055
  MaxResource?: HyperbandStrategyMaxResource;
12046
12056
  }
@@ -80,6 +80,10 @@ declare namespace SageMakerRuntime {
80
80
  * The Amazon S3 URI where the inference response payload is stored.
81
81
  */
82
82
  OutputLocation?: Header;
83
+ /**
84
+ * The Amazon S3 URI where the inference failure response payload is stored.
85
+ */
86
+ FailureLocation?: Header;
83
87
  }
84
88
  export interface InvokeEndpointInput {
85
89
  /**