careerly-data-mcp 3.2.0 → 3.2.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -52,24 +52,25 @@ npx careerly-data-mcp@latest setup
52
52
  ```
53
53
  ┌─────────────────────────────────────────────────────────────────┐
54
54
  │ Claude Code │
55
- "SEO와 트래픽 상관관계 분석해줘"
55
+ "게시물 참여율 분석해줘"
56
56
  │ Tool Description 기반 자동 선택 │
57
57
  └────────────────────────────┬────────────────────────────────────┘
58
58
  │ MCP Protocol
59
59
 
60
60
  ┌─────────────────────────────────────────────────────────────────┐
61
- Careerly Data MCP Server (v3.1)
61
+ career·ly DATA MCP Server (v3.2)
62
62
  │ │
63
63
  │ ┌────────────────────────────────────────────────────────────┐ │
64
- │ │ 🎯 Orchestration Layer (v3.1) │ │
64
+ │ │ 🎯 Orchestration Layer (v3.2 커리어리 특화) │ │
65
65
  │ │ ┌──────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ │
66
66
  │ │ │ smart_query │ │platform_analysis│ │unified_analysis │ │ │
67
- │ │ │ 자연어 분석 │ │ 웹+앱 웹뷰 │ │ 통합 분석 │ │ │
67
+ │ │ │ 커리어리 특화 │ │ 웹+앱 웹뷰 │ │ 5가지 분석유형 │ │ │
68
+ │ │ │ 자동 인사이트│ │ 트래픽 구분 │ │ 자동 퍼널/참여 │ │ │
68
69
  │ │ └──────┬───────┘ └────────┬────────┘ └────────┬────────┘ │ │
69
70
  │ └─────────┼──────────────────┼───────────────────┼───────────┘ │
70
71
  │ │ │ │ │
71
72
  │ ┌─────────┴──────────────────┴───────────────────┴───────────┐ │
72
- │ │ 📊 Data Sources (14 tools) │ │
73
+ │ │ 📊 Data Sources (14 tools) │ │
73
74
  │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │ │
74
75
  │ │ │ GA4 Tools │ │ BQ Tools │ │ GSC Tools │ │ │
75
76
  │ │ │ (3 tools) │ │ (8 tools) │ │ (3 tools) │ │ │
@@ -77,8 +78,15 @@ npx careerly-data-mcp@latest setup
77
78
  │ └─────────┼────────────────┼────────────────┼────────────────┘ │
78
79
  │ │ │ │ │
79
80
  │ ┌─────────┴────────────────┴────────────────┴────────────────┐ │
80
- │ │ 💡 Insight Engine │ │
81
- │ │ 이상치 탐지 | 가설 생성 | 교차 분석 │ │
81
+ │ │ 💡 Insight Engine (커리어리 특화) │ │
82
+ │ │ 게시물 참여율 | AI검색 완료율 | 퍼널 이탈 | 플랫폼 분석 │ │
83
+ │ └────────────────────────────────────────────────────────────┘ │
84
+ │ │
85
+ │ ┌────────────────────────────────────────────────────────────┐ │
86
+ │ │ 📋 커리어리 이벤트 정의 │ │
87
+ │ │ post_impression → post_detail_view → post_create_start │ │
88
+ │ │ question_impression → question_detail_view │ │
89
+ │ │ ai_search_start → ai_search_complete → ai_followup_click │ │
82
90
  │ └────────────────────────────────────────────────────────────┘ │
83
91
  └─────────────────────────────────────────────────────────────────┘
84
92
  ```
@@ -87,13 +95,13 @@ npx careerly-data-mcp@latest setup
87
95
 
88
96
  ## 기능 (17개 Tools)
89
97
 
90
- ### 🎯 Orchestration Layer (3개) - NEW in v3.1!
98
+ ### 🎯 Orchestration Layer (3개) - v3.2 커리어리 특화!
91
99
 
92
100
  | Tool | 설명 | 사용 예시 |
93
101
  |------|------|----------|
94
- | `smart_query` | 자연어 자동 소스 선택 교차 인사이트 | "SEO와 트래픽 상관관계 분석해줘" |
95
- | `platform_analysis` | 웹 브라우저 vs 앱 웹뷰 분석 | "앱 웹뷰 사용자 분석해줘" |
96
- | `unified_analysis` | 사전정의 통합 분석 (5가지 유형) | "comprehensive 분석해줘" |
102
+ | `smart_query` | 커리어리 특화 자연어 분석 + 자동 인사이트 | "게시물 참여율 분석해줘" |
103
+ | `platform_analysis` | 웹 브라우저 vs 앱 웹뷰 트래픽 구분 | "앱 웹뷰 사용자 분석해줘" |
104
+ | `unified_analysis` | 5가지 분석유형 (performance/seo/conversion/traffic/comprehensive) | "conversion 분석해줘" |
97
105
 
98
106
  ### GA4 Data API (3개)
99
107
 
@@ -149,25 +157,28 @@ npx careerly-data-mcp@latest setup
149
157
  "전환율이 가장 높은 채널 찾아줘"
150
158
  ```
151
159
 
152
- ### 🎯 스마트 쿼리 (v3.1) - 자연어로 통합 분석
160
+ ### 🎯 커리어리 특화 분석 (v3.2) - 자동 인사이트
153
161
  ```
154
- "SEO와 트래픽 상관관계 분석해줘"
155
- "지난 30일 채널별 전환율 보여줘"
156
- "검색 순위와 세션 관계 분석해줘"
162
+ "게시물 참여율 분석해줘"
163
+ "AI 검색 완료율 보여줘"
164
+ "질문 콘텐츠 전환율 분석해줘"
165
+ "post_impression에서 post_detail_view 전환율"
157
166
  ```
158
167
 
159
- ### 📱 플랫폼 분석 (v3.1) - 웹+앱 웹뷰
168
+ ### 📱 플랫폼 분석 - 웹+앱 웹뷰
160
169
  ```
161
170
  "앱 웹뷰 트래픽 분석해줘"
162
171
  "iOS와 Android 사용자 비교해줘"
163
172
  "플랫폼별 참여도 분석해줘"
164
173
  ```
165
174
 
166
- ### 통합 분석
175
+ ### 📊 통합 분석 (5가지 유형)
167
176
  ```
168
- "이번 마케팅 성과 종합 분석해줘"
169
- "트래픽 하락 원인을 데이터 기반으로 분석해줘"
170
- "comprehensive 분석해줘"
177
+ "performance 분석해줘" # 일별 추이 + 참여율
178
+ "conversion 분석해줘" # 5단계 퍼널 분석
179
+ "traffic 분석해줘" # 플랫폼별 트래픽
180
+ "seo 분석해줘" # 오가닉 트래픽 품질
181
+ "comprehensive 분석해줘" # 전체 종합
171
182
  ```
172
183
 
173
184
  ### 실제 결과 예시 (퍼널 분석)
@@ -190,25 +201,35 @@ page_view → post_create_start 전환율: 2.3% | 1,215 → 28명
190
201
 
191
202
  ---
192
203
 
193
- ## v3.1.0 주요 업데이트
204
+ ## v3.2.0 주요 업데이트
194
205
 
195
- ### 🎯 Smart Query Orchestrator
206
+ ### 🎯 커리어리 특화 Smart Query
196
207
 
197
- - **자연어 분석**: "SEO와 트래픽 상관관계 분석해줘"처럼 질문
198
- - **의도 자동 감지**: SEO, 트래픽, 전환, 참여도, 플랫폼 9가지 의도
199
- - **소스 자동 선택**: 질문에 맞는 GA4/BigQuery/GSC 자동 조합
208
+ - **커리어리 이벤트 인식**: `post_impression`, `question_detail_view`, `ai_search_start` 등 자동 감지
209
+ - **자동 인사이트 생성**: 게시물 참여율, AI검색 완료율, 퍼널 전환율 자동 계산
210
+ - **의도 자동 감지**: SEO, 트래픽, 전환, 참여도, 플랫폼 등 9가지 의도 + 커리어리 키워드
200
211
  - **교차 인사이트**: 여러 소스 데이터를 통합 분석
201
212
 
213
+ ### 📊 Unified Analysis 5가지 유형
214
+
215
+ | 유형 | 분석 내용 |
216
+ |------|----------|
217
+ | `performance` | 일별 사용자 추이, 세션당 참여율 |
218
+ | `conversion` | 5단계 퍼널 (session→impression→detail→interaction→create) |
219
+ | `traffic` | 앱 웹뷰 vs 모바일 웹 vs 데스크톱 구분 |
220
+ | `seo` | 오가닉 랜딩페이지 + 검색 유입 참여도 |
221
+ | `comprehensive` | 핵심 이벤트 12개 종합 분석 |
222
+
202
223
  ### 📱 Platform Analysis
203
224
 
204
225
  - **웹뷰 트래픽 감지**: 모바일 (direct)/(none) 패턴으로 앱 웹뷰 구분
205
226
  - **iOS vs Android 비교**: 플랫폼별 사용자 행동 분석
206
227
  - **참여도 비교**: 웹 브라우저 vs 앱 웹뷰 참여도 비교
207
228
 
208
- ### Tool Description 강화
229
+ ### 🎨 CLI 브랜딩
209
230
 
210
- - **자동 도구 선택**: Claude가 상황에 맞는 도구를 자동 선택하도록 가이드
211
- - **도구 연계**: 관련 도구 추천으로 나은 분석 유도
231
+ - **career·ly 로고**: 코랄색 도트 (#E8756C) 반영
232
+ - **전문적인 UI**: 배너, 상태 표시, 진행률 개선
212
233
 
213
234
  ---
214
235
 
@@ -356,7 +377,19 @@ npx careerly-data-mcp setup
356
377
 
357
378
  ## 버전 히스토리
358
379
 
359
- ### v3.1.0 (Current)
380
+ ### v3.2.0 (Current)
381
+ - **커리어리 특화 분석** - 게시물/질문/AI검색 이벤트 자동 인식
382
+ - **smart_query 개선** - 커리어리 이벤트 기반 자동 인사이트 생성
383
+ - **unified_analysis 개선** - 5가지 분석유형별 최적화 쿼리
384
+ - `performance`: 일별 사용자 추이 + 참여율
385
+ - `conversion`: 5단계 퍼널 + 이탈률 분석
386
+ - `traffic`: 앱 웹뷰 vs 웹 브라우저 구분
387
+ - `seo`: 오가닉 랜딩페이지 + 참여도
388
+ - `comprehensive`: 핵심 이벤트 종합 분석
389
+ - **CLI 브랜딩** - career·ly 로고 스타일 반영
390
+ - **Insight Engine** - 게시물 참여율, AI검색 완료율, 퍼널 이탈 자동 계산
391
+
392
+ ### v3.1.0
360
393
  - **Smart Query Orchestrator** - 자연어 → 자동 소스 선택 → 교차 인사이트
361
394
  - **Platform Analysis** - 웹+앱 웹뷰 트래픽 구분 분석
362
395
  - **Tool Description 강화** - Claude 자동 도구 선택 개선
package/dist/cli/ui.js CHANGED
@@ -3,7 +3,7 @@
3
3
  * Premium CLI 경험을 위한 UI 모듈
4
4
  */
5
5
  import chalk from "chalk";
6
- const VERSION = "3.2.0";
6
+ const VERSION = "3.2.1";
7
7
  // 커리어리 브랜드 컬러
8
8
  const CORAL = chalk.hex("#E8756C"); // 커리어리 코랄 도트 색상
9
9
  /**
@@ -27,7 +27,7 @@ import { registerSmartQuery } from "../tools/smart-query.js";
27
27
  // Platform Analysis (v3.1.0) - Web + App Webview
28
28
  import { registerPlatformAnalysis } from "../tools/platform-analysis.js";
29
29
  const SERVER_NAME = "careerly-data-mcp";
30
- const SERVER_VERSION = "3.2.0";
30
+ const SERVER_VERSION = "3.2.1";
31
31
  /**
32
32
  * MCP 서버 생성 및 Tool 등록
33
33
  */
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "careerly-data-mcp",
3
- "version": "3.2.0",
3
+ "version": "3.2.1",
4
4
  "description": "GA4 + BigQuery + Search Console 데이터 분석 MCP 서버 for Claude Code",
5
5
  "type": "module",
6
6
  "main": "dist/index.js",