catniff 0.8.5 → 0.8.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/nn.d.ts +15 -0
- package/dist/nn.js +79 -1
- package/package.json +1 -1
package/dist/nn.d.ts
CHANGED
|
@@ -50,6 +50,20 @@ export declare class LSTMCell {
|
|
|
50
50
|
constructor(inputSize: number, hiddenSize: number, bias?: boolean, device?: string, dtype?: dtype);
|
|
51
51
|
forward(input: Tensor | TensorValue, hidden: Tensor | TensorValue, cell: Tensor | TensorValue): [Tensor, Tensor];
|
|
52
52
|
}
|
|
53
|
+
export declare class BatchNorm {
|
|
54
|
+
weight?: Tensor;
|
|
55
|
+
bias?: Tensor;
|
|
56
|
+
runningMean?: Tensor;
|
|
57
|
+
runningVar?: Tensor;
|
|
58
|
+
eps: number;
|
|
59
|
+
momentum: number;
|
|
60
|
+
numFeatures: number;
|
|
61
|
+
affine: boolean;
|
|
62
|
+
trackRunningStats: boolean;
|
|
63
|
+
numBatchesTracked: number;
|
|
64
|
+
constructor(numFeatures: number, eps?: number, momentum?: number, affine?: boolean, trackRunningStats?: boolean, device?: string, dtype?: dtype);
|
|
65
|
+
forward(input: Tensor): Tensor;
|
|
66
|
+
}
|
|
53
67
|
export declare class LayerNorm {
|
|
54
68
|
weight?: Tensor;
|
|
55
69
|
bias?: Tensor;
|
|
@@ -91,6 +105,7 @@ export declare const nn: {
|
|
|
91
105
|
RNNCell: typeof RNNCell;
|
|
92
106
|
GRUCell: typeof GRUCell;
|
|
93
107
|
LSTMCell: typeof LSTMCell;
|
|
108
|
+
BatchNorm: typeof BatchNorm;
|
|
94
109
|
LayerNorm: typeof LayerNorm;
|
|
95
110
|
RMSNorm: typeof RMSNorm;
|
|
96
111
|
Embedding: typeof Embedding;
|
package/dist/nn.js
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
"use strict";
|
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.nn = exports.MultiheadAttention = exports.Embedding = exports.RMSNorm = exports.LayerNorm = exports.LSTMCell = exports.GRUCell = exports.RNNCell = exports.Linear = void 0;
|
|
3
|
+
exports.nn = exports.MultiheadAttention = exports.Embedding = exports.RMSNorm = exports.LayerNorm = exports.BatchNorm = exports.LSTMCell = exports.GRUCell = exports.RNNCell = exports.Linear = void 0;
|
|
4
4
|
exports.scaledDotProductAttention = scaledDotProductAttention;
|
|
5
5
|
const core_1 = require("./core");
|
|
6
6
|
function linearTransform(input, weight, bias) {
|
|
@@ -149,6 +149,83 @@ class LSTMCell {
|
|
|
149
149
|
}
|
|
150
150
|
}
|
|
151
151
|
exports.LSTMCell = LSTMCell;
|
|
152
|
+
class BatchNorm {
|
|
153
|
+
weight;
|
|
154
|
+
bias;
|
|
155
|
+
runningMean;
|
|
156
|
+
runningVar;
|
|
157
|
+
eps;
|
|
158
|
+
momentum;
|
|
159
|
+
numFeatures;
|
|
160
|
+
affine;
|
|
161
|
+
trackRunningStats;
|
|
162
|
+
numBatchesTracked;
|
|
163
|
+
constructor(numFeatures, eps = 1e-5, momentum = 0.1, affine = true, trackRunningStats = true, device, dtype) {
|
|
164
|
+
this.numFeatures = numFeatures;
|
|
165
|
+
this.eps = eps;
|
|
166
|
+
this.momentum = momentum;
|
|
167
|
+
this.affine = affine;
|
|
168
|
+
this.trackRunningStats = trackRunningStats;
|
|
169
|
+
this.numBatchesTracked = 0;
|
|
170
|
+
if (this.affine) {
|
|
171
|
+
this.weight = core_1.Tensor.ones([numFeatures], { requiresGrad: true, device, dtype });
|
|
172
|
+
this.bias = core_1.Tensor.zeros([numFeatures], { requiresGrad: true, device, dtype });
|
|
173
|
+
}
|
|
174
|
+
if (this.trackRunningStats) {
|
|
175
|
+
this.runningMean = core_1.Tensor.zeros([numFeatures], { requiresGrad: false, device, dtype });
|
|
176
|
+
this.runningVar = core_1.Tensor.ones([numFeatures], { requiresGrad: false, device, dtype });
|
|
177
|
+
}
|
|
178
|
+
}
|
|
179
|
+
forward(input) {
|
|
180
|
+
// Input shape: (N, C, ...) where C = numFeatures
|
|
181
|
+
// Normalize over batch dimension and spatial dimensions (if any)
|
|
182
|
+
if (input.shape.length < 2) {
|
|
183
|
+
throw new Error("Input must have at least 2 dimensions (batch, features)");
|
|
184
|
+
}
|
|
185
|
+
if (input.shape[1] !== this.numFeatures) {
|
|
186
|
+
throw new Error(`Expected ${this.numFeatures} features, got ${input.shape[1]}`);
|
|
187
|
+
}
|
|
188
|
+
let mean;
|
|
189
|
+
let variance;
|
|
190
|
+
if (core_1.Tensor.training || !this.trackRunningStats) {
|
|
191
|
+
// Training or trackRunningStats disabled - calculate mean and variance from scratch
|
|
192
|
+
// Calculate mean and variance over batch and spatial dimensions
|
|
193
|
+
// Keep only the channel dimension
|
|
194
|
+
const dims = [0, ...Array.from({ length: input.shape.length - 2 }, (_, i) => i + 2)];
|
|
195
|
+
mean = input.mean(dims, true);
|
|
196
|
+
variance = input.sub(mean).pow(2).mean(dims, true);
|
|
197
|
+
// Update running statistics if enabled and in training mode
|
|
198
|
+
if (this.trackRunningStats && core_1.Tensor.training) {
|
|
199
|
+
const exponentialAverageFactor = this.momentum;
|
|
200
|
+
this.runningMean = this.runningMean
|
|
201
|
+
.mul(1 - exponentialAverageFactor)
|
|
202
|
+
.add(mean.squeeze().mul(exponentialAverageFactor));
|
|
203
|
+
// Use unbiased variance for running estimate
|
|
204
|
+
const n = input.shape.reduce((acc, val, idx) => idx === 1 ? acc : acc * val, 1);
|
|
205
|
+
const unbiasingFactor = n / (n - 1);
|
|
206
|
+
this.runningVar = this.runningVar
|
|
207
|
+
.mul(1 - exponentialAverageFactor)
|
|
208
|
+
.add(variance.squeeze().mul(exponentialAverageFactor * unbiasingFactor));
|
|
209
|
+
this.numBatchesTracked++;
|
|
210
|
+
}
|
|
211
|
+
}
|
|
212
|
+
else {
|
|
213
|
+
// Inference with trackRunningStats enabled - use running statistics
|
|
214
|
+
mean = this.runningMean.reshape([1, this.numFeatures, ...Array(input.shape.length - 2).fill(1)]);
|
|
215
|
+
variance = this.runningVar.reshape([1, this.numFeatures, ...Array(input.shape.length - 2).fill(1)]);
|
|
216
|
+
}
|
|
217
|
+
// Normalize
|
|
218
|
+
let normalized = input.sub(mean).div(variance.add(this.eps).sqrt());
|
|
219
|
+
// Apply affine transformation
|
|
220
|
+
if (this.affine) {
|
|
221
|
+
const weightReshaped = this.weight.reshape([1, this.numFeatures, ...Array(input.shape.length - 2).fill(1)]);
|
|
222
|
+
const biasReshaped = this.bias.reshape([1, this.numFeatures, ...Array(input.shape.length - 2).fill(1)]);
|
|
223
|
+
normalized = normalized.mul(weightReshaped).add(biasReshaped);
|
|
224
|
+
}
|
|
225
|
+
return normalized;
|
|
226
|
+
}
|
|
227
|
+
}
|
|
228
|
+
exports.BatchNorm = BatchNorm;
|
|
152
229
|
class LayerNorm {
|
|
153
230
|
weight;
|
|
154
231
|
bias;
|
|
@@ -383,6 +460,7 @@ exports.nn = {
|
|
|
383
460
|
RNNCell,
|
|
384
461
|
GRUCell,
|
|
385
462
|
LSTMCell,
|
|
463
|
+
BatchNorm,
|
|
386
464
|
LayerNorm,
|
|
387
465
|
RMSNorm,
|
|
388
466
|
Embedding,
|