cciwon-code-review-cli 2.0.2 → 2.0.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (110) hide show
  1. package/lib/chat-mode.js +7 -2
  2. package/package.json +1 -1
  3. package/unsloth_compiled_cache/.locks/.lock.AqlmLoraLinear_peft_forward.py +0 -0
  4. package/unsloth_compiled_cache/.locks/.lock.AwqLoraLinear_peft_forward.py +0 -0
  5. package/unsloth_compiled_cache/.locks/.lock.BatchNorm1d.py +0 -0
  6. package/unsloth_compiled_cache/.locks/.lock.BatchNorm2d.py +0 -0
  7. package/unsloth_compiled_cache/.locks/.lock.BatchNorm3d.py +0 -0
  8. package/unsloth_compiled_cache/.locks/.lock.Conv1d.py +0 -0
  9. package/unsloth_compiled_cache/.locks/.lock.Conv2d.py +0 -0
  10. package/unsloth_compiled_cache/.locks/.lock.Conv3d.py +0 -0
  11. package/unsloth_compiled_cache/.locks/.lock.ConvTranspose1d.py +0 -0
  12. package/unsloth_compiled_cache/.locks/.lock.ConvTranspose2d.py +0 -0
  13. package/unsloth_compiled_cache/.locks/.lock.ConvTranspose3d.py +0 -0
  14. package/unsloth_compiled_cache/.locks/.lock.GPTQLoraLinear_peft_forward.py +0 -0
  15. package/unsloth_compiled_cache/.locks/.lock.GroupNorm.py +0 -0
  16. package/unsloth_compiled_cache/.locks/.lock.LayerNorm.py +0 -0
  17. package/unsloth_compiled_cache/.locks/.lock.Linear4bit_peft_forward.py +0 -0
  18. package/unsloth_compiled_cache/.locks/.lock.Linear8bitLt_peft_forward.py +0 -0
  19. package/unsloth_compiled_cache/.locks/.lock.Linear_peft_forward.py +0 -0
  20. package/unsloth_compiled_cache/.locks/.lock.LoraParallelLinear_peft_forward.py +0 -0
  21. package/unsloth_compiled_cache/.locks/.lock.RMSNorm.py +0 -0
  22. package/unsloth_compiled_cache/.locks/.lock.UnslothBCOTrainer.py +0 -0
  23. package/unsloth_compiled_cache/.locks/.lock.UnslothCPOTrainer.py +0 -0
  24. package/unsloth_compiled_cache/.locks/.lock.UnslothDPOTrainer.py +0 -0
  25. package/unsloth_compiled_cache/.locks/.lock.UnslothGKDTrainer.py +0 -0
  26. package/unsloth_compiled_cache/.locks/.lock.UnslothGRPOTrainer.py +0 -0
  27. package/unsloth_compiled_cache/.locks/.lock.UnslothKTOTrainer.py +0 -0
  28. package/unsloth_compiled_cache/.locks/.lock.UnslothNashMDTrainer.py +0 -0
  29. package/unsloth_compiled_cache/.locks/.lock.UnslothORPOTrainer.py +0 -0
  30. package/unsloth_compiled_cache/.locks/.lock.UnslothOnlineDPOTrainer.py +0 -0
  31. package/unsloth_compiled_cache/.locks/.lock.UnslothPPOTrainer.py +0 -0
  32. package/unsloth_compiled_cache/.locks/.lock.UnslothPRMTrainer.py +0 -0
  33. package/unsloth_compiled_cache/.locks/.lock.UnslothRLOOTrainer.py +0 -0
  34. package/unsloth_compiled_cache/.locks/.lock.UnslothRewardTrainer.py +0 -0
  35. package/unsloth_compiled_cache/.locks/.lock.UnslothSFTTrainer.py +0 -0
  36. package/unsloth_compiled_cache/.locks/.lock.UnslothXPOTrainer.py +0 -0
  37. package/unsloth_compiled_cache/.locks/.lock.unsloth_compiled_module_qwen3_moe.py +0 -0
  38. package/unsloth_compiled_cache/.locks/.lock.unsloth_compiled_module_siglip.py +0 -0
  39. package/unsloth_compiled_cache/AqlmLoraLinear_peft_forward.py +88 -0
  40. package/unsloth_compiled_cache/AwqLoraLinear_peft_forward.py +87 -0
  41. package/unsloth_compiled_cache/BatchNorm1d.py +117 -0
  42. package/unsloth_compiled_cache/BatchNorm2d.py +117 -0
  43. package/unsloth_compiled_cache/BatchNorm3d.py +117 -0
  44. package/unsloth_compiled_cache/Conv1d.py +70 -0
  45. package/unsloth_compiled_cache/Conv2d.py +70 -0
  46. package/unsloth_compiled_cache/Conv3d.py +70 -0
  47. package/unsloth_compiled_cache/ConvTranspose1d.py +97 -0
  48. package/unsloth_compiled_cache/ConvTranspose2d.py +106 -0
  49. package/unsloth_compiled_cache/ConvTranspose3d.py +98 -0
  50. package/unsloth_compiled_cache/GPTQLoraLinear_peft_forward.py +95 -0
  51. package/unsloth_compiled_cache/GroupNorm.py +70 -0
  52. package/unsloth_compiled_cache/LayerNorm.py +72 -0
  53. package/unsloth_compiled_cache/Linear4bit_peft_forward.py +115 -0
  54. package/unsloth_compiled_cache/Linear8bitLt_peft_forward.py +113 -0
  55. package/unsloth_compiled_cache/Linear_peft_forward.py +104 -0
  56. package/unsloth_compiled_cache/LoraParallelLinear_peft_forward.py +91 -0
  57. package/unsloth_compiled_cache/RMSNorm.py +73 -0
  58. package/unsloth_compiled_cache/UnslothBCOTrainer.py +2026 -0
  59. package/unsloth_compiled_cache/UnslothCPOTrainer.py +1806 -0
  60. package/unsloth_compiled_cache/UnslothDPOTrainer.py +2750 -0
  61. package/unsloth_compiled_cache/UnslothGKDTrainer.py +1157 -0
  62. package/unsloth_compiled_cache/UnslothGRPOTrainer.py +3607 -0
  63. package/unsloth_compiled_cache/UnslothKTOTrainer.py +2220 -0
  64. package/unsloth_compiled_cache/UnslothNashMDTrainer.py +1210 -0
  65. package/unsloth_compiled_cache/UnslothORPOTrainer.py +1730 -0
  66. package/unsloth_compiled_cache/UnslothOnlineDPOTrainer.py +2313 -0
  67. package/unsloth_compiled_cache/UnslothPPOTrainer.py +1504 -0
  68. package/unsloth_compiled_cache/UnslothPRMTrainer.py +979 -0
  69. package/unsloth_compiled_cache/UnslothRLOOTrainer.py +2674 -0
  70. package/unsloth_compiled_cache/UnslothRewardTrainer.py +1197 -0
  71. package/unsloth_compiled_cache/UnslothSFTTrainer.py +1416 -0
  72. package/unsloth_compiled_cache/UnslothXPOTrainer.py +1255 -0
  73. package/unsloth_compiled_cache/__pycache__/AqlmLoraLinear_peft_forward.cpython-312.pyc +0 -0
  74. package/unsloth_compiled_cache/__pycache__/AwqLoraLinear_peft_forward.cpython-312.pyc +0 -0
  75. package/unsloth_compiled_cache/__pycache__/BatchNorm1d.cpython-312.pyc +0 -0
  76. package/unsloth_compiled_cache/__pycache__/BatchNorm2d.cpython-312.pyc +0 -0
  77. package/unsloth_compiled_cache/__pycache__/BatchNorm3d.cpython-312.pyc +0 -0
  78. package/unsloth_compiled_cache/__pycache__/Conv1d.cpython-312.pyc +0 -0
  79. package/unsloth_compiled_cache/__pycache__/Conv2d.cpython-312.pyc +0 -0
  80. package/unsloth_compiled_cache/__pycache__/Conv3d.cpython-312.pyc +0 -0
  81. package/unsloth_compiled_cache/__pycache__/ConvTranspose1d.cpython-312.pyc +0 -0
  82. package/unsloth_compiled_cache/__pycache__/ConvTranspose2d.cpython-312.pyc +0 -0
  83. package/unsloth_compiled_cache/__pycache__/ConvTranspose3d.cpython-312.pyc +0 -0
  84. package/unsloth_compiled_cache/__pycache__/GPTQLoraLinear_peft_forward.cpython-312.pyc +0 -0
  85. package/unsloth_compiled_cache/__pycache__/GroupNorm.cpython-312.pyc +0 -0
  86. package/unsloth_compiled_cache/__pycache__/LayerNorm.cpython-312.pyc +0 -0
  87. package/unsloth_compiled_cache/__pycache__/Linear4bit_peft_forward.cpython-312.pyc +0 -0
  88. package/unsloth_compiled_cache/__pycache__/Linear8bitLt_peft_forward.cpython-312.pyc +0 -0
  89. package/unsloth_compiled_cache/__pycache__/Linear_peft_forward.cpython-312.pyc +0 -0
  90. package/unsloth_compiled_cache/__pycache__/LoraParallelLinear_peft_forward.cpython-312.pyc +0 -0
  91. package/unsloth_compiled_cache/__pycache__/RMSNorm.cpython-312.pyc +0 -0
  92. package/unsloth_compiled_cache/__pycache__/UnslothBCOTrainer.cpython-312.pyc +0 -0
  93. package/unsloth_compiled_cache/__pycache__/UnslothCPOTrainer.cpython-312.pyc +0 -0
  94. package/unsloth_compiled_cache/__pycache__/UnslothDPOTrainer.cpython-312.pyc +0 -0
  95. package/unsloth_compiled_cache/__pycache__/UnslothGKDTrainer.cpython-312.pyc +0 -0
  96. package/unsloth_compiled_cache/__pycache__/UnslothGRPOTrainer.cpython-312.pyc +0 -0
  97. package/unsloth_compiled_cache/__pycache__/UnslothKTOTrainer.cpython-312.pyc +0 -0
  98. package/unsloth_compiled_cache/__pycache__/UnslothNashMDTrainer.cpython-312.pyc +0 -0
  99. package/unsloth_compiled_cache/__pycache__/UnslothORPOTrainer.cpython-312.pyc +0 -0
  100. package/unsloth_compiled_cache/__pycache__/UnslothOnlineDPOTrainer.cpython-312.pyc +0 -0
  101. package/unsloth_compiled_cache/__pycache__/UnslothPPOTrainer.cpython-312.pyc +0 -0
  102. package/unsloth_compiled_cache/__pycache__/UnslothPRMTrainer.cpython-312.pyc +0 -0
  103. package/unsloth_compiled_cache/__pycache__/UnslothRLOOTrainer.cpython-312.pyc +0 -0
  104. package/unsloth_compiled_cache/__pycache__/UnslothRewardTrainer.cpython-312.pyc +0 -0
  105. package/unsloth_compiled_cache/__pycache__/UnslothSFTTrainer.cpython-312.pyc +0 -0
  106. package/unsloth_compiled_cache/__pycache__/UnslothXPOTrainer.cpython-312.pyc +0 -0
  107. package/unsloth_compiled_cache/__pycache__/unsloth_compiled_module_qwen3_moe.cpython-312.pyc +0 -0
  108. package/unsloth_compiled_cache/__pycache__/unsloth_compiled_module_siglip.cpython-312.pyc +0 -0
  109. package/unsloth_compiled_cache/unsloth_compiled_module_qwen3_moe.py +726 -0
  110. package/unsloth_compiled_cache/unsloth_compiled_module_siglip.py +534 -0
@@ -0,0 +1,1210 @@
1
+ """
2
+ 2025.12.6
3
+ 2025.12.7
4
+ 4.57.1
5
+ 0.24.0
6
+ __UNSLOTH_VERSIONING__
7
+ """
8
+
9
+ # Unsloth auto generated code
10
+ # Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved.
11
+ #
12
+ # This program is free software: you can redistribute it and/or modify
13
+ # it under the terms of the GNU Lesser General Public License as published by
14
+ # the Free Software Foundation, either version 3 of the License, or
15
+ # (at your option) any later version.
16
+ #
17
+ # This program is distributed in the hope that it will be useful,
18
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20
+ # GNU General Public License for more details.
21
+ #
22
+ # You should have received a copy of the GNU Lesser General Public License
23
+ # along with this program. If not, see <https://www.gnu.org/licenses/>.
24
+
25
+ from torch import Tensor
26
+ import torch
27
+ import torch.nn as nn
28
+ from torch.nn import functional as F
29
+ from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
30
+ from trl.trainer.nash_md_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, Dataset, EvalPrediction, F, FeatureExtractionMixin, GeometricMixtureWrapper, IterableDataset, NashMDConfig, NashMDTrainer, OnlineDPOTrainer, OptimizerNames, Optional, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, TrainerCallback, Union, empty_cache, get_reward, is_conversational, is_peft_available, jinja2, maybe_apply_chat_template, nn, selective_log_softmax, textwrap, torch, truncate_right, unwrap_model_for_generation)
31
+
32
+
33
+ import os
34
+ from typing import *
35
+ from dataclasses import dataclass, field
36
+ from packaging.version import Version
37
+ import torch
38
+ import numpy as np
39
+ from contextlib import nullcontext
40
+ from torch.nn import functional as F
41
+ import inspect
42
+ from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
43
+ from transformers.training_args import ParallelMode
44
+
45
+ # Wrap trainer with padding to right and enable training mode
46
+ # Also patches W&B since multiple runs must use wandb.finish()
47
+ import functools
48
+ from types import MethodType
49
+ def prepare_for_training_mode(f):
50
+ @functools.wraps(f)
51
+ def wrapper(self, *args, **kwargs):
52
+ # Enable training mode
53
+ if hasattr(self, 'model') and hasattr(self.model, "for_training"):
54
+ self.model.for_training()
55
+ output = f(self, *args, **kwargs)
56
+ # Return inference mode
57
+ if hasattr(self, 'model') and hasattr(self.model, "for_inference"):
58
+ self.model.for_inference()
59
+ # Patch W&B to enable logging on future runs, otherwise it'll overwrite the first run
60
+ try:
61
+ import wandb
62
+ wandb.finish()
63
+ except:
64
+ pass
65
+ return output
66
+ return wrapper
67
+ pass
68
+
69
+ torch_compile_options = {
70
+ "epilogue_fusion" : True,
71
+ "max_autotune" : False,
72
+ "shape_padding" : True,
73
+ "trace.enabled" : False,
74
+ "triton.cudagraphs" : False,
75
+ }
76
+
77
+ @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
78
+ def chunked_selective_log_softmax(logits, index):
79
+ # Split into 4 chunks only
80
+ chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0)
81
+ chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0)
82
+ all_per_token_logps = []
83
+ # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index)
84
+ for chunk_logits, chunk_index in zip(chunked_logits, chunked_index):
85
+ chunk_logits = chunk_logits.to(torch.float32)
86
+ selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1)
87
+ logsumexp_values = torch.logsumexp(chunk_logits, dim = -1)
88
+ per_token_logps = selected_logits - logsumexp_values
89
+ all_per_token_logps.append(per_token_logps)
90
+ pass
91
+ all_per_token_logps = torch.concat(all_per_token_logps)
92
+ all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1]))
93
+ return all_per_token_logps
94
+
95
+ def calculate_pad_tokens_in_prompt(
96
+ input_ids: torch.Tensor,
97
+ logits_to_keep: int,
98
+ pad_token_id: int
99
+ ) -> torch.Tensor:
100
+ """
101
+ Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens
102
+ """
103
+ if logits_to_keep >= input_ids.shape[1]:
104
+ raise ValueError("logits_to_keep must be smaller than the sequence length.")
105
+
106
+ prompt_section = input_ids[:, :-logits_to_keep]
107
+
108
+ padding_mask = (prompt_section == pad_token_id)
109
+
110
+ pad_token_counts = padding_mask.sum(dim=1)
111
+
112
+ return pad_token_counts
113
+
114
+ def create_completion_attention_mask(
115
+ completion_input_ids: torch.Tensor,
116
+ left_pad_tokens_per_prompt: torch.Tensor,
117
+ max_left_pad: int,
118
+ pad_token_id: int
119
+ ) -> torch.Tensor:
120
+ """
121
+ Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad]
122
+
123
+ Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens
124
+ and pad are pad tokens, this function would make a completion mask that would 0 out the pad
125
+ and p tokens. so in this example [0,0,0,1,1,1,0,0,0]
126
+ """
127
+ batch_size, completion_len = completion_input_ids.shape
128
+ device = completion_input_ids.device
129
+
130
+ num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt
131
+
132
+ indices = torch.arange(completion_len, device=device).unsqueeze(0)
133
+ shift_mask = indices >= num_tokens_to_mask.unsqueeze(1)
134
+
135
+ non_padding_mask = (completion_input_ids != pad_token_id)
136
+
137
+ final_mask = shift_mask & non_padding_mask
138
+
139
+ return final_mask
140
+
141
+ def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor:
142
+ """
143
+ Moves all padding tokens in each sequence of a batch to the right.
144
+ """
145
+ mask = (tensor != pad_id)
146
+ # Must do stable=True since binary mark is unordered
147
+ sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True)
148
+ packed_tensor = torch.gather(tensor, 1, sorted_indices)
149
+ return packed_tensor
150
+
151
+ def align_logprobs_with_mask(
152
+ logprob_tensor: torch.Tensor,
153
+ attention_mask: torch.Tensor,
154
+ pad_value: float = 0.0
155
+ ) -> torch.Tensor:
156
+ """
157
+ Aligns a log probability tensor with a given attention mask.
158
+ """
159
+
160
+ device = logprob_tensor.device
161
+ batch_size, logprob_seq_len = logprob_tensor.shape
162
+ mask_seq_len = attention_mask.shape[1]
163
+
164
+ padded_logprobs = torch.full(
165
+ attention_mask.shape,
166
+ fill_value=pad_value,
167
+ dtype=logprob_tensor.dtype,
168
+ device=device
169
+ )
170
+
171
+ left_pad_counts = torch.argmax(attention_mask, dim=1)
172
+
173
+ cols = torch.arange(logprob_seq_len, device=device)
174
+ dest_indices = left_pad_counts.unsqueeze(1) + cols
175
+
176
+ # Create destination row indices
177
+ # Shape: [batch_size, logprob_seq_len]
178
+ row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices)
179
+
180
+ # --- 4. Filter out-of-bounds indices and perform assignment ---
181
+ # Create a mask to identify only the indices that are within the bounds
182
+ # of the target tensor's sequence length.
183
+ valid_mask = dest_indices < mask_seq_len
184
+
185
+ # Use this mask to select only the valid row indices, column indices,
186
+ # and the corresponding values from the logprob tensor.
187
+ # This flattens the selected elements into 1D tensors.
188
+ valid_rows = row_indices[valid_mask]
189
+ valid_cols = dest_indices[valid_mask]
190
+ valid_vals = logprob_tensor[valid_mask]
191
+
192
+ # Place the valid values into their correct positions in the padded tensor
193
+ # using a single, efficient advanced indexing operation.
194
+ padded_logprobs[valid_rows, valid_cols] = valid_vals
195
+
196
+ return padded_logprobs
197
+ @dataclass
198
+ class UnslothNashMDConfig(NashMDConfig):
199
+ """
200
+
201
+ Configuration class for the [`NashMDTrainer`].
202
+
203
+ Subclass of [`OnlineDPOConfig`] we can use all its arguments and add the following:
204
+
205
+ Parameters:
206
+ mixture_coef (`float` or `list[float]`, *optional*, defaults to `0.5`):
207
+ Logit mixture coefficient for the model and reference model. If a list of floats is provided then the
208
+ mixture coefficient is selected for each new epoch and the last coefficient is used for the rest of the
209
+ epochs.
210
+
211
+ """
212
+ vllm_sampling_params: Optional[Any] = field(
213
+ default = None,
214
+ metadata = {'help': 'vLLM SamplingParams'},
215
+ )
216
+ unsloth_num_chunks : Optional[int] = field(
217
+ default = -1,
218
+ metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
219
+ )
220
+ max_seq_length : Optional[int] = field(
221
+ default = None,
222
+ metadata = {'help': 'Maximum sequence length to truncate to.'},
223
+ )
224
+ def __init__(
225
+ self,
226
+ output_dir = None,
227
+ overwrite_output_dir = None,
228
+ do_train = False,
229
+ do_eval = False,
230
+ do_predict = False,
231
+ eval_strategy = 'no',
232
+ prediction_loss_only = False,
233
+ per_device_train_batch_size = 4,
234
+ per_device_eval_batch_size = 4,
235
+ per_gpu_train_batch_size = None,
236
+ per_gpu_eval_batch_size = None,
237
+ gradient_accumulation_steps = 2,
238
+ eval_accumulation_steps = 2,
239
+ eval_delay = 0,
240
+ torch_empty_cache_steps = 250,
241
+ learning_rate = 5e-05,
242
+ weight_decay = 0.01,
243
+ adam_beta1 = 0.9,
244
+ adam_beta2 = 0.999,
245
+ adam_epsilon = 1e-08,
246
+ max_grad_norm = 1.0,
247
+ num_train_epochs = 3.0,
248
+ max_steps = -1,
249
+ lr_scheduler_type = 'linear',
250
+ warmup_ratio = 0.1,
251
+ warmup_steps = 0,
252
+ log_level = 'passive',
253
+ log_level_replica = 'warning',
254
+ log_on_each_node = True,
255
+ logging_dir = None,
256
+ logging_strategy = 'steps',
257
+ logging_first_step = False,
258
+ logging_steps = 1,
259
+ logging_nan_inf_filter = False,
260
+ save_strategy = 'steps',
261
+ save_steps = 500,
262
+ save_total_limit = None,
263
+ save_safetensors = True,
264
+ save_on_each_node = False,
265
+ save_only_model = False,
266
+ restore_callback_states_from_checkpoint = False,
267
+ no_cuda = False,
268
+ use_cpu = False,
269
+ use_mps_device = False,
270
+ seed = 3407,
271
+ data_seed = 3407,
272
+ jit_mode_eval = False,
273
+ bf16 = False,
274
+ fp16 = False,
275
+ fp16_opt_level = 'O1',
276
+ half_precision_backend = 'auto',
277
+ bf16_full_eval = False,
278
+ fp16_full_eval = False,
279
+ tf32 = None,
280
+ local_rank = -1,
281
+ ddp_backend = None,
282
+ tpu_num_cores = None,
283
+ tpu_metrics_debug = False,
284
+ debug = '',
285
+ dataloader_drop_last = False,
286
+ eval_steps = None,
287
+ dataloader_num_workers = 0,
288
+ dataloader_prefetch_factor = None,
289
+ past_index = -1,
290
+ run_name = None,
291
+ disable_tqdm = None,
292
+ remove_unused_columns = True,
293
+ label_names = None,
294
+ load_best_model_at_end = False,
295
+ metric_for_best_model = None,
296
+ greater_is_better = None,
297
+ ignore_data_skip = False,
298
+ fsdp = None,
299
+ fsdp_min_num_params = 0,
300
+ fsdp_config = None,
301
+ fsdp_transformer_layer_cls_to_wrap = None,
302
+ accelerator_config = None,
303
+ parallelism_config = None,
304
+ deepspeed = None,
305
+ label_smoothing_factor = 0.0,
306
+ optim = 'adamw_8bit',
307
+ optim_args = None,
308
+ adafactor = False,
309
+ group_by_length = False,
310
+ length_column_name = 'length',
311
+ report_to = 'none',
312
+ project = 'huggingface',
313
+ trackio_space_id = 'trackio',
314
+ ddp_find_unused_parameters = None,
315
+ ddp_bucket_cap_mb = None,
316
+ ddp_broadcast_buffers = None,
317
+ dataloader_pin_memory = True,
318
+ dataloader_persistent_workers = False,
319
+ skip_memory_metrics = True,
320
+ use_legacy_prediction_loop = False,
321
+ push_to_hub = False,
322
+ resume_from_checkpoint = None,
323
+ hub_model_id = None,
324
+ hub_strategy = 'every_save',
325
+ hub_token = None,
326
+ hub_private_repo = None,
327
+ hub_always_push = False,
328
+ hub_revision = None,
329
+ gradient_checkpointing = True,
330
+ gradient_checkpointing_kwargs = None,
331
+ include_inputs_for_metrics = False,
332
+ eval_do_concat_batches = True,
333
+ fp16_backend = 'auto',
334
+ push_to_hub_model_id = None,
335
+ push_to_hub_organization = None,
336
+ push_to_hub_token = None,
337
+ mp_parameters = '',
338
+ auto_find_batch_size = False,
339
+ full_determinism = False,
340
+ torchdynamo = None,
341
+ ray_scope = 'last',
342
+ ddp_timeout = 1800,
343
+ torch_compile = False,
344
+ torch_compile_backend = None,
345
+ torch_compile_mode = None,
346
+ include_tokens_per_second = False,
347
+ include_num_input_tokens_seen = False,
348
+ neftune_noise_alpha = None,
349
+ optim_target_modules = None,
350
+ batch_eval_metrics = False,
351
+ eval_on_start = False,
352
+ use_liger_kernel = False,
353
+ liger_kernel_config = None,
354
+ eval_use_gather_object = False,
355
+ average_tokens_across_devices = True,
356
+ reward_model_path = None,
357
+ judge = None,
358
+ max_new_tokens = 64,
359
+ max_length = 512,
360
+ temperature = 0.9,
361
+ top_p = 1.0,
362
+ top_k = None,
363
+ min_p = None,
364
+ repetition_penalty = 1.0,
365
+ generation_kwargs = {},
366
+ use_transformers_paged = False,
367
+ cache_implementation = None,
368
+ missing_eos_penalty = None,
369
+ loss_type = 'sigmoid',
370
+ disable_dropout = True,
371
+ use_vllm = False,
372
+ vllm_model_impl = 'vllm',
373
+ vllm_guided_decoding_regex = None,
374
+ vllm_gpu_memory_utilization = 0.55,
375
+ vllm_mode = 'colocate',
376
+ vllm_server_base_url = None,
377
+ vllm_server_host = '0.0.0.0',
378
+ vllm_server_port = 8000,
379
+ vllm_server_timeout = 240.0,
380
+ vllm_tensor_parallel_size = 1,
381
+ ds3_gather_for_generation = True,
382
+ model_init_kwargs = None,
383
+ reward_weights = None,
384
+ dataset_num_proc = None,
385
+ gpu_memory_utilization = None,
386
+ vllm_sampling_params = None,
387
+ unsloth_num_chunks = -1,
388
+ max_seq_length = None,
389
+ **kwargs,
390
+ ):
391
+ if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
392
+ if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
393
+ if output_dir is None and save_strategy == 'steps' and save_steps == 500:
394
+ output_dir = 'unsloth_training_checkpoints'
395
+ save_strategy = 'no'
396
+ if dataset_num_proc is None:
397
+ from multiprocessing import cpu_count
398
+ dataset_num_proc = min(max(cpu_count()+4, 2), 64)
399
+ if temperature <= 0:
400
+ raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.')
401
+ elif temperature >= 10:
402
+ raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.')
403
+
404
+
405
+ super().__init__(
406
+ output_dir = output_dir,
407
+ overwrite_output_dir = overwrite_output_dir,
408
+ do_train = do_train,
409
+ do_eval = do_eval,
410
+ do_predict = do_predict,
411
+ eval_strategy = eval_strategy,
412
+ prediction_loss_only = prediction_loss_only,
413
+ per_device_train_batch_size = per_device_train_batch_size,
414
+ per_device_eval_batch_size = per_device_eval_batch_size,
415
+ per_gpu_train_batch_size = per_gpu_train_batch_size,
416
+ per_gpu_eval_batch_size = per_gpu_eval_batch_size,
417
+ gradient_accumulation_steps = gradient_accumulation_steps,
418
+ eval_accumulation_steps = eval_accumulation_steps,
419
+ eval_delay = eval_delay,
420
+ torch_empty_cache_steps = torch_empty_cache_steps,
421
+ learning_rate = learning_rate,
422
+ weight_decay = weight_decay,
423
+ adam_beta1 = adam_beta1,
424
+ adam_beta2 = adam_beta2,
425
+ adam_epsilon = adam_epsilon,
426
+ max_grad_norm = max_grad_norm,
427
+ num_train_epochs = num_train_epochs,
428
+ max_steps = max_steps,
429
+ lr_scheduler_type = lr_scheduler_type,
430
+ warmup_ratio = warmup_ratio,
431
+ warmup_steps = warmup_steps,
432
+ log_level = log_level,
433
+ log_level_replica = log_level_replica,
434
+ log_on_each_node = log_on_each_node,
435
+ logging_dir = logging_dir,
436
+ logging_strategy = logging_strategy,
437
+ logging_first_step = logging_first_step,
438
+ logging_steps = logging_steps,
439
+ logging_nan_inf_filter = logging_nan_inf_filter,
440
+ save_strategy = save_strategy,
441
+ save_steps = save_steps,
442
+ save_total_limit = save_total_limit,
443
+ save_safetensors = save_safetensors,
444
+ save_on_each_node = save_on_each_node,
445
+ save_only_model = save_only_model,
446
+ restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
447
+ no_cuda = no_cuda,
448
+ use_cpu = use_cpu,
449
+ use_mps_device = use_mps_device,
450
+ seed = seed,
451
+ data_seed = data_seed,
452
+ jit_mode_eval = jit_mode_eval,
453
+ bf16 = bf16,
454
+ fp16 = fp16,
455
+ fp16_opt_level = fp16_opt_level,
456
+ half_precision_backend = half_precision_backend,
457
+ bf16_full_eval = bf16_full_eval,
458
+ fp16_full_eval = fp16_full_eval,
459
+ tf32 = tf32,
460
+ local_rank = local_rank,
461
+ ddp_backend = ddp_backend,
462
+ tpu_num_cores = tpu_num_cores,
463
+ tpu_metrics_debug = tpu_metrics_debug,
464
+ debug = debug,
465
+ dataloader_drop_last = dataloader_drop_last,
466
+ eval_steps = eval_steps,
467
+ dataloader_num_workers = dataloader_num_workers,
468
+ dataloader_prefetch_factor = dataloader_prefetch_factor,
469
+ past_index = past_index,
470
+ run_name = run_name,
471
+ disable_tqdm = disable_tqdm,
472
+ remove_unused_columns = remove_unused_columns,
473
+ label_names = label_names,
474
+ load_best_model_at_end = load_best_model_at_end,
475
+ metric_for_best_model = metric_for_best_model,
476
+ greater_is_better = greater_is_better,
477
+ ignore_data_skip = ignore_data_skip,
478
+ fsdp = fsdp,
479
+ fsdp_min_num_params = fsdp_min_num_params,
480
+ fsdp_config = fsdp_config,
481
+ fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
482
+ accelerator_config = accelerator_config,
483
+ parallelism_config = parallelism_config,
484
+ deepspeed = deepspeed,
485
+ label_smoothing_factor = label_smoothing_factor,
486
+ optim = optim,
487
+ optim_args = optim_args,
488
+ adafactor = adafactor,
489
+ group_by_length = group_by_length,
490
+ length_column_name = length_column_name,
491
+ report_to = report_to,
492
+ project = project,
493
+ trackio_space_id = trackio_space_id,
494
+ ddp_find_unused_parameters = ddp_find_unused_parameters,
495
+ ddp_bucket_cap_mb = ddp_bucket_cap_mb,
496
+ ddp_broadcast_buffers = ddp_broadcast_buffers,
497
+ dataloader_pin_memory = dataloader_pin_memory,
498
+ dataloader_persistent_workers = dataloader_persistent_workers,
499
+ skip_memory_metrics = skip_memory_metrics,
500
+ use_legacy_prediction_loop = use_legacy_prediction_loop,
501
+ push_to_hub = push_to_hub,
502
+ resume_from_checkpoint = resume_from_checkpoint,
503
+ hub_model_id = hub_model_id,
504
+ hub_strategy = hub_strategy,
505
+ hub_token = hub_token,
506
+ hub_private_repo = hub_private_repo,
507
+ hub_always_push = hub_always_push,
508
+ hub_revision = hub_revision,
509
+ gradient_checkpointing = gradient_checkpointing,
510
+ gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
511
+ include_inputs_for_metrics = include_inputs_for_metrics,
512
+ eval_do_concat_batches = eval_do_concat_batches,
513
+ fp16_backend = fp16_backend,
514
+ push_to_hub_model_id = push_to_hub_model_id,
515
+ push_to_hub_organization = push_to_hub_organization,
516
+ push_to_hub_token = push_to_hub_token,
517
+ mp_parameters = mp_parameters,
518
+ auto_find_batch_size = auto_find_batch_size,
519
+ full_determinism = full_determinism,
520
+ torchdynamo = torchdynamo,
521
+ ray_scope = ray_scope,
522
+ ddp_timeout = ddp_timeout,
523
+ torch_compile = torch_compile,
524
+ torch_compile_backend = torch_compile_backend,
525
+ torch_compile_mode = torch_compile_mode,
526
+ include_tokens_per_second = include_tokens_per_second,
527
+ include_num_input_tokens_seen = include_num_input_tokens_seen,
528
+ neftune_noise_alpha = neftune_noise_alpha,
529
+ optim_target_modules = optim_target_modules,
530
+ batch_eval_metrics = batch_eval_metrics,
531
+ eval_on_start = eval_on_start,
532
+ use_liger_kernel = use_liger_kernel,
533
+ liger_kernel_config = liger_kernel_config,
534
+ eval_use_gather_object = eval_use_gather_object,
535
+ average_tokens_across_devices = average_tokens_across_devices,
536
+ reward_model_path = reward_model_path,
537
+ judge = judge,
538
+ max_new_tokens = max_new_tokens,
539
+ max_length = max_length,
540
+ temperature = temperature,
541
+ top_p = top_p,
542
+ top_k = top_k,
543
+ min_p = min_p,
544
+ repetition_penalty = repetition_penalty,
545
+ generation_kwargs = generation_kwargs,
546
+ use_transformers_paged = use_transformers_paged,
547
+ cache_implementation = cache_implementation,
548
+ missing_eos_penalty = missing_eos_penalty,
549
+ loss_type = loss_type,
550
+ disable_dropout = disable_dropout,
551
+ use_vllm = use_vllm,
552
+ vllm_model_impl = vllm_model_impl,
553
+ vllm_guided_decoding_regex = vllm_guided_decoding_regex,
554
+ vllm_gpu_memory_utilization = vllm_gpu_memory_utilization,
555
+ vllm_mode = vllm_mode,
556
+ vllm_server_base_url = vllm_server_base_url,
557
+ vllm_server_host = vllm_server_host,
558
+ vllm_server_port = vllm_server_port,
559
+ vllm_server_timeout = vllm_server_timeout,
560
+ vllm_tensor_parallel_size = vllm_tensor_parallel_size,
561
+ ds3_gather_for_generation = ds3_gather_for_generation,
562
+ model_init_kwargs = model_init_kwargs,
563
+ reward_weights = reward_weights,
564
+ dataset_num_proc = dataset_num_proc,
565
+ gpu_memory_utilization = gpu_memory_utilization,**kwargs)
566
+ self.vllm_sampling_params = vllm_sampling_params
567
+ self.unsloth_num_chunks = unsloth_num_chunks
568
+ self.max_seq_length = max_seq_length
569
+ pass
570
+
571
+ class _UnslothNashMDTrainer(OnlineDPOTrainer):
572
+ """"""
573
+
574
+ _tag_names = ["trl", "nash-md"]
575
+ _name = "Nash-MD"
576
+ _paper = {
577
+ "title": "Nash Learning from Human Feedback",
578
+ "id": "2312.00886",
579
+ # docstyle-ignore
580
+ "citation": textwrap.dedent("""\
581
+ @inproceedings{munos2024nash,
582
+ title = {{Nash Learning from Human Feedback}},
583
+ author = {R{\'{e}}mi Munos and Michal Valko and Daniele Calandriello and Mohammad Gheshlaghi Azar and Mark Rowland and Zhaohan Daniel Guo and Yunhao Tang and Matthieu Geist and Thomas Mesnard and C{\\^{o}}me Fiegel and Andrea Michi and Marco Selvi and Sertan Girgin and Nikola Momchev and Olivier Bachem and Daniel J. Mankowitz and Doina Precup and Bilal Piot},
584
+ year = 2024,
585
+ booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024},
586
+ publisher = {OpenReview.net},
587
+ url = {https://openreview.net/forum?id=Y5AmNYiyCQ}
588
+ }"""),
589
+ }
590
+
591
+ def __init__(
592
+ self,
593
+ model: Union[PreTrainedModel, nn.Module] = None,
594
+ ref_model: Union[PreTrainedModel, nn.Module] = None,
595
+ reward_funcs: Union[PreTrainedModel, nn.Module, None] = None,
596
+ judge: Optional[BasePairwiseJudge] = None,
597
+ args: Optional[NashMDConfig] = None,
598
+ data_collator: Optional[Callable] = None,
599
+ train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
600
+ eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
601
+ processing_class: Optional[
602
+ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
603
+ ] = None,
604
+ peft_config: Optional[dict] = None,
605
+ compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
606
+ callbacks: Optional[list[TrainerCallback]] = None,
607
+ optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
608
+ preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
609
+ # Deprecated parameters
610
+ reward_model: Optional[Union[PreTrainedModel, nn.Module]] = None,
611
+ ) -> None:
612
+ super().__init__(
613
+ model=model,
614
+ ref_model=ref_model,
615
+ reward_funcs=reward_funcs,
616
+ judge=judge,
617
+ args=args,
618
+ data_collator=data_collator,
619
+ train_dataset=train_dataset,
620
+ eval_dataset=eval_dataset,
621
+ processing_class=processing_class,
622
+ reward_processing_classes=processing_class,
623
+ peft_config=peft_config,
624
+ compute_metrics=compute_metrics,
625
+ callbacks=callbacks,
626
+ optimizers=optimizers,
627
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics,
628
+ reward_model=reward_model,
629
+ )
630
+
631
+ self._mixture_coef = self.args.mixture_coef
632
+
633
+ # Overwrite the stats dictionary to include NashMD specific statistics
634
+ self.stats = {
635
+ # Remove "non_score_reward", "rlhf_reward", "scores_margin"
636
+ # Add "mixture_coef"
637
+ "loss/kl": [],
638
+ "objective/entropy": [],
639
+ "loss/score": [],
640
+ "rewards/probabilities": [],
641
+ "rewards/accuracies": [],
642
+ "rewards/margins": [],
643
+ "logps/chosen": [],
644
+ "logps/rejected": [],
645
+ "val/model_contain_eos_token": [],
646
+ "val/ref_contain_eos_token": [],
647
+ "beta": [],
648
+ "mixture_coef": [],
649
+ }
650
+ if self.reward_funcs is not None:
651
+ if len(self.reward_funcs) != 1:
652
+ raise ValueError("NashMDTrainer only supports one reward function/model.")
653
+ self.reward_funcs = self.reward_funcs[0]
654
+ self.stats["rewards/chosen"] = []
655
+ self.stats["rewards/rejected"] = []
656
+
657
+ @property
658
+ def mixture_coef(self):
659
+ if isinstance(self._mixture_coef, list):
660
+ epoch = self.state.epoch
661
+ return self._mixture_coef[epoch] if epoch < len(self._mixture_coef) else self._mixture_coef[-1]
662
+ else:
663
+ return self._mixture_coef
664
+
665
+ def _generate_completions(self, model, prompts):
666
+ # Generate completions from the policy model.
667
+ with unwrap_model_for_generation(model, self.accelerator) as unwrapped_policy_for_gen_ctx:
668
+ model_output = unwrapped_policy_for_gen_ctx.generate(
669
+ input_ids=prompts["input_ids"],
670
+ attention_mask=prompts["attention_mask"],
671
+ generation_config=self.generation_config,
672
+ )
673
+
674
+ # Get the DDP/FSDP unwrapped version of the main model.
675
+ # This will be the policy model for GeometricMixtureWrapper (PEFT adapters active if PEFT is used).
676
+ policy_model_for_gmw = self.accelerator.unwrap_model(model)
677
+
678
+ # Determine the correct reference model for GeometricMixtureWrapper.
679
+ # This also needs to be DDP/FSDP unwrapped.
680
+ ref_model_for_gmw: torch.nn.Module
681
+ if self.ref_model is None:
682
+ # No explicit ref_model is provided.
683
+ # Use the base of the main `model` if it's a PEFT model.
684
+ # policy_model_for_gmw is already DDP-unwrapped.
685
+ if is_peft_available() and isinstance(policy_model_for_gmw, PeftModel):
686
+ ref_model_for_gmw = policy_model_for_gmw.get_base_model()
687
+ else:
688
+ # Not a PEFT model (or PEFT not available), or already a base model.
689
+ # Use the DDP-unwrapped policy model itself as the reference.
690
+ ref_model_for_gmw = policy_model_for_gmw
691
+ else:
692
+ # An explicit ref_model is provided. Unwrap it for DDP/FSDP.
693
+ ref_model_for_gmw = self.accelerator.unwrap_model(self.ref_model)
694
+
695
+ # Both models given to GeometricMixtureWrapper (policy_model_for_gmw and ref_model_for_gmw) are DDP-unwrapped.
696
+ with torch.no_grad(): # Ensure no_grad context for mixture model generation
697
+ mixture_model = GeometricMixtureWrapper(
698
+ model=policy_model_for_gmw,
699
+ ref_model=ref_model_for_gmw,
700
+ generation_config=self.generation_config,
701
+ mixture_coef=self.mixture_coef,
702
+ device=self.accelerator.device,
703
+ )
704
+
705
+ mixture_output = mixture_model.generate(
706
+ input_ids=prompts["input_ids"],
707
+ attention_mask=prompts["attention_mask"],
708
+ generation_config=self.generation_config,
709
+ )
710
+
711
+ return model_output, mixture_output
712
+
713
+ def _process_completions(self, model_output, mixture_output, prompts):
714
+ context_length = prompts["input_ids"].shape[1]
715
+
716
+ # Process model completions
717
+ model_completion_ids = model_output[:, context_length:]
718
+ model_completion_ids, model_completion_mask = truncate_right(
719
+ model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
720
+ )
721
+ model_data = {
722
+ "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1),
723
+ "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1),
724
+ "raw": prompts["raw"],
725
+ }
726
+
727
+ # Process reference model completions
728
+ mixture_completion_ids = mixture_output[:, context_length:]
729
+ mixture_completion_ids, mixture_completion_mask = truncate_right(
730
+ mixture_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id
731
+ )
732
+ mixture_data = {
733
+ "input_ids": torch.cat((prompts["input_ids"], mixture_completion_ids), dim=1),
734
+ "attention_mask": torch.cat((prompts["attention_mask"], mixture_completion_mask), dim=1),
735
+ "raw": prompts["raw"],
736
+ }
737
+
738
+ return model_data, mixture_data
739
+
740
+ def _compute_rewards(self, model_data, mixture_data, context_length):
741
+ with torch.no_grad():
742
+ _, model_scores, _ = get_reward(
743
+ self.reward_funcs, model_data["input_ids"], self.processing_class.pad_token_id, context_length
744
+ )
745
+ _, mixture_scores, _ = get_reward(
746
+ self.reward_funcs, mixture_data["input_ids"], self.processing_class.pad_token_id, context_length
747
+ )
748
+
749
+ # Apply EOS penalty if needed
750
+ if self.args.missing_eos_penalty is not None:
751
+ model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
752
+ mixture_contain_eos = torch.any(mixture_data["input_ids"] == self.processing_class.eos_token_id, dim=-1)
753
+ model_scores[~model_contain_eos] -= self.args.missing_eos_penalty
754
+ mixture_scores[~mixture_contain_eos] -= self.args.missing_eos_penalty
755
+
756
+ return model_scores, mixture_scores
757
+
758
+ def _compute_judge(self, model_data, mixture_data, context_length):
759
+ prompts = model_data["raw"]
760
+ model_data_completions = self.processing_class.batch_decode(
761
+ model_data["input_ids"][:, context_length:], skip_special_tokens=True
762
+ )
763
+ model_data_completions = [completion.strip() for completion in model_data_completions]
764
+
765
+ mixture_data_completions = self.processing_class.batch_decode(
766
+ mixture_data["input_ids"][:, context_length:], skip_special_tokens=True
767
+ )
768
+ mixture_data_completions = [completion.strip() for completion in mixture_data_completions]
769
+ if is_conversational({"prompt": prompts[0]}):
770
+ model_data_completions = [
771
+ [{"role": "assistant", "content": completion}] for completion in model_data_completions
772
+ ]
773
+ environment = jinja2.Environment()
774
+ template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
775
+ prompts = [template.render(messages=message) for message in prompts]
776
+ model_data_completions = [template.render(messages=completion) for completion in model_data_completions]
777
+
778
+ mixture_data_completions = [
779
+ [{"role": "assistant", "content": completion}] for completion in mixture_data_completions
780
+ ]
781
+ mixture_data_completions = [
782
+ template.render(messages=completion) for completion in mixture_data_completions
783
+ ]
784
+
785
+ probability = self.judge.judge(
786
+ prompts,
787
+ list(zip(model_data_completions, mixture_data_completions)),
788
+ return_scores=True,
789
+ )
790
+ return torch.tensor(probability, device=model_data["input_ids"].device)
791
+
792
+ def _compute_logprobs(self, model, model_data, context_length):
793
+ def compute_logprobs_for_data(m, data):
794
+ output = m(data["input_ids"], attention_mask=data["attention_mask"])
795
+ logits = output.logits[:, context_length - 1 : -1]
796
+ token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:])
797
+ return token_logprobs
798
+
799
+ # Compute logprobs for model completions under the model
800
+ model_logprobs_model_data = compute_logprobs_for_data(model, model_data)
801
+
802
+ # Compute logprobs of model completions under the reference model
803
+ with torch.no_grad():
804
+ if self.ref_model is None:
805
+ with model.disable_adapter():
806
+ ref_logprobs_model_data = compute_logprobs_for_data(model, model_data)
807
+ else:
808
+ ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data)
809
+
810
+ # Mask padding tokens
811
+ model_padding_mask = model_data["attention_mask"][:, context_length:] == 0
812
+ model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
813
+ ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0)
814
+
815
+ return (model_logprobs_model_data, ref_logprobs_model_data)
816
+
817
+ def _compute_losses(
818
+ self,
819
+ model_logprobs_model_data,
820
+ ref_logprobs_model_data,
821
+ probability,
822
+ ):
823
+ # reinforce score where 0.5 is a control variate
824
+ score = (probability - 0.5) * model_logprobs_model_data.sum(1)
825
+
826
+ # kl divergence via reinforce
827
+ with torch.no_grad():
828
+ log_ratio = model_logprobs_model_data - ref_logprobs_model_data
829
+ kl_div_log = log_ratio.sum(1)
830
+ kl_div_loss = (log_ratio * model_logprobs_model_data).sum(1)
831
+
832
+ # final loss
833
+ loss = self.beta * kl_div_loss - score
834
+
835
+ return loss.mean(), score, kl_div_log
836
+
837
+ def _log_statistics(
838
+ self,
839
+ model_data,
840
+ mixture_data,
841
+ model_logprobs_model_data,
842
+ ref_logprobs_model_data,
843
+ probability,
844
+ score,
845
+ kl_div,
846
+ context_length,
847
+ model_scores=None,
848
+ mixture_scores=None,
849
+ ):
850
+ # Helper function to gather and compute mean
851
+ def gather_mean(tensor):
852
+ return self.accelerator.gather_for_metrics(tensor).mean().item()
853
+
854
+ # Log score
855
+ self.stats["loss/score"].append(gather_mean(score))
856
+ # Log KL divergence
857
+ self.stats["loss/kl"].append(gather_mean(kl_div))
858
+
859
+ # Log logprobs
860
+ model_logprobs_model_data_sum = model_logprobs_model_data.sum(1)
861
+ ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1)
862
+
863
+ self.stats["logps/chosen"].append(gather_mean(model_logprobs_model_data_sum))
864
+ self.stats["logps/rejected"].append(gather_mean(ref_logprobs_model_data_sum))
865
+
866
+ # Log rewards
867
+ if self.reward_funcs is not None:
868
+ self.stats["rewards/chosen"].append(gather_mean(model_scores))
869
+ self.stats["rewards/rejected"].append(gather_mean(mixture_scores))
870
+
871
+ # Log probabilities
872
+ self.stats["rewards/probabilities"].append(gather_mean(probability))
873
+
874
+ # Calculate entropy for model data
875
+ entropy_model_data = -model_logprobs_model_data.sum(1)
876
+ self.stats["objective/entropy"].append(gather_mean(entropy_model_data))
877
+
878
+ # Calculate margins
879
+ margin = model_logprobs_model_data_sum - ref_logprobs_model_data_sum
880
+ self.stats["rewards/margins"].append(gather_mean(margin))
881
+
882
+ # Calculate accuracy
883
+ accuracy = (margin > 0).float()
884
+ self.stats["rewards/accuracies"].append(gather_mean(accuracy))
885
+
886
+ # Log EOS token statistics
887
+ model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
888
+ mixture_eos = (mixture_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1)
889
+ self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float()))
890
+ self.stats["val/ref_contain_eos_token"].append(gather_mean(mixture_eos.float()))
891
+
892
+ # Log beta and mixture coef
893
+ self.stats["beta"].append(self.beta)
894
+ self.stats["mixture_coef"].append(self.mixture_coef)
895
+
896
+ def training_step(
897
+ self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
898
+ ) -> torch.Tensor:
899
+ model.train()
900
+
901
+ # Apply chat template and tokenize the input
902
+ batch_size = len(next(iter(inputs.values())))
903
+ prompts = inputs["prompt"]
904
+ inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)]
905
+ inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
906
+ inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs]
907
+ inputs = self.data_collator(inputs)
908
+
909
+ # need the prompt_ only
910
+ inputs = self._prepare_inputs(inputs)
911
+ context_length = inputs["prompt_input_ids"].shape[1]
912
+ prompts = {
913
+ "input_ids": inputs["prompt_input_ids"],
914
+ "attention_mask": inputs["prompt_attention_mask"],
915
+ "raw": prompts,
916
+ }
917
+ del inputs
918
+
919
+ # Sample completions from both the model and the reference model
920
+ model_output, mixture_output = self._generate_completions(model, prompts)
921
+
922
+ # Process model completions
923
+ model_data, mixture_data = self._process_completions(model_output, mixture_output, prompts)
924
+
925
+ # Compute rewards
926
+ if self.reward_funcs is not None:
927
+ model_scores, mixture_scores = self._compute_rewards(model_data, mixture_data, context_length)
928
+ # probability of the model data vs the mixture data
929
+ probability = F.sigmoid(model_scores - mixture_scores)
930
+ else:
931
+ model_scores, mixture_scores = None, None
932
+ probability = self._compute_judge(model_data, mixture_data, context_length)
933
+
934
+ # Compute logprobs
935
+ model_logprobs_model_data, ref_logprobs_model_data = self._compute_logprobs(model, model_data, context_length)
936
+
937
+ # Compute loss
938
+ loss, score, kl_div = self._compute_losses(model_logprobs_model_data, ref_logprobs_model_data, probability)
939
+
940
+ # Log everything
941
+ self._log_statistics(
942
+ model_data,
943
+ mixture_data,
944
+ model_logprobs_model_data.detach(),
945
+ ref_logprobs_model_data,
946
+ probability,
947
+ score.detach(),
948
+ kl_div.detach(),
949
+ context_length,
950
+ model_scores,
951
+ mixture_scores,
952
+ )
953
+
954
+ if (
955
+ self.args.torch_empty_cache_steps is not None
956
+ and self.state.global_step % self.args.torch_empty_cache_steps == 0
957
+ ):
958
+ empty_cache()
959
+
960
+ kwargs = {}
961
+ # For LOMO optimizers you need to explicitly use the learning rate
962
+ if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
963
+ kwargs["learning_rate"] = self._get_learning_rate()
964
+
965
+ if self.args.n_gpu > 1:
966
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
967
+
968
+ self.accelerator.backward(loss, **kwargs)
969
+
970
+ return loss.detach() / self.args.gradient_accumulation_steps
971
+ class UnslothNashMDTrainer(_UnslothNashMDTrainer):
972
+ """
973
+
974
+ Trainer for the Nash-MD method.
975
+
976
+ It is implemented as a subclass of [`OnlineDPOTrainer`].
977
+
978
+ Args:
979
+ model ([`~transformers.PreTrainedModel`]):
980
+ The model to train, preferably an `AutoModelForCausalLM`.
981
+ ref_model ([`PreTrainedModelWrapper`]):
982
+ Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
983
+ and loss. If no reference model is provided, the trainer will create a reference model with the same
984
+ architecture as the model to be optimized.
985
+ reward_funcs ([`~transformers.PreTrainedModel`]):
986
+ The reward model to score completions with, preferably an
987
+ [`~transformers.AutoModelForSequenceClassification`].
988
+ judge ([`BasePairwiseJudge`]):
989
+ The judge to use for pairwise comparison of model completions.
990
+ args ([`NashMDConfig`]):
991
+ The NashMD config arguments to use for training.
992
+ data_collator ([`~transformers.DataCollator`]):
993
+ The data collator to use for training. If None is specified, the default data collator
994
+ ([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
995
+ sequences in the batch, given a dataset of paired sequences.
996
+ train_dataset ([`~datasets.Dataset`]):
997
+ The dataset to use for training.
998
+ eval_dataset ([`~datasets.Dataset`]):
999
+ The dataset to use for evaluation.
1000
+ processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
1001
+ Processing class used to process the data. If provided, will be used to automatically process the inputs
1002
+ for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
1003
+ reuse the fine-tuned model.
1004
+ peft_config (`dict`):
1005
+ The peft config to use for training.
1006
+ compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
1007
+ The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to
1008
+ metric values.
1009
+ callbacks (`list[transformers.TrainerCallback]`):
1010
+ The callbacks to use for training.
1011
+ optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
1012
+ The optimizer and scheduler to use for training.
1013
+ preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
1014
+ The function to use to preprocess the logits before computing the metrics.
1015
+
1016
+ reward_model:
1017
+
1018
+ <Deprecated version="0.22.0">
1019
+
1020
+ This parameter is deprecated and will be removed in version 0.25.0. Use `reward_funcs` instead.
1021
+
1022
+ </Deprecated>
1023
+
1024
+ """
1025
+ def __init__(
1026
+ self,
1027
+ model = None,
1028
+ ref_model = None,
1029
+ reward_funcs = None,
1030
+ judge = None,
1031
+ args = None,
1032
+ data_collator = None,
1033
+ train_dataset = None,
1034
+ eval_dataset = None,
1035
+ processing_class = None,
1036
+ peft_config = None,
1037
+ compute_metrics = None,
1038
+ callbacks = None,
1039
+ preprocess_logits_for_metrics = None,
1040
+ reward_model = None,
1041
+ **kwargs
1042
+ ):
1043
+ if args is None: args = UnslothNashMDConfig()
1044
+ use_bf16 = getattr(args, 'bf16', False)
1045
+ if type(use_bf16) is not bool: use_bf16 = False
1046
+ use_fp16 = getattr(args, 'fp16', False)
1047
+ if type(use_fp16) is not bool: use_fp16 = False
1048
+ force_float32 = False
1049
+ full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1'
1050
+ if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'):
1051
+ print('Unsloth: Switching to float32 training since model cannot work with float16')
1052
+ force_float32 = True
1053
+ mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
1054
+ dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None)
1055
+ if dtype is None: dtype = model.get_input_embeddings().weight.dtype
1056
+ from unsloth_zoo.utils import _get_dtype
1057
+ dtype = _get_dtype(dtype)
1058
+ float16 = dtype == torch.float16
1059
+ if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
1060
+ if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
1061
+ if force_float32:
1062
+ # Forced float32 training
1063
+ args.fp16 = False
1064
+ args.bf16 = False
1065
+ os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
1066
+ if hasattr(args, 'mixed_precision'): args.mixed_precision = 'no'
1067
+ # args.mixed_precision is a new argument which needs to be set now
1068
+ elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
1069
+ # Mixed precision training
1070
+ args.fp16 = float16
1071
+ args.bf16 = not float16
1072
+ os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
1073
+ if hasattr(args, 'mixed_precision'): args.mixed_precision = 'fp16' if float16 else 'bf16'
1074
+ # args.mixed_precision is a new argument which needs to be set now
1075
+ elif mixed_precision_dtype == 'bfloat16':
1076
+ # Both False since bfloat16 full finetuning doesn't do any autocasting.
1077
+ args.fp16 = False
1078
+ args.bf16 = False
1079
+ os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
1080
+ if hasattr(args, 'mixed_precision'): args.mixed_precision = 'no'
1081
+ # args.mixed_precision is a new argument which needs to be set now
1082
+
1083
+ if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
1084
+ args.eval_strategy = 'steps'
1085
+ if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
1086
+ ga_steps = getattr(args, 'gradient_accumulation_steps', None)
1087
+ if ga_steps is not None and ga_steps > 1:
1088
+ from transformers import __version__ as transformers_version
1089
+ if Version(transformers_version) <= Version('4.45.2'):
1090
+ print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
1091
+ '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
1092
+ if getattr(args, 'eval_strategy', 'no') != 'no':
1093
+ eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
1094
+ if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
1095
+ if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
1096
+ fp16_full_eval = getattr(args, 'fp16_full_eval', False)
1097
+ if type(fp16_full_eval) is not bool: fp16_full_eval = False
1098
+ bf16_full_eval = getattr(args, 'bf16_full_eval', False)
1099
+ if type(bf16_full_eval) is not bool: bf16_full_eval = False
1100
+ if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
1101
+ if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
1102
+ if force_float32:
1103
+ args.bf16_full_eval = False
1104
+ args.fp16_full_eval = False
1105
+ elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
1106
+ args.bf16_full_eval = True
1107
+ args.fp16_full_eval = False
1108
+ elif not bf16_full_eval and not fp16_full_eval:
1109
+ args.bf16_full_eval = args.bf16
1110
+ args.fp16_full_eval = args.fp16
1111
+ _output_logits = False
1112
+ if locals().get('compute_metrics', None) is not None: _output_logits = True
1113
+ if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
1114
+ if _output_logits:
1115
+ os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
1116
+ if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
1117
+ pass
1118
+ else:
1119
+ model_max_seq_length = getattr(model, 'max_seq_length', None)
1120
+ args_max_seq_length = getattr(args, 'max_seq_length', None)
1121
+ if args_max_seq_length is None and model_max_seq_length is not None:
1122
+ max_seq_length = model.max_seq_length
1123
+ if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
1124
+ if model is not None and hasattr(model, 'for_training'):
1125
+ model.for_training(use_gradient_checkpointing=getattr(args, 'gradient_checkpointing', True))
1126
+ if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
1127
+ if 'processing_class' in locals():
1128
+ if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
1129
+ if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
1130
+ __tokenizer = processing_class if 'processing_class' in locals() else tokenizer
1131
+ from unsloth_zoo.vision_utils import UnslothVisionDataCollator
1132
+ if not isinstance(data_collator, UnslothVisionDataCollator):
1133
+ if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
1134
+ data_collator = TransformersDataCollatorForLanguageModeling(
1135
+ __tokenizer,
1136
+ mlm = False,
1137
+ mlm_probability = 0.0,
1138
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
1139
+ )
1140
+ elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
1141
+ data_collator = DataCollatorForSeq2Seq(
1142
+ __tokenizer,
1143
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
1144
+ )
1145
+ else:
1146
+ if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
1147
+ if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
1148
+ if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
1149
+ if not isinstance(data_collator, UnslothVisionDataCollator):
1150
+ if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
1151
+ if isinstance(data_collator, DataCollatorForSeq2Seq):
1152
+ data_collator = DataCollatorForSeq2Seq(
1153
+ __tokenizer.tokenizer,
1154
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
1155
+ )
1156
+ else:
1157
+ data_collator = TransformersDataCollatorForLanguageModeling(
1158
+ __tokenizer.tokenizer,
1159
+ mlm = False,
1160
+ mlm_probability = 0.0,
1161
+ pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None),
1162
+ )
1163
+ other_metrics = []
1164
+
1165
+ from unsloth_zoo.logging_utils import PatchRLStatistics
1166
+ PatchRLStatistics('nash_md_trainer', other_metrics)
1167
+
1168
+ # [TODO] Fix up DataParallel multiplying batch sizes
1169
+ # [TODO] DDP works, but DP seems to not work? [TODO]
1170
+ if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1:
1171
+ if getattr(args, "_n_gpu", 1) != 1:
1172
+ args._n_gpu = 1
1173
+ if "model" in locals() and hasattr(model, "for_training"):
1174
+ model.for_training(use_gradient_checkpointing=getattr(args, 'gradient_checkpointing', True))
1175
+ super().__init__(
1176
+ model = model,
1177
+ ref_model = ref_model,
1178
+ reward_funcs = reward_funcs,
1179
+ judge = judge,
1180
+ args = args,
1181
+ data_collator = data_collator,
1182
+ train_dataset = train_dataset,
1183
+ eval_dataset = eval_dataset,
1184
+ processing_class = processing_class,
1185
+ peft_config = peft_config,
1186
+ compute_metrics = compute_metrics,
1187
+ callbacks = callbacks,
1188
+ preprocess_logits_for_metrics = preprocess_logits_for_metrics,
1189
+ reward_model = reward_model,**kwargs)
1190
+ if "model" in locals() and hasattr(model, "for_inference"):
1191
+ model.for_inference()
1192
+ if hasattr(self, 'neftune_hook_handle'):
1193
+ self.neftune_hook_handle.remove()
1194
+ if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
1195
+ if getattr(args, 'neftune_noise_alpha', None) is not None:
1196
+ model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
1197
+ pass
1198
+ if hasattr(self, 'accelerator'):
1199
+ scaler = self.accelerator.scaler
1200
+ current_model = model
1201
+ while hasattr(current_model, 'model'):
1202
+ current_model.accelerator_scaler = scaler
1203
+ current_model = current_model.model
1204
+ current_model.accelerator_scaler = scaler
1205
+ pass
1206
+ if hasattr(self, 'train'):
1207
+ self.train = MethodType(prepare_for_training_mode(self.__class__.train), self)
1208
+ pass
1209
+
1210
+ pass