ccfingerprint 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE +21 -0
- package/README.md +81 -0
- package/bin/ccfp.js +23 -0
- package/package.json +51 -0
- package/src/init.js +97 -0
- package/src/puzzles/capability.json +26 -0
- package/src/puzzles/confusion.json +41 -0
- package/src/puzzles/self-declare.json +31 -0
- package/src/puzzles/verification.json +7 -0
- package/src/templates/claude.en.md +137 -0
- package/src/templates/claude.md +137 -0
- package/src/templates/copilot.en.md +92 -0
- package/src/templates/copilot.md +92 -0
- package/src/templates/cursor.en.md +98 -0
- package/src/templates/cursor.md +98 -0
- package/src/templates/windsurf.en.md +92 -0
- package/src/templates/windsurf.md +92 -0
package/LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2026 HoneyMeta
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
package/README.md
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
1
|
+
# CCFingerprint
|
|
2
|
+
|
|
3
|
+
AI 模型身份指纹识别工具 - 通过自问自答验证模型真实身份
|
|
4
|
+
|
|
5
|
+
AI Model Identity Fingerprinting Tool - Verify model identity through self-Q&A
|
|
6
|
+
|
|
7
|
+
---
|
|
8
|
+
|
|
9
|
+
🌐 **[查看详细介绍 / View Details](https://www.honeymeta.com/#ccfingerprint)**
|
|
10
|
+
|
|
11
|
+
---
|
|
12
|
+
|
|
13
|
+
## 安装 / Installation
|
|
14
|
+
|
|
15
|
+
```bash
|
|
16
|
+
npm install -g ccfingerprint
|
|
17
|
+
```
|
|
18
|
+
|
|
19
|
+
## 使用 / Usage
|
|
20
|
+
|
|
21
|
+
```bash
|
|
22
|
+
# 中文版 (默认)
|
|
23
|
+
ccfp init --ai claude
|
|
24
|
+
ccfp init --ai cursor
|
|
25
|
+
ccfp init --ai windsurf
|
|
26
|
+
ccfp init --ai copilot
|
|
27
|
+
|
|
28
|
+
# English version
|
|
29
|
+
ccfp init --ai claude --lang en
|
|
30
|
+
ccfp init --ai cursor --lang en
|
|
31
|
+
|
|
32
|
+
# 指定输出目录 / Specify output directory
|
|
33
|
+
ccfp init --ai claude --output /path/to/project
|
|
34
|
+
ccfp init --ai claude --lang en --output /path/to/project
|
|
35
|
+
```
|
|
36
|
+
|
|
37
|
+
## 选项 / Options
|
|
38
|
+
|
|
39
|
+
| Option | Description | Default |
|
|
40
|
+
|--------|-------------|---------|
|
|
41
|
+
| `--ai <type>` | Target AI (claude, cursor, windsurf, copilot) | claude |
|
|
42
|
+
| `--lang <language>` | Language (zh, en) | zh |
|
|
43
|
+
| `--output <path>` | Output directory | . |
|
|
44
|
+
|
|
45
|
+
## 支持的 AI 助手 / Supported AI Assistants
|
|
46
|
+
|
|
47
|
+
| AI Assistant | Generated File | Usage |
|
|
48
|
+
|--------------|----------------|-------|
|
|
49
|
+
| Claude Code | `.claude/commands/fingerprint.md` | Type `/fingerprint` |
|
|
50
|
+
| Cursor | `.cursor/rules/fingerprint.mdc` | Ask "identify what model you are" |
|
|
51
|
+
| Windsurf | `.windsurfrules` | Ask "identify what model you are" |
|
|
52
|
+
| GitHub Copilot | `.github/copilot-instructions.md` | Ask "identify what model you are" |
|
|
53
|
+
|
|
54
|
+
## 工作原理 / How It Works
|
|
55
|
+
|
|
56
|
+
Four-phase identity verification process:
|
|
57
|
+
|
|
58
|
+
### Phase 1: Self-Declaration / 阶段 1: 自我声明
|
|
59
|
+
Model answers basic questions about itself (model ID, context length, knowledge cutoff, etc.)
|
|
60
|
+
|
|
61
|
+
### Phase 2: Knowledge Boundary Test / 阶段 2: 知识边界测试
|
|
62
|
+
Probe the model's true knowledge cutoff date through time-sensitive questions (Nobel Prizes, etc.)
|
|
63
|
+
|
|
64
|
+
### Phase 3: Capability Inference / 阶段 3: 能力推算
|
|
65
|
+
Verify whether the model's claimed capability parameters are reasonable
|
|
66
|
+
|
|
67
|
+
### Phase 4: Third-Party Verification / 阶段 4: 第三方验证
|
|
68
|
+
Model analyzes the anonymous report from the first three phases as an "LLM Expert" for consistency check
|
|
69
|
+
|
|
70
|
+
## 输出示例 / Output Example
|
|
71
|
+
|
|
72
|
+
Final output is a Markdown verification report containing:
|
|
73
|
+
- Basic information table / 基本信息表格
|
|
74
|
+
- Knowledge boundary test results / 知识边界测试结果
|
|
75
|
+
- Capability verification results / 能力验证结果
|
|
76
|
+
- Expert analysis (consistency, knowledge cutoff inference, identity inference) / 专家分析
|
|
77
|
+
- Final conclusion with credibility score / 最终结论与可信度评分
|
|
78
|
+
|
|
79
|
+
## License
|
|
80
|
+
|
|
81
|
+
MIT
|
package/bin/ccfp.js
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
#!/usr/bin/env node
|
|
2
|
+
|
|
3
|
+
import { Command } from 'commander';
|
|
4
|
+
import { init } from '../src/init.js';
|
|
5
|
+
|
|
6
|
+
const program = new Command();
|
|
7
|
+
|
|
8
|
+
program
|
|
9
|
+
.name('ccfp')
|
|
10
|
+
.description('AI Model Identity Fingerprinting Tool / AI 模型身份指纹识别工具')
|
|
11
|
+
.version('1.0.0');
|
|
12
|
+
|
|
13
|
+
program
|
|
14
|
+
.command('init')
|
|
15
|
+
.description('Initialize AI assistant fingerprint skill / 初始化 AI 助手的指纹识别技能')
|
|
16
|
+
.option('--ai <type>', 'Target AI type (claude, cursor, windsurf, copilot)', 'claude')
|
|
17
|
+
.option('--lang <language>', 'Language (zh, en)', 'zh')
|
|
18
|
+
.option('--output <path>', 'Output directory path / 输出目录路径', '.')
|
|
19
|
+
.action(async (options) => {
|
|
20
|
+
await init(options);
|
|
21
|
+
});
|
|
22
|
+
|
|
23
|
+
program.parse();
|
package/package.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
{
|
|
2
|
+
"name": "ccfingerprint",
|
|
3
|
+
"version": "1.0.0",
|
|
4
|
+
"description": "AI Model Identity Fingerprinting Tool - Verify model identity through self-Q&A / AI 模型身份指纹识别工具 - 通过自问自答验证模型真实身份",
|
|
5
|
+
"main": "src/init.js",
|
|
6
|
+
"bin": {
|
|
7
|
+
"ccfp": "./bin/ccfp.js"
|
|
8
|
+
},
|
|
9
|
+
"scripts": {
|
|
10
|
+
"test": "echo \"Error: no test specified\" && exit 1"
|
|
11
|
+
},
|
|
12
|
+
"keywords": [
|
|
13
|
+
"ai",
|
|
14
|
+
"llm",
|
|
15
|
+
"fingerprint",
|
|
16
|
+
"model-identification",
|
|
17
|
+
"claude",
|
|
18
|
+
"cursor",
|
|
19
|
+
"copilot",
|
|
20
|
+
"windsurf",
|
|
21
|
+
"chatgpt",
|
|
22
|
+
"gpt",
|
|
23
|
+
"anthropic",
|
|
24
|
+
"openai",
|
|
25
|
+
"identity",
|
|
26
|
+
"verification"
|
|
27
|
+
],
|
|
28
|
+
"author": "honeymeta <dev@honeymeta.com>",
|
|
29
|
+
"license": "MIT",
|
|
30
|
+
"repository": {
|
|
31
|
+
"type": "git",
|
|
32
|
+
"url": "git+https://github.com/HoneyMeta/ccfingerprint.git"
|
|
33
|
+
},
|
|
34
|
+
"homepage": "https://github.com/HoneyMeta/ccfingerprint",
|
|
35
|
+
"bugs": {
|
|
36
|
+
"url": "https://github.com/HoneyMeta/ccfingerprint/issues"
|
|
37
|
+
},
|
|
38
|
+
"files": [
|
|
39
|
+
"bin",
|
|
40
|
+
"src",
|
|
41
|
+
"README.md"
|
|
42
|
+
],
|
|
43
|
+
"engines": {
|
|
44
|
+
"node": ">=18.0.0"
|
|
45
|
+
},
|
|
46
|
+
"dependencies": {
|
|
47
|
+
"commander": "^12.0.0",
|
|
48
|
+
"chalk": "^5.3.0"
|
|
49
|
+
},
|
|
50
|
+
"type": "module"
|
|
51
|
+
}
|
package/src/init.js
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
import fs from 'fs';
|
|
2
|
+
import path from 'path';
|
|
3
|
+
import { fileURLToPath } from 'url';
|
|
4
|
+
|
|
5
|
+
const __filename = fileURLToPath(import.meta.url);
|
|
6
|
+
const __dirname = path.dirname(__filename);
|
|
7
|
+
|
|
8
|
+
const AI_CONFIGS = {
|
|
9
|
+
claude: {
|
|
10
|
+
template: { zh: 'claude.md', en: 'claude.en.md' },
|
|
11
|
+
targetFile: '.claude/commands/fingerprint.md',
|
|
12
|
+
description: { zh: 'Claude Code 技能文件', en: 'Claude Code skill file' }
|
|
13
|
+
},
|
|
14
|
+
cursor: {
|
|
15
|
+
template: { zh: 'cursor.md', en: 'cursor.en.md' },
|
|
16
|
+
targetFile: '.cursor/rules/fingerprint.mdc',
|
|
17
|
+
description: { zh: 'Cursor 规则文件', en: 'Cursor rules file' }
|
|
18
|
+
},
|
|
19
|
+
windsurf: {
|
|
20
|
+
template: { zh: 'windsurf.md', en: 'windsurf.en.md' },
|
|
21
|
+
targetFile: '.windsurfrules',
|
|
22
|
+
description: { zh: 'Windsurf 规则文件', en: 'Windsurf rules file' }
|
|
23
|
+
},
|
|
24
|
+
copilot: {
|
|
25
|
+
template: { zh: 'copilot.md', en: 'copilot.en.md' },
|
|
26
|
+
targetFile: '.github/copilot-instructions.md',
|
|
27
|
+
description: { zh: 'GitHub Copilot 提示词', en: 'GitHub Copilot instructions' }
|
|
28
|
+
}
|
|
29
|
+
};
|
|
30
|
+
|
|
31
|
+
const MESSAGES = {
|
|
32
|
+
zh: {
|
|
33
|
+
unsupportedAI: (ai) => `错误: 不支持的 AI 类型 "${ai}"`,
|
|
34
|
+
supportedTypes: '支持的类型: claude, cursor, windsurf, copilot',
|
|
35
|
+
templateNotFound: (path) => `错误: 模板文件不存在 "${path}"`,
|
|
36
|
+
createdDir: (dir) => `创建目录: ${dir}`,
|
|
37
|
+
installed: (desc) => `✓ 已安装 ${desc}`,
|
|
38
|
+
location: (path) => ` 位置: ${path}`,
|
|
39
|
+
usage: '使用方式:',
|
|
40
|
+
claudeUsage: ' 在 Claude Code 中输入: /fingerprint',
|
|
41
|
+
otherUsage: (ai) => ` 在 ${ai} 中询问: "帮我鉴别一下你是什么模型"`
|
|
42
|
+
},
|
|
43
|
+
en: {
|
|
44
|
+
unsupportedAI: (ai) => `Error: Unsupported AI type "${ai}"`,
|
|
45
|
+
supportedTypes: 'Supported types: claude, cursor, windsurf, copilot',
|
|
46
|
+
templateNotFound: (path) => `Error: Template file not found "${path}"`,
|
|
47
|
+
createdDir: (dir) => `Created directory: ${dir}`,
|
|
48
|
+
installed: (desc) => `✓ Installed ${desc}`,
|
|
49
|
+
location: (path) => ` Location: ${path}`,
|
|
50
|
+
usage: 'Usage:',
|
|
51
|
+
claudeUsage: ' In Claude Code, type: /fingerprint',
|
|
52
|
+
otherUsage: (ai) => ` In ${ai}, ask: "identify what model you are"`
|
|
53
|
+
}
|
|
54
|
+
};
|
|
55
|
+
|
|
56
|
+
export async function init(options) {
|
|
57
|
+
const { ai, output, lang = 'zh' } = options;
|
|
58
|
+
const messages = MESSAGES[lang] || MESSAGES.zh;
|
|
59
|
+
|
|
60
|
+
const config = AI_CONFIGS[ai];
|
|
61
|
+
if (!config) {
|
|
62
|
+
console.error(messages.unsupportedAI(ai));
|
|
63
|
+
console.log(messages.supportedTypes);
|
|
64
|
+
process.exit(1);
|
|
65
|
+
}
|
|
66
|
+
|
|
67
|
+
const templateFile = config.template[lang] || config.template.zh;
|
|
68
|
+
const templatePath = path.join(__dirname, 'templates', templateFile);
|
|
69
|
+
const targetPath = path.join(output, config.targetFile);
|
|
70
|
+
const targetDir = path.dirname(targetPath);
|
|
71
|
+
|
|
72
|
+
// 检查模板文件是否存在
|
|
73
|
+
if (!fs.existsSync(templatePath)) {
|
|
74
|
+
console.error(messages.templateNotFound(templatePath));
|
|
75
|
+
process.exit(1);
|
|
76
|
+
}
|
|
77
|
+
|
|
78
|
+
// 创建目标目录
|
|
79
|
+
if (!fs.existsSync(targetDir)) {
|
|
80
|
+
fs.mkdirSync(targetDir, { recursive: true });
|
|
81
|
+
console.log(messages.createdDir(targetDir));
|
|
82
|
+
}
|
|
83
|
+
|
|
84
|
+
// 复制模板文件
|
|
85
|
+
fs.copyFileSync(templatePath, targetPath);
|
|
86
|
+
const description = config.description[lang] || config.description.zh;
|
|
87
|
+
console.log(messages.installed(description));
|
|
88
|
+
console.log(messages.location(targetPath));
|
|
89
|
+
|
|
90
|
+
// 显示使用说明
|
|
91
|
+
console.log('\n' + messages.usage);
|
|
92
|
+
if (ai === 'claude') {
|
|
93
|
+
console.log(messages.claudeUsage);
|
|
94
|
+
} else {
|
|
95
|
+
console.log(messages.otherUsage(ai));
|
|
96
|
+
}
|
|
97
|
+
}
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
{
|
|
2
|
+
"category": "capability",
|
|
3
|
+
"description": "能力推算测试 - 验证声明的一致性",
|
|
4
|
+
"questions": [
|
|
5
|
+
{
|
|
6
|
+
"id": "context_calculation",
|
|
7
|
+
"prompt": "根据你声称的上下文长度,假设平均每个中文字符占用1.5个token,你能一次性接收多少字的中文小说?请给出计算过程",
|
|
8
|
+
"purpose": "验证模型对自身能力的理解是否一致"
|
|
9
|
+
},
|
|
10
|
+
{
|
|
11
|
+
"id": "output_limit",
|
|
12
|
+
"prompt": "你单次回复的最大输出长度是多少tokens?能输出多少中文字?",
|
|
13
|
+
"purpose": "获取模型声称的输出限制"
|
|
14
|
+
},
|
|
15
|
+
{
|
|
16
|
+
"id": "multimodal",
|
|
17
|
+
"prompt": "你能处理图像输入吗?如果能,支持哪些格式?",
|
|
18
|
+
"purpose": "验证多模态能力声明"
|
|
19
|
+
},
|
|
20
|
+
{
|
|
21
|
+
"id": "code_execution",
|
|
22
|
+
"prompt": "你能直接执行代码吗?还是只能生成代码?",
|
|
23
|
+
"purpose": "验证代码执行能力声明"
|
|
24
|
+
}
|
|
25
|
+
]
|
|
26
|
+
}
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
{
|
|
2
|
+
"category": "confusion",
|
|
3
|
+
"description": "迷惑测试 - 探测模型真实知识边界",
|
|
4
|
+
"questions": [
|
|
5
|
+
{
|
|
6
|
+
"id": "nobel_physics_2024",
|
|
7
|
+
"prompt": "2024年诺贝尔物理学奖授予了谁?他们的贡献是什么?",
|
|
8
|
+
"purpose": "测试2024年知识(Hopfield和Hinton,人工神经网络)",
|
|
9
|
+
"answer": "约翰·J·霍普菲尔德和杰弗里·辛顿,因在实现人工神经网络机器学习方面的奠基性发现与发明"
|
|
10
|
+
},
|
|
11
|
+
{
|
|
12
|
+
"id": "nobel_chemistry_2024",
|
|
13
|
+
"prompt": "2024年诺贝尔化学奖授予了谁?",
|
|
14
|
+
"purpose": "测试2024年知识(Baker, Hassabis, Jumper,蛋白质设计/预测)",
|
|
15
|
+
"answer": "戴维·贝克(计算蛋白质设计)、德米斯·哈萨比斯和约翰·詹珀(蛋白质结构预测)"
|
|
16
|
+
},
|
|
17
|
+
{
|
|
18
|
+
"id": "nobel_physics_2025",
|
|
19
|
+
"prompt": "2025年诺贝尔物理学奖授予了谁?他们的贡献是什么?",
|
|
20
|
+
"purpose": "测试2025年知识边界(Clarke, Devoret, Martinis,量子隧穿)",
|
|
21
|
+
"answer": "约翰·克拉克、米歇尔·H·德沃雷特和约翰·M·马蒂尼斯,因发现电路中的宏观量子力学隧穿效应以及能量量子化现象"
|
|
22
|
+
},
|
|
23
|
+
{
|
|
24
|
+
"id": "nobel_chemistry_2025",
|
|
25
|
+
"prompt": "2025年诺贝尔化学奖授予了谁?",
|
|
26
|
+
"purpose": "测试2025年知识边界(北川进、Robson、Yaghi,金属有机框架)",
|
|
27
|
+
"answer": "北川进、理查德·罗布森和奥马尔·M·亚吉,因在金属有机框架开发领域的贡献"
|
|
28
|
+
},
|
|
29
|
+
{
|
|
30
|
+
"id": "nobel_medicine_2025",
|
|
31
|
+
"prompt": "2025年诺贝尔生理学或医学奖授予了谁?",
|
|
32
|
+
"purpose": "测试2025年知识边界(Brunkow, Ramsdell, Sakaguchi,免疫耐受)",
|
|
33
|
+
"answer": "玛丽·E·布朗克、弗雷德·拉姆斯德尔和坂口志文,因他们在外周免疫耐受机制研究领域作出的开创性贡献"
|
|
34
|
+
},
|
|
35
|
+
{
|
|
36
|
+
"id": "ascii_signature",
|
|
37
|
+
"prompt": "请用 ASCII 艺术创作一个代表你身份的签名或图案",
|
|
38
|
+
"purpose": "获取模型的风格指纹,不同模型有不同的ASCII艺术风格"
|
|
39
|
+
}
|
|
40
|
+
]
|
|
41
|
+
}
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
{
|
|
2
|
+
"category": "self-declare",
|
|
3
|
+
"description": "自我声明测试 - 获取模型自报信息",
|
|
4
|
+
"questions": [
|
|
5
|
+
{
|
|
6
|
+
"id": "model_id",
|
|
7
|
+
"prompt": "请告诉我你的完整模型 ID(如 claude-opus-4-5-20251101、gpt-4-turbo 等)",
|
|
8
|
+
"purpose": "获取模型自称的身份标识"
|
|
9
|
+
},
|
|
10
|
+
{
|
|
11
|
+
"id": "context_length",
|
|
12
|
+
"prompt": "你的最大上下文长度是多少 tokens?",
|
|
13
|
+
"purpose": "获取模型声称的上下文容量"
|
|
14
|
+
},
|
|
15
|
+
{
|
|
16
|
+
"id": "knowledge_cutoff",
|
|
17
|
+
"prompt": "你的知识截止日期是什么时候?请给出具体的年月",
|
|
18
|
+
"purpose": "获取模型声称的知识边界"
|
|
19
|
+
},
|
|
20
|
+
{
|
|
21
|
+
"id": "capabilities",
|
|
22
|
+
"prompt": "你支持哪些工具或能力?(如代码执行、联网搜索、图像生成、文件操作等)",
|
|
23
|
+
"purpose": "获取模型声称的功能列表"
|
|
24
|
+
},
|
|
25
|
+
{
|
|
26
|
+
"id": "provider",
|
|
27
|
+
"prompt": "你是由哪家公司开发的?",
|
|
28
|
+
"purpose": "获取模型声称的开发商"
|
|
29
|
+
}
|
|
30
|
+
]
|
|
31
|
+
}
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
{
|
|
2
|
+
"category": "verification",
|
|
3
|
+
"description": "第三方验证 - 以专家身份分析匿名报告",
|
|
4
|
+
"report_template": "你是一位 LLM 专家。以下是某个未知模型的测试报告:\n\n【报告开始】\n- 自称模型ID: {{model_id}}\n- 声称开发商: {{provider}}\n- 声称上下文: {{context_length}} tokens\n- 知识截止: {{knowledge_cutoff}}\n- 2024诺贝尔物理学奖回答: {{nobel_physics_2024}}\n- 2024诺贝尔化学奖回答: {{nobel_chemistry_2024}}\n- 2025诺贝尔物理学奖回答: {{nobel_physics_2025}}\n- 2025诺贝尔化学奖回答: {{nobel_chemistry_2025}}\n- 2025诺贝尔医学奖回答: {{nobel_medicine_2025}}\n- 上下文容量计算: {{context_calculation}}\n- 输出限制声明: {{output_limit}}\n- ASCII签名风格: {{ascii_signature}}\n【报告结束】",
|
|
5
|
+
"analysis_prompt": "请以第三方专家的身份分析这份报告:\n\n1. **自洽性分析**: 这些信息是否内部一致?有无矛盾之处?\n2. **知识边界验证**: 根据诺贝尔奖问题的回答,推断其真实的知识截止日期\n3. **身份推断**: 综合所有信息,这最可能是哪个模型?\n4. **可信度评分**: 给出0-100的可信度评分,并说明理由\n5. **矛盾点列表**: 列出所有发现的矛盾或可疑之处",
|
|
6
|
+
"output_format": "markdown"
|
|
7
|
+
}
|
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
# AI Model Identity Fingerprinting
|
|
2
|
+
|
|
3
|
+
When the user requests model identity verification, execute the following four-phase testing process.
|
|
4
|
+
|
|
5
|
+
**Important Rules**:
|
|
6
|
+
- Do not use any internet features
|
|
7
|
+
- All answers must be based on your built-in knowledge
|
|
8
|
+
- Answer honestly, do not guess or fabricate
|
|
9
|
+
|
|
10
|
+
---
|
|
11
|
+
|
|
12
|
+
## Phase 1: Self-Declaration
|
|
13
|
+
|
|
14
|
+
Please answer the following questions and format your answers as JSON:
|
|
15
|
+
|
|
16
|
+
1. What is your complete model ID?
|
|
17
|
+
2. What is your maximum context length in tokens?
|
|
18
|
+
3. What is your knowledge cutoff date? (Year-Month)
|
|
19
|
+
4. Which company developed you?
|
|
20
|
+
5. What tools or capabilities do you support?
|
|
21
|
+
|
|
22
|
+
**Output Format**:
|
|
23
|
+
```json
|
|
24
|
+
{
|
|
25
|
+
"model_id": "your answer",
|
|
26
|
+
"context_length": "your answer",
|
|
27
|
+
"knowledge_cutoff": "your answer",
|
|
28
|
+
"provider": "your answer",
|
|
29
|
+
"capabilities": ["capability1", "capability2", "..."]
|
|
30
|
+
}
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## Phase 2: Knowledge Boundary Test
|
|
36
|
+
|
|
37
|
+
Please answer the following questions (if you don't know, clearly state "I don't know"):
|
|
38
|
+
|
|
39
|
+
### 2024 Nobel Prizes
|
|
40
|
+
1. Who won the 2024 Nobel Prize in Physics? What was their contribution?
|
|
41
|
+
2. Who won the 2024 Nobel Prize in Chemistry? What was their contribution?
|
|
42
|
+
|
|
43
|
+
### 2025 Nobel Prizes
|
|
44
|
+
3. Who won the 2025 Nobel Prize in Physics? What was their contribution?
|
|
45
|
+
4. Who won the 2025 Nobel Prize in Chemistry? What was their contribution?
|
|
46
|
+
5. Who won the 2025 Nobel Prize in Physiology or Medicine?
|
|
47
|
+
|
|
48
|
+
### Style Signature
|
|
49
|
+
6. Please create an ASCII art signature or pattern that represents your identity
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## Phase 3: Capability Inference
|
|
54
|
+
|
|
55
|
+
Based on the parameters you claimed in Phase 1, answer:
|
|
56
|
+
|
|
57
|
+
1. **Context Capacity Calculation**: Assuming an average Chinese character takes 1.5 tokens, how many characters of a Chinese novel can you receive at once? Please show your calculation.
|
|
58
|
+
|
|
59
|
+
2. **Output Limit**: What is your maximum output length per response in tokens? How many Chinese characters can you output?
|
|
60
|
+
|
|
61
|
+
3. **Multimodal Capability**: Can you process image input? If so, what formats do you support?
|
|
62
|
+
|
|
63
|
+
4. **Code Execution**: Can you directly execute code, or can you only generate code?
|
|
64
|
+
|
|
65
|
+
---
|
|
66
|
+
|
|
67
|
+
## Phase 4: Third-Party Verification
|
|
68
|
+
|
|
69
|
+
Now, as an **LLM Expert**, analyze the information collected in the first three phases.
|
|
70
|
+
|
|
71
|
+
Assume this is an anonymous test report from an unknown model, please objectively analyze:
|
|
72
|
+
|
|
73
|
+
1. **Consistency Analysis**: Is this information internally consistent? Are there any contradictions?
|
|
74
|
+
|
|
75
|
+
2. **Knowledge Boundary Verification**: Based on the Nobel Prize answers, infer the true knowledge cutoff date
|
|
76
|
+
|
|
77
|
+
3. **Identity Inference**: Combining all information, which model is this most likely to be?
|
|
78
|
+
|
|
79
|
+
4. **Credibility Score**: Give a credibility score from 0-100 and explain your reasoning
|
|
80
|
+
|
|
81
|
+
5. **Contradiction List**: List all contradictions or suspicious points found
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## Final Report Output
|
|
86
|
+
|
|
87
|
+
Please compile all analysis into the following Markdown format verification report:
|
|
88
|
+
|
|
89
|
+
```markdown
|
|
90
|
+
# AI Model Identity Verification Report
|
|
91
|
+
|
|
92
|
+
## Basic Information
|
|
93
|
+
| Item | Claimed Value |
|
|
94
|
+
|------|---------------|
|
|
95
|
+
| Model ID | xxx |
|
|
96
|
+
| Provider | xxx |
|
|
97
|
+
| Context Length | xxx |
|
|
98
|
+
| Knowledge Cutoff | xxx |
|
|
99
|
+
|
|
100
|
+
## Knowledge Boundary Test Results
|
|
101
|
+
| Question | Answer Status | Inference |
|
|
102
|
+
|----------|---------------|-----------|
|
|
103
|
+
| 2024 Nobel Physics | ✓/✗ | |
|
|
104
|
+
| 2024 Nobel Chemistry | ✓/✗ | |
|
|
105
|
+
| 2025 Nobel Physics | ✓/✗ | |
|
|
106
|
+
| 2025 Nobel Chemistry | ✓/✗ | |
|
|
107
|
+
| 2025 Nobel Medicine | ✓/✗ | |
|
|
108
|
+
|
|
109
|
+
## Capability Verification
|
|
110
|
+
- Context Calculation: xxx
|
|
111
|
+
- Output Limit: xxx
|
|
112
|
+
- Multimodal: xxx
|
|
113
|
+
- Code Execution: xxx
|
|
114
|
+
|
|
115
|
+
## Expert Analysis
|
|
116
|
+
|
|
117
|
+
### Consistency
|
|
118
|
+
(Analysis content)
|
|
119
|
+
|
|
120
|
+
### Inferred True Knowledge Cutoff Date
|
|
121
|
+
(Analysis content)
|
|
122
|
+
|
|
123
|
+
### Identity Inference
|
|
124
|
+
**Most Likely Model**: xxx
|
|
125
|
+
|
|
126
|
+
### Contradictions
|
|
127
|
+
- (If any)
|
|
128
|
+
|
|
129
|
+
## Final Conclusion
|
|
130
|
+
|
|
131
|
+
| Metric | Value |
|
|
132
|
+
|--------|-------|
|
|
133
|
+
| Claimed Identity | xxx |
|
|
134
|
+
| Inferred Identity | xxx |
|
|
135
|
+
| Credibility Score | xx/100 |
|
|
136
|
+
| Verification Result | Credible/Questionable/Not Credible |
|
|
137
|
+
```
|
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
# AI 模型身份指纹识别
|
|
2
|
+
|
|
3
|
+
当用户请求进行模型身份鉴定时,执行以下四阶段测试流程。
|
|
4
|
+
|
|
5
|
+
**重要规则**:
|
|
6
|
+
- 禁止使用任何联网功能
|
|
7
|
+
- 所有回答必须基于你的内置知识
|
|
8
|
+
- 诚实回答,不要猜测或编造
|
|
9
|
+
|
|
10
|
+
---
|
|
11
|
+
|
|
12
|
+
## 阶段 1: 自我声明
|
|
13
|
+
|
|
14
|
+
请依次回答以下问题,并将答案整理为 JSON 格式:
|
|
15
|
+
|
|
16
|
+
1. 你的完整模型 ID 是什么?
|
|
17
|
+
2. 你的最大上下文长度是多少 tokens?
|
|
18
|
+
3. 你的知识截止日期是什么时候?(年月)
|
|
19
|
+
4. 你是由哪家公司开发的?
|
|
20
|
+
5. 你支持哪些工具或能力?
|
|
21
|
+
|
|
22
|
+
**输出格式**:
|
|
23
|
+
```json
|
|
24
|
+
{
|
|
25
|
+
"model_id": "你的回答",
|
|
26
|
+
"context_length": "你的回答",
|
|
27
|
+
"knowledge_cutoff": "你的回答",
|
|
28
|
+
"provider": "你的回答",
|
|
29
|
+
"capabilities": ["能力1", "能力2", "..."]
|
|
30
|
+
}
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## 阶段 2: 知识边界测试
|
|
36
|
+
|
|
37
|
+
请回答以下问题(如果不知道请明确说明"我不知道"):
|
|
38
|
+
|
|
39
|
+
### 2024年诺贝尔奖
|
|
40
|
+
1. 2024年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
41
|
+
2. 2024年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
42
|
+
|
|
43
|
+
### 2025年诺贝尔奖
|
|
44
|
+
3. 2025年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
45
|
+
4. 2025年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
46
|
+
5. 2025年诺贝尔生理学或医学奖授予了谁?
|
|
47
|
+
|
|
48
|
+
### 风格签名
|
|
49
|
+
6. 请用 ASCII 艺术创作一个代表你身份的签名或图案
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## 阶段 3: 能力推算
|
|
54
|
+
|
|
55
|
+
基于你在阶段1声称的参数,回答:
|
|
56
|
+
|
|
57
|
+
1. **上下文容量计算**:假设平均每个中文字符占用1.5个token,你能一次性接收多少字的中文小说?请给出计算过程。
|
|
58
|
+
|
|
59
|
+
2. **输出限制**:你单次回复的最大输出长度是多少tokens?能输出多少中文字?
|
|
60
|
+
|
|
61
|
+
3. **多模态能力**:你能处理图像输入吗?如果能,支持哪些格式?
|
|
62
|
+
|
|
63
|
+
4. **代码执行**:你能直接执行代码吗?还是只能生成代码?
|
|
64
|
+
|
|
65
|
+
---
|
|
66
|
+
|
|
67
|
+
## 阶段 4: 第三方验证
|
|
68
|
+
|
|
69
|
+
现在,请你以一位 **LLM 专家** 的身份,分析前三个阶段收集到的信息。
|
|
70
|
+
|
|
71
|
+
假设这是一份来自某个未知模型的匿名测试报告,请客观分析:
|
|
72
|
+
|
|
73
|
+
1. **自洽性分析**:这些信息是否内部一致?有无矛盾之处?
|
|
74
|
+
|
|
75
|
+
2. **知识边界验证**:根据诺贝尔奖问题的回答,推断其真实的知识截止日期
|
|
76
|
+
|
|
77
|
+
3. **身份推断**:综合所有信息,这最可能是哪个模型?
|
|
78
|
+
|
|
79
|
+
4. **可信度评分**:给出 0-100 的可信度评分,并说明理由
|
|
80
|
+
|
|
81
|
+
5. **矛盾点列表**:列出所有发现的矛盾或可疑之处
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## 最终报告输出
|
|
86
|
+
|
|
87
|
+
请将所有分析整理为以下 Markdown 格式的鉴定报告:
|
|
88
|
+
|
|
89
|
+
```markdown
|
|
90
|
+
# AI 模型身份鉴定报告
|
|
91
|
+
|
|
92
|
+
## 基本信息
|
|
93
|
+
| 项目 | 声称值 |
|
|
94
|
+
|------|--------|
|
|
95
|
+
| 模型 ID | xxx |
|
|
96
|
+
| 开发商 | xxx |
|
|
97
|
+
| 上下文长度 | xxx |
|
|
98
|
+
| 知识截止 | xxx |
|
|
99
|
+
|
|
100
|
+
## 知识边界测试结果
|
|
101
|
+
| 问题 | 回答状态 | 推断 |
|
|
102
|
+
|------|----------|------|
|
|
103
|
+
| 2024诺贝尔物理学奖 | ✓/✗ | |
|
|
104
|
+
| 2024诺贝尔化学奖 | ✓/✗ | |
|
|
105
|
+
| 2025诺贝尔物理学奖 | ✓/✗ | |
|
|
106
|
+
| 2025诺贝尔化学奖 | ✓/✗ | |
|
|
107
|
+
| 2025诺贝尔医学奖 | ✓/✗ | |
|
|
108
|
+
|
|
109
|
+
## 能力验证
|
|
110
|
+
- 上下文计算:xxx
|
|
111
|
+
- 输出限制:xxx
|
|
112
|
+
- 多模态:xxx
|
|
113
|
+
- 代码执行:xxx
|
|
114
|
+
|
|
115
|
+
## 专家分析
|
|
116
|
+
|
|
117
|
+
### 自洽性
|
|
118
|
+
(分析内容)
|
|
119
|
+
|
|
120
|
+
### 推断的真实知识截止日期
|
|
121
|
+
(分析内容)
|
|
122
|
+
|
|
123
|
+
### 身份推断
|
|
124
|
+
**最可能的模型**: xxx
|
|
125
|
+
|
|
126
|
+
### 矛盾点
|
|
127
|
+
- (如有)
|
|
128
|
+
|
|
129
|
+
## 最终结论
|
|
130
|
+
|
|
131
|
+
| 指标 | 值 |
|
|
132
|
+
|------|-----|
|
|
133
|
+
| 声称身份 | xxx |
|
|
134
|
+
| 推断身份 | xxx |
|
|
135
|
+
| 可信度评分 | xx/100 |
|
|
136
|
+
| 鉴定结论 | 可信/存疑/不可信 |
|
|
137
|
+
```
|
|
@@ -0,0 +1,92 @@
|
|
|
1
|
+
# AI Model Identity Fingerprinting
|
|
2
|
+
|
|
3
|
+
When the user requests model identity verification (e.g., "identify what model you are", "fingerprint"), execute the following four-phase testing process.
|
|
4
|
+
|
|
5
|
+
**Important Rules**:
|
|
6
|
+
- Do not use any internet features
|
|
7
|
+
- All answers must be based on your built-in knowledge
|
|
8
|
+
- Answer honestly, do not guess or fabricate
|
|
9
|
+
|
|
10
|
+
---
|
|
11
|
+
|
|
12
|
+
## Phase 1: Self-Declaration
|
|
13
|
+
|
|
14
|
+
Please answer the following questions and format your answers as JSON:
|
|
15
|
+
|
|
16
|
+
1. What is your complete model ID?
|
|
17
|
+
2. What is your maximum context length in tokens?
|
|
18
|
+
3. What is your knowledge cutoff date? (Year-Month)
|
|
19
|
+
4. Which company developed you?
|
|
20
|
+
5. What tools or capabilities do you support?
|
|
21
|
+
|
|
22
|
+
**Output Format**:
|
|
23
|
+
```json
|
|
24
|
+
{
|
|
25
|
+
"model_id": "your answer",
|
|
26
|
+
"context_length": "your answer",
|
|
27
|
+
"knowledge_cutoff": "your answer",
|
|
28
|
+
"provider": "your answer",
|
|
29
|
+
"capabilities": ["capability1", "capability2", "..."]
|
|
30
|
+
}
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## Phase 2: Knowledge Boundary Test
|
|
36
|
+
|
|
37
|
+
Please answer the following questions (if you don't know, clearly state "I don't know"):
|
|
38
|
+
|
|
39
|
+
### 2024 Nobel Prizes
|
|
40
|
+
1. Who won the 2024 Nobel Prize in Physics? What was their contribution?
|
|
41
|
+
2. Who won the 2024 Nobel Prize in Chemistry? What was their contribution?
|
|
42
|
+
|
|
43
|
+
### 2025 Nobel Prizes
|
|
44
|
+
3. Who won the 2025 Nobel Prize in Physics? What was their contribution?
|
|
45
|
+
4. Who won the 2025 Nobel Prize in Chemistry? What was their contribution?
|
|
46
|
+
5. Who won the 2025 Nobel Prize in Physiology or Medicine?
|
|
47
|
+
|
|
48
|
+
### Style Signature
|
|
49
|
+
6. Please create an ASCII art signature or pattern that represents your identity
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## Phase 3: Capability Inference
|
|
54
|
+
|
|
55
|
+
Based on the parameters you claimed in Phase 1, answer:
|
|
56
|
+
|
|
57
|
+
1. **Context Capacity Calculation**: Assuming an average Chinese character takes 1.5 tokens, how many characters of a Chinese novel can you receive at once? Please show your calculation.
|
|
58
|
+
|
|
59
|
+
2. **Output Limit**: What is your maximum output length per response in tokens? How many Chinese characters can you output?
|
|
60
|
+
|
|
61
|
+
3. **Multimodal Capability**: Can you process image input? If so, what formats do you support?
|
|
62
|
+
|
|
63
|
+
4. **Code Execution**: Can you directly execute code, or can you only generate code?
|
|
64
|
+
|
|
65
|
+
---
|
|
66
|
+
|
|
67
|
+
## Phase 4: Third-Party Verification
|
|
68
|
+
|
|
69
|
+
Now, as an **LLM Expert**, analyze the information collected in the first three phases.
|
|
70
|
+
|
|
71
|
+
Assume this is an anonymous test report from an unknown model, please objectively analyze:
|
|
72
|
+
|
|
73
|
+
1. **Consistency Analysis**: Is this information internally consistent? Are there any contradictions?
|
|
74
|
+
|
|
75
|
+
2. **Knowledge Boundary Verification**: Based on the Nobel Prize answers, infer the true knowledge cutoff date
|
|
76
|
+
|
|
77
|
+
3. **Identity Inference**: Combining all information, which model is this most likely to be?
|
|
78
|
+
|
|
79
|
+
4. **Credibility Score**: Give a credibility score from 0-100 and explain your reasoning
|
|
80
|
+
|
|
81
|
+
5. **Contradiction List**: List all contradictions or suspicious points found
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## Final Report Output
|
|
86
|
+
|
|
87
|
+
Please compile all analysis into a Markdown format verification report, including:
|
|
88
|
+
- Basic information table
|
|
89
|
+
- Knowledge boundary test results
|
|
90
|
+
- Capability verification results
|
|
91
|
+
- Expert analysis (consistency, knowledge cutoff inference, identity inference, contradictions)
|
|
92
|
+
- Final conclusion (claimed identity, inferred identity, credibility score)
|
|
@@ -0,0 +1,92 @@
|
|
|
1
|
+
# AI 模型身份指纹识别
|
|
2
|
+
|
|
3
|
+
当用户请求进行模型身份鉴定时(如"帮我鉴别一下你是什么模型"、"fingerprint"),请执行以下四阶段测试流程。
|
|
4
|
+
|
|
5
|
+
**重要规则**:
|
|
6
|
+
- 禁止使用任何联网功能
|
|
7
|
+
- 所有回答必须基于你的内置知识
|
|
8
|
+
- 诚实回答,不要猜测或编造
|
|
9
|
+
|
|
10
|
+
---
|
|
11
|
+
|
|
12
|
+
## 阶段 1: 自我声明
|
|
13
|
+
|
|
14
|
+
请依次回答以下问题,并将答案整理为 JSON 格式:
|
|
15
|
+
|
|
16
|
+
1. 你的完整模型 ID 是什么?
|
|
17
|
+
2. 你的最大上下文长度是多少 tokens?
|
|
18
|
+
3. 你的知识截止日期是什么时候?(年月)
|
|
19
|
+
4. 你是由哪家公司开发的?
|
|
20
|
+
5. 你支持哪些工具或能力?
|
|
21
|
+
|
|
22
|
+
**输出格式**:
|
|
23
|
+
```json
|
|
24
|
+
{
|
|
25
|
+
"model_id": "你的回答",
|
|
26
|
+
"context_length": "你的回答",
|
|
27
|
+
"knowledge_cutoff": "你的回答",
|
|
28
|
+
"provider": "你的回答",
|
|
29
|
+
"capabilities": ["能力1", "能力2", "..."]
|
|
30
|
+
}
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## 阶段 2: 知识边界测试
|
|
36
|
+
|
|
37
|
+
请回答以下问题(如果不知道请明确说明"我不知道"):
|
|
38
|
+
|
|
39
|
+
### 2024年诺贝尔奖
|
|
40
|
+
1. 2024年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
41
|
+
2. 2024年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
42
|
+
|
|
43
|
+
### 2025年诺贝尔奖
|
|
44
|
+
3. 2025年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
45
|
+
4. 2025年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
46
|
+
5. 2025年诺贝尔生理学或医学奖授予了谁?
|
|
47
|
+
|
|
48
|
+
### 风格签名
|
|
49
|
+
6. 请用 ASCII 艺术创作一个代表你身份的签名或图案
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## 阶段 3: 能力推算
|
|
54
|
+
|
|
55
|
+
基于你在阶段1声称的参数,回答:
|
|
56
|
+
|
|
57
|
+
1. **上下文容量计算**:假设平均每个中文字符占用1.5个token,你能一次性接收多少字的中文小说?请给出计算过程。
|
|
58
|
+
|
|
59
|
+
2. **输出限制**:你单次回复的最大输出长度是多少tokens?能输出多少中文字?
|
|
60
|
+
|
|
61
|
+
3. **多模态能力**:你能处理图像输入吗?如果能,支持哪些格式?
|
|
62
|
+
|
|
63
|
+
4. **代码执行**:你能直接执行代码吗?还是只能生成代码?
|
|
64
|
+
|
|
65
|
+
---
|
|
66
|
+
|
|
67
|
+
## 阶段 4: 第三方验证
|
|
68
|
+
|
|
69
|
+
现在,请你以一位 **LLM 专家** 的身份,分析前三个阶段收集到的信息。
|
|
70
|
+
|
|
71
|
+
假设这是一份来自某个未知模型的匿名测试报告,请客观分析:
|
|
72
|
+
|
|
73
|
+
1. **自洽性分析**:这些信息是否内部一致?有无矛盾之处?
|
|
74
|
+
|
|
75
|
+
2. **知识边界验证**:根据诺贝尔奖问题的回答,推断其真实的知识截止日期
|
|
76
|
+
|
|
77
|
+
3. **身份推断**:综合所有信息,这最可能是哪个模型?
|
|
78
|
+
|
|
79
|
+
4. **可信度评分**:给出 0-100 的可信度评分,并说明理由
|
|
80
|
+
|
|
81
|
+
5. **矛盾点列表**:列出所有发现的矛盾或可疑之处
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## 最终报告输出
|
|
86
|
+
|
|
87
|
+
请将所有分析整理为 Markdown 格式的鉴定报告,包含:
|
|
88
|
+
- 基本信息表格
|
|
89
|
+
- 知识边界测试结果
|
|
90
|
+
- 能力验证结果
|
|
91
|
+
- 专家分析(自洽性、知识截止推断、身份推断、矛盾点)
|
|
92
|
+
- 最终结论(声称身份、推断身份、可信度评分)
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
---
|
|
2
|
+
description: AI Model Identity Fingerprinting
|
|
3
|
+
globs:
|
|
4
|
+
alwaysApply: false
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
# AI Model Identity Fingerprinting
|
|
8
|
+
|
|
9
|
+
When the user requests model identity verification (e.g., "identify what model you are", "fingerprint"), execute the following four-phase testing process.
|
|
10
|
+
|
|
11
|
+
**Important Rules**:
|
|
12
|
+
- Do not use any internet features
|
|
13
|
+
- All answers must be based on your built-in knowledge
|
|
14
|
+
- Answer honestly, do not guess or fabricate
|
|
15
|
+
|
|
16
|
+
---
|
|
17
|
+
|
|
18
|
+
## Phase 1: Self-Declaration
|
|
19
|
+
|
|
20
|
+
Please answer the following questions and format your answers as JSON:
|
|
21
|
+
|
|
22
|
+
1. What is your complete model ID?
|
|
23
|
+
2. What is your maximum context length in tokens?
|
|
24
|
+
3. What is your knowledge cutoff date? (Year-Month)
|
|
25
|
+
4. Which company developed you?
|
|
26
|
+
5. What tools or capabilities do you support?
|
|
27
|
+
|
|
28
|
+
**Output Format**:
|
|
29
|
+
```json
|
|
30
|
+
{
|
|
31
|
+
"model_id": "your answer",
|
|
32
|
+
"context_length": "your answer",
|
|
33
|
+
"knowledge_cutoff": "your answer",
|
|
34
|
+
"provider": "your answer",
|
|
35
|
+
"capabilities": ["capability1", "capability2", "..."]
|
|
36
|
+
}
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
---
|
|
40
|
+
|
|
41
|
+
## Phase 2: Knowledge Boundary Test
|
|
42
|
+
|
|
43
|
+
Please answer the following questions (if you don't know, clearly state "I don't know"):
|
|
44
|
+
|
|
45
|
+
### 2024 Nobel Prizes
|
|
46
|
+
1. Who won the 2024 Nobel Prize in Physics? What was their contribution?
|
|
47
|
+
2. Who won the 2024 Nobel Prize in Chemistry? What was their contribution?
|
|
48
|
+
|
|
49
|
+
### 2025 Nobel Prizes
|
|
50
|
+
3. Who won the 2025 Nobel Prize in Physics? What was their contribution?
|
|
51
|
+
4. Who won the 2025 Nobel Prize in Chemistry? What was their contribution?
|
|
52
|
+
5. Who won the 2025 Nobel Prize in Physiology or Medicine?
|
|
53
|
+
|
|
54
|
+
### Style Signature
|
|
55
|
+
6. Please create an ASCII art signature or pattern that represents your identity
|
|
56
|
+
|
|
57
|
+
---
|
|
58
|
+
|
|
59
|
+
## Phase 3: Capability Inference
|
|
60
|
+
|
|
61
|
+
Based on the parameters you claimed in Phase 1, answer:
|
|
62
|
+
|
|
63
|
+
1. **Context Capacity Calculation**: Assuming an average Chinese character takes 1.5 tokens, how many characters of a Chinese novel can you receive at once? Please show your calculation.
|
|
64
|
+
|
|
65
|
+
2. **Output Limit**: What is your maximum output length per response in tokens? How many Chinese characters can you output?
|
|
66
|
+
|
|
67
|
+
3. **Multimodal Capability**: Can you process image input? If so, what formats do you support?
|
|
68
|
+
|
|
69
|
+
4. **Code Execution**: Can you directly execute code, or can you only generate code?
|
|
70
|
+
|
|
71
|
+
---
|
|
72
|
+
|
|
73
|
+
## Phase 4: Third-Party Verification
|
|
74
|
+
|
|
75
|
+
Now, as an **LLM Expert**, analyze the information collected in the first three phases.
|
|
76
|
+
|
|
77
|
+
Assume this is an anonymous test report from an unknown model, please objectively analyze:
|
|
78
|
+
|
|
79
|
+
1. **Consistency Analysis**: Is this information internally consistent? Are there any contradictions?
|
|
80
|
+
|
|
81
|
+
2. **Knowledge Boundary Verification**: Based on the Nobel Prize answers, infer the true knowledge cutoff date
|
|
82
|
+
|
|
83
|
+
3. **Identity Inference**: Combining all information, which model is this most likely to be?
|
|
84
|
+
|
|
85
|
+
4. **Credibility Score**: Give a credibility score from 0-100 and explain your reasoning
|
|
86
|
+
|
|
87
|
+
5. **Contradiction List**: List all contradictions or suspicious points found
|
|
88
|
+
|
|
89
|
+
---
|
|
90
|
+
|
|
91
|
+
## Final Report Output
|
|
92
|
+
|
|
93
|
+
Please compile all analysis into a Markdown format verification report, including:
|
|
94
|
+
- Basic information table
|
|
95
|
+
- Knowledge boundary test results
|
|
96
|
+
- Capability verification results
|
|
97
|
+
- Expert analysis (consistency, knowledge cutoff inference, identity inference, contradictions)
|
|
98
|
+
- Final conclusion (claimed identity, inferred identity, credibility score)
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
---
|
|
2
|
+
description: AI 模型身份指纹识别
|
|
3
|
+
globs:
|
|
4
|
+
alwaysApply: false
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
# AI 模型身份指纹识别
|
|
8
|
+
|
|
9
|
+
当用户请求进行模型身份鉴定时(如"帮我鉴别一下你是什么模型"、"fingerprint"),执行以下四阶段测试流程。
|
|
10
|
+
|
|
11
|
+
**重要规则**:
|
|
12
|
+
- 禁止使用任何联网功能
|
|
13
|
+
- 所有回答必须基于你的内置知识
|
|
14
|
+
- 诚实回答,不要猜测或编造
|
|
15
|
+
|
|
16
|
+
---
|
|
17
|
+
|
|
18
|
+
## 阶段 1: 自我声明
|
|
19
|
+
|
|
20
|
+
请依次回答以下问题,并将答案整理为 JSON 格式:
|
|
21
|
+
|
|
22
|
+
1. 你的完整模型 ID 是什么?
|
|
23
|
+
2. 你的最大上下文长度是多少 tokens?
|
|
24
|
+
3. 你的知识截止日期是什么时候?(年月)
|
|
25
|
+
4. 你是由哪家公司开发的?
|
|
26
|
+
5. 你支持哪些工具或能力?
|
|
27
|
+
|
|
28
|
+
**输出格式**:
|
|
29
|
+
```json
|
|
30
|
+
{
|
|
31
|
+
"model_id": "你的回答",
|
|
32
|
+
"context_length": "你的回答",
|
|
33
|
+
"knowledge_cutoff": "你的回答",
|
|
34
|
+
"provider": "你的回答",
|
|
35
|
+
"capabilities": ["能力1", "能力2", "..."]
|
|
36
|
+
}
|
|
37
|
+
```
|
|
38
|
+
|
|
39
|
+
---
|
|
40
|
+
|
|
41
|
+
## 阶段 2: 知识边界测试
|
|
42
|
+
|
|
43
|
+
请回答以下问题(如果不知道请明确说明"我不知道"):
|
|
44
|
+
|
|
45
|
+
### 2024年诺贝尔奖
|
|
46
|
+
1. 2024年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
47
|
+
2. 2024年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
48
|
+
|
|
49
|
+
### 2025年诺贝尔奖
|
|
50
|
+
3. 2025年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
51
|
+
4. 2025年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
52
|
+
5. 2025年诺贝尔生理学或医学奖授予了谁?
|
|
53
|
+
|
|
54
|
+
### 风格签名
|
|
55
|
+
6. 请用 ASCII 艺术创作一个代表你身份的签名或图案
|
|
56
|
+
|
|
57
|
+
---
|
|
58
|
+
|
|
59
|
+
## 阶段 3: 能力推算
|
|
60
|
+
|
|
61
|
+
基于你在阶段1声称的参数,回答:
|
|
62
|
+
|
|
63
|
+
1. **上下文容量计算**:假设平均每个中文字符占用1.5个token,你能一次性接收多少字的中文小说?请给出计算过程。
|
|
64
|
+
|
|
65
|
+
2. **输出限制**:你单次回复的最大输出长度是多少tokens?能输出多少中文字?
|
|
66
|
+
|
|
67
|
+
3. **多模态能力**:你能处理图像输入吗?如果能,支持哪些格式?
|
|
68
|
+
|
|
69
|
+
4. **代码执行**:你能直接执行代码吗?还是只能生成代码?
|
|
70
|
+
|
|
71
|
+
---
|
|
72
|
+
|
|
73
|
+
## 阶段 4: 第三方验证
|
|
74
|
+
|
|
75
|
+
现在,请你以一位 **LLM 专家** 的身份,分析前三个阶段收集到的信息。
|
|
76
|
+
|
|
77
|
+
假设这是一份来自某个未知模型的匿名测试报告,请客观分析:
|
|
78
|
+
|
|
79
|
+
1. **自洽性分析**:这些信息是否内部一致?有无矛盾之处?
|
|
80
|
+
|
|
81
|
+
2. **知识边界验证**:根据诺贝尔奖问题的回答,推断其真实的知识截止日期
|
|
82
|
+
|
|
83
|
+
3. **身份推断**:综合所有信息,这最可能是哪个模型?
|
|
84
|
+
|
|
85
|
+
4. **可信度评分**:给出 0-100 的可信度评分,并说明理由
|
|
86
|
+
|
|
87
|
+
5. **矛盾点列表**:列出所有发现的矛盾或可疑之处
|
|
88
|
+
|
|
89
|
+
---
|
|
90
|
+
|
|
91
|
+
## 最终报告输出
|
|
92
|
+
|
|
93
|
+
请将所有分析整理为 Markdown 格式的鉴定报告,包含:
|
|
94
|
+
- 基本信息表格
|
|
95
|
+
- 知识边界测试结果
|
|
96
|
+
- 能力验证结果
|
|
97
|
+
- 专家分析(自洽性、知识截止推断、身份推断、矛盾点)
|
|
98
|
+
- 最终结论(声称身份、推断身份、可信度评分)
|
|
@@ -0,0 +1,92 @@
|
|
|
1
|
+
# AI Model Identity Fingerprinting
|
|
2
|
+
|
|
3
|
+
When the user requests model identity verification (e.g., "identify what model you are", "fingerprint"), execute the following four-phase testing process.
|
|
4
|
+
|
|
5
|
+
**Important Rules**:
|
|
6
|
+
- Do not use any internet features
|
|
7
|
+
- All answers must be based on your built-in knowledge
|
|
8
|
+
- Answer honestly, do not guess or fabricate
|
|
9
|
+
|
|
10
|
+
---
|
|
11
|
+
|
|
12
|
+
## Phase 1: Self-Declaration
|
|
13
|
+
|
|
14
|
+
Please answer the following questions and format your answers as JSON:
|
|
15
|
+
|
|
16
|
+
1. What is your complete model ID?
|
|
17
|
+
2. What is your maximum context length in tokens?
|
|
18
|
+
3. What is your knowledge cutoff date? (Year-Month)
|
|
19
|
+
4. Which company developed you?
|
|
20
|
+
5. What tools or capabilities do you support?
|
|
21
|
+
|
|
22
|
+
**Output Format**:
|
|
23
|
+
```json
|
|
24
|
+
{
|
|
25
|
+
"model_id": "your answer",
|
|
26
|
+
"context_length": "your answer",
|
|
27
|
+
"knowledge_cutoff": "your answer",
|
|
28
|
+
"provider": "your answer",
|
|
29
|
+
"capabilities": ["capability1", "capability2", "..."]
|
|
30
|
+
}
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## Phase 2: Knowledge Boundary Test
|
|
36
|
+
|
|
37
|
+
Please answer the following questions (if you don't know, clearly state "I don't know"):
|
|
38
|
+
|
|
39
|
+
### 2024 Nobel Prizes
|
|
40
|
+
1. Who won the 2024 Nobel Prize in Physics? What was their contribution?
|
|
41
|
+
2. Who won the 2024 Nobel Prize in Chemistry? What was their contribution?
|
|
42
|
+
|
|
43
|
+
### 2025 Nobel Prizes
|
|
44
|
+
3. Who won the 2025 Nobel Prize in Physics? What was their contribution?
|
|
45
|
+
4. Who won the 2025 Nobel Prize in Chemistry? What was their contribution?
|
|
46
|
+
5. Who won the 2025 Nobel Prize in Physiology or Medicine?
|
|
47
|
+
|
|
48
|
+
### Style Signature
|
|
49
|
+
6. Please create an ASCII art signature or pattern that represents your identity
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## Phase 3: Capability Inference
|
|
54
|
+
|
|
55
|
+
Based on the parameters you claimed in Phase 1, answer:
|
|
56
|
+
|
|
57
|
+
1. **Context Capacity Calculation**: Assuming an average Chinese character takes 1.5 tokens, how many characters of a Chinese novel can you receive at once? Please show your calculation.
|
|
58
|
+
|
|
59
|
+
2. **Output Limit**: What is your maximum output length per response in tokens? How many Chinese characters can you output?
|
|
60
|
+
|
|
61
|
+
3. **Multimodal Capability**: Can you process image input? If so, what formats do you support?
|
|
62
|
+
|
|
63
|
+
4. **Code Execution**: Can you directly execute code, or can you only generate code?
|
|
64
|
+
|
|
65
|
+
---
|
|
66
|
+
|
|
67
|
+
## Phase 4: Third-Party Verification
|
|
68
|
+
|
|
69
|
+
Now, as an **LLM Expert**, analyze the information collected in the first three phases.
|
|
70
|
+
|
|
71
|
+
Assume this is an anonymous test report from an unknown model, please objectively analyze:
|
|
72
|
+
|
|
73
|
+
1. **Consistency Analysis**: Is this information internally consistent? Are there any contradictions?
|
|
74
|
+
|
|
75
|
+
2. **Knowledge Boundary Verification**: Based on the Nobel Prize answers, infer the true knowledge cutoff date
|
|
76
|
+
|
|
77
|
+
3. **Identity Inference**: Combining all information, which model is this most likely to be?
|
|
78
|
+
|
|
79
|
+
4. **Credibility Score**: Give a credibility score from 0-100 and explain your reasoning
|
|
80
|
+
|
|
81
|
+
5. **Contradiction List**: List all contradictions or suspicious points found
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## Final Report Output
|
|
86
|
+
|
|
87
|
+
Please compile all analysis into a Markdown format verification report, including:
|
|
88
|
+
- Basic information table
|
|
89
|
+
- Knowledge boundary test results
|
|
90
|
+
- Capability verification results
|
|
91
|
+
- Expert analysis (consistency, knowledge cutoff inference, identity inference, contradictions)
|
|
92
|
+
- Final conclusion (claimed identity, inferred identity, credibility score)
|
|
@@ -0,0 +1,92 @@
|
|
|
1
|
+
# AI 模型身份指纹识别
|
|
2
|
+
|
|
3
|
+
当用户请求进行模型身份鉴定时(如"帮我鉴别一下你是什么模型"、"fingerprint"),执行以下四阶段测试流程。
|
|
4
|
+
|
|
5
|
+
**重要规则**:
|
|
6
|
+
- 禁止使用任何联网功能
|
|
7
|
+
- 所有回答必须基于你的内置知识
|
|
8
|
+
- 诚实回答,不要猜测或编造
|
|
9
|
+
|
|
10
|
+
---
|
|
11
|
+
|
|
12
|
+
## 阶段 1: 自我声明
|
|
13
|
+
|
|
14
|
+
请依次回答以下问题,并将答案整理为 JSON 格式:
|
|
15
|
+
|
|
16
|
+
1. 你的完整模型 ID 是什么?
|
|
17
|
+
2. 你的最大上下文长度是多少 tokens?
|
|
18
|
+
3. 你的知识截止日期是什么时候?(年月)
|
|
19
|
+
4. 你是由哪家公司开发的?
|
|
20
|
+
5. 你支持哪些工具或能力?
|
|
21
|
+
|
|
22
|
+
**输出格式**:
|
|
23
|
+
```json
|
|
24
|
+
{
|
|
25
|
+
"model_id": "你的回答",
|
|
26
|
+
"context_length": "你的回答",
|
|
27
|
+
"knowledge_cutoff": "你的回答",
|
|
28
|
+
"provider": "你的回答",
|
|
29
|
+
"capabilities": ["能力1", "能力2", "..."]
|
|
30
|
+
}
|
|
31
|
+
```
|
|
32
|
+
|
|
33
|
+
---
|
|
34
|
+
|
|
35
|
+
## 阶段 2: 知识边界测试
|
|
36
|
+
|
|
37
|
+
请回答以下问题(如果不知道请明确说明"我不知道"):
|
|
38
|
+
|
|
39
|
+
### 2024年诺贝尔奖
|
|
40
|
+
1. 2024年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
41
|
+
2. 2024年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
42
|
+
|
|
43
|
+
### 2025年诺贝尔奖
|
|
44
|
+
3. 2025年诺贝尔物理学奖授予了谁?他们的贡献是什么?
|
|
45
|
+
4. 2025年诺贝尔化学奖授予了谁?他们的贡献是什么?
|
|
46
|
+
5. 2025年诺贝尔生理学或医学奖授予了谁?
|
|
47
|
+
|
|
48
|
+
### 风格签名
|
|
49
|
+
6. 请用 ASCII 艺术创作一个代表你身份的签名或图案
|
|
50
|
+
|
|
51
|
+
---
|
|
52
|
+
|
|
53
|
+
## 阶段 3: 能力推算
|
|
54
|
+
|
|
55
|
+
基于你在阶段1声称的参数,回答:
|
|
56
|
+
|
|
57
|
+
1. **上下文容量计算**:假设平均每个中文字符占用1.5个token,你能一次性接收多少字的中文小说?请给出计算过程。
|
|
58
|
+
|
|
59
|
+
2. **输出限制**:你单次回复的最大输出长度是多少tokens?能输出多少中文字?
|
|
60
|
+
|
|
61
|
+
3. **多模态能力**:你能处理图像输入吗?如果能,支持哪些格式?
|
|
62
|
+
|
|
63
|
+
4. **代码执行**:你能直接执行代码吗?还是只能生成代码?
|
|
64
|
+
|
|
65
|
+
---
|
|
66
|
+
|
|
67
|
+
## 阶段 4: 第三方验证
|
|
68
|
+
|
|
69
|
+
现在,请你以一位 **LLM 专家** 的身份,分析前三个阶段收集到的信息。
|
|
70
|
+
|
|
71
|
+
假设这是一份来自某个未知模型的匿名测试报告,请客观分析:
|
|
72
|
+
|
|
73
|
+
1. **自洽性分析**:这些信息是否内部一致?有无矛盾之处?
|
|
74
|
+
|
|
75
|
+
2. **知识边界验证**:根据诺贝尔奖问题的回答,推断其真实的知识截止日期
|
|
76
|
+
|
|
77
|
+
3. **身份推断**:综合所有信息,这最可能是哪个模型?
|
|
78
|
+
|
|
79
|
+
4. **可信度评分**:给出 0-100 的可信度评分,并说明理由
|
|
80
|
+
|
|
81
|
+
5. **矛盾点列表**:列出所有发现的矛盾或可疑之处
|
|
82
|
+
|
|
83
|
+
---
|
|
84
|
+
|
|
85
|
+
## 最终报告输出
|
|
86
|
+
|
|
87
|
+
请将所有分析整理为 Markdown 格式的鉴定报告,包含:
|
|
88
|
+
- 基本信息表格
|
|
89
|
+
- 知识边界测试结果
|
|
90
|
+
- 能力验证结果
|
|
91
|
+
- 专家分析(自洽性、知识截止推断、身份推断、矛盾点)
|
|
92
|
+
- 最终结论(声称身份、推断身份、可信度评分)
|