catniff 0.1.4 → 0.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -1
- package/dist/autograd.d.ts +54 -6
- package/dist/autograd.js +225 -8
- package/dist/tensor.d.ts +21 -0
- package/dist/tensor.js +117 -173
- package/package.json +8 -2
package/README.md
CHANGED
|
@@ -26,7 +26,7 @@ console.log(x.grad); // 5
|
|
|
26
26
|
|
|
27
27
|
Tensors in Catniff are either numbers (scalars/0-D tensors) or multidimensional number arrays (n-D tensors).
|
|
28
28
|
|
|
29
|
-
There is a built-in `TensorMath` class to help with
|
|
29
|
+
There is a built-in `TensorMath` class to help with tensor arithmetic, for example:
|
|
30
30
|
```js
|
|
31
31
|
const { TensorMath } = require("catniff");
|
|
32
32
|
|
|
@@ -70,6 +70,8 @@ All available APIs are in `./src/autograd.ts`.
|
|
|
70
70
|
I'm mostly just learning and playing with this currently, so there are no concrete plans yet, but here are what I currently have in mind:
|
|
71
71
|
|
|
72
72
|
* Fix whatever is the problem right now (there are a lot of problems right now lol).
|
|
73
|
+
* Add more tensor ops.
|
|
74
|
+
* Proper documentation.
|
|
73
75
|
* GPU acceleration.
|
|
74
76
|
* Some general neural net APIs.
|
|
75
77
|
|
package/dist/autograd.d.ts
CHANGED
|
@@ -6,12 +6,36 @@ export declare enum OP {
|
|
|
6
6
|
MUL = 3,
|
|
7
7
|
POW = 4,
|
|
8
8
|
DIV = 5,
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
9
|
+
GE = 6,
|
|
10
|
+
LE = 7,
|
|
11
|
+
GT = 8,
|
|
12
|
+
LT = 9,
|
|
13
|
+
EQ = 10,
|
|
14
|
+
NEG = 11,
|
|
15
|
+
ABS = 12,
|
|
16
|
+
SIGN = 13,
|
|
17
|
+
SIN = 14,
|
|
18
|
+
COS = 15,
|
|
19
|
+
TAN = 16,
|
|
20
|
+
ASIN = 17,
|
|
21
|
+
ACOS = 18,
|
|
22
|
+
ATAN = 19,
|
|
23
|
+
SINH = 20,
|
|
24
|
+
COSH = 21,
|
|
25
|
+
ASINH = 22,
|
|
26
|
+
ACOSH = 23,
|
|
27
|
+
ATANH = 24,
|
|
28
|
+
SQRT = 25,
|
|
29
|
+
EXP = 26,
|
|
30
|
+
LOG = 27,
|
|
31
|
+
LOG2 = 28,
|
|
32
|
+
LOG10 = 29,
|
|
33
|
+
LOG1P = 30,
|
|
34
|
+
RELU = 31,
|
|
35
|
+
SIGMOID = 32,
|
|
36
|
+
TANH = 33,
|
|
37
|
+
T = 34,
|
|
38
|
+
MM = 35
|
|
15
39
|
}
|
|
16
40
|
export declare class Node {
|
|
17
41
|
value: Tensor;
|
|
@@ -26,12 +50,36 @@ export declare class Node {
|
|
|
26
50
|
mul(other: Node | number): Node;
|
|
27
51
|
pow(other: Node | number): Node;
|
|
28
52
|
div(other: Node | number): Node;
|
|
53
|
+
ge(other: Node | number): Node;
|
|
54
|
+
le(other: Node | number): Node;
|
|
55
|
+
gt(other: Node | number): Node;
|
|
56
|
+
lt(other: Node | number): Node;
|
|
57
|
+
eq(other: Node | number): Node;
|
|
29
58
|
neg(): Node;
|
|
59
|
+
abs(): Node;
|
|
60
|
+
sign(): Node;
|
|
61
|
+
sin(): Node;
|
|
62
|
+
cos(): Node;
|
|
63
|
+
tan(): Node;
|
|
64
|
+
asin(): Node;
|
|
65
|
+
acos(): Node;
|
|
66
|
+
atan(): Node;
|
|
67
|
+
sinh(): Node;
|
|
68
|
+
cosh(): Node;
|
|
69
|
+
asinh(): Node;
|
|
70
|
+
acosh(): Node;
|
|
71
|
+
atanh(): Node;
|
|
72
|
+
sqrt(): Node;
|
|
30
73
|
exp(): Node;
|
|
31
74
|
log(): Node;
|
|
75
|
+
log2(): Node;
|
|
76
|
+
log10(): Node;
|
|
77
|
+
log1p(): Node;
|
|
32
78
|
relu(): Node;
|
|
33
79
|
sigmoid(): Node;
|
|
34
80
|
tanh(): Node;
|
|
81
|
+
t(): Node;
|
|
82
|
+
mm(other: Node | number): Node;
|
|
35
83
|
backward(): void;
|
|
36
84
|
static forceNode(value: Node | number): Node;
|
|
37
85
|
static addGrad(node: Node, accumGrad: Tensor): void;
|
package/dist/autograd.js
CHANGED
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
3
|
exports.Node = exports.OP = void 0;
|
|
4
4
|
const tensor_1 = require("./tensor");
|
|
5
|
-
const { add, sub, mul, pow, div, neg, exp, log, relu, sigmoid, tanh,
|
|
5
|
+
const { add, sub, mul, pow, div, gt, lt, ge, le, eq, neg, abs, sign, sin, cos, tan, asin, acos, atan, sinh, cosh, asinh, acosh, atanh, sqrt, exp, log, log2, log10, log1p, relu, sigmoid, tanh, t, mm } = tensor_1.TensorMath;
|
|
6
6
|
var OP;
|
|
7
7
|
(function (OP) {
|
|
8
8
|
OP[OP["NONE"] = 0] = "NONE";
|
|
@@ -11,12 +11,36 @@ var OP;
|
|
|
11
11
|
OP[OP["MUL"] = 3] = "MUL";
|
|
12
12
|
OP[OP["POW"] = 4] = "POW";
|
|
13
13
|
OP[OP["DIV"] = 5] = "DIV";
|
|
14
|
-
OP[OP["
|
|
15
|
-
OP[OP["
|
|
16
|
-
OP[OP["
|
|
17
|
-
OP[OP["
|
|
18
|
-
OP[OP["
|
|
19
|
-
OP[OP["
|
|
14
|
+
OP[OP["GE"] = 6] = "GE";
|
|
15
|
+
OP[OP["LE"] = 7] = "LE";
|
|
16
|
+
OP[OP["GT"] = 8] = "GT";
|
|
17
|
+
OP[OP["LT"] = 9] = "LT";
|
|
18
|
+
OP[OP["EQ"] = 10] = "EQ";
|
|
19
|
+
OP[OP["NEG"] = 11] = "NEG";
|
|
20
|
+
OP[OP["ABS"] = 12] = "ABS";
|
|
21
|
+
OP[OP["SIGN"] = 13] = "SIGN";
|
|
22
|
+
OP[OP["SIN"] = 14] = "SIN";
|
|
23
|
+
OP[OP["COS"] = 15] = "COS";
|
|
24
|
+
OP[OP["TAN"] = 16] = "TAN";
|
|
25
|
+
OP[OP["ASIN"] = 17] = "ASIN";
|
|
26
|
+
OP[OP["ACOS"] = 18] = "ACOS";
|
|
27
|
+
OP[OP["ATAN"] = 19] = "ATAN";
|
|
28
|
+
OP[OP["SINH"] = 20] = "SINH";
|
|
29
|
+
OP[OP["COSH"] = 21] = "COSH";
|
|
30
|
+
OP[OP["ASINH"] = 22] = "ASINH";
|
|
31
|
+
OP[OP["ACOSH"] = 23] = "ACOSH";
|
|
32
|
+
OP[OP["ATANH"] = 24] = "ATANH";
|
|
33
|
+
OP[OP["SQRT"] = 25] = "SQRT";
|
|
34
|
+
OP[OP["EXP"] = 26] = "EXP";
|
|
35
|
+
OP[OP["LOG"] = 27] = "LOG";
|
|
36
|
+
OP[OP["LOG2"] = 28] = "LOG2";
|
|
37
|
+
OP[OP["LOG10"] = 29] = "LOG10";
|
|
38
|
+
OP[OP["LOG1P"] = 30] = "LOG1P";
|
|
39
|
+
OP[OP["RELU"] = 31] = "RELU";
|
|
40
|
+
OP[OP["SIGMOID"] = 32] = "SIGMOID";
|
|
41
|
+
OP[OP["TANH"] = 33] = "TANH";
|
|
42
|
+
OP[OP["T"] = 34] = "T";
|
|
43
|
+
OP[OP["MM"] = 35] = "MM";
|
|
20
44
|
})(OP || (exports.OP = OP = {}));
|
|
21
45
|
class Node {
|
|
22
46
|
value;
|
|
@@ -61,7 +85,7 @@ class Node {
|
|
|
61
85
|
out.feedBackward = () => {
|
|
62
86
|
// x * y d/dx = y
|
|
63
87
|
Node.addGrad(this, mul(out.grad, other.value));
|
|
64
|
-
// x
|
|
88
|
+
// x * y d/dy = x
|
|
65
89
|
Node.addGrad(other, mul(out.grad, this.value));
|
|
66
90
|
};
|
|
67
91
|
return out;
|
|
@@ -94,6 +118,46 @@ class Node {
|
|
|
94
118
|
};
|
|
95
119
|
return out;
|
|
96
120
|
}
|
|
121
|
+
ge(other) {
|
|
122
|
+
other = Node.forceNode(other);
|
|
123
|
+
const out = new Node(ge(this.value, other.value), [this, other], OP.GE);
|
|
124
|
+
out.feedBackward = () => {
|
|
125
|
+
// We consider the derivative of ge to be 0, which does not add to current grad, so this function is just empty
|
|
126
|
+
};
|
|
127
|
+
return out;
|
|
128
|
+
}
|
|
129
|
+
le(other) {
|
|
130
|
+
other = Node.forceNode(other);
|
|
131
|
+
const out = new Node(le(this.value, other.value), [this, other], OP.LE);
|
|
132
|
+
out.feedBackward = () => {
|
|
133
|
+
// We consider the derivative of le to be 0, which does not add to current grad, so this function is just empty
|
|
134
|
+
};
|
|
135
|
+
return out;
|
|
136
|
+
}
|
|
137
|
+
gt(other) {
|
|
138
|
+
other = Node.forceNode(other);
|
|
139
|
+
const out = new Node(gt(this.value, other.value), [this, other], OP.GT);
|
|
140
|
+
out.feedBackward = () => {
|
|
141
|
+
// We consider the derivative of gt to be 0, which does not add to current grad, so this function is just empty
|
|
142
|
+
};
|
|
143
|
+
return out;
|
|
144
|
+
}
|
|
145
|
+
lt(other) {
|
|
146
|
+
other = Node.forceNode(other);
|
|
147
|
+
const out = new Node(lt(this.value, other.value), [this, other], OP.LT);
|
|
148
|
+
out.feedBackward = () => {
|
|
149
|
+
// We consider the derivative of lt to be 0, which does not add to current grad, so this function is just empty
|
|
150
|
+
};
|
|
151
|
+
return out;
|
|
152
|
+
}
|
|
153
|
+
eq(other) {
|
|
154
|
+
other = Node.forceNode(other);
|
|
155
|
+
const out = new Node(eq(this.value, other.value), [this, other], OP.EQ);
|
|
156
|
+
out.feedBackward = () => {
|
|
157
|
+
// We consider the derivative of eq to be 0, which does not add to current grad, so this function is just empty
|
|
158
|
+
};
|
|
159
|
+
return out;
|
|
160
|
+
}
|
|
97
161
|
neg() {
|
|
98
162
|
const out = new Node(neg(this.value), [this], OP.NEG);
|
|
99
163
|
out.feedBackward = () => {
|
|
@@ -102,6 +166,119 @@ class Node {
|
|
|
102
166
|
};
|
|
103
167
|
return out;
|
|
104
168
|
}
|
|
169
|
+
abs() {
|
|
170
|
+
const out = new Node(abs(this.value), [this], OP.ABS);
|
|
171
|
+
out.feedBackward = () => {
|
|
172
|
+
// |x| d/dx = sign(x)
|
|
173
|
+
Node.addGrad(this, mul(out.grad, sign(this.value)));
|
|
174
|
+
};
|
|
175
|
+
return out;
|
|
176
|
+
}
|
|
177
|
+
sign() {
|
|
178
|
+
const out = new Node(sign(this.value), [this], OP.SIGN);
|
|
179
|
+
out.feedBackward = () => {
|
|
180
|
+
// We consider the derivative of sign to be 0, which does not add to current grad, so this function is just empty
|
|
181
|
+
};
|
|
182
|
+
return out;
|
|
183
|
+
}
|
|
184
|
+
sin() {
|
|
185
|
+
const out = new Node(sin(this.value), [this], OP.SIN);
|
|
186
|
+
out.feedBackward = () => {
|
|
187
|
+
// sinx d/dx = cosx
|
|
188
|
+
Node.addGrad(this, mul(out.grad, cos(this.value)));
|
|
189
|
+
};
|
|
190
|
+
return out;
|
|
191
|
+
}
|
|
192
|
+
cos() {
|
|
193
|
+
const out = new Node(cos(this.value), [this], OP.COS);
|
|
194
|
+
out.feedBackward = () => {
|
|
195
|
+
// cosx d/dx = -sinx
|
|
196
|
+
Node.addGrad(this, mul(out.grad, neg(sin(this.value))));
|
|
197
|
+
};
|
|
198
|
+
return out;
|
|
199
|
+
}
|
|
200
|
+
tan() {
|
|
201
|
+
const tanResult = tan(this.value);
|
|
202
|
+
const out = new Node(tanResult, [this], OP.TAN);
|
|
203
|
+
out.feedBackward = () => {
|
|
204
|
+
// tanx d/dx = 1+(tanx)^2
|
|
205
|
+
Node.addGrad(this, mul(out.grad, add(1, pow(tanResult, 2))));
|
|
206
|
+
};
|
|
207
|
+
return out;
|
|
208
|
+
}
|
|
209
|
+
asin() {
|
|
210
|
+
const out = new Node(asin(this.value), [this], OP.ASIN);
|
|
211
|
+
out.feedBackward = () => {
|
|
212
|
+
// asinx d/dx = 1/sqrt(1-x^2)
|
|
213
|
+
Node.addGrad(this, div(out.grad, sqrt(sub(1, pow(this.value, 2)))));
|
|
214
|
+
};
|
|
215
|
+
return out;
|
|
216
|
+
}
|
|
217
|
+
acos() {
|
|
218
|
+
const out = new Node(acos(this.value), [this], OP.ACOS);
|
|
219
|
+
out.feedBackward = () => {
|
|
220
|
+
// acosx d/dx = -1/sqrt(1-x^2)
|
|
221
|
+
Node.addGrad(this, neg(div(out.grad, sqrt(sub(1, pow(this.value, 2))))));
|
|
222
|
+
};
|
|
223
|
+
return out;
|
|
224
|
+
}
|
|
225
|
+
atan() {
|
|
226
|
+
const out = new Node(atan(this.value), [this], OP.ATAN);
|
|
227
|
+
out.feedBackward = () => {
|
|
228
|
+
// atanx d/dx = 1/(1+x^2)
|
|
229
|
+
Node.addGrad(this, div(out.grad, add(1, pow(this.value, 2))));
|
|
230
|
+
};
|
|
231
|
+
return out;
|
|
232
|
+
}
|
|
233
|
+
sinh() {
|
|
234
|
+
const out = new Node(sinh(this.value), [this], OP.SINH);
|
|
235
|
+
out.feedBackward = () => {
|
|
236
|
+
// sinhx d/dx = coshx
|
|
237
|
+
Node.addGrad(this, mul(out.grad, cosh(this.value)));
|
|
238
|
+
};
|
|
239
|
+
return out;
|
|
240
|
+
}
|
|
241
|
+
cosh() {
|
|
242
|
+
const out = new Node(cosh(this.value), [this], OP.COSH);
|
|
243
|
+
out.feedBackward = () => {
|
|
244
|
+
// coshx d/dx = sinhx
|
|
245
|
+
Node.addGrad(this, mul(out.grad, sinh(this.value)));
|
|
246
|
+
};
|
|
247
|
+
return out;
|
|
248
|
+
}
|
|
249
|
+
asinh() {
|
|
250
|
+
const out = new Node(asinh(this.value), [this], OP.ASINH);
|
|
251
|
+
out.feedBackward = () => {
|
|
252
|
+
// asinhx d/dx = 1/sqrt(1+x^2)
|
|
253
|
+
Node.addGrad(this, div(out.grad, sqrt(add(1, pow(this.value, 2)))));
|
|
254
|
+
};
|
|
255
|
+
return out;
|
|
256
|
+
}
|
|
257
|
+
acosh() {
|
|
258
|
+
const out = new Node(acosh(this.value), [this], OP.ACOSH);
|
|
259
|
+
out.feedBackward = () => {
|
|
260
|
+
// acosx d/dx = 1/(sqrt(x-1)*sqrt(x+1))
|
|
261
|
+
Node.addGrad(this, div(out.grad, mul(sqrt(sub(this.value, 1)), sqrt(add(this.value, 1)))));
|
|
262
|
+
};
|
|
263
|
+
return out;
|
|
264
|
+
}
|
|
265
|
+
atanh() {
|
|
266
|
+
const out = new Node(atanh(this.value), [this], OP.ATANH);
|
|
267
|
+
out.feedBackward = () => {
|
|
268
|
+
// atanx d/dx = 1/(1-x^2)
|
|
269
|
+
Node.addGrad(this, div(out.grad, sub(1, pow(this.value, 2))));
|
|
270
|
+
};
|
|
271
|
+
return out;
|
|
272
|
+
}
|
|
273
|
+
sqrt() {
|
|
274
|
+
const sqrtResult = sqrt(this.value);
|
|
275
|
+
const out = new Node(sqrtResult, [this], OP.SQRT);
|
|
276
|
+
out.feedBackward = () => {
|
|
277
|
+
// sqrt(x) d/dx = 1/(2*sqrt(x))
|
|
278
|
+
Node.addGrad(this, div(out.grad, mul(2, sqrtResult)));
|
|
279
|
+
};
|
|
280
|
+
return out;
|
|
281
|
+
}
|
|
105
282
|
exp() {
|
|
106
283
|
const expResult = exp(this.value);
|
|
107
284
|
const out = new Node(expResult, [this], OP.EXP);
|
|
@@ -119,6 +296,30 @@ class Node {
|
|
|
119
296
|
};
|
|
120
297
|
return out;
|
|
121
298
|
}
|
|
299
|
+
log2() {
|
|
300
|
+
const out = new Node(log2(this.value), [this], OP.LOG2);
|
|
301
|
+
out.feedBackward = () => {
|
|
302
|
+
// log2(x) d/dx = 1/(xln2)
|
|
303
|
+
Node.addGrad(this, div(out.grad, mul(this.value, Math.log(2))));
|
|
304
|
+
};
|
|
305
|
+
return out;
|
|
306
|
+
}
|
|
307
|
+
log10() {
|
|
308
|
+
const out = new Node(log10(this.value), [this], OP.LOG10);
|
|
309
|
+
out.feedBackward = () => {
|
|
310
|
+
// log2(x) d/dx = 1/(xln10)
|
|
311
|
+
Node.addGrad(this, div(out.grad, mul(this.value, Math.log(10))));
|
|
312
|
+
};
|
|
313
|
+
return out;
|
|
314
|
+
}
|
|
315
|
+
log1p() {
|
|
316
|
+
const out = new Node(log1p(this.value), [this], OP.LOG1P);
|
|
317
|
+
out.feedBackward = () => {
|
|
318
|
+
// ln(1+x) d/dx = 1/(1+x)
|
|
319
|
+
Node.addGrad(this, div(out.grad, add(this.value, 1)));
|
|
320
|
+
};
|
|
321
|
+
return out;
|
|
322
|
+
}
|
|
122
323
|
relu() {
|
|
123
324
|
const out = new Node(relu(this.value), [this], OP.RELU);
|
|
124
325
|
out.feedBackward = () => {
|
|
@@ -142,6 +343,22 @@ class Node {
|
|
|
142
343
|
};
|
|
143
344
|
return out;
|
|
144
345
|
}
|
|
346
|
+
t() {
|
|
347
|
+
const out = new Node(t(this.value), [this], OP.T);
|
|
348
|
+
out.feedBackward = () => {
|
|
349
|
+
Node.addGrad(this, t(out.grad));
|
|
350
|
+
};
|
|
351
|
+
return out;
|
|
352
|
+
}
|
|
353
|
+
mm(other) {
|
|
354
|
+
other = Node.forceNode(other);
|
|
355
|
+
const out = new Node(mm(this.value, other.value), [this, other], OP.MM);
|
|
356
|
+
out.feedBackward = () => {
|
|
357
|
+
Node.addGrad(this, mm(out.grad, t(other.value)));
|
|
358
|
+
Node.addGrad(other, mm(t(this.value), out.grad));
|
|
359
|
+
};
|
|
360
|
+
return out;
|
|
361
|
+
}
|
|
145
362
|
backward() {
|
|
146
363
|
// Build topological order
|
|
147
364
|
const topo = [];
|
package/dist/tensor.d.ts
CHANGED
|
@@ -3,6 +3,8 @@ export declare class TensorMath {
|
|
|
3
3
|
static create(num: number, shape: number[]): Tensor;
|
|
4
4
|
static getShape(tA: Tensor): number[];
|
|
5
5
|
static padShape(tA: Tensor, tB: Tensor): [Tensor[], Tensor[]];
|
|
6
|
+
static elementWiseAB(tA: Tensor, tB: Tensor, op: (tA: number, tB: number) => number): Tensor;
|
|
7
|
+
static elementWiseSelf(tA: Tensor, op: (tA: number) => number): Tensor;
|
|
6
8
|
static add(tA: Tensor, tB: Tensor): Tensor;
|
|
7
9
|
static sub(tA: Tensor, tB: Tensor): Tensor;
|
|
8
10
|
static mul(tA: Tensor, tB: Tensor): Tensor;
|
|
@@ -14,8 +16,25 @@ export declare class TensorMath {
|
|
|
14
16
|
static le(tA: Tensor, tB: Tensor): Tensor;
|
|
15
17
|
static eq(tA: Tensor, tB: Tensor): Tensor;
|
|
16
18
|
static neg(tA: Tensor): Tensor;
|
|
19
|
+
static abs(tA: Tensor): Tensor;
|
|
20
|
+
static sign(tA: Tensor): Tensor;
|
|
21
|
+
static sin(tA: Tensor): Tensor;
|
|
22
|
+
static cos(tA: Tensor): Tensor;
|
|
23
|
+
static tan(tA: Tensor): Tensor;
|
|
24
|
+
static asin(tA: Tensor): Tensor;
|
|
25
|
+
static acos(tA: Tensor): Tensor;
|
|
26
|
+
static atan(tA: Tensor): Tensor;
|
|
27
|
+
static sinh(tA: Tensor): Tensor;
|
|
28
|
+
static cosh(tA: Tensor): Tensor;
|
|
29
|
+
static asinh(tA: Tensor): Tensor;
|
|
30
|
+
static acosh(tA: Tensor): Tensor;
|
|
31
|
+
static atanh(tA: Tensor): Tensor;
|
|
32
|
+
static sqrt(tA: Tensor): Tensor;
|
|
17
33
|
static exp(tA: Tensor): Tensor;
|
|
18
34
|
static log(tA: Tensor): Tensor;
|
|
35
|
+
static log2(tA: Tensor): Tensor;
|
|
36
|
+
static log10(tA: Tensor): Tensor;
|
|
37
|
+
static log1p(tA: Tensor): Tensor;
|
|
19
38
|
static relu(tA: Tensor): Tensor;
|
|
20
39
|
static sigmoid(tA: Tensor): Tensor;
|
|
21
40
|
static tanh(tA: Tensor): Tensor;
|
|
@@ -23,4 +42,6 @@ export declare class TensorMath {
|
|
|
23
42
|
static squeeze(tA: Tensor, dims?: number[] | number): Tensor;
|
|
24
43
|
static sumAxis(tA: Tensor, axis: number): Tensor;
|
|
25
44
|
static sum(tA: Tensor, dims?: number[] | number, keepDims?: boolean): Tensor;
|
|
45
|
+
static t(tA: Tensor): Tensor;
|
|
46
|
+
static mm(tA: Tensor, tB: Tensor): Tensor;
|
|
26
47
|
}
|
package/dist/tensor.js
CHANGED
|
@@ -35,9 +35,9 @@ class TensorMath {
|
|
|
35
35
|
}
|
|
36
36
|
return [tA, tB];
|
|
37
37
|
}
|
|
38
|
-
static
|
|
38
|
+
static elementWiseAB(tA, tB, op) {
|
|
39
39
|
if (typeof tA === "number" && typeof tB === "number") {
|
|
40
|
-
return tA
|
|
40
|
+
return op(tA, tB);
|
|
41
41
|
}
|
|
42
42
|
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
43
43
|
const outLen = Math.max(tA.length, tB.length);
|
|
@@ -48,210 +48,116 @@ class TensorMath {
|
|
|
48
48
|
for (let i = 0; i < outLen; i++) {
|
|
49
49
|
const subA = tA[tA.length === 1 ? 0 : i];
|
|
50
50
|
const subB = tB[tB.length === 1 ? 0 : i];
|
|
51
|
-
result.push(TensorMath.
|
|
51
|
+
result.push(TensorMath.elementWiseAB(subA, subB, op));
|
|
52
52
|
}
|
|
53
53
|
return result;
|
|
54
54
|
}
|
|
55
|
-
static
|
|
56
|
-
if (typeof tA === "number"
|
|
57
|
-
return tA
|
|
58
|
-
}
|
|
59
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
60
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
61
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
62
|
-
throw new Error("Inputs are incompatible tensors");
|
|
55
|
+
static elementWiseSelf(tA, op) {
|
|
56
|
+
if (typeof tA === "number") {
|
|
57
|
+
return op(tA);
|
|
63
58
|
}
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
67
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
68
|
-
result.push(TensorMath.sub(subA, subB));
|
|
59
|
+
else {
|
|
60
|
+
return tA.map(subA => TensorMath.elementWiseSelf(subA, op));
|
|
69
61
|
}
|
|
70
|
-
|
|
62
|
+
}
|
|
63
|
+
static add(tA, tB) {
|
|
64
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA + tB);
|
|
65
|
+
}
|
|
66
|
+
static sub(tA, tB) {
|
|
67
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA - tB);
|
|
71
68
|
}
|
|
72
69
|
static mul(tA, tB) {
|
|
73
|
-
|
|
74
|
-
return tA * tB;
|
|
75
|
-
}
|
|
76
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
77
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
78
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
79
|
-
throw new Error("Inputs are incompatible tensors");
|
|
80
|
-
}
|
|
81
|
-
const result = [];
|
|
82
|
-
for (let i = 0; i < outLen; i++) {
|
|
83
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
84
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
85
|
-
result.push(TensorMath.mul(subA, subB));
|
|
86
|
-
}
|
|
87
|
-
return result;
|
|
70
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA * tB);
|
|
88
71
|
}
|
|
89
72
|
static pow(tA, tB) {
|
|
90
|
-
|
|
91
|
-
return tA ** tB;
|
|
92
|
-
}
|
|
93
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
94
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
95
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
96
|
-
throw new Error("Inputs are incompatible tensors");
|
|
97
|
-
}
|
|
98
|
-
const result = [];
|
|
99
|
-
for (let i = 0; i < outLen; i++) {
|
|
100
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
101
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
102
|
-
result.push(TensorMath.pow(subA, subB));
|
|
103
|
-
}
|
|
104
|
-
return result;
|
|
73
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA ** tB);
|
|
105
74
|
}
|
|
106
75
|
static div(tA, tB) {
|
|
107
|
-
|
|
108
|
-
return tA / tB;
|
|
109
|
-
}
|
|
110
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
111
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
112
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
113
|
-
throw new Error("Inputs are incompatible tensors");
|
|
114
|
-
}
|
|
115
|
-
const result = [];
|
|
116
|
-
for (let i = 0; i < outLen; i++) {
|
|
117
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
118
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
119
|
-
result.push(TensorMath.div(subA, subB));
|
|
120
|
-
}
|
|
121
|
-
return result;
|
|
76
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA / tB);
|
|
122
77
|
}
|
|
123
78
|
static gt(tA, tB) {
|
|
124
|
-
|
|
125
|
-
return tA > tB ? 1 : 0;
|
|
126
|
-
}
|
|
127
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
128
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
129
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
130
|
-
throw new Error("Inputs are incompatible tensors");
|
|
131
|
-
}
|
|
132
|
-
const result = [];
|
|
133
|
-
for (let i = 0; i < outLen; i++) {
|
|
134
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
135
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
136
|
-
result.push(TensorMath.gt(subA, subB));
|
|
137
|
-
}
|
|
138
|
-
return result;
|
|
79
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA > tB ? 1 : 0);
|
|
139
80
|
}
|
|
140
81
|
static lt(tA, tB) {
|
|
141
|
-
|
|
142
|
-
return tA < tB ? 1 : 0;
|
|
143
|
-
}
|
|
144
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
145
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
146
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
147
|
-
throw new Error("Inputs are incompatible tensors");
|
|
148
|
-
}
|
|
149
|
-
const result = [];
|
|
150
|
-
for (let i = 0; i < outLen; i++) {
|
|
151
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
152
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
153
|
-
result.push(TensorMath.lt(subA, subB));
|
|
154
|
-
}
|
|
155
|
-
return result;
|
|
82
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA < tB ? 1 : 0);
|
|
156
83
|
}
|
|
157
84
|
static ge(tA, tB) {
|
|
158
|
-
|
|
159
|
-
return tA >= tB ? 1 : 0;
|
|
160
|
-
}
|
|
161
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
162
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
163
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
164
|
-
throw new Error("Inputs are incompatible tensors");
|
|
165
|
-
}
|
|
166
|
-
const result = [];
|
|
167
|
-
for (let i = 0; i < outLen; i++) {
|
|
168
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
169
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
170
|
-
result.push(TensorMath.ge(subA, subB));
|
|
171
|
-
}
|
|
172
|
-
return result;
|
|
85
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA >= tB ? 1 : 0);
|
|
173
86
|
}
|
|
174
87
|
static le(tA, tB) {
|
|
175
|
-
|
|
176
|
-
return tA <= tB ? 1 : 0;
|
|
177
|
-
}
|
|
178
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
179
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
180
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
181
|
-
throw new Error("Inputs are incompatible tensors");
|
|
182
|
-
}
|
|
183
|
-
const result = [];
|
|
184
|
-
for (let i = 0; i < outLen; i++) {
|
|
185
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
186
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
187
|
-
result.push(TensorMath.le(subA, subB));
|
|
188
|
-
}
|
|
189
|
-
return result;
|
|
88
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA <= tB ? 1 : 0);
|
|
190
89
|
}
|
|
191
90
|
static eq(tA, tB) {
|
|
192
|
-
|
|
193
|
-
return tA === tB ? 1 : 0;
|
|
194
|
-
}
|
|
195
|
-
[tA, tB] = TensorMath.padShape(tA, tB);
|
|
196
|
-
const outLen = Math.max(tA.length, tB.length);
|
|
197
|
-
if (tA.length !== tB.length && tA.length !== 1 && tB.length !== 1) {
|
|
198
|
-
throw new Error("Inputs are incompatible tensors");
|
|
199
|
-
}
|
|
200
|
-
const result = [];
|
|
201
|
-
for (let i = 0; i < outLen; i++) {
|
|
202
|
-
const subA = tA[tA.length === 1 ? 0 : i];
|
|
203
|
-
const subB = tB[tB.length === 1 ? 0 : i];
|
|
204
|
-
result.push(TensorMath.eq(subA, subB));
|
|
205
|
-
}
|
|
206
|
-
return result;
|
|
91
|
+
return TensorMath.elementWiseAB(tA, tB, (tA, tB) => tA === tB ? 1 : 0);
|
|
207
92
|
}
|
|
208
93
|
static neg(tA) {
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
94
|
+
return TensorMath.elementWiseSelf(tA, (tA) => -tA);
|
|
95
|
+
}
|
|
96
|
+
static abs(tA) {
|
|
97
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.abs(tA));
|
|
98
|
+
}
|
|
99
|
+
static sign(tA) {
|
|
100
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.sign(tA));
|
|
101
|
+
}
|
|
102
|
+
static sin(tA) {
|
|
103
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.sin(tA));
|
|
104
|
+
}
|
|
105
|
+
static cos(tA) {
|
|
106
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.cos(tA));
|
|
107
|
+
}
|
|
108
|
+
static tan(tA) {
|
|
109
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.tan(tA));
|
|
110
|
+
}
|
|
111
|
+
static asin(tA) {
|
|
112
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.asin(tA));
|
|
113
|
+
}
|
|
114
|
+
static acos(tA) {
|
|
115
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.acos(tA));
|
|
116
|
+
}
|
|
117
|
+
static atan(tA) {
|
|
118
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.atan(tA));
|
|
119
|
+
}
|
|
120
|
+
static sinh(tA) {
|
|
121
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.sinh(tA));
|
|
122
|
+
}
|
|
123
|
+
static cosh(tA) {
|
|
124
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.cosh(tA));
|
|
125
|
+
}
|
|
126
|
+
static asinh(tA) {
|
|
127
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.asinh(tA));
|
|
128
|
+
}
|
|
129
|
+
static acosh(tA) {
|
|
130
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.acosh(tA));
|
|
131
|
+
}
|
|
132
|
+
static atanh(tA) {
|
|
133
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.atanh(tA));
|
|
134
|
+
}
|
|
135
|
+
static sqrt(tA) {
|
|
136
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.sqrt(tA));
|
|
215
137
|
}
|
|
216
138
|
static exp(tA) {
|
|
217
|
-
|
|
218
|
-
return Math.exp(tA);
|
|
219
|
-
}
|
|
220
|
-
else {
|
|
221
|
-
return tA.map(subA => TensorMath.exp(subA));
|
|
222
|
-
}
|
|
139
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.exp(tA));
|
|
223
140
|
}
|
|
224
141
|
static log(tA) {
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
142
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.log(tA));
|
|
143
|
+
}
|
|
144
|
+
static log2(tA) {
|
|
145
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.log2(tA));
|
|
146
|
+
}
|
|
147
|
+
static log10(tA) {
|
|
148
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.log10(tA));
|
|
149
|
+
}
|
|
150
|
+
static log1p(tA) {
|
|
151
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.log(tA));
|
|
231
152
|
}
|
|
232
153
|
static relu(tA) {
|
|
233
|
-
|
|
234
|
-
return Math.max(tA, 0);
|
|
235
|
-
}
|
|
236
|
-
else {
|
|
237
|
-
return tA.map(subA => TensorMath.relu(subA));
|
|
238
|
-
}
|
|
154
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.max(tA, 0));
|
|
239
155
|
}
|
|
240
156
|
static sigmoid(tA) {
|
|
241
|
-
|
|
242
|
-
return 1 / (1 + Math.exp(-tA));
|
|
243
|
-
}
|
|
244
|
-
else {
|
|
245
|
-
return tA.map(subA => TensorMath.sigmoid(subA));
|
|
246
|
-
}
|
|
157
|
+
return TensorMath.elementWiseSelf(tA, (tA) => 1 / (1 + Math.exp(-tA)));
|
|
247
158
|
}
|
|
248
159
|
static tanh(tA) {
|
|
249
|
-
|
|
250
|
-
return Math.tanh(tA);
|
|
251
|
-
}
|
|
252
|
-
else {
|
|
253
|
-
return tA.map(subA => TensorMath.tanh(subA));
|
|
254
|
-
}
|
|
160
|
+
return TensorMath.elementWiseSelf(tA, (tA) => Math.tanh(tA));
|
|
255
161
|
}
|
|
256
162
|
static squeezeAxis(tA, axis) {
|
|
257
163
|
if (typeof tA === "number")
|
|
@@ -315,5 +221,43 @@ class TensorMath {
|
|
|
315
221
|
}
|
|
316
222
|
return keepDims ? out : TensorMath.squeeze(out, dims);
|
|
317
223
|
}
|
|
224
|
+
static t(tA) {
|
|
225
|
+
const shapeA = TensorMath.getShape(tA);
|
|
226
|
+
if (shapeA.length !== 2)
|
|
227
|
+
throw new Error("Input is not a matrix");
|
|
228
|
+
const matA = tA;
|
|
229
|
+
const matARows = matA.length;
|
|
230
|
+
const matACols = matA[0].length;
|
|
231
|
+
const matATranspose = Array.from({ length: matACols }, () => new Array(matARows).fill(0));
|
|
232
|
+
for (let i = 0; i < matARows; i++) {
|
|
233
|
+
for (let j = 0; j < matACols; j++) {
|
|
234
|
+
matATranspose[j][i] = matA[i][j];
|
|
235
|
+
}
|
|
236
|
+
}
|
|
237
|
+
return matATranspose;
|
|
238
|
+
}
|
|
239
|
+
static mm(tA, tB) {
|
|
240
|
+
const shapeA = TensorMath.getShape(tA);
|
|
241
|
+
const shapeB = TensorMath.getShape(tB);
|
|
242
|
+
if (shapeA.length !== 2 || shapeB.length !== 2)
|
|
243
|
+
throw new Error("Inputs are not matrices");
|
|
244
|
+
const matA = tA;
|
|
245
|
+
const matB = tB;
|
|
246
|
+
const matARows = matA.length;
|
|
247
|
+
const matACols = matA[0].length;
|
|
248
|
+
const matBRows = matB.length;
|
|
249
|
+
const matBCols = matB[0].length;
|
|
250
|
+
if (matACols !== matBRows)
|
|
251
|
+
throw new Error("Invalid matrices shape for multiplication");
|
|
252
|
+
const matC = Array.from({ length: matARows }, () => new Array(matBCols).fill(0));
|
|
253
|
+
for (let i = 0; i < matARows; i++) {
|
|
254
|
+
for (let j = 0; j < matBCols; j++) {
|
|
255
|
+
for (let k = 0; k < matACols; k++) {
|
|
256
|
+
matC[i][j] += matA[i][k] * matB[k][j];
|
|
257
|
+
}
|
|
258
|
+
}
|
|
259
|
+
}
|
|
260
|
+
return matC;
|
|
261
|
+
}
|
|
318
262
|
}
|
|
319
263
|
exports.TensorMath = TensorMath;
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "catniff",
|
|
3
|
-
"version": "0.1.
|
|
3
|
+
"version": "0.1.6",
|
|
4
4
|
"description": "A cute autograd engine for Javascript",
|
|
5
5
|
"main": "index.js",
|
|
6
6
|
"scripts": {
|
|
@@ -14,12 +14,18 @@
|
|
|
14
14
|
"cats",
|
|
15
15
|
"catniff",
|
|
16
16
|
"autograd",
|
|
17
|
+
"autodiff",
|
|
17
18
|
"ml",
|
|
18
19
|
"dl",
|
|
19
20
|
"ai",
|
|
20
21
|
"maths",
|
|
21
22
|
"gradient",
|
|
22
|
-
"tensors"
|
|
23
|
+
"tensors",
|
|
24
|
+
"library",
|
|
25
|
+
"framework",
|
|
26
|
+
"neural-network",
|
|
27
|
+
"machine-learning",
|
|
28
|
+
"deep-learning"
|
|
23
29
|
],
|
|
24
30
|
"author": "nguyenphuminh",
|
|
25
31
|
"license": "GPL-3.0",
|