catniff 0.6.6 → 0.6.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/core.d.ts CHANGED
@@ -57,6 +57,7 @@ export declare class Tensor {
57
57
  indexWithArray(indices: number[]): Tensor;
58
58
  index(indices: Tensor | TensorValue): Tensor;
59
59
  slice(ranges: number[][]): Tensor;
60
+ chunk(chunks: number, dim?: number): Tensor[];
60
61
  squeeze(dims?: number[] | number): Tensor;
61
62
  unsqueeze(dim: number): Tensor;
62
63
  static reduce(tensor: Tensor, dims: number[] | number | undefined, keepDims: boolean, config: {
package/dist/core.js CHANGED
@@ -605,6 +605,25 @@ class Tensor {
605
605
  }
606
606
  return out;
607
607
  }
608
+ // Tensor chunk
609
+ chunk(chunks, dim = 0) {
610
+ // Handle negative indices
611
+ if (dim < 0) {
612
+ dim += this.shape.length;
613
+ }
614
+ const sliceOpt = new Array(this.shape.length);
615
+ for (let index = 0; index < sliceOpt.length; index++) {
616
+ sliceOpt[index] = [];
617
+ }
618
+ const dimSize = this.shape[dim];
619
+ const chunkDimSize = Math.ceil(dimSize / chunks);
620
+ const results = [];
621
+ for (let index = 0; index < dimSize; index += chunkDimSize) {
622
+ sliceOpt[dim] = [index, Math.min(index + chunkDimSize, dimSize)];
623
+ results.push(this.slice(sliceOpt));
624
+ }
625
+ return results;
626
+ }
608
627
  // Tensor squeeze
609
628
  squeeze(dims) {
610
629
  if (typeof this.value === "number")
package/dist/nn.js CHANGED
@@ -191,7 +191,7 @@ class LayerNorm {
191
191
  class Embedding {
192
192
  weight;
193
193
  constructor(numEmbeddings, embeddingDim, device) {
194
- this.weight = core_1.Tensor.randn([numEmbeddings, embeddingDim], { device });
194
+ this.weight = core_1.Tensor.randn([numEmbeddings, embeddingDim], { requiresGrad: true, device });
195
195
  }
196
196
  forward(input) {
197
197
  return this.weight.index(input);
@@ -207,10 +207,10 @@ class MultiheadAttention {
207
207
  headDim;
208
208
  dropout;
209
209
  constructor(embedDim, numHeads, dropout = 0, bias = true, device) {
210
- this.qProjection = new exports.nn.Linear(embedDim, embedDim, bias, device);
211
- this.kProjection = new exports.nn.Linear(embedDim, embedDim, bias, device);
212
- this.vProjection = new exports.nn.Linear(embedDim, embedDim, bias, device);
213
- this.oProjection = new exports.nn.Linear(embedDim, embedDim, bias, device);
210
+ this.qProjection = new Linear(embedDim, embedDim, bias, device);
211
+ this.kProjection = new Linear(embedDim, embedDim, bias, device);
212
+ this.vProjection = new Linear(embedDim, embedDim, bias, device);
213
+ this.oProjection = new Linear(embedDim, embedDim, bias, device);
214
214
  this.embedDim = embedDim;
215
215
  this.numHeads = numHeads;
216
216
  this.headDim = Math.floor(embedDim / numHeads);
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "catniff",
3
- "version": "0.6.6",
3
+ "version": "0.6.8",
4
4
  "description": "A small Torch-like deep learning framework for Javascript",
5
5
  "main": "index.js",
6
6
  "scripts": {