catniff 0.5.0 → 0.5.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +26 -0
- package/dist/core.js +9 -1
- package/dist/nn.d.ts +52 -1
- package/dist/nn.js +172 -17
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -76,6 +76,32 @@ optim.step();
|
|
|
76
76
|
console.log("Updated weight:", w.data); // Should move toward 3.0
|
|
77
77
|
```
|
|
78
78
|
|
|
79
|
+
## Neural networks
|
|
80
|
+
|
|
81
|
+
There are built-in neural network constructs in Catniff as well:
|
|
82
|
+
```js
|
|
83
|
+
const { Tensor, nn } = require("catniff");
|
|
84
|
+
|
|
85
|
+
// Linear layer with input size of 20 and output size of 10
|
|
86
|
+
const linear = nn.Linear(20, 10);
|
|
87
|
+
// RNN cell with input size of 32 and hidden size of 64
|
|
88
|
+
const rnnCell = nn.RNNCell(32, 64);
|
|
89
|
+
// Same thing but using GRU
|
|
90
|
+
const gruCell = nn.GRUCell(32, 64);
|
|
91
|
+
// Same thing but using LSTM
|
|
92
|
+
const lstmCell = nn.LSTMCell(32, 64);
|
|
93
|
+
|
|
94
|
+
// Forward passes
|
|
95
|
+
const a = Tensor.randn([20]);
|
|
96
|
+
const b = Tensor.randn([32]);
|
|
97
|
+
const c = Tensor.randn([64]);
|
|
98
|
+
|
|
99
|
+
linear.forward(a);
|
|
100
|
+
rnnCell.forward(b, c);
|
|
101
|
+
gruCell.forward(b, c);
|
|
102
|
+
lstmCell.forward(b, c, c);
|
|
103
|
+
```
|
|
104
|
+
|
|
79
105
|
And it can still do much more, check out the docs and examples below for more information.
|
|
80
106
|
|
|
81
107
|
## Documentation
|
package/dist/core.js
CHANGED
|
@@ -20,6 +20,13 @@ class Tensor {
|
|
|
20
20
|
this.gradFn = options.gradFn || (() => { });
|
|
21
21
|
this.children = options.children || [];
|
|
22
22
|
this.device = options.device || "cpu";
|
|
23
|
+
// Move tensor to device
|
|
24
|
+
if (this.device !== "cpu") {
|
|
25
|
+
const backend = Tensor.backends.get(this.device);
|
|
26
|
+
if (backend && backend.transfer) {
|
|
27
|
+
backend.transfer(this);
|
|
28
|
+
}
|
|
29
|
+
}
|
|
23
30
|
}
|
|
24
31
|
// Utility to flatten an nD array to be 1D
|
|
25
32
|
static flatten(tensor) {
|
|
@@ -1549,7 +1556,8 @@ class Tensor {
|
|
|
1549
1556
|
to(device) {
|
|
1550
1557
|
const backend = Tensor.backends.get(device);
|
|
1551
1558
|
if (backend && backend.transfer) {
|
|
1552
|
-
|
|
1559
|
+
backend.transfer(this);
|
|
1560
|
+
return this;
|
|
1553
1561
|
}
|
|
1554
1562
|
throw new Error(`No device found to transfer tensor to or a handler is not implemented for device.`);
|
|
1555
1563
|
}
|
package/dist/nn.d.ts
CHANGED
|
@@ -2,13 +2,64 @@ import { Tensor, TensorValue } from "./core";
|
|
|
2
2
|
declare class Linear {
|
|
3
3
|
weight: Tensor;
|
|
4
4
|
bias?: Tensor;
|
|
5
|
-
constructor(inFeatures: number, outFeatures: number, bias?: boolean,
|
|
5
|
+
constructor(inFeatures: number, outFeatures: number, bias?: boolean, device?: string);
|
|
6
6
|
forward(input: Tensor | TensorValue): Tensor;
|
|
7
7
|
}
|
|
8
|
+
declare class RNNCell {
|
|
9
|
+
weightIH: Tensor;
|
|
10
|
+
weightHH: Tensor;
|
|
11
|
+
biasIH?: Tensor;
|
|
12
|
+
biasHH?: Tensor;
|
|
13
|
+
constructor(inputSize: number, hiddenSize: number, bias?: boolean, device?: string);
|
|
14
|
+
forward(input: Tensor | TensorValue, hidden: Tensor | TensorValue): Tensor;
|
|
15
|
+
}
|
|
16
|
+
declare class GRUCell {
|
|
17
|
+
weightIR: Tensor;
|
|
18
|
+
weightIZ: Tensor;
|
|
19
|
+
weightIN: Tensor;
|
|
20
|
+
weightHR: Tensor;
|
|
21
|
+
weightHZ: Tensor;
|
|
22
|
+
weightHN: Tensor;
|
|
23
|
+
biasIR?: Tensor;
|
|
24
|
+
biasIZ?: Tensor;
|
|
25
|
+
biasIN?: Tensor;
|
|
26
|
+
biasHR?: Tensor;
|
|
27
|
+
biasHZ?: Tensor;
|
|
28
|
+
biasHN?: Tensor;
|
|
29
|
+
constructor(inputSize: number, hiddenSize: number, bias?: boolean, device?: string);
|
|
30
|
+
forward(input: Tensor | TensorValue, hidden: Tensor | TensorValue): Tensor;
|
|
31
|
+
}
|
|
32
|
+
export declare class LSTMCell {
|
|
33
|
+
weightII: Tensor;
|
|
34
|
+
weightIF: Tensor;
|
|
35
|
+
weightIG: Tensor;
|
|
36
|
+
weightIO: Tensor;
|
|
37
|
+
weightHI: Tensor;
|
|
38
|
+
weightHF: Tensor;
|
|
39
|
+
weightHG: Tensor;
|
|
40
|
+
weightHO: Tensor;
|
|
41
|
+
biasII?: Tensor;
|
|
42
|
+
biasIF?: Tensor;
|
|
43
|
+
biasIG?: Tensor;
|
|
44
|
+
biasIO?: Tensor;
|
|
45
|
+
biasHI?: Tensor;
|
|
46
|
+
biasHF?: Tensor;
|
|
47
|
+
biasHG?: Tensor;
|
|
48
|
+
biasHO?: Tensor;
|
|
49
|
+
constructor(inputSize: number, hiddenSize: number, bias?: boolean, device?: string);
|
|
50
|
+
forward(input: Tensor | TensorValue, hidden: Tensor | TensorValue, cell: Tensor | TensorValue): [Tensor, Tensor];
|
|
51
|
+
}
|
|
52
|
+
interface StateDict {
|
|
53
|
+
[key: string]: any;
|
|
54
|
+
}
|
|
8
55
|
export declare const nn: {
|
|
9
56
|
Linear: typeof Linear;
|
|
57
|
+
RNNCell: typeof RNNCell;
|
|
58
|
+
GRUCell: typeof GRUCell;
|
|
10
59
|
state: {
|
|
11
60
|
getParameters(model: any, visited?: WeakSet<object>): Tensor[];
|
|
61
|
+
getStateDict(model: any, prefix?: string, visited?: WeakSet<object>): StateDict;
|
|
62
|
+
loadStateDict(model: any, stateDict: StateDict, prefix?: string, visited?: WeakSet<object>): void;
|
|
12
63
|
};
|
|
13
64
|
};
|
|
14
65
|
export {};
|
package/dist/nn.js
CHANGED
|
@@ -1,37 +1,154 @@
|
|
|
1
1
|
"use strict";
|
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
exports.nn = void 0;
|
|
3
|
+
exports.nn = exports.LSTMCell = void 0;
|
|
4
4
|
const core_1 = require("./core");
|
|
5
|
+
function linearTransform(input, weight, bias) {
|
|
6
|
+
let output = input.matmul(weight.t());
|
|
7
|
+
if (bias) {
|
|
8
|
+
output = output.add(bias);
|
|
9
|
+
}
|
|
10
|
+
return output;
|
|
11
|
+
}
|
|
5
12
|
class Linear {
|
|
6
13
|
weight;
|
|
7
14
|
bias;
|
|
8
|
-
constructor(inFeatures, outFeatures, bias = true,
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
return core_1.Tensor.uniform(shape, -bound, bound, { requiresGrad: true });
|
|
12
|
-
};
|
|
13
|
-
if (customInit) {
|
|
14
|
-
initFunc = customInit;
|
|
15
|
-
}
|
|
16
|
-
this.weight = initFunc([outFeatures, inFeatures]);
|
|
15
|
+
constructor(inFeatures, outFeatures, bias = true, device) {
|
|
16
|
+
const bound = 1 / Math.sqrt(inFeatures);
|
|
17
|
+
this.weight = core_1.Tensor.uniform([outFeatures, inFeatures], -bound, bound, { requiresGrad: true, device });
|
|
17
18
|
if (bias) {
|
|
18
|
-
this.bias =
|
|
19
|
+
this.bias = core_1.Tensor.uniform([outFeatures], -bound, bound, { requiresGrad: true, device });
|
|
19
20
|
}
|
|
20
21
|
}
|
|
21
22
|
forward(input) {
|
|
22
23
|
input = core_1.Tensor.forceTensor(input);
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
24
|
+
return linearTransform(input, this.weight, this.bias);
|
|
25
|
+
}
|
|
26
|
+
}
|
|
27
|
+
function rnnTransform(input, hidden, inputWeight, hiddenWeight, inputBias, hiddenBias) {
|
|
28
|
+
let output = input.matmul(inputWeight.t()).add(hidden.matmul(hiddenWeight.t()));
|
|
29
|
+
if (inputBias) {
|
|
30
|
+
output = output.add(inputBias);
|
|
31
|
+
}
|
|
32
|
+
if (hiddenBias) {
|
|
33
|
+
output = output.add(hiddenBias);
|
|
34
|
+
}
|
|
35
|
+
return output;
|
|
36
|
+
}
|
|
37
|
+
class RNNCell {
|
|
38
|
+
weightIH;
|
|
39
|
+
weightHH;
|
|
40
|
+
biasIH;
|
|
41
|
+
biasHH;
|
|
42
|
+
constructor(inputSize, hiddenSize, bias = true, device) {
|
|
43
|
+
const bound = 1 / Math.sqrt(hiddenSize);
|
|
44
|
+
this.weightIH = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
45
|
+
this.weightHH = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
46
|
+
if (bias) {
|
|
47
|
+
this.biasIH = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
48
|
+
this.biasHH = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
49
|
+
}
|
|
50
|
+
}
|
|
51
|
+
forward(input, hidden) {
|
|
52
|
+
input = core_1.Tensor.forceTensor(input);
|
|
53
|
+
hidden = core_1.Tensor.forceTensor(hidden);
|
|
54
|
+
return rnnTransform(input, hidden, this.weightIH, this.weightHH, this.biasIH, this.biasHH).tanh();
|
|
55
|
+
}
|
|
56
|
+
}
|
|
57
|
+
class GRUCell {
|
|
58
|
+
weightIR;
|
|
59
|
+
weightIZ;
|
|
60
|
+
weightIN;
|
|
61
|
+
weightHR;
|
|
62
|
+
weightHZ;
|
|
63
|
+
weightHN;
|
|
64
|
+
biasIR;
|
|
65
|
+
biasIZ;
|
|
66
|
+
biasIN;
|
|
67
|
+
biasHR;
|
|
68
|
+
biasHZ;
|
|
69
|
+
biasHN;
|
|
70
|
+
constructor(inputSize, hiddenSize, bias = true, device) {
|
|
71
|
+
const bound = 1 / Math.sqrt(hiddenSize);
|
|
72
|
+
this.weightIR = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
73
|
+
this.weightIZ = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
74
|
+
this.weightIN = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
75
|
+
this.weightHR = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
76
|
+
this.weightHZ = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
77
|
+
this.weightHN = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
78
|
+
if (bias) {
|
|
79
|
+
this.biasIR = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
80
|
+
this.biasIZ = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
81
|
+
this.biasIN = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
82
|
+
this.biasHR = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
83
|
+
this.biasHZ = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
84
|
+
this.biasHN = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
26
85
|
}
|
|
27
|
-
|
|
86
|
+
}
|
|
87
|
+
forward(input, hidden) {
|
|
88
|
+
input = core_1.Tensor.forceTensor(input);
|
|
89
|
+
hidden = core_1.Tensor.forceTensor(hidden);
|
|
90
|
+
const r = rnnTransform(input, hidden, this.weightIR, this.weightHR, this.biasIR, this.biasHR).sigmoid();
|
|
91
|
+
const z = rnnTransform(input, hidden, this.weightIZ, this.weightHZ, this.biasIZ, this.biasHZ).sigmoid();
|
|
92
|
+
const n = linearTransform(input, this.weightIN, this.biasIN).add(r.mul(linearTransform(hidden, this.weightHN, this.biasHN))).tanh();
|
|
93
|
+
return (z.neg().add(1).mul(n).add(z.mul(hidden)));
|
|
28
94
|
}
|
|
29
95
|
}
|
|
96
|
+
class LSTMCell {
|
|
97
|
+
weightII;
|
|
98
|
+
weightIF;
|
|
99
|
+
weightIG;
|
|
100
|
+
weightIO;
|
|
101
|
+
weightHI;
|
|
102
|
+
weightHF;
|
|
103
|
+
weightHG;
|
|
104
|
+
weightHO;
|
|
105
|
+
biasII;
|
|
106
|
+
biasIF;
|
|
107
|
+
biasIG;
|
|
108
|
+
biasIO;
|
|
109
|
+
biasHI;
|
|
110
|
+
biasHF;
|
|
111
|
+
biasHG;
|
|
112
|
+
biasHO;
|
|
113
|
+
constructor(inputSize, hiddenSize, bias = true, device) {
|
|
114
|
+
const bound = 1 / Math.sqrt(hiddenSize);
|
|
115
|
+
this.weightII = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
116
|
+
this.weightIF = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
117
|
+
this.weightIG = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
118
|
+
this.weightIO = core_1.Tensor.uniform([hiddenSize, inputSize], -bound, bound, { requiresGrad: true, device });
|
|
119
|
+
this.weightHI = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
120
|
+
this.weightHF = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
121
|
+
this.weightHG = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
122
|
+
this.weightHO = core_1.Tensor.uniform([hiddenSize, hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
123
|
+
if (bias) {
|
|
124
|
+
this.biasII = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
125
|
+
this.biasIF = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
126
|
+
this.biasIG = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
127
|
+
this.biasIO = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
128
|
+
this.biasHI = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
129
|
+
this.biasHF = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
130
|
+
this.biasHG = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
131
|
+
this.biasHO = core_1.Tensor.uniform([hiddenSize], -bound, bound, { requiresGrad: true, device });
|
|
132
|
+
}
|
|
133
|
+
}
|
|
134
|
+
forward(input, hidden, cell) {
|
|
135
|
+
input = core_1.Tensor.forceTensor(input);
|
|
136
|
+
hidden = core_1.Tensor.forceTensor(hidden);
|
|
137
|
+
cell = core_1.Tensor.forceTensor(cell);
|
|
138
|
+
const i = rnnTransform(input, hidden, this.weightII, this.weightHI, this.biasII, this.biasHI).sigmoid();
|
|
139
|
+
const f = rnnTransform(input, hidden, this.weightIF, this.weightHF, this.biasIF, this.biasHF).sigmoid();
|
|
140
|
+
const g = rnnTransform(input, hidden, this.weightIG, this.weightHG, this.biasIG, this.biasHG).tanh();
|
|
141
|
+
const o = rnnTransform(input, hidden, this.weightIO, this.weightHO, this.biasIO, this.biasHO).sigmoid();
|
|
142
|
+
const c = f.mul(cell).add(i.mul(g));
|
|
143
|
+
const h = o.mul(c.tanh());
|
|
144
|
+
return [h, c];
|
|
145
|
+
}
|
|
146
|
+
}
|
|
147
|
+
exports.LSTMCell = LSTMCell;
|
|
30
148
|
const state = {
|
|
31
149
|
getParameters(model, visited = new WeakSet()) {
|
|
32
|
-
if (visited.has(model))
|
|
150
|
+
if (visited.has(model))
|
|
33
151
|
return [];
|
|
34
|
-
}
|
|
35
152
|
visited.add(model);
|
|
36
153
|
const parameters = [];
|
|
37
154
|
for (const key in model) {
|
|
@@ -46,9 +163,47 @@ const state = {
|
|
|
46
163
|
}
|
|
47
164
|
}
|
|
48
165
|
return parameters;
|
|
166
|
+
},
|
|
167
|
+
getStateDict(model, prefix = "", visited = new WeakSet()) {
|
|
168
|
+
if (visited.has(model))
|
|
169
|
+
return {};
|
|
170
|
+
visited.add(model);
|
|
171
|
+
const stateDict = {};
|
|
172
|
+
for (const key in model) {
|
|
173
|
+
if (!model.hasOwnProperty(key))
|
|
174
|
+
continue;
|
|
175
|
+
const value = model[key];
|
|
176
|
+
const fullKey = prefix ? `${prefix}.${key}` : key;
|
|
177
|
+
if (value instanceof core_1.Tensor) {
|
|
178
|
+
stateDict[fullKey] = value.val();
|
|
179
|
+
}
|
|
180
|
+
else if (typeof value === "object" && value !== null) {
|
|
181
|
+
Object.assign(stateDict, this.getStateDict(value, fullKey, visited));
|
|
182
|
+
}
|
|
183
|
+
}
|
|
184
|
+
return stateDict;
|
|
185
|
+
},
|
|
186
|
+
loadStateDict(model, stateDict, prefix = "", visited = new WeakSet()) {
|
|
187
|
+
if (visited.has(model))
|
|
188
|
+
return;
|
|
189
|
+
visited.add(model);
|
|
190
|
+
for (const key in model) {
|
|
191
|
+
if (!model.hasOwnProperty(key))
|
|
192
|
+
continue;
|
|
193
|
+
const value = model[key];
|
|
194
|
+
const fullKey = prefix ? `${prefix}.${key}` : key;
|
|
195
|
+
if (value instanceof core_1.Tensor && stateDict[fullKey]) {
|
|
196
|
+
value.replace(new core_1.Tensor(stateDict[fullKey]));
|
|
197
|
+
}
|
|
198
|
+
else if (typeof value === "object" && value !== null) {
|
|
199
|
+
this.loadStateDict(value, stateDict, fullKey, visited);
|
|
200
|
+
}
|
|
201
|
+
}
|
|
49
202
|
}
|
|
50
203
|
};
|
|
51
204
|
exports.nn = {
|
|
52
205
|
Linear,
|
|
206
|
+
RNNCell,
|
|
207
|
+
GRUCell,
|
|
53
208
|
state
|
|
54
209
|
};
|