catniff 0.6.13 → 0.6.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/nn.d.ts +8 -0
- package/dist/nn.js +37 -0
- package/dist/optim.js +1 -1
- package/package.json +1 -1
package/dist/nn.d.ts
CHANGED
|
@@ -57,6 +57,13 @@ declare class LayerNorm {
|
|
|
57
57
|
constructor(normalizedShape: number | number[], eps?: number, elementwiseAffine?: boolean, bias?: boolean, device?: string);
|
|
58
58
|
forward(input: Tensor): Tensor;
|
|
59
59
|
}
|
|
60
|
+
declare class RMSNorm {
|
|
61
|
+
weight?: Tensor;
|
|
62
|
+
eps: number;
|
|
63
|
+
normalizedShape: number[];
|
|
64
|
+
constructor(normalizedShape: number | number[], eps?: number, elementwiseAffine?: boolean, device?: string);
|
|
65
|
+
forward(input: Tensor): Tensor;
|
|
66
|
+
}
|
|
60
67
|
declare class Embedding {
|
|
61
68
|
weight: Tensor;
|
|
62
69
|
constructor(numEmbeddings: number, embeddingDim: number, device: string);
|
|
@@ -83,6 +90,7 @@ export declare const nn: {
|
|
|
83
90
|
GRUCell: typeof GRUCell;
|
|
84
91
|
LSTMCell: typeof LSTMCell;
|
|
85
92
|
LayerNorm: typeof LayerNorm;
|
|
93
|
+
RMSNorm: typeof RMSNorm;
|
|
86
94
|
Embedding: typeof Embedding;
|
|
87
95
|
MultiheadAttention: typeof MultiheadAttention;
|
|
88
96
|
state: {
|
package/dist/nn.js
CHANGED
|
@@ -188,6 +188,42 @@ class LayerNorm {
|
|
|
188
188
|
return normalized;
|
|
189
189
|
}
|
|
190
190
|
}
|
|
191
|
+
class RMSNorm {
|
|
192
|
+
weight;
|
|
193
|
+
eps;
|
|
194
|
+
normalizedShape;
|
|
195
|
+
constructor(normalizedShape, eps = 1e-5, elementwiseAffine = true, device) {
|
|
196
|
+
this.eps = eps;
|
|
197
|
+
this.normalizedShape = Array.isArray(normalizedShape) ? normalizedShape : [normalizedShape];
|
|
198
|
+
if (this.normalizedShape.length === 0) {
|
|
199
|
+
throw new Error("Normalized shape cannot be empty");
|
|
200
|
+
}
|
|
201
|
+
if (elementwiseAffine) {
|
|
202
|
+
this.weight = core_1.Tensor.ones(this.normalizedShape, { requiresGrad: true, device });
|
|
203
|
+
}
|
|
204
|
+
}
|
|
205
|
+
forward(input) {
|
|
206
|
+
// Normalize over the specified dimensions
|
|
207
|
+
const normalizedDims = this.normalizedShape.length;
|
|
208
|
+
const startDim = input.shape.length - normalizedDims;
|
|
209
|
+
if (startDim < 0) {
|
|
210
|
+
throw new Error("Input does not have enough dims to normalize");
|
|
211
|
+
}
|
|
212
|
+
const dims = [];
|
|
213
|
+
for (let i = 0; i < normalizedDims; i++) {
|
|
214
|
+
if (input.shape[startDim + i] !== this.normalizedShape[i]) {
|
|
215
|
+
throw new Error(`Shape mismatch at dim ${startDim + i}: expected ${this.normalizedShape[i]}, got ${input.shape[startDim + i]}`);
|
|
216
|
+
}
|
|
217
|
+
dims.push(startDim + i);
|
|
218
|
+
}
|
|
219
|
+
let rms = input.square().mean(dims, true).add(this.eps).sqrt();
|
|
220
|
+
let normalized = input.div(rms);
|
|
221
|
+
if (this.weight) {
|
|
222
|
+
normalized = normalized.mul(this.weight);
|
|
223
|
+
}
|
|
224
|
+
return normalized;
|
|
225
|
+
}
|
|
226
|
+
}
|
|
191
227
|
class Embedding {
|
|
192
228
|
weight;
|
|
193
229
|
constructor(numEmbeddings, embeddingDim, device) {
|
|
@@ -316,6 +352,7 @@ exports.nn = {
|
|
|
316
352
|
GRUCell,
|
|
317
353
|
LSTMCell,
|
|
318
354
|
LayerNorm,
|
|
355
|
+
RMSNorm,
|
|
319
356
|
Embedding,
|
|
320
357
|
MultiheadAttention,
|
|
321
358
|
state
|
package/dist/optim.js
CHANGED
|
@@ -139,7 +139,7 @@ class AdamW extends BaseOptimizer {
|
|
|
139
139
|
this.lr = options?.lr || 0.001;
|
|
140
140
|
this.betas = options?.betas || [0.9, 0.999];
|
|
141
141
|
this.eps = options?.eps || 1e-8;
|
|
142
|
-
this.weightDecay = options?.weightDecay || 0;
|
|
142
|
+
this.weightDecay = options?.weightDecay || 0.01;
|
|
143
143
|
}
|
|
144
144
|
step() {
|
|
145
145
|
this.stepCount++;
|