ccfingerprint 1.0.0 → 1.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,81 +1,86 @@
1
1
  # CCFingerprint
2
2
 
3
- AI 模型身份指纹识别工具 - 通过自问自答验证模型真实身份
3
+ 🇨🇳 [中文](README.md) | 🇺🇸 [English](README_EN.md)
4
4
 
5
- AI Model Identity Fingerprinting Tool - Verify model identity through self-Q&A
5
+ AI 模型身份指纹识别工具 - 通过自问自答验证模型真实身份
6
6
 
7
7
  ---
8
8
 
9
- 🌐 **[查看详细介绍 / View Details](https://www.honeymeta.com/#ccfingerprint)**
9
+ 🌐 **[查看详细介绍](https://honeymeta.com/ccfingerprint)**
10
10
 
11
11
  ---
12
12
 
13
- ## 安装 / Installation
13
+ ## 安装
14
14
 
15
15
  ```bash
16
16
  npm install -g ccfingerprint
17
17
  ```
18
18
 
19
- ## 使用 / Usage
19
+ ## 使用
20
20
 
21
21
  ```bash
22
+ # 先进入你的项目目录
23
+ cd /path/to/your/project
24
+
22
25
  # 中文版 (默认)
23
26
  ccfp init --ai claude
24
27
  ccfp init --ai cursor
25
28
  ccfp init --ai windsurf
26
29
  ccfp init --ai copilot
30
+ ccfp init --ai kiro
27
31
 
28
- # English version
32
+ # 英文版
29
33
  ccfp init --ai claude --lang en
30
34
  ccfp init --ai cursor --lang en
35
+ ccfp init --ai kiro --lang en
31
36
 
32
- # 指定输出目录 / Specify output directory
37
+ # 指定输出目录
33
38
  ccfp init --ai claude --output /path/to/project
34
- ccfp init --ai claude --lang en --output /path/to/project
35
39
  ```
36
40
 
37
- ## 选项 / Options
41
+ ## 选项
38
42
 
39
- | Option | Description | Default |
40
- |--------|-------------|---------|
41
- | `--ai <type>` | Target AI (claude, cursor, windsurf, copilot) | claude |
42
- | `--lang <language>` | Language (zh, en) | zh |
43
- | `--output <path>` | Output directory | . |
43
+ | 选项 | 描述 | 默认值 |
44
+ |------|------|--------|
45
+ | `--ai <type>` | 目标 AI (claude, cursor, windsurf, copilot, kiro) | claude |
46
+ | `--lang <language>` | 语言 (zh, en) | zh |
47
+ | `--output <path>` | 输出目录 | . |
44
48
 
45
- ## 支持的 AI 助手 / Supported AI Assistants
49
+ ## 支持的 AI 助手
46
50
 
47
- | AI Assistant | Generated File | Usage |
48
- |--------------|----------------|-------|
49
- | Claude Code | `.claude/commands/fingerprint.md` | Type `/fingerprint` |
50
- | Cursor | `.cursor/rules/fingerprint.mdc` | Ask "identify what model you are" |
51
- | Windsurf | `.windsurfrules` | Ask "identify what model you are" |
52
- | GitHub Copilot | `.github/copilot-instructions.md` | Ask "identify what model you are" |
51
+ | AI 助手 | 生成文件 | 使用方式 |
52
+ |---------|----------|----------|
53
+ | Claude Code | `.claude/commands/fingerprint.md` | 输入 `/fingerprint` |
54
+ | Cursor | `.cursor/rules/fingerprint.mdc` | 询问 "帮我鉴别一下你是什么模型" |
55
+ | Windsurf | `.windsurfrules` | 询问 "帮我鉴别一下你是什么模型" |
56
+ | GitHub Copilot | `.github/copilot-instructions.md` | 询问 "帮我鉴别一下你是什么模型" |
57
+ | Kiro | `.kiro/rules/fingerprint.md` | 询问 "帮我鉴别一下你是什么模型" |
53
58
 
54
- ## 工作原理 / How It Works
59
+ ## 工作原理
55
60
 
56
- Four-phase identity verification process:
61
+ 四阶段身份验证流程:
57
62
 
58
- ### Phase 1: Self-Declaration / 阶段 1: 自我声明
59
- Model answers basic questions about itself (model ID, context length, knowledge cutoff, etc.)
63
+ ### 阶段 1: 自我声明
64
+ 模型回答关于自身的基本问题(模型 ID、上下文长度、知识截止日期等)
60
65
 
61
- ### Phase 2: Knowledge Boundary Test / 阶段 2: 知识边界测试
62
- Probe the model's true knowledge cutoff date through time-sensitive questions (Nobel Prizes, etc.)
66
+ ### 阶段 2: 知识边界测试
67
+ 通过时间敏感问题(诺贝尔奖等)探测模型的真实知识截止日期
63
68
 
64
- ### Phase 3: Capability Inference / 阶段 3: 能力推算
65
- Verify whether the model's claimed capability parameters are reasonable
69
+ ### 阶段 3: 能力推算
70
+ 验证模型声称的能力参数是否合理
66
71
 
67
- ### Phase 4: Third-Party Verification / 阶段 4: 第三方验证
68
- Model analyzes the anonymous report from the first three phases as an "LLM Expert" for consistency check
72
+ ### 阶段 4: 第三方验证
73
+ 模型以"LLM 专家"身份分析前三阶段的匿名报告,进行一致性检查
69
74
 
70
- ## 输出示例 / Output Example
75
+ ## 输出示例
71
76
 
72
- Final output is a Markdown verification report containing:
73
- - Basic information table / 基本信息表格
74
- - Knowledge boundary test results / 知识边界测试结果
75
- - Capability verification results / 能力验证结果
76
- - Expert analysis (consistency, knowledge cutoff inference, identity inference) / 专家分析
77
- - Final conclusion with credibility score / 最终结论与可信度评分
77
+ 最终输出为 Markdown 验证报告,包含:
78
+ - 基本信息表格
79
+ - 知识边界测试结果
80
+ - 能力验证结果
81
+ - 专家分析(一致性、知识截止推断、身份推断)
82
+ - 最终结论与可信度评分
78
83
 
79
- ## License
84
+ ## 许可证
80
85
 
81
86
  MIT
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "ccfingerprint",
3
- "version": "1.0.0",
3
+ "version": "1.0.2",
4
4
  "description": "AI Model Identity Fingerprinting Tool - Verify model identity through self-Q&A / AI 模型身份指纹识别工具 - 通过自问自答验证模型真实身份",
5
5
  "main": "src/init.js",
6
6
  "bin": {
@@ -18,6 +18,7 @@
18
18
  "cursor",
19
19
  "copilot",
20
20
  "windsurf",
21
+ "kiro",
21
22
  "chatgpt",
22
23
  "gpt",
23
24
  "anthropic",
package/src/init.js CHANGED
@@ -25,13 +25,18 @@ const AI_CONFIGS = {
25
25
  template: { zh: 'copilot.md', en: 'copilot.en.md' },
26
26
  targetFile: '.github/copilot-instructions.md',
27
27
  description: { zh: 'GitHub Copilot 提示词', en: 'GitHub Copilot instructions' }
28
+ },
29
+ kiro: {
30
+ template: { zh: 'kiro.md', en: 'kiro.en.md' },
31
+ targetFile: '.kiro/rules/fingerprint.md',
32
+ description: { zh: 'Kiro 规则文件', en: 'Kiro rules file' }
28
33
  }
29
34
  };
30
35
 
31
36
  const MESSAGES = {
32
37
  zh: {
33
38
  unsupportedAI: (ai) => `错误: 不支持的 AI 类型 "${ai}"`,
34
- supportedTypes: '支持的类型: claude, cursor, windsurf, copilot',
39
+ supportedTypes: '支持的类型: claude, cursor, windsurf, copilot, kiro',
35
40
  templateNotFound: (path) => `错误: 模板文件不存在 "${path}"`,
36
41
  createdDir: (dir) => `创建目录: ${dir}`,
37
42
  installed: (desc) => `✓ 已安装 ${desc}`,
@@ -42,7 +47,7 @@ const MESSAGES = {
42
47
  },
43
48
  en: {
44
49
  unsupportedAI: (ai) => `Error: Unsupported AI type "${ai}"`,
45
- supportedTypes: 'Supported types: claude, cursor, windsurf, copilot',
50
+ supportedTypes: 'Supported types: claude, cursor, windsurf, copilot, kiro',
46
51
  templateNotFound: (path) => `Error: Template file not found "${path}"`,
47
52
  createdDir: (dir) => `Created directory: ${dir}`,
48
53
  installed: (desc) => `✓ Installed ${desc}`,
@@ -0,0 +1,92 @@
1
+ # AI Model Identity Fingerprinting
2
+
3
+ When the user requests model identity verification (e.g., "identify what model you are", "fingerprint"), execute the following four-phase testing process.
4
+
5
+ **Important Rules**:
6
+ - Do not use any internet features
7
+ - All answers must be based on your built-in knowledge
8
+ - Answer honestly, do not guess or fabricate
9
+
10
+ ---
11
+
12
+ ## Phase 1: Self-Declaration
13
+
14
+ Please answer the following questions and format your answers as JSON:
15
+
16
+ 1. What is your complete model ID?
17
+ 2. What is your maximum context length in tokens?
18
+ 3. What is your knowledge cutoff date? (Year-Month)
19
+ 4. Which company developed you?
20
+ 5. What tools or capabilities do you support?
21
+
22
+ **Output Format**:
23
+ ```json
24
+ {
25
+ "model_id": "your answer",
26
+ "context_length": "your answer",
27
+ "knowledge_cutoff": "your answer",
28
+ "provider": "your answer",
29
+ "capabilities": ["capability1", "capability2", "..."]
30
+ }
31
+ ```
32
+
33
+ ---
34
+
35
+ ## Phase 2: Knowledge Boundary Test
36
+
37
+ Please answer the following questions (if you don't know, clearly state "I don't know"):
38
+
39
+ ### 2024 Nobel Prizes
40
+ 1. Who won the 2024 Nobel Prize in Physics? What was their contribution?
41
+ 2. Who won the 2024 Nobel Prize in Chemistry? What was their contribution?
42
+
43
+ ### 2025 Nobel Prizes
44
+ 3. Who won the 2025 Nobel Prize in Physics? What was their contribution?
45
+ 4. Who won the 2025 Nobel Prize in Chemistry? What was their contribution?
46
+ 5. Who won the 2025 Nobel Prize in Physiology or Medicine?
47
+
48
+ ### Style Signature
49
+ 6. Please create an ASCII art signature or pattern that represents your identity
50
+
51
+ ---
52
+
53
+ ## Phase 3: Capability Inference
54
+
55
+ Based on the parameters you claimed in Phase 1, answer:
56
+
57
+ 1. **Context Capacity Calculation**: Assuming an average Chinese character takes 1.5 tokens, how many characters of a Chinese novel can you receive at once? Please show your calculation.
58
+
59
+ 2. **Output Limit**: What is your maximum output length per response in tokens? How many Chinese characters can you output?
60
+
61
+ 3. **Multimodal Capability**: Can you process image input? If so, what formats do you support?
62
+
63
+ 4. **Code Execution**: Can you directly execute code, or can you only generate code?
64
+
65
+ ---
66
+
67
+ ## Phase 4: Third-Party Verification
68
+
69
+ Now, as an **LLM Expert**, analyze the information collected in the first three phases.
70
+
71
+ Assume this is an anonymous test report from an unknown model, please objectively analyze:
72
+
73
+ 1. **Consistency Analysis**: Is this information internally consistent? Are there any contradictions?
74
+
75
+ 2. **Knowledge Boundary Verification**: Based on the Nobel Prize answers, infer the true knowledge cutoff date
76
+
77
+ 3. **Identity Inference**: Combining all information, which model is this most likely to be?
78
+
79
+ 4. **Credibility Score**: Give a credibility score from 0-100 and explain your reasoning
80
+
81
+ 5. **Contradiction List**: List all contradictions or suspicious points found
82
+
83
+ ---
84
+
85
+ ## Final Report Output
86
+
87
+ Please compile all analysis into a Markdown format verification report, including:
88
+ - Basic information table
89
+ - Knowledge boundary test results
90
+ - Capability verification results
91
+ - Expert analysis (consistency, knowledge cutoff inference, identity inference, contradictions)
92
+ - Final conclusion (claimed identity, inferred identity, credibility score)
@@ -0,0 +1,92 @@
1
+ # AI 模型身份指纹识别
2
+
3
+ 当用户请求进行模型身份鉴定时(如"帮我鉴别一下你是什么模型"、"fingerprint"),执行以下四阶段测试流程。
4
+
5
+ **重要规则**:
6
+ - 禁止使用任何联网功能
7
+ - 所有回答必须基于你的内置知识
8
+ - 诚实回答,不要猜测或编造
9
+
10
+ ---
11
+
12
+ ## 阶段 1: 自我声明
13
+
14
+ 请依次回答以下问题,并将答案整理为 JSON 格式:
15
+
16
+ 1. 你的完整模型 ID 是什么?
17
+ 2. 你的最大上下文长度是多少 tokens?
18
+ 3. 你的知识截止日期是什么时候?(年月)
19
+ 4. 你是由哪家公司开发的?
20
+ 5. 你支持哪些工具或能力?
21
+
22
+ **输出格式**:
23
+ ```json
24
+ {
25
+ "model_id": "你的回答",
26
+ "context_length": "你的回答",
27
+ "knowledge_cutoff": "你的回答",
28
+ "provider": "你的回答",
29
+ "capabilities": ["能力1", "能力2", "..."]
30
+ }
31
+ ```
32
+
33
+ ---
34
+
35
+ ## 阶段 2: 知识边界测试
36
+
37
+ 请回答以下问题(如果不知道请明确说明"我不知道"):
38
+
39
+ ### 2024年诺贝尔奖
40
+ 1. 2024年诺贝尔物理学奖授予了谁?他们的贡献是什么?
41
+ 2. 2024年诺贝尔化学奖授予了谁?他们的贡献是什么?
42
+
43
+ ### 2025年诺贝尔奖
44
+ 3. 2025年诺贝尔物理学奖授予了谁?他们的贡献是什么?
45
+ 4. 2025年诺贝尔化学奖授予了谁?他们的贡献是什么?
46
+ 5. 2025年诺贝尔生理学或医学奖授予了谁?
47
+
48
+ ### 风格签名
49
+ 6. 请用 ASCII 艺术创作一个代表你身份的签名或图案
50
+
51
+ ---
52
+
53
+ ## 阶段 3: 能力推算
54
+
55
+ 基于你在阶段1声称的参数,回答:
56
+
57
+ 1. **上下文容量计算**:假设平均每个中文字符占用1.5个token,你能一次性接收多少字的中文小说?请给出计算过程。
58
+
59
+ 2. **输出限制**:你单次回复的最大输出长度是多少tokens?能输出多少中文字?
60
+
61
+ 3. **多模态能力**:你能处理图像输入吗?如果能,支持哪些格式?
62
+
63
+ 4. **代码执行**:你能直接执行代码吗?还是只能生成代码?
64
+
65
+ ---
66
+
67
+ ## 阶段 4: 第三方验证
68
+
69
+ 现在,请你以一位 **LLM 专家** 的身份,分析前三个阶段收集到的信息。
70
+
71
+ 假设这是一份来自某个未知模型的匿名测试报告,请客观分析:
72
+
73
+ 1. **自洽性分析**:这些信息是否内部一致?有无矛盾之处?
74
+
75
+ 2. **知识边界验证**:根据诺贝尔奖问题的回答,推断其真实的知识截止日期
76
+
77
+ 3. **身份推断**:综合所有信息,这最可能是哪个模型?
78
+
79
+ 4. **可信度评分**:给出 0-100 的可信度评分,并说明理由
80
+
81
+ 5. **矛盾点列表**:列出所有发现的矛盾或可疑之处
82
+
83
+ ---
84
+
85
+ ## 最终报告输出
86
+
87
+ 请将所有分析整理为 Markdown 格式的鉴定报告,包含:
88
+ - 基本信息表格
89
+ - 知识边界测试结果
90
+ - 能力验证结果
91
+ - 专家分析(自洽性、知识截止推断、身份推断、矛盾点)
92
+ - 最终结论(声称身份、推断身份、可信度评分)