catniff 0.1.3 → 0.1.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -0
- package/dist/autograd.d.ts +2 -1
- package/dist/autograd.js +41 -22
- package/dist/tensor.d.ts +4 -0
- package/dist/tensor.js +62 -0
- package/package.json +1 -1
package/README.md
CHANGED
|
@@ -69,6 +69,7 @@ All available APIs are in `./src/autograd.ts`.
|
|
|
69
69
|
|
|
70
70
|
I'm mostly just learning and playing with this currently, so there are no concrete plans yet, but here are what I currently have in mind:
|
|
71
71
|
|
|
72
|
+
* Fix whatever is the problem right now (there are a lot of problems right now lol).
|
|
72
73
|
* GPU acceleration.
|
|
73
74
|
* Some general neural net APIs.
|
|
74
75
|
|
package/dist/autograd.d.ts
CHANGED
package/dist/autograd.js
CHANGED
|
@@ -34,35 +34,35 @@ class Node {
|
|
|
34
34
|
this.feedBackward = () => { };
|
|
35
35
|
}
|
|
36
36
|
add(other) {
|
|
37
|
-
other =
|
|
37
|
+
other = Node.forceNode(other);
|
|
38
38
|
const out = new Node(add(this.value, other.value), [this, other], OP.ADD);
|
|
39
39
|
out.feedBackward = () => {
|
|
40
40
|
// x + y d/dx = 1, note that we apply the chain rule continuously so out.grad is multiplied into our derivative
|
|
41
|
-
|
|
41
|
+
Node.addGrad(this, out.grad);
|
|
42
42
|
// x + y d/dy = 1
|
|
43
|
-
|
|
43
|
+
Node.addGrad(other, out.grad);
|
|
44
44
|
};
|
|
45
45
|
return out;
|
|
46
46
|
}
|
|
47
47
|
sub(other) {
|
|
48
|
-
other =
|
|
48
|
+
other = Node.forceNode(other);
|
|
49
49
|
const out = new Node(sub(this.value, other.value), [this, other], OP.SUB);
|
|
50
50
|
out.feedBackward = () => {
|
|
51
51
|
// x - y d/dx = 1
|
|
52
|
-
|
|
52
|
+
Node.addGrad(this, out.grad);
|
|
53
53
|
// x - y d/dy = -1
|
|
54
|
-
|
|
54
|
+
Node.addGrad(other, neg(out.grad));
|
|
55
55
|
};
|
|
56
56
|
return out;
|
|
57
57
|
}
|
|
58
58
|
mul(other) {
|
|
59
|
-
other =
|
|
59
|
+
other = Node.forceNode(other);
|
|
60
60
|
const out = new Node(mul(this.value, other.value), [this, other], OP.MUL);
|
|
61
61
|
out.feedBackward = () => {
|
|
62
62
|
// x * y d/dx = y
|
|
63
|
-
|
|
63
|
+
Node.addGrad(this, mul(out.grad, other.value));
|
|
64
64
|
// x + y d/dy = x
|
|
65
|
-
|
|
65
|
+
Node.addGrad(other, mul(out.grad, this.value));
|
|
66
66
|
};
|
|
67
67
|
return out;
|
|
68
68
|
}
|
|
@@ -71,26 +71,26 @@ class Node {
|
|
|
71
71
|
const out = new Node(pow(this.value, other.value), [this, other], OP.POW);
|
|
72
72
|
out.feedBackward = () => {
|
|
73
73
|
// x^a d/dx = a*x^(a-1)
|
|
74
|
-
|
|
74
|
+
Node.addGrad(this, mul(out.grad, mul(other.value, pow(this.value, sub(other.value, 1)))));
|
|
75
75
|
// x^a d/da = x^a*lnx
|
|
76
|
-
|
|
76
|
+
Node.addGrad(other, mul(out.grad, mul(pow(this.value, other.value), log(this.value))));
|
|
77
77
|
};
|
|
78
78
|
return out;
|
|
79
79
|
}
|
|
80
80
|
const out = new Node(pow(this.value, other), [this], OP.POW);
|
|
81
81
|
out.feedBackward = () => {
|
|
82
|
-
|
|
82
|
+
Node.addGrad(this, mul(out.grad, mul(other, pow(this.value, sub(other, 1)))));
|
|
83
83
|
};
|
|
84
84
|
return out;
|
|
85
85
|
}
|
|
86
86
|
div(other) {
|
|
87
|
-
other =
|
|
87
|
+
other = Node.forceNode(other);
|
|
88
88
|
const out = new Node(div(this.value, other.value), [this, other], OP.DIV);
|
|
89
89
|
out.feedBackward = () => {
|
|
90
90
|
// x/y d/dx = 1/y
|
|
91
|
-
|
|
91
|
+
Node.addGrad(this, div(out.grad, other.value));
|
|
92
92
|
// x/y d/dy = -x/y^2
|
|
93
|
-
|
|
93
|
+
Node.addGrad(other, mul(out.grad, div(neg(this.value), pow(other.value, 2))));
|
|
94
94
|
};
|
|
95
95
|
return out;
|
|
96
96
|
}
|
|
@@ -98,7 +98,7 @@ class Node {
|
|
|
98
98
|
const out = new Node(neg(this.value), [this], OP.NEG);
|
|
99
99
|
out.feedBackward = () => {
|
|
100
100
|
// -x d/dx = -1
|
|
101
|
-
|
|
101
|
+
Node.addGrad(this, neg(out.grad));
|
|
102
102
|
};
|
|
103
103
|
return out;
|
|
104
104
|
}
|
|
@@ -107,7 +107,7 @@ class Node {
|
|
|
107
107
|
const out = new Node(expResult, [this], OP.EXP);
|
|
108
108
|
out.feedBackward = () => {
|
|
109
109
|
// e^x d/dx = e^x
|
|
110
|
-
|
|
110
|
+
Node.addGrad(this, mul(out.grad, expResult));
|
|
111
111
|
};
|
|
112
112
|
return out;
|
|
113
113
|
}
|
|
@@ -115,14 +115,14 @@ class Node {
|
|
|
115
115
|
const out = new Node(log(this.value), [this], OP.LOG);
|
|
116
116
|
out.feedBackward = () => {
|
|
117
117
|
// lnx d/dx = 1/x
|
|
118
|
-
|
|
118
|
+
Node.addGrad(this, div(out.grad, this.value));
|
|
119
119
|
};
|
|
120
120
|
return out;
|
|
121
121
|
}
|
|
122
122
|
relu() {
|
|
123
123
|
const out = new Node(relu(this.value), [this], OP.RELU);
|
|
124
124
|
out.feedBackward = () => {
|
|
125
|
-
|
|
125
|
+
Node.addGrad(this, mul(out.grad, ge(this.value, 0)));
|
|
126
126
|
};
|
|
127
127
|
return out;
|
|
128
128
|
}
|
|
@@ -130,7 +130,7 @@ class Node {
|
|
|
130
130
|
const sigmoidResult = sigmoid(this.value);
|
|
131
131
|
const out = new Node(sigmoidResult, [this], OP.SIGMOID);
|
|
132
132
|
out.feedBackward = () => {
|
|
133
|
-
|
|
133
|
+
Node.addGrad(this, mul(mul(out.grad, sigmoidResult), sub(1, sigmoidResult)));
|
|
134
134
|
};
|
|
135
135
|
return out;
|
|
136
136
|
}
|
|
@@ -138,7 +138,7 @@ class Node {
|
|
|
138
138
|
const tanhResult = tanh(this.value);
|
|
139
139
|
const out = new Node(tanhResult, [this], OP.TANH);
|
|
140
140
|
out.feedBackward = () => {
|
|
141
|
-
|
|
141
|
+
Node.addGrad(this, mul(out.grad, sub(1, mul(tanhResult, tanhResult))));
|
|
142
142
|
};
|
|
143
143
|
return out;
|
|
144
144
|
}
|
|
@@ -162,10 +162,29 @@ class Node {
|
|
|
162
162
|
topo[index].feedBackward();
|
|
163
163
|
}
|
|
164
164
|
}
|
|
165
|
-
forceNode(value) {
|
|
165
|
+
static forceNode(value) {
|
|
166
166
|
if (value instanceof Node)
|
|
167
167
|
return value;
|
|
168
168
|
return new Node(value);
|
|
169
169
|
}
|
|
170
|
+
static addGrad(node, accumGrad) {
|
|
171
|
+
const axesToSqueeze = [];
|
|
172
|
+
const axesToReduce = [];
|
|
173
|
+
const shape = node.shape;
|
|
174
|
+
const gradShape = tensor_1.TensorMath.getShape(accumGrad);
|
|
175
|
+
const paddedDims = gradShape.length - shape.length;
|
|
176
|
+
for (let i = 0; i < paddedDims; i++) {
|
|
177
|
+
axesToReduce.push(i);
|
|
178
|
+
axesToSqueeze.push(i);
|
|
179
|
+
}
|
|
180
|
+
for (let i = 0; i < shape.length; i++) {
|
|
181
|
+
if (shape[i] === 1 && gradShape[i + paddedDims] > 1) {
|
|
182
|
+
axesToReduce.push(i + paddedDims);
|
|
183
|
+
}
|
|
184
|
+
}
|
|
185
|
+
const reducedGrad = tensor_1.TensorMath.sum(accumGrad, axesToReduce, true);
|
|
186
|
+
const squeezedGrad = tensor_1.TensorMath.squeeze(reducedGrad, axesToSqueeze);
|
|
187
|
+
node.grad = add(squeezedGrad, node.grad);
|
|
188
|
+
}
|
|
170
189
|
}
|
|
171
190
|
exports.Node = Node;
|
package/dist/tensor.d.ts
CHANGED
|
@@ -19,4 +19,8 @@ export declare class TensorMath {
|
|
|
19
19
|
static relu(tA: Tensor): Tensor;
|
|
20
20
|
static sigmoid(tA: Tensor): Tensor;
|
|
21
21
|
static tanh(tA: Tensor): Tensor;
|
|
22
|
+
static squeezeAxis(tA: Tensor, axis: number): Tensor;
|
|
23
|
+
static squeeze(tA: Tensor, dims?: number[] | number): Tensor;
|
|
24
|
+
static sumAxis(tA: Tensor, axis: number): Tensor;
|
|
25
|
+
static sum(tA: Tensor, dims?: number[] | number, keepDims?: boolean): Tensor;
|
|
22
26
|
}
|
package/dist/tensor.js
CHANGED
|
@@ -253,5 +253,67 @@ class TensorMath {
|
|
|
253
253
|
return tA.map(subA => TensorMath.tanh(subA));
|
|
254
254
|
}
|
|
255
255
|
}
|
|
256
|
+
static squeezeAxis(tA, axis) {
|
|
257
|
+
if (typeof tA === "number")
|
|
258
|
+
return tA;
|
|
259
|
+
if (axis === 0) {
|
|
260
|
+
return tA[0];
|
|
261
|
+
}
|
|
262
|
+
else {
|
|
263
|
+
return tA.map(slice => TensorMath.squeezeAxis(slice, axis - 1));
|
|
264
|
+
}
|
|
265
|
+
}
|
|
266
|
+
static squeeze(tA, dims) {
|
|
267
|
+
if (typeof tA === "number")
|
|
268
|
+
return tA;
|
|
269
|
+
if (typeof dims === "number") {
|
|
270
|
+
dims = [dims];
|
|
271
|
+
}
|
|
272
|
+
if (typeof dims === "undefined") {
|
|
273
|
+
const shape = TensorMath.getShape(tA);
|
|
274
|
+
dims = [];
|
|
275
|
+
for (let index = 0; index < shape.length; index++) {
|
|
276
|
+
if (shape[index] === 1) {
|
|
277
|
+
dims.push(index);
|
|
278
|
+
}
|
|
279
|
+
}
|
|
280
|
+
}
|
|
281
|
+
dims = [...dims].sort((a, b) => b - a);
|
|
282
|
+
let out = tA;
|
|
283
|
+
for (const axis of dims) {
|
|
284
|
+
out = TensorMath.squeezeAxis(out, axis);
|
|
285
|
+
}
|
|
286
|
+
return out;
|
|
287
|
+
}
|
|
288
|
+
static sumAxis(tA, axis) {
|
|
289
|
+
if (typeof tA === "number")
|
|
290
|
+
return tA;
|
|
291
|
+
if (axis === 0) {
|
|
292
|
+
let result = tA[0];
|
|
293
|
+
for (let i = 1; i < tA.length; i++) {
|
|
294
|
+
result = TensorMath.add(result, tA[i]);
|
|
295
|
+
}
|
|
296
|
+
return [result];
|
|
297
|
+
}
|
|
298
|
+
else {
|
|
299
|
+
return tA.map(slice => TensorMath.sumAxis(slice, axis - 1));
|
|
300
|
+
}
|
|
301
|
+
}
|
|
302
|
+
static sum(tA, dims, keepDims = false) {
|
|
303
|
+
if (typeof tA === "number")
|
|
304
|
+
return tA;
|
|
305
|
+
if (typeof dims === "number") {
|
|
306
|
+
dims = [dims];
|
|
307
|
+
}
|
|
308
|
+
if (typeof dims === "undefined") {
|
|
309
|
+
dims = Array.from({ length: TensorMath.getShape(tA).length }, (_, index) => index);
|
|
310
|
+
}
|
|
311
|
+
dims = [...dims].sort((a, b) => b - a);
|
|
312
|
+
let out = tA;
|
|
313
|
+
for (const axis of dims) {
|
|
314
|
+
out = TensorMath.sumAxis(out, axis);
|
|
315
|
+
}
|
|
316
|
+
return keepDims ? out : TensorMath.squeeze(out, dims);
|
|
317
|
+
}
|
|
256
318
|
}
|
|
257
319
|
exports.TensorMath = TensorMath;
|