build-dxf 0.1.6 → 0.1.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/src/build.js CHANGED
@@ -1,11 +1,11 @@
1
1
  import * as THREE from "three";
2
- import { EventDispatcher as EventDispatcher$1, Group as Group$1, Vector3, Box3, Layers, Plane, Line3, Sphere, Triangle } from "three";
2
+ import { EventDispatcher as EventDispatcher$1, Group as Group$1 } from "three";
3
3
  import ClipperLib from "clipper-lib";
4
4
  import Drawing from "dxf-writer";
5
5
  import { OBJExporter } from "three/examples/jsm/exporters/OBJExporter.js";
6
+ import { Brush, Evaluator, SUBTRACTION } from "three-bvh-csg";
6
7
  import { GLTFLoader } from "three/addons/loaders/GLTFLoader.js";
7
8
  import { GLTFExporter } from "three/addons/exporters/GLTFExporter.js";
8
- import { Brush, Evaluator, SUBTRACTION } from "three-bvh-csg";
9
9
  const VITE_OSS_BASEURL = "https://image.cnyang.cn/common-assets/".endsWith("/") ? "https://image.cnyang.cn/common-assets/" : "https://image.cnyang.cn/common-assets//";
10
10
  const DEFAULT_WALL_WIDTH = 0.12;
11
11
  const DEFAULT_DOOR_HEIGHT = 2.1;
@@ -1309,6 +1309,38 @@ class UnionFindSet {
1309
1309
  return sets;
1310
1310
  }
1311
1311
  }
1312
+ class LineIndexGenerator {
1313
+ index = 0;
1314
+ get size() {
1315
+ return this.index;
1316
+ }
1317
+ constructor(lines = []) {
1318
+ lines.forEach((key) => {
1319
+ const id = this.next();
1320
+ this.map.set(key, id);
1321
+ this.lineMap.set(id, key);
1322
+ });
1323
+ }
1324
+ next() {
1325
+ return this.index++;
1326
+ }
1327
+ reset() {
1328
+ this.index = 0;
1329
+ }
1330
+ map = /* @__PURE__ */ new Map();
1331
+ lineMap = /* @__PURE__ */ new Map();
1332
+ getIndex(key) {
1333
+ if (!this.map.has(key)) {
1334
+ const id = this.next();
1335
+ this.map.set(key, id);
1336
+ this.lineMap.set(id, key);
1337
+ }
1338
+ return this.map.get(key);
1339
+ }
1340
+ getLine(index2) {
1341
+ return this.lineMap.get(index2);
1342
+ }
1343
+ }
1312
1344
  const set = /* @__PURE__ */ new Set();
1313
1345
  function addLengthAsyncClear(line) {
1314
1346
  if (set.size === 0) queueMicrotask(() => {
@@ -1485,7 +1517,7 @@ class LineSegment {
1485
1517
  * @returns 线段的长度
1486
1518
  */
1487
1519
  getLength() {
1488
- return this.points[0].distance(this.points[1]);
1520
+ return this.points[0].distance(this.points[1], false);
1489
1521
  }
1490
1522
  /**
1491
1523
  * 获取方向
@@ -1526,8 +1558,7 @@ class LineSegment {
1526
1558
  const [q1, q2] = this.points;
1527
1559
  const dir = new Point(q2.x - q1.x, q2.y - q1.y);
1528
1560
  if (dir.x === 0 && dir.y === 0) {
1529
- console.error("投影目标线段的两个点不能重合");
1530
- return new LineSegment();
1561
+ throw new Error("投影目标线段的两个点不能重合");
1531
1562
  }
1532
1563
  const projectPoint = (point) => {
1533
1564
  const pq = new Point(point.x - q1.x, point.y - q1.y);
@@ -1842,12 +1873,12 @@ class LineSegment {
1842
1873
  /** 克隆
1843
1874
  * @returns
1844
1875
  */
1845
- clone() {
1876
+ clone(userData = true) {
1846
1877
  const line = new LineSegment(
1847
1878
  this.points[0].clone(),
1848
1879
  this.points[1].clone()
1849
1880
  );
1850
- line.userData = cloneUserData(this.userData);
1881
+ if (userData) line.userData = cloneUserData(this.userData);
1851
1882
  return line;
1852
1883
  }
1853
1884
  /**
@@ -1947,6 +1978,21 @@ class LineSegment {
1947
1978
  }
1948
1979
  return groups;
1949
1980
  }
1981
+ /** 分组,通过点
1982
+ * @param lines
1983
+ * @returns
1984
+ */
1985
+ static groupByPoint(lines) {
1986
+ const unionFindSet = new UnionFindSet(lines.length), map = /* @__PURE__ */ new Map();
1987
+ for (let i = 0; i < lines.length; i++) {
1988
+ lines[i].points.forEach((point) => {
1989
+ const id = point.hashCode();
1990
+ if (map.has(id)) unionFindSet.union(map.get(id), i);
1991
+ map.set(id, i);
1992
+ });
1993
+ }
1994
+ return unionFindSet.getAllSets().valueArray.map((list) => list.map((i) => lines[i]));
1995
+ }
1950
1996
  /** 通过最大叶子路径,给线段分组,每条路径没有分叉
1951
1997
  * @param lines
1952
1998
  * @returns
@@ -1992,21 +2038,6 @@ class LineSegment {
1992
2038
  }
1993
2039
  return paths;
1994
2040
  }
1995
- /** 分组,通过点
1996
- * @param lines
1997
- * @returns
1998
- */
1999
- static groupByPoint(lines) {
2000
- const unionFindSet = new UnionFindSet(lines.length), map = /* @__PURE__ */ new Map();
2001
- for (let i = 0; i < lines.length; i++) {
2002
- lines[i].points.forEach((point) => {
2003
- const id = point.hashCode();
2004
- if (map.has(id)) unionFindSet.union(map.get(id), i);
2005
- map.set(id, i);
2006
- });
2007
- }
2008
- return unionFindSet.getAllSets().valueArray.map((list) => list.map((i) => lines[i]));
2009
- }
2010
2041
  /** 分组,通过方向
2011
2042
  * @param lines
2012
2043
  */
@@ -2019,6 +2050,92 @@ class LineSegment {
2019
2050
  }
2020
2051
  return [parallelLines, verticalLines];
2021
2052
  }
2053
+ /** 通过轴,对线段进行分组
2054
+ * @param lines
2055
+ * @param axisLine
2056
+ * @param errAngle
2057
+ * @returns
2058
+ */
2059
+ static groupByAxis(lines, axisLine, errAngle = 1e-9) {
2060
+ const parallelLines = [], otherLines = [];
2061
+ for (let i = 0; i < lines.length; i++) {
2062
+ const line = lines[i];
2063
+ if (axisLine.isParallel(line, errAngle)) parallelLines.push(line);
2064
+ else otherLines.push(line);
2065
+ }
2066
+ return [parallelLines, otherLines];
2067
+ }
2068
+ /** 交叉轴分组
2069
+ * @description 通过交叉轴分组, 前提是使用groupByAxis对线段进行过轴分组,确保所有线段近乎平行
2070
+ * @param lines 需要分组的线段集合
2071
+ * @param crossAxis 交叉轴线段
2072
+ * @param distanceThreshold 交叉轴阈值
2073
+ * @returns
2074
+ */
2075
+ static groupByCrossAxis(lines, crossAxis, distanceThreshold) {
2076
+ const center = crossAxis.center, normal = crossAxis.normal(), principalAxis = new LineSegment(
2077
+ center.clone().add(normal.clone().multiplyScalar(-1e3)),
2078
+ center.clone().add(normal.clone().multiplyScalar(1e3))
2079
+ ), crossAxisMap = /* @__PURE__ */ new Map(), crossValueList = [], principalAxisStartMap = /* @__PURE__ */ new Map(), principalAxisEndMap = /* @__PURE__ */ new Map();
2080
+ lines.forEach((line) => {
2081
+ const value = crossAxis.projectValue(line.start);
2082
+ const point = crossAxis.projectPoint(line.start, false);
2083
+ const opt = { value, line, point, index: -1 };
2084
+ crossAxisMap.set(line, opt);
2085
+ crossValueList.push(opt);
2086
+ line.points.forEach((p, i) => {
2087
+ const value2 = principalAxis.projectValue(p);
2088
+ if (i === 0) principalAxisStartMap.set(line, value2);
2089
+ else principalAxisEndMap.set(line, value2);
2090
+ });
2091
+ });
2092
+ crossValueList.sort((a, b) => b.value - a.value).forEach((item, i) => item.index = i);
2093
+ const unionFindSet = new UnionFindSet(lines.length), lineIndexGenerator = new LineIndexGenerator(lines);
2094
+ function approach(preCrossOpt, crossOpt) {
2095
+ return preCrossOpt.point.distance(crossOpt.point) <= distanceThreshold;
2096
+ }
2097
+ function coincide(preCrossOpt, minPrinValue, maxPrinValue) {
2098
+ const prePrinStartV = principalAxisStartMap.get(preCrossOpt.line), prePrinEndV = principalAxisEndMap.get(preCrossOpt.line), minPrePrinValue = prePrinStartV < prePrinEndV ? prePrinStartV : prePrinEndV, maxPrePrinValue = prePrinStartV > prePrinEndV ? prePrinStartV : prePrinEndV;
2099
+ return minPrePrinValue >= minPrinValue && minPrePrinValue <= maxPrinValue || maxPrePrinValue >= minPrinValue && maxPrePrinValue <= maxPrinValue || minPrinValue >= minPrePrinValue && minPrinValue <= maxPrePrinValue || maxPrinValue >= minPrePrinValue && maxPrinValue <= maxPrePrinValue;
2100
+ }
2101
+ for (let i = 0; i < crossValueList.length; i++) {
2102
+ const crossOpt = crossValueList[i], { line } = crossOpt, prinStartV = principalAxisStartMap.get(line), prinEndV = principalAxisEndMap.get(line), minPrinValue = prinStartV < prinEndV ? prinStartV : prinEndV, maxPrinValue = prinStartV > prinEndV ? prinStartV : prinEndV;
2103
+ for (let j = i - 1; j >= 0; j--) {
2104
+ const pre = crossValueList[j];
2105
+ if (approach(pre, crossOpt)) {
2106
+ if (coincide(pre, minPrinValue, maxPrinValue)) {
2107
+ unionFindSet.union(lineIndexGenerator.getIndex(line), lineIndexGenerator.getIndex(pre.line));
2108
+ break;
2109
+ }
2110
+ } else break;
2111
+ }
2112
+ }
2113
+ let groups = unionFindSet.getAllSets().valueArray.map((group2) => group2.map((index2) => lineIndexGenerator.getLine(index2)));
2114
+ groups = groups.map((group2) => {
2115
+ if (group2.length <= 2) return [group2];
2116
+ const list = group2.map((line) => crossAxisMap.get(line)).sort((a, b) => a.value - b.value), start = list[0], end = list[list.length - 1];
2117
+ if (start.point.distance(end.point) < distanceThreshold) return [group2];
2118
+ const maxList = [...list].sort((a, b) => b.line.length() - a.line.length()), first = maxList[0], second = maxList[1], firstLength = first.line.length(), secondLength = second.line.length(), projLine = first.line.projectLineSegment(second.line), projLineLength = projLine.length();
2119
+ if (first.point.distance(second.point) > distanceThreshold || secondLength / firstLength > 0.5 && projLineLength / secondLength < 0.5) {
2120
+ const group1 = [first.line], group22 = [second.line];
2121
+ for (let i = 0; i < list.length; i++) {
2122
+ const opt = list[i];
2123
+ if (opt === first || opt === second) continue;
2124
+ const currentProjectLine = second.line.projectLineSegment(opt.line), len = currentProjectLine.length();
2125
+ if (second.point.distance(opt.point) <= distanceThreshold && len / secondLength > 0) group22.push(opt.line);
2126
+ else group1.push(opt.line);
2127
+ }
2128
+ return [group1, group22];
2129
+ }
2130
+ let index2 = 1;
2131
+ for (; index2 < list.length; index2++) {
2132
+ const { point } = list[index2];
2133
+ if (list[0].point.distance(point) > distanceThreshold) break;
2134
+ }
2135
+ return [list.slice(0, index2).map((o) => o.line), list.slice(index2).map((o) => o.line)];
2136
+ }).flat(1);
2137
+ return groups;
2138
+ }
2022
2139
  /** 合并线段到最长线段
2023
2140
  * @param lines
2024
2141
  * @returns
@@ -3119,38 +3236,6 @@ class DoubleWallHelper {
3119
3236
  return lines;
3120
3237
  }
3121
3238
  }
3122
- class LineIndexGenerator {
3123
- index = 0;
3124
- get size() {
3125
- return this.index;
3126
- }
3127
- constructor(lines = []) {
3128
- lines.forEach((key) => {
3129
- const id = this.next();
3130
- this.map.set(key, id);
3131
- this.lineMap.set(id, key);
3132
- });
3133
- }
3134
- next() {
3135
- return this.index++;
3136
- }
3137
- reset() {
3138
- this.index = 0;
3139
- }
3140
- map = /* @__PURE__ */ new Map();
3141
- lineMap = /* @__PURE__ */ new Map();
3142
- getIndex(key) {
3143
- if (!this.map.has(key)) {
3144
- const id = this.next();
3145
- this.map.set(key, id);
3146
- this.lineMap.set(id, key);
3147
- }
3148
- return this.map.get(key);
3149
- }
3150
- getLine(index2) {
3151
- return this.lineMap.get(index2);
3152
- }
3153
- }
3154
3239
  function createPointVirtualGrid(lines) {
3155
3240
  const grid = new PointVirtualGrid();
3156
3241
  for (const seg of lines) {
@@ -5928,8 +6013,7 @@ class Dxf extends Component {
5928
6013
  this.scale = scale;
5929
6014
  this.shortLine = width * 0.4;
5930
6015
  }
5931
- /**
5932
- * 预处理数据
6016
+ /** 预处理数据
5933
6017
  * @param data
5934
6018
  */
5935
6019
  preprocessing(data) {
@@ -7754,437 +7838,91 @@ function drawText$1(text, point, style, offset = 1e-3) {
7754
7838
  }
7755
7839
  }
7756
7840
  }
7757
- class Lines extends THREE.LineSegments {
7758
- geometry = new THREE.BufferGeometry();
7759
- points = [];
7760
- pointsObject3D;
7761
- constructor(points = [], color = 16777215) {
7762
- super();
7763
- this.geometry = this.geometry;
7764
- this.addPoint(...points);
7765
- this.frustumCulled = false;
7766
- this.pointsObject3D = new THREE.Points(this.geometry, new THREE.PointsMaterial({
7767
- sizeAttenuation: false,
7768
- size: 10
7769
- }));
7770
- this.material = new THREE.LineBasicMaterial({ color });
7771
- }
7772
- addPoint(...points) {
7773
- this.points.push(...points);
7774
- this.updateGeometry();
7841
+ if (typeof globalThis !== "undefined" && typeof ProgressEvent === "undefined") {
7842
+ globalThis.ProgressEvent = class ProgressEvent extends EventTarget {
7843
+ type;
7844
+ lengthComputable;
7845
+ loaded;
7846
+ total;
7847
+ bubbles;
7848
+ cancelable;
7849
+ defaultPrevented;
7850
+ eventPhase;
7851
+ timeStamp;
7852
+ isTrusted;
7853
+ constructor(type, options = {}) {
7854
+ super();
7855
+ this.type = type;
7856
+ this.lengthComputable = options.lengthComputable || false;
7857
+ this.loaded = options.loaded || 0;
7858
+ this.total = options.total || 0;
7859
+ this.bubbles = false;
7860
+ this.cancelable = false;
7861
+ this.defaultPrevented = false;
7862
+ this.eventPhase = 0;
7863
+ this.timeStamp = Date.now();
7864
+ this.isTrusted = true;
7865
+ }
7866
+ preventDefault() {
7867
+ }
7868
+ stopPropagation() {
7869
+ }
7870
+ stopImmediatePropagation() {
7871
+ }
7872
+ };
7873
+ }
7874
+ let gltfLoader = GLTFExporter;
7875
+ let gltfExporter = GLTFLoader;
7876
+ let promise;
7877
+ function GltfInit() {
7878
+ if (promise) return promise;
7879
+ promise = new Promise(async (resolve) => {
7880
+ try {
7881
+ const { GLTFLoader: GLTFLoader2 } = await (typeof window !== "undefined" ? import("three/addons/loaders/GLTFLoader.js") : include("node-three-gltf", false));
7882
+ gltfLoader = GLTFLoader2;
7883
+ const { GLTFExporter: GLTFExporter2 } = await (typeof window !== "undefined" ? import("three/addons/exporters/GLTFExporter.js") : include("node-three-gltf", false));
7884
+ gltfExporter = GLTFExporter2;
7885
+ } catch (error) {
7886
+ console.error(error);
7887
+ }
7888
+ resolve(true);
7889
+ });
7890
+ return promise;
7891
+ }
7892
+ const gltf = {
7893
+ get GLTFLoader() {
7894
+ return gltfLoader;
7895
+ },
7896
+ get GLTFExporter() {
7897
+ return gltfExporter;
7775
7898
  }
7776
- setPoint(...points) {
7777
- this.points.length = 0;
7778
- this.addPoint(...points);
7899
+ };
7900
+ let loader;
7901
+ class LoadModel {
7902
+ static _cache = /* @__PURE__ */ new Map();
7903
+ static _nameMap = /* @__PURE__ */ new Map();
7904
+ static addNameMap(mapName, name) {
7905
+ this._nameMap.set(mapName, name);
7779
7906
  }
7780
- _timer = null;
7781
- updateGeometry() {
7782
- if (this._timer) clearTimeout(this._timer);
7783
- this._timer = setTimeout(() => {
7784
- const array = this.points.flatMap((p, i) => {
7785
- if (i === 0) return [];
7786
- else {
7787
- const p0 = this.points[i - 1];
7788
- return [p0.x, p0.y, p0.z, p.x, p.y, p.z];
7789
- }
7907
+ // 获取模型
7908
+ static loadGlb(name) {
7909
+ if (this._nameMap.has(name)) name = this._nameMap.get(name);
7910
+ if (this._cache.has(name)) return this._cache.get(name);
7911
+ if (!loader) loader = new gltf.GLTFLoader();
7912
+ const promise2 = new Promise(async (resolve) => {
7913
+ const response = await fetch(`${VITE_OSS_BASEURL}models/${name}.glb`);
7914
+ if (!response.ok) {
7915
+ resolve(null);
7916
+ return;
7917
+ }
7918
+ const arrayBuffer = await response.arrayBuffer();
7919
+ const gltf2 = await new Promise((resolve2, reject) => {
7920
+ loader.parse(arrayBuffer, "", resolve2, reject);
7790
7921
  });
7791
- const position = new THREE.BufferAttribute(new Float32Array(array), 3);
7792
- this.geometry.setAttribute("position", position);
7793
- this._timer = null;
7922
+ resolve(gltf2.scene);
7794
7923
  });
7795
- }
7796
- }
7797
- function selectLocalFileFun() {
7798
- return new Promise((resolve) => {
7799
- const input = document.createElement("input");
7800
- input.type = "file";
7801
- input.accept = "application/json";
7802
- input.click();
7803
- input.onchange = () => {
7804
- if (input.files?.length) resolve(input.files[0]);
7805
- else resolve(null);
7806
- };
7807
- });
7808
- }
7809
- const SelectLocalFile = Object.assign(selectLocalFileFun, {
7810
- arrayBuffer() {
7811
- return new Promise(async (resolve) => {
7812
- const file = await selectLocalFileFun();
7813
- if (file instanceof File) {
7814
- const fileReader = new FileReader();
7815
- fileReader.onload = () => {
7816
- resolve(fileReader.result);
7817
- };
7818
- fileReader.readAsArrayBuffer(file);
7819
- } else resolve(null);
7820
- });
7821
- },
7822
- text() {
7823
- return new Promise(async (resolve) => {
7824
- const file = await selectLocalFileFun();
7825
- if (file instanceof File) {
7826
- const fileReader = new FileReader();
7827
- fileReader.onload = () => {
7828
- resolve(fileReader.result);
7829
- };
7830
- fileReader.readAsText(file, "utf-8");
7831
- } else resolve(null);
7832
- });
7833
- },
7834
- async json() {
7835
- const text = await this.text();
7836
- if (text) return JSON.parse(text);
7837
- }
7838
- });
7839
- class CommandFlow extends EventDispatcher {
7840
- list = [];
7841
- rollbacklist = [];
7842
- revokeRollbacklist = [];
7843
- // 是否写入操作记录
7844
- writeOperationList = true;
7845
- loop = false;
7846
- setLoop(loop) {
7847
- this.loop = loop;
7848
- return this;
7849
- }
7850
- /**
7851
- *
7852
- * @param operation
7853
- * @returns
7854
- */
7855
- add(operation) {
7856
- this.list.push(operation);
7857
- return this;
7858
- }
7859
- /** 添加回滚回调列表
7860
- * @param callBack
7861
- */
7862
- addRollback(callBack) {
7863
- this.rollbacklist.push(callBack);
7864
- return this;
7865
- }
7866
- /** 添加撤回回滚回调列表
7867
- * @param callBack
7868
- * @returns
7869
- */
7870
- addRevokeRollback(callBack) {
7871
- this.revokeRollbacklist.push(callBack);
7872
- return this;
7873
- }
7874
- }
7875
- class CommandManager extends EventDispatcher {
7876
- commandFlowMap = /* @__PURE__ */ new Map();
7877
- lock = false;
7878
- abortController = null;
7879
- resolve = null;
7880
- currentName = null;
7881
- _disabled = false;
7882
- set disabled(disabled) {
7883
- this._disabled = disabled;
7884
- if (this._disabled) this.cancel();
7885
- }
7886
- get disabled() {
7887
- return this._disabled;
7888
- }
7889
- /**
7890
- * 操作记录
7891
- */
7892
- operationList = [];
7893
- rollbackList = [];
7894
- constructor() {
7895
- super();
7896
- }
7897
- /** 添加命令流
7898
- * @param name
7899
- * @returns
7900
- */
7901
- addCommandFlow(name) {
7902
- if (this.commandFlowMap.has(name)) throw new Error(`${name} 命令已经存在`);
7903
- const commandFlow = new CommandFlow();
7904
- this.commandFlowMap.set(name, commandFlow);
7905
- return commandFlow;
7906
- }
7907
- executionPromise = null;
7908
- executionResolve = null;
7909
- /** 执行控制流
7910
- * @param name
7911
- * @returns
7912
- */
7913
- async start(name, data = null, step = 0) {
7914
- if (this.disabled) throw new Error("命令管理器已禁用,无法启动新的命令流");
7915
- this.dispatchEvent({
7916
- type: "startedBefore",
7917
- name,
7918
- currentName: this.currentName
7919
- });
7920
- this.executionPromise && await this.executionPromise;
7921
- this.executionPromise = null;
7922
- if (this.lock) {
7923
- throw new Error("命令管理器已被 " + this.currentName + " 命令锁定,无法启动新的命令流,请退出或等待命令执行结束");
7924
- }
7925
- const commandFlow = this.commandFlowMap.get(name);
7926
- if (!commandFlow) {
7927
- throw new Error(`命令流 ${name} 不存在`);
7928
- }
7929
- this.lock = true;
7930
- this.abortController = new AbortController();
7931
- this.currentName = name;
7932
- commandFlow.dispatchEvent({ type: "started" });
7933
- this.dispatchEvent({ type: "started", name });
7934
- try {
7935
- for (let i = step; i < commandFlow.list.length; i++) {
7936
- const operation = commandFlow.list[i];
7937
- commandFlow.dispatchEvent({ type: "executing", index: i });
7938
- this.dispatchEvent({ type: "executing", name, index: i });
7939
- data = await new Promise((resolve) => {
7940
- this.resolve = resolve;
7941
- operation(resolve, data);
7942
- });
7943
- if (this.abortController.signal.aborted) {
7944
- commandFlow.dispatchEvent({ type: "executionInterrupt", index: i });
7945
- this.dispatchEvent({ type: "executionInterrupt", name, index: i });
7946
- this.dispatchEvent({ type: "cancel", name });
7947
- break;
7948
- } else {
7949
- commandFlow.dispatchEvent({ type: "executionCompleted", index: i, data });
7950
- this.dispatchEvent({ type: "executionCompleted", name, index: i, data });
7951
- }
7952
- }
7953
- } catch (error) {
7954
- console.error(error);
7955
- } finally {
7956
- this.lock = false;
7957
- this.currentName = null;
7958
- if (this.abortController && !this.abortController.signal.aborted) {
7959
- commandFlow.dispatchEvent({ type: "completed", data });
7960
- this.dispatchEvent({ type: "completed", name, data });
7961
- if (commandFlow.writeOperationList) {
7962
- this.operationList.push({ name, data });
7963
- this.rollbackList.length = 0;
7964
- }
7965
- if (commandFlow.loop) queueMicrotask(() => this.start(name));
7966
- }
7967
- this.abortController = null;
7968
- commandFlow.dispatchEvent({ type: "finally" });
7969
- this.dispatchEvent({ type: "finally", name });
7970
- if (this.executionResolve) {
7971
- this.executionResolve(null);
7972
- this.executionResolve = null;
7973
- }
7974
- }
7975
- return data;
7976
- }
7977
- /** 取消当前命令
7978
- */
7979
- cancel() {
7980
- if (this.abortController) {
7981
- this.abortController.abort();
7982
- if (this.resolve) this.resolve();
7983
- this.executionPromise = new Promise((resolve) => this.executionResolve = resolve);
7984
- }
7985
- }
7986
- /**
7987
- * 回滚
7988
- */
7989
- rollback() {
7990
- try {
7991
- const operation = this.operationList.pop();
7992
- if (!operation) return false;
7993
- const commandFlow = this.commandFlowMap.get(operation.name);
7994
- if (!commandFlow) return false;
7995
- const data = commandFlow.rollbacklist.reduce((data2, callBack) => callBack(data2), operation.data);
7996
- this.dispatchEvent({ type: "rollback", name: operation.name });
7997
- this.rollbackList.push({
7998
- data,
7999
- name: operation.name
8000
- });
8001
- return true;
8002
- } catch (error) {
8003
- throw new Error(`回滚失败:${error}`);
8004
- }
8005
- }
8006
- /**
8007
- * 撤销回滚
8008
- */
8009
- revokeRollback() {
8010
- try {
8011
- const operation = this.rollbackList.pop();
8012
- if (!operation) return false;
8013
- const commandFlow = this.commandFlowMap.get(operation.name);
8014
- if (!commandFlow) return false;
8015
- const data = commandFlow.revokeRollbacklist.reduce((data2, callBack) => callBack(data2), operation.data);
8016
- this.dispatchEvent({ type: "revokeRollback", name: operation.name });
8017
- this.operationList.push({ name: operation.name, data });
8018
- return true;
8019
- } catch (error) {
8020
- throw new Error(`撤回回滚失败:${error}`);
8021
- }
8022
- }
8023
- destroy() {
8024
- this.cancel();
8025
- this.addEventListener("cancel", () => {
8026
- this.commandFlowMap.clear();
8027
- this.lock = false;
8028
- this.abortController = null;
8029
- this.resolve = null;
8030
- this.executionResolve = null;
8031
- this.executionPromise = null;
8032
- this.currentName = null;
8033
- this.operationList.length = 0;
8034
- this.rollbackList.length = 0;
8035
- }, { once: true });
8036
- }
8037
- }
8038
- if (typeof globalThis !== "undefined" && typeof ProgressEvent === "undefined") {
8039
- globalThis.ProgressEvent = class ProgressEvent extends EventTarget {
8040
- type;
8041
- lengthComputable;
8042
- loaded;
8043
- total;
8044
- bubbles;
8045
- cancelable;
8046
- defaultPrevented;
8047
- eventPhase;
8048
- timeStamp;
8049
- isTrusted;
8050
- constructor(type, options = {}) {
8051
- super();
8052
- this.type = type;
8053
- this.lengthComputable = options.lengthComputable || false;
8054
- this.loaded = options.loaded || 0;
8055
- this.total = options.total || 0;
8056
- this.bubbles = false;
8057
- this.cancelable = false;
8058
- this.defaultPrevented = false;
8059
- this.eventPhase = 0;
8060
- this.timeStamp = Date.now();
8061
- this.isTrusted = true;
8062
- }
8063
- preventDefault() {
8064
- }
8065
- stopPropagation() {
8066
- }
8067
- stopImmediatePropagation() {
8068
- }
8069
- };
8070
- }
8071
- let gltfLoader = GLTFExporter;
8072
- let gltfExporter = GLTFLoader;
8073
- let promise;
8074
- function GltfInit() {
8075
- if (promise) return promise;
8076
- promise = new Promise(async (resolve) => {
8077
- try {
8078
- const { GLTFLoader: GLTFLoader2 } = await (typeof window !== "undefined" ? import("three/addons/loaders/GLTFLoader.js") : include("node-three-gltf", false));
8079
- gltfLoader = GLTFLoader2;
8080
- const { GLTFExporter: GLTFExporter2 } = await (typeof window !== "undefined" ? import("three/addons/exporters/GLTFExporter.js") : include("node-three-gltf", false));
8081
- gltfExporter = GLTFExporter2;
8082
- } catch (error) {
8083
- console.error(error);
8084
- }
8085
- resolve(true);
8086
- });
8087
- return promise;
8088
- }
8089
- const gltf = {
8090
- get GLTFLoader() {
8091
- return gltfLoader;
8092
- },
8093
- get GLTFExporter() {
8094
- return gltfExporter;
8095
- }
8096
- };
8097
- const index$2 = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
8098
- __proto__: null,
8099
- ArrayMap,
8100
- AxisAlignCorr,
8101
- BoundExt,
8102
- Box2,
8103
- CommandFlow,
8104
- CommandManager,
8105
- Component,
8106
- ComponentManager,
8107
- CountMap,
8108
- DoubleWallHelper,
8109
- DxfSystem,
8110
- EventDispatcher,
8111
- GltfInit,
8112
- LineGroupType,
8113
- LineIndexGenerator,
8114
- LineSegment,
8115
- LineSegmentUndirectedGraph,
8116
- Lines,
8117
- MapEnhance,
8118
- Point,
8119
- PointVirtualGrid,
8120
- Polygon,
8121
- PvgList,
8122
- Quadtree,
8123
- Rectangle,
8124
- SceneAutoGenerat,
8125
- SelectLocalFile,
8126
- SetMap,
8127
- UndirectedGraph,
8128
- UnionFindSet,
8129
- buildBayWindowGroup,
8130
- buildDoubleWallGroup,
8131
- clippingDoubleWall,
8132
- clippingLineUserData,
8133
- cloneUserData,
8134
- closedPathArea,
8135
- components,
8136
- createPointVirtualGrid,
8137
- createQuadtree,
8138
- findCircleEdges,
8139
- findClosedPolygons,
8140
- findDiscretePoint,
8141
- findDiscretePointLine,
8142
- findDiscretePointLine2,
8143
- findLargestCircle,
8144
- findRingEdges,
8145
- findVerticalReference,
8146
- gltf,
8147
- lineDataToOriginalData,
8148
- lineDataToThreeVJiaJson,
8149
- lineSegmentClipping,
8150
- mergeLineUserData,
8151
- mergeSmallestCircle,
8152
- mergeWindow,
8153
- originalDataToLineData,
8154
- recomputedWindow,
8155
- recomputedWindowCenter,
8156
- ringsDeduplication: ringsDeduplication$1,
8157
- smallestCircle,
8158
- toOriginalDataItem,
8159
- tools,
8160
- uuid
8161
- }, Symbol.toStringTag, { value: "Module" }));
8162
- let loader;
8163
- class LoadModel {
8164
- static _cache = /* @__PURE__ */ new Map();
8165
- static _nameMap = /* @__PURE__ */ new Map();
8166
- static addNameMap(mapName, name) {
8167
- this._nameMap.set(mapName, name);
8168
- }
8169
- // 获取模型
8170
- static loadGlb(name) {
8171
- if (this._nameMap.has(name)) name = this._nameMap.get(name);
8172
- if (this._cache.has(name)) return this._cache.get(name);
8173
- if (!loader) loader = new gltf.GLTFLoader();
8174
- const promise2 = new Promise(async (resolve) => {
8175
- const response = await fetch(`${VITE_OSS_BASEURL}models/${name}.glb`);
8176
- if (!response.ok) {
8177
- resolve(null);
8178
- return;
8179
- }
8180
- const arrayBuffer = await response.arrayBuffer();
8181
- const gltf2 = await new Promise((resolve2, reject) => {
8182
- loader.parse(arrayBuffer, "", resolve2, reject);
8183
- });
8184
- resolve(gltf2.scene);
8185
- });
8186
- this._cache.set(name, promise2);
8187
- return promise2;
7924
+ this._cache.set(name, promise2);
7925
+ return promise2;
8188
7926
  }
8189
7927
  }
8190
7928
  LoadModel.addNameMap("water cooler", "饮水机1");
@@ -8669,10 +8407,10 @@ class Scenario {
8669
8407
  let menModel = this.windowModely.clone();
8670
8408
  if (data.center && distance) {
8671
8409
  menModel.position.set(data.center.x, data.center.y, 0);
8672
- const box3 = new THREE.Box3();
8673
- box3.setFromObject(menModel);
8410
+ const box32 = new THREE.Box3();
8411
+ box32.setFromObject(menModel);
8674
8412
  let size = new THREE.Vector3();
8675
- box3.getSize(size);
8413
+ box32.getSize(size);
8676
8414
  menModel.rotation.x = Math.PI / 2;
8677
8415
  menModel.rotation.y = angleRad;
8678
8416
  menModel.scale.set(distance / size.x, height / size.y, wallWidth / size.z);
@@ -8686,10 +8424,10 @@ class Scenario {
8686
8424
  installCabinet() {
8687
8425
  let cabinetModel = this.CabinetModel.clone();
8688
8426
  cabinetModel.position.set(5, 5, 0);
8689
- const box3 = new THREE.Box3();
8690
- box3.setFromObject(cabinetModel);
8427
+ const box32 = new THREE.Box3();
8428
+ box32.setFromObject(cabinetModel);
8691
8429
  let size = new THREE.Vector3();
8692
- box3.getSize(size);
8430
+ box32.getSize(size);
8693
8431
  cabinetModel.rotation.x = Math.PI / 2;
8694
8432
  console.log("卡农看:", cabinetModel.geometry);
8695
8433
  cabinetModel.scale.set(0.7 / size.x, 0.7 / size.y, 0.3 / size.z);
@@ -8699,10 +8437,10 @@ class Scenario {
8699
8437
  installTable() {
8700
8438
  let tableModel = this.tableModel.clone();
8701
8439
  tableModel.position.set(5, 4, 0);
8702
- const box3 = new THREE.Box3();
8703
- box3.setFromObject(tableModel);
8440
+ const box32 = new THREE.Box3();
8441
+ box32.setFromObject(tableModel);
8704
8442
  let size = new THREE.Vector3();
8705
- box3.getSize(size);
8443
+ box32.getSize(size);
8706
8444
  tableModel.rotation.x = Math.PI / 2;
8707
8445
  tableModel.scale.set(0.7 / size.x, 0.75 / size.y, 1.3 / size.z);
8708
8446
  this.group.add(tableModel);
@@ -8711,10 +8449,10 @@ class Scenario {
8711
8449
  installchair() {
8712
8450
  let tableModel = this.tableModel.clone();
8713
8451
  tableModel.position.set(5, 4, 0);
8714
- const box3 = new THREE.Box3();
8715
- box3.setFromObject(tableModel);
8452
+ const box32 = new THREE.Box3();
8453
+ box32.setFromObject(tableModel);
8716
8454
  let size = new THREE.Vector3();
8717
- box3.getSize(size);
8455
+ box32.getSize(size);
8718
8456
  tableModel.rotation.x = Math.PI / 2;
8719
8457
  tableModel.scale.set(0.7 / size.x, 0.75 / size.y, 1.3 / size.z);
8720
8458
  this.group.add(tableModel);
@@ -8813,10 +8551,10 @@ class Scenario {
8813
8551
  let menModel = this.doorModely.clone();
8814
8552
  if (center && distance) {
8815
8553
  menModel.position.set(center.x, center.y, groundHeight);
8816
- const box3 = new THREE.Box3();
8817
- box3.setFromObject(menModel);
8554
+ const box32 = new THREE.Box3();
8555
+ box32.setFromObject(menModel);
8818
8556
  let size = new THREE.Vector3();
8819
- box3.getSize(size);
8557
+ box32.getSize(size);
8820
8558
  menModel.rotation.x = Math.PI / 2;
8821
8559
  menModel.rotation.y = angleRad;
8822
8560
  menModel.scale.set(distance / size.x, (Height ? Height : this.doorHeight) / size.y, DEFAULT_WALL_WIDTH / size.z);
@@ -9009,7 +8747,6 @@ class Scenario {
9009
8747
  this.group.add(plane);
9010
8748
  }
9011
8749
  }
9012
- const planeSrc = "";
9013
8750
  function Rr(t, e, n = 0, r = t.length - 1, i = Mu) {
9014
8751
  for (; r > n; ) {
9015
8752
  if (r - n > 600) {
@@ -16050,514 +15787,13 @@ const { matrix: zr, transpose: ka, multiply: Ne } = ki({
16050
15787
  return [
16051
15788
  Ne([D, h], g),
16052
15789
  Ne([M, h], g),
16053
- Ne([M, w], g),
16054
- Ne([D, w], g),
16055
- Ne([D, h], g)
16056
- ];
16057
- };
16058
- class Capsule {
16059
- /**
16060
- * Constructs a new capsule.
16061
- *
16062
- * @param {Vector3} [start] - The start vector.
16063
- * @param {Vector3} [end] - The end vector.
16064
- * @param {number} [radius=1] - The capsule's radius.
16065
- */
16066
- constructor(start = new Vector3(0, 0, 0), end = new Vector3(0, 1, 0), radius = 1) {
16067
- this.start = start;
16068
- this.end = end;
16069
- this.radius = radius;
16070
- }
16071
- /**
16072
- * Returns a new capsule with copied values from this instance.
16073
- *
16074
- * @return {Capsule} A clone of this instance.
16075
- */
16076
- clone() {
16077
- return new this.constructor().copy(this);
16078
- }
16079
- /**
16080
- * Sets the capsule components to the given values.
16081
- * Please note that this method only copies the values from the given objects.
16082
- *
16083
- * @param {Vector3} start - The start vector.
16084
- * @param {Vector3} end - The end vector
16085
- * @param {number} radius - The capsule's radius.
16086
- * @return {Capsule} A reference to this capsule.
16087
- */
16088
- set(start, end, radius) {
16089
- this.start.copy(start);
16090
- this.end.copy(end);
16091
- this.radius = radius;
16092
- return this;
16093
- }
16094
- /**
16095
- * Copies the values of the given capsule to this instance.
16096
- *
16097
- * @param {Capsule} capsule - The capsule to copy.
16098
- * @return {Capsule} A reference to this capsule.
16099
- */
16100
- copy(capsule) {
16101
- this.start.copy(capsule.start);
16102
- this.end.copy(capsule.end);
16103
- this.radius = capsule.radius;
16104
- return this;
16105
- }
16106
- /**
16107
- * Returns the center point of this capsule.
16108
- *
16109
- * @param {Vector3} target - The target vector that is used to store the method's result.
16110
- * @return {Vector3} The center point.
16111
- */
16112
- getCenter(target) {
16113
- return target.copy(this.end).add(this.start).multiplyScalar(0.5);
16114
- }
16115
- /**
16116
- * Adds the given offset to this capsule, effectively moving it in 3D space.
16117
- *
16118
- * @param {Vector3} v - The offset that should be used to translate the capsule.
16119
- * @return {Capsule} A reference to this capsule.
16120
- */
16121
- translate(v) {
16122
- this.start.add(v);
16123
- this.end.add(v);
16124
- return this;
16125
- }
16126
- /**
16127
- * Returns `true` if the given bounding box intersects with this capsule.
16128
- *
16129
- * @param {Box3} box - The bounding box to test.
16130
- * @return {boolean} Whether the given bounding box intersects with this capsule.
16131
- */
16132
- intersectsBox(box) {
16133
- return checkAABBAxis(
16134
- this.start.x,
16135
- this.start.y,
16136
- this.end.x,
16137
- this.end.y,
16138
- box.min.x,
16139
- box.max.x,
16140
- box.min.y,
16141
- box.max.y,
16142
- this.radius
16143
- ) && checkAABBAxis(
16144
- this.start.x,
16145
- this.start.z,
16146
- this.end.x,
16147
- this.end.z,
16148
- box.min.x,
16149
- box.max.x,
16150
- box.min.z,
16151
- box.max.z,
16152
- this.radius
16153
- ) && checkAABBAxis(
16154
- this.start.y,
16155
- this.start.z,
16156
- this.end.y,
16157
- this.end.z,
16158
- box.min.y,
16159
- box.max.y,
16160
- box.min.z,
16161
- box.max.z,
16162
- this.radius
16163
- );
16164
- }
16165
- }
16166
- function checkAABBAxis(p1x, p1y, p2x, p2y, minx, maxx, miny, maxy, radius) {
16167
- return (minx - p1x < radius || minx - p2x < radius) && (p1x - maxx < radius || p2x - maxx < radius) && (miny - p1y < radius || miny - p2y < radius) && (p1y - maxy < radius || p2y - maxy < radius);
16168
- }
16169
- const _v1 = new Vector3();
16170
- const _v2 = new Vector3();
16171
- const _point1 = new Vector3();
16172
- const _point2 = new Vector3();
16173
- const _plane = new Plane();
16174
- const _line1 = new Line3();
16175
- const _line2 = new Line3();
16176
- const _sphere = new Sphere();
16177
- const _capsule = new Capsule();
16178
- const _temp1 = new Vector3();
16179
- const _temp2 = new Vector3();
16180
- const _temp3 = new Vector3();
16181
- const EPS = 1e-10;
16182
- function lineToLineClosestPoints(line1, line2, target1 = null, target2 = null) {
16183
- const r = _temp1.copy(line1.end).sub(line1.start);
16184
- const s = _temp2.copy(line2.end).sub(line2.start);
16185
- const w = _temp3.copy(line2.start).sub(line1.start);
16186
- const a = r.dot(s), b = r.dot(r), c = s.dot(s), d = s.dot(w), e = r.dot(w);
16187
- let t1, t2;
16188
- const divisor = b * c - a * a;
16189
- if (Math.abs(divisor) < EPS) {
16190
- const d1 = -d / c;
16191
- const d2 = (a - d) / c;
16192
- if (Math.abs(d1 - 0.5) < Math.abs(d2 - 0.5)) {
16193
- t1 = 0;
16194
- t2 = d1;
16195
- } else {
16196
- t1 = 1;
16197
- t2 = d2;
16198
- }
16199
- } else {
16200
- t1 = (d * a + e * c) / divisor;
16201
- t2 = (t1 * a - d) / c;
16202
- }
16203
- t2 = Math.max(0, Math.min(1, t2));
16204
- t1 = Math.max(0, Math.min(1, t1));
16205
- if (target1) {
16206
- target1.copy(r).multiplyScalar(t1).add(line1.start);
16207
- }
16208
- if (target2) {
16209
- target2.copy(s).multiplyScalar(t2).add(line2.start);
16210
- }
16211
- }
16212
- class Octree {
16213
- /**
16214
- * Constructs a new Octree.
16215
- *
16216
- * @param {Box3} [box] - The base box with enclose the entire Octree.
16217
- */
16218
- constructor(box) {
16219
- this.box = box;
16220
- this.bounds = new Box3();
16221
- this.layers = new Layers();
16222
- this.trianglesPerLeaf = 8;
16223
- this.maxLevel = 16;
16224
- this.subTrees = [];
16225
- this.triangles = [];
16226
- }
16227
- /**
16228
- * Adds the given triangle to the Octree. The triangle vertices are clamped if they exceed
16229
- * the bounds of the Octree.
16230
- *
16231
- * @param {Triangle} triangle - The triangle to add.
16232
- * @return {Octree} A reference to this Octree.
16233
- */
16234
- addTriangle(triangle) {
16235
- this.bounds.min.x = Math.min(this.bounds.min.x, triangle.a.x, triangle.b.x, triangle.c.x);
16236
- this.bounds.min.y = Math.min(this.bounds.min.y, triangle.a.y, triangle.b.y, triangle.c.y);
16237
- this.bounds.min.z = Math.min(this.bounds.min.z, triangle.a.z, triangle.b.z, triangle.c.z);
16238
- this.bounds.max.x = Math.max(this.bounds.max.x, triangle.a.x, triangle.b.x, triangle.c.x);
16239
- this.bounds.max.y = Math.max(this.bounds.max.y, triangle.a.y, triangle.b.y, triangle.c.y);
16240
- this.bounds.max.z = Math.max(this.bounds.max.z, triangle.a.z, triangle.b.z, triangle.c.z);
16241
- this.triangles.push(triangle);
16242
- return this;
16243
- }
16244
- /**
16245
- * Prepares {@link Octree#box} for the build.
16246
- *
16247
- * @return {Octree} A reference to this Octree.
16248
- */
16249
- calcBox() {
16250
- this.box = this.bounds.clone();
16251
- this.box.min.x -= 0.01;
16252
- this.box.min.y -= 0.01;
16253
- this.box.min.z -= 0.01;
16254
- return this;
16255
- }
16256
- /**
16257
- * Splits the Octree. This method is used recursively when
16258
- * building the Octree.
16259
- *
16260
- * @param {number} level - The current level.
16261
- * @return {Octree} A reference to this Octree.
16262
- */
16263
- split(level) {
16264
- if (!this.box) return;
16265
- const subTrees = [];
16266
- const halfsize = _v2.copy(this.box.max).sub(this.box.min).multiplyScalar(0.5);
16267
- for (let x = 0; x < 2; x++) {
16268
- for (let y = 0; y < 2; y++) {
16269
- for (let z = 0; z < 2; z++) {
16270
- const box = new Box3();
16271
- const v = _v1.set(x, y, z);
16272
- box.min.copy(this.box.min).add(v.multiply(halfsize));
16273
- box.max.copy(box.min).add(halfsize);
16274
- subTrees.push(new Octree(box));
16275
- }
16276
- }
16277
- }
16278
- let triangle;
16279
- while (triangle = this.triangles.pop()) {
16280
- for (let i = 0; i < subTrees.length; i++) {
16281
- if (subTrees[i].box.intersectsTriangle(triangle)) {
16282
- subTrees[i].triangles.push(triangle);
16283
- }
16284
- }
16285
- }
16286
- for (let i = 0; i < subTrees.length; i++) {
16287
- const len = subTrees[i].triangles.length;
16288
- if (len > this.trianglesPerLeaf && level < this.maxLevel) {
16289
- subTrees[i].split(level + 1);
16290
- }
16291
- if (len !== 0) {
16292
- this.subTrees.push(subTrees[i]);
16293
- }
16294
- }
16295
- return this;
16296
- }
16297
- /**
16298
- * Builds the Octree.
16299
- *
16300
- * @return {Octree} A reference to this Octree.
16301
- */
16302
- build() {
16303
- this.calcBox();
16304
- this.split(0);
16305
- return this;
16306
- }
16307
- /**
16308
- * Computes the triangles that potentially intersect with the given ray.
16309
- *
16310
- * @param {Ray} ray - The ray to test.
16311
- * @param {Array<Triangle>} triangles - The target array that holds the triangles.
16312
- */
16313
- getRayTriangles(ray, triangles) {
16314
- for (let i = 0; i < this.subTrees.length; i++) {
16315
- const subTree = this.subTrees[i];
16316
- if (!ray.intersectsBox(subTree.box)) continue;
16317
- if (subTree.triangles.length > 0) {
16318
- for (let j = 0; j < subTree.triangles.length; j++) {
16319
- if (triangles.indexOf(subTree.triangles[j]) === -1) triangles.push(subTree.triangles[j]);
16320
- }
16321
- } else {
16322
- subTree.getRayTriangles(ray, triangles);
16323
- }
16324
- }
16325
- }
16326
- /**
16327
- * Computes the intersection between the given capsule and triangle.
16328
- *
16329
- * @param {Capsule} capsule - The capsule to test.
16330
- * @param {Triangle} triangle - The triangle to test.
16331
- * @return {Object|false} The intersection object. If no intersection
16332
- * is detected, the method returns `false`.
16333
- */
16334
- triangleCapsuleIntersect(capsule, triangle) {
16335
- triangle.getPlane(_plane);
16336
- const d1 = _plane.distanceToPoint(capsule.start) - capsule.radius;
16337
- const d2 = _plane.distanceToPoint(capsule.end) - capsule.radius;
16338
- if (d1 > 0 && d2 > 0 || d1 < -capsule.radius && d2 < -capsule.radius) {
16339
- return false;
16340
- }
16341
- const delta = Math.abs(d1 / (Math.abs(d1) + Math.abs(d2)));
16342
- const intersectPoint = _v1.copy(capsule.start).lerp(capsule.end, delta);
16343
- if (triangle.containsPoint(intersectPoint)) {
16344
- return { normal: _plane.normal.clone(), point: intersectPoint.clone(), depth: Math.abs(Math.min(d1, d2)) };
16345
- }
16346
- const r2 = capsule.radius * capsule.radius;
16347
- const line1 = _line1.set(capsule.start, capsule.end);
16348
- const lines = [
16349
- [triangle.a, triangle.b],
16350
- [triangle.b, triangle.c],
16351
- [triangle.c, triangle.a]
16352
- ];
16353
- for (let i = 0; i < lines.length; i++) {
16354
- const line2 = _line2.set(lines[i][0], lines[i][1]);
16355
- lineToLineClosestPoints(line1, line2, _point1, _point2);
16356
- if (_point1.distanceToSquared(_point2) < r2) {
16357
- return {
16358
- normal: _point1.clone().sub(_point2).normalize(),
16359
- point: _point2.clone(),
16360
- depth: capsule.radius - _point1.distanceTo(_point2)
16361
- };
16362
- }
16363
- }
16364
- return false;
16365
- }
16366
- /**
16367
- * Computes the intersection between the given sphere and triangle.
16368
- *
16369
- * @param {Sphere} sphere - The sphere to test.
16370
- * @param {Triangle} triangle - The triangle to test.
16371
- * @return {Object|false} The intersection object. If no intersection
16372
- * is detected, the method returns `false`.
16373
- */
16374
- triangleSphereIntersect(sphere, triangle) {
16375
- triangle.getPlane(_plane);
16376
- if (!sphere.intersectsPlane(_plane)) return false;
16377
- const depth = Math.abs(_plane.distanceToSphere(sphere));
16378
- const r2 = sphere.radius * sphere.radius - depth * depth;
16379
- const plainPoint = _plane.projectPoint(sphere.center, _v1);
16380
- if (triangle.containsPoint(sphere.center)) {
16381
- return { normal: _plane.normal.clone(), point: plainPoint.clone(), depth: Math.abs(_plane.distanceToSphere(sphere)) };
16382
- }
16383
- const lines = [
16384
- [triangle.a, triangle.b],
16385
- [triangle.b, triangle.c],
16386
- [triangle.c, triangle.a]
16387
- ];
16388
- for (let i = 0; i < lines.length; i++) {
16389
- _line1.set(lines[i][0], lines[i][1]);
16390
- _line1.closestPointToPoint(plainPoint, true, _v2);
16391
- const d = _v2.distanceToSquared(sphere.center);
16392
- if (d < r2) {
16393
- return { normal: sphere.center.clone().sub(_v2).normalize(), point: _v2.clone(), depth: sphere.radius - Math.sqrt(d) };
16394
- }
16395
- }
16396
- return false;
16397
- }
16398
- /**
16399
- * Computes the triangles that potentially intersect with the given bounding sphere.
16400
- *
16401
- * @param {Sphere} sphere - The sphere to test.
16402
- * @param {Array<Triangle>} triangles - The target array that holds the triangles.
16403
- */
16404
- getSphereTriangles(sphere, triangles) {
16405
- for (let i = 0; i < this.subTrees.length; i++) {
16406
- const subTree = this.subTrees[i];
16407
- if (!sphere.intersectsBox(subTree.box)) continue;
16408
- if (subTree.triangles.length > 0) {
16409
- for (let j = 0; j < subTree.triangles.length; j++) {
16410
- if (triangles.indexOf(subTree.triangles[j]) === -1) triangles.push(subTree.triangles[j]);
16411
- }
16412
- } else {
16413
- subTree.getSphereTriangles(sphere, triangles);
16414
- }
16415
- }
16416
- }
16417
- /**
16418
- * Computes the triangles that potentially intersect with the given capsule.
16419
- *
16420
- * @param {Capsule} capsule - The capsule to test.
16421
- * @param {Array<Triangle>} triangles - The target array that holds the triangles.
16422
- */
16423
- getCapsuleTriangles(capsule, triangles) {
16424
- for (let i = 0; i < this.subTrees.length; i++) {
16425
- const subTree = this.subTrees[i];
16426
- if (!capsule.intersectsBox(subTree.box)) continue;
16427
- if (subTree.triangles.length > 0) {
16428
- for (let j = 0; j < subTree.triangles.length; j++) {
16429
- if (triangles.indexOf(subTree.triangles[j]) === -1) triangles.push(subTree.triangles[j]);
16430
- }
16431
- } else {
16432
- subTree.getCapsuleTriangles(capsule, triangles);
16433
- }
16434
- }
16435
- }
16436
- /**
16437
- * Performs a bounding sphere intersection test with this Octree.
16438
- *
16439
- * @param {Sphere} sphere - The bounding sphere to test.
16440
- * @return {Object|boolean} The intersection object. If no intersection
16441
- * is detected, the method returns `false`.
16442
- */
16443
- sphereIntersect(sphere) {
16444
- _sphere.copy(sphere);
16445
- const triangles = [];
16446
- let result, hit = false;
16447
- this.getSphereTriangles(sphere, triangles);
16448
- for (let i = 0; i < triangles.length; i++) {
16449
- if (result = this.triangleSphereIntersect(_sphere, triangles[i])) {
16450
- hit = true;
16451
- _sphere.center.add(result.normal.multiplyScalar(result.depth));
16452
- }
16453
- }
16454
- if (hit) {
16455
- const collisionVector = _sphere.center.clone().sub(sphere.center);
16456
- const depth = collisionVector.length();
16457
- return { normal: collisionVector.normalize(), depth };
16458
- }
16459
- return false;
16460
- }
16461
- /**
16462
- * Performs a capsule intersection test with this Octree.
16463
- *
16464
- * @param {Capsule} capsule - The capsule to test.
16465
- * @return {Object|boolean} The intersection object. If no intersection
16466
- * is detected, the method returns `false`.
16467
- */
16468
- capsuleIntersect(capsule) {
16469
- _capsule.copy(capsule);
16470
- const triangles = [];
16471
- let result, hit = false;
16472
- this.getCapsuleTriangles(_capsule, triangles);
16473
- for (let i = 0; i < triangles.length; i++) {
16474
- if (result = this.triangleCapsuleIntersect(_capsule, triangles[i])) {
16475
- hit = true;
16476
- _capsule.translate(result.normal.multiplyScalar(result.depth));
16477
- }
16478
- }
16479
- if (hit) {
16480
- const collisionVector = _capsule.getCenter(new Vector3()).sub(capsule.getCenter(_v1));
16481
- const depth = collisionVector.length();
16482
- return { normal: collisionVector.normalize(), depth };
16483
- }
16484
- return false;
16485
- }
16486
- /**
16487
- * Performs a ray intersection test with this Octree.
16488
- *
16489
- * @param {Ray} ray - The ray to test.
16490
- * @return {Object|boolean} The nearest intersection object. If no intersection
16491
- * is detected, the method returns `false`.
16492
- */
16493
- rayIntersect(ray) {
16494
- const triangles = [];
16495
- let triangle, position, distance = 1e100;
16496
- this.getRayTriangles(ray, triangles);
16497
- for (let i = 0; i < triangles.length; i++) {
16498
- const result = ray.intersectTriangle(triangles[i].a, triangles[i].b, triangles[i].c, true, _v1);
16499
- if (result) {
16500
- const newdistance = result.sub(ray.origin).length();
16501
- if (distance > newdistance) {
16502
- position = result.clone().add(ray.origin);
16503
- distance = newdistance;
16504
- triangle = triangles[i];
16505
- }
16506
- }
16507
- }
16508
- return distance < 1e100 ? { distance, triangle, position } : false;
16509
- }
16510
- /**
16511
- * Constructs the Octree from the given 3D object.
16512
- *
16513
- * @param {Object3D} group - The scene graph node.
16514
- * @return {Octree} A reference to this Octree.
16515
- */
16516
- fromGraphNode(group2) {
16517
- group2.updateWorldMatrix(true, true);
16518
- group2.traverse((obj) => {
16519
- if (obj.isMesh === true) {
16520
- if (this.layers.test(obj.layers)) {
16521
- let geometry, isTemp = false;
16522
- if (obj.geometry.index !== null) {
16523
- isTemp = true;
16524
- geometry = obj.geometry.toNonIndexed();
16525
- } else {
16526
- geometry = obj.geometry;
16527
- }
16528
- const positionAttribute = geometry.getAttribute("position");
16529
- for (let i = 0; i < positionAttribute.count; i += 3) {
16530
- const v1 = new Vector3().fromBufferAttribute(positionAttribute, i);
16531
- const v2 = new Vector3().fromBufferAttribute(positionAttribute, i + 1);
16532
- const v3 = new Vector3().fromBufferAttribute(positionAttribute, i + 2);
16533
- v1.applyMatrix4(obj.matrixWorld);
16534
- v2.applyMatrix4(obj.matrixWorld);
16535
- v3.applyMatrix4(obj.matrixWorld);
16536
- this.addTriangle(new Triangle(v1, v2, v3));
16537
- }
16538
- if (isTemp) {
16539
- geometry.dispose();
16540
- }
16541
- }
16542
- }
16543
- });
16544
- this.build();
16545
- return this;
16546
- }
16547
- /**
16548
- * Clears the Octree by making it empty.
16549
- *
16550
- * @return {Octree} A reference to this Octree.
16551
- */
16552
- clear() {
16553
- this.box = null;
16554
- this.bounds.makeEmpty();
16555
- this.subTrees.length = 0;
16556
- this.triangles.length = 0;
16557
- return this;
16558
- }
16559
- }
15790
+ Ne([M, w], g),
15791
+ Ne([D, w], g),
15792
+ Ne([D, h], g)
15793
+ ];
15794
+ };
16560
15795
  let globalScenario;
15796
+ const box3 = new THREE.Box3();
16561
15797
  class SceneAutoGenerat {
16562
15798
  lines;
16563
15799
  itemList;
@@ -16579,30 +15815,6 @@ class SceneAutoGenerat {
16579
15815
  await this.buildItem();
16580
15816
  globalScenario.scene.add(this.scene);
16581
15817
  }
16582
- /**
16583
- * 获取包围矩形
16584
- */
16585
- getSurroundRect(path, angle = this.angle) {
16586
- const points = path.map((p) => Point.from(p)), box2 = Box2.fromByPoints(...points), center = box2.center;
16587
- drawLines(points);
16588
- points.forEach((p) => p.rotate(center, angle));
16589
- const rectangle = Box2.fromByPoints(...points).points;
16590
- rectangle.forEach((p) => p.rotate(center, -angle));
16591
- return new Polygon(rectangle);
16592
- }
16593
- /** 构建平面
16594
- */
16595
- buildPlane() {
16596
- const texture = new THREE.TextureLoader().load(planeSrc);
16597
- texture.wrapS = texture.wrapT = THREE.RepeatWrapping;
16598
- texture.repeat.set(10, 10);
16599
- const plane = new THREE.Mesh(new THREE.BoxGeometry(50, 50, 1e-3), new THREE.MeshBasicMaterial({
16600
- color: 13421772,
16601
- map: texture
16602
- }));
16603
- plane.position.z = this.z;
16604
- this.scene.add(plane);
16605
- }
16606
15818
  wallGroup = null;
16607
15819
  /** 构建墙壁
16608
15820
  */
@@ -16610,37 +15822,13 @@ class SceneAutoGenerat {
16610
15822
  this.wallGroup = await globalScenario.drawGraphics(this.lines, this.z, this.trajectory);
16611
15823
  this.scene.add(this.wallGroup);
16612
15824
  }
16613
- /** 吸附
16614
- * @param walls
16615
- * @param group
16616
- * @param proximityThreshold
16617
- */
16618
- adsorption(octree, rectangle, height, proximityThreshold = 0.05) {
16619
- const shape = new THREE.Shape();
16620
- rectangle.forEach((p, i) => {
16621
- if (i === 0) shape.moveTo(p.x, p.y);
16622
- else shape.lineTo(p.x, p.y);
16623
- if (i === rectangle.length - 1) shape.lineTo(rectangle[0].x, rectangle[0].y);
16624
- });
16625
- const geometry = new THREE.ExtrudeGeometry(shape, {
16626
- depth: height,
16627
- bevelEnabled: false
16628
- });
16629
- const material = new THREE.MeshBasicMaterial({ color: THREE.MathUtils.randInt(0, 16777215), opacity: 1, transparent: true });
16630
- const mesh = new THREE.Mesh(geometry, material);
16631
- mesh.position.z = this.z;
16632
- this.scene.add(mesh);
16633
- }
16634
15825
  /** 获取模型
16635
15826
  * @param item
16636
15827
  * @param walls
16637
15828
  */
16638
- async getModel(item, octree) {
15829
+ async getModel(item) {
16639
15830
  let model = await LoadModel.loadGlb(item.category);
16640
15831
  if (!model) return;
16641
- const contour = Point.fromByList(item.contour), rectangle = new Polygon(Qa(contour.map((p) => [p.x, p.y])).map((p) => Point.from(p)));
16642
- rectangle.pop();
16643
- const max = rectangle.getMaxLengthInfo(), min = rectangle.getMinLengthInfo(), center = rectangle.getCenter(), direction = max.start.y < max.end.y ? max.start.direction(max.end) : max.end.direction(max.start), height = Math.abs(item.box.max.z - this.z);
16644
15832
  model = model.clone(true);
16645
15833
  model.rotateX(Math.PI * 0.5);
16646
15834
  model.traverse((mesh) => {
@@ -16650,388 +15838,759 @@ class SceneAutoGenerat {
16650
15838
  material.vertexColors = false;
16651
15839
  material.color = new THREE.Color(16777215);
16652
15840
  }
16653
- });
16654
- const group2 = new THREE.Group();
16655
- group2.position.set(center.x, center.y, this.z);
16656
- group2.add(model);
16657
- this.scene.add(group2);
16658
- const box3 = new THREE.Box3();
16659
- box3.setFromObject(group2);
16660
- const size = box3.getSize(new THREE.Vector3()), maxKey = size.x > size.y ? "x" : "y", mimKey = size.x < size.y ? "x" : "y", maxS = max.length / size[maxKey], minS = min.length / size[mimKey], scale = height / size.z;
16661
- group2.scale[maxKey] *= maxS;
16662
- group2.scale[mimKey] *= minS;
16663
- group2.scale.z *= scale;
16664
- box3.setFromObject(group2);
16665
- box3.getSize(size);
16666
- const point1 = new Point(), point2 = new Point();
16667
- if (size.x > size.y) {
16668
- point1.set(box3.min.x, box3.min.y);
16669
- point2.set(box3.max.x, box3.min.y);
16670
- } else {
16671
- point1.set(box3.min.x, box3.min.y);
16672
- point2.set(box3.min.x, box3.max.y);
15841
+ });
15842
+ const contour = Point.fromByList(item.contour ?? []), rectangle = new Polygon(Qa(contour.map((p) => [p.x, p.y])).map((p) => Point.from(p)));
15843
+ rectangle.pop();
15844
+ const max = rectangle.getMaxLengthInfo(), min = rectangle.getMinLengthInfo(), center = rectangle.getCenter(), direction = max.start.y < max.end.y ? max.start.direction(max.end) : max.end.direction(max.start), height = Math.abs(item.box.max.z - this.z);
15845
+ const group2 = new THREE.Group();
15846
+ group2.position.set(center.x, center.y, this.z);
15847
+ group2.add(model);
15848
+ this.scene.add(group2);
15849
+ const box32 = new THREE.Box3();
15850
+ box32.setFromObject(group2);
15851
+ const size = box32.getSize(new THREE.Vector3()), maxKey = size.x > size.y ? "x" : "y", mimKey = size.x < size.y ? "x" : "y", maxS = max.length / size[maxKey], minS = min.length / size[mimKey], scale = height / size.z;
15852
+ group2.scale[maxKey] *= maxS;
15853
+ group2.scale[mimKey] *= minS;
15854
+ group2.scale.z *= scale;
15855
+ box32.setFromObject(group2);
15856
+ box32.getSize(size);
15857
+ const point1 = new Point(), point2 = new Point();
15858
+ if (size.x > size.y) {
15859
+ point1.set(box32.min.x, box32.min.y);
15860
+ point2.set(box32.max.x, box32.min.y);
15861
+ } else {
15862
+ point1.set(box32.min.x, box32.min.y);
15863
+ point2.set(box32.min.x, box32.max.y);
15864
+ }
15865
+ const direction2 = point1.y < point2.y ? point1.direction(point2) : point2.direction(point1);
15866
+ group2.rotateZ(direction2.angleBetween2(direction));
15867
+ this.scene.add(
15868
+ SceneAutoGenerat.itemParse(item, this.z).box
15869
+ );
15870
+ }
15871
+ /** 构建物品模型
15872
+ */
15873
+ async buildItem() {
15874
+ await Promise.all(this.itemList.map(async (item) => await this.getModel(item)));
15875
+ }
15876
+ static itemParse(item, z) {
15877
+ const contour = Point.fromByList(item.contour), rectangle = new Polygon(Qa(contour.map((p) => [p.x, p.y])).map((p) => Point.from(p)));
15878
+ rectangle.pop();
15879
+ const height = Math.abs(item.box.max.z - z), max = rectangle.getMaxLengthInfo(), direction = max.start.y < max.end.y ? max.start.direction(max.end) : max.end.direction(max.start), shape = new THREE.Shape();
15880
+ rectangle.forEach((p, i) => {
15881
+ if (i === 0) shape.moveTo(p.x, p.y);
15882
+ else shape.lineTo(p.x, p.y);
15883
+ if (i === rectangle.length - 1) shape.lineTo(rectangle[0].x, rectangle[0].y);
15884
+ });
15885
+ const geometry = new THREE.ExtrudeGeometry(shape, {
15886
+ depth: height,
15887
+ bevelEnabled: false
15888
+ }), edges = new THREE.EdgesGeometry(geometry), lineSegments = new THREE.LineSegments(edges, new THREE.LineBasicMaterial({ color: 16776960 }));
15889
+ lineSegments.position.z = z;
15890
+ box3.setFromObject(lineSegments);
15891
+ const center = box3.getCenter(new THREE.Vector3());
15892
+ return {
15893
+ box: lineSegments,
15894
+ center,
15895
+ category: item.category,
15896
+ angle: direction.angleBetween(new Point(0, 1), "angle", "360") * (Math.PI / 180) + Math.PI * 0.5
15897
+ };
15898
+ }
15899
+ }
15900
+ const exporter = new OBJExporter();
15901
+ let glbExporter;
15902
+ function lineSqueezing(p1, p2, width = 0.1) {
15903
+ const normal = p2.normal(p1);
15904
+ const pDirect = p2.direction(p1).mutiplyScalar(width * 0.5);
15905
+ const nDirect = p1.direction(p2).mutiplyScalar(width * 0.5);
15906
+ const offsetX = normal.x * width * 0.5;
15907
+ const offsetY = normal.y * width * 0.5;
15908
+ return {
15909
+ points: [
15910
+ // 第一条线
15911
+ new Point(p1.x + offsetX, p1.y + offsetY).add(nDirect),
15912
+ new Point(p2.x + offsetX, p2.y + offsetY).add(pDirect),
15913
+ // 第二条线
15914
+ new Point(p1.x - offsetX, p1.y - offsetY).add(nDirect),
15915
+ new Point(p2.x - offsetX, p2.y - offsetY).add(pDirect)
15916
+ ],
15917
+ indices: [0, 1, 1, 3, 3, 2, 2, 0],
15918
+ rectIndices: [0, 1, 3, 2, 0]
15919
+ };
15920
+ }
15921
+ class WhiteModel extends Component {
15922
+ static name = "WhiteModel";
15923
+ Dxf = null;
15924
+ Variable = null;
15925
+ // dxf数据白模
15926
+ whiteModelGroup = new THREE.Group();
15927
+ // dxf数据白模边缘线
15928
+ whiteModelLineGroup = new THREE.Group();
15929
+ // 原始数据白模
15930
+ originalWhiteMode = new THREE.Group();
15931
+ material = new THREE.MeshStandardMaterial({ color: 16777215, transparent: true, opacity: 0.8, side: THREE.DoubleSide });
15932
+ itemList = [];
15933
+ promise;
15934
+ /** 设置物品列表
15935
+ * @param itemList
15936
+ */
15937
+ setItemList(itemList) {
15938
+ if (Array.isArray(itemList)) this.itemList = itemList;
15939
+ else if ("itemInfo" in itemList) this.itemList = itemList.itemInfo;
15940
+ }
15941
+ onAddFromParent(parent) {
15942
+ this.Dxf = parent.findComponentByName("Dxf");
15943
+ this.Variable = parent.findComponentByName("Variable");
15944
+ this.originalWhiteMode.visible = false;
15945
+ this.Dxf?.addEventListener("lineOffset", () => {
15946
+ this.promise = this.updateModel();
15947
+ });
15948
+ }
15949
+ async updateModel() {
15950
+ const dxfSystem = this.parent;
15951
+ this.Variable?.set("whiteModelVisible", false);
15952
+ const dxf = this.Dxf;
15953
+ this.originalWhiteMode.clear();
15954
+ this.whiteModelGroup.clear();
15955
+ this.whiteModelLineGroup.clear();
15956
+ this.whiteModelGroup.add(this.whiteModelLineGroup);
15957
+ this.whiteModelGroup.position.z = dxf.originalZAverage;
15958
+ this.originalWhiteMode.position.z = dxf.originalZAverage;
15959
+ const lines = dxfSystem.Dxf.getLineSegments(true);
15960
+ const sceneAutoGenerat = new SceneAutoGenerat(lines, this.itemList, dxfSystem.Dxf.originalZAverage, dxfSystem.CorrectionDxf.trajectory);
15961
+ await sceneAutoGenerat.init();
15962
+ const group2 = sceneAutoGenerat.scene;
15963
+ if (group2) {
15964
+ this.whiteModelLineGroup.add(group2.clone(true));
15965
+ }
15966
+ const walls = dxf.originalData.map(({ start, end, insetionArr }) => {
15967
+ const startVec3 = new Point(start.x, start.y).mutiplyScalar(dxf.scale), endVec3 = new Point(end.x, end.y).mutiplyScalar(dxf.scale), { points, indices, rectIndices } = lineSqueezing(startVec3, endVec3, dxf.width);
15968
+ return {
15969
+ points,
15970
+ indices,
15971
+ rectIndices,
15972
+ insetions: (insetionArr ?? []).map((insetion) => insetion.index)
15973
+ };
15974
+ });
15975
+ walls.forEach((wall) => {
15976
+ const shape = new THREE.Shape();
15977
+ wall.rectIndices.forEach((index2, i) => {
15978
+ const p = wall.points[index2];
15979
+ if (i === 0) shape.moveTo(p.x, p.y);
15980
+ else shape.lineTo(p.x, p.y);
15981
+ });
15982
+ const geometry = new THREE.ExtrudeGeometry(shape, {
15983
+ depth: 2.8,
15984
+ bevelSize: 0
15985
+ });
15986
+ if (geometry.attributes.position.array.filter((num) => Number.isNaN(num)).length) return;
15987
+ const mesh = new THREE.Mesh(geometry);
15988
+ this.originalWhiteMode?.add(mesh);
15989
+ });
15990
+ this.dispatchEvent({
15991
+ type: "updateModel",
15992
+ originalWhiteMode: this.originalWhiteMode,
15993
+ whiteModelGroup: this.whiteModelGroup
15994
+ });
15995
+ return this.whiteModelLineGroup;
15996
+ }
15997
+ /**
15998
+ * 转为obj
15999
+ * @returns
16000
+ */
16001
+ toOBJ() {
16002
+ return new Promise(async (resolve) => {
16003
+ await this.promise;
16004
+ this.material.opacity = 1;
16005
+ this.material.needsUpdate = true;
16006
+ setTimeout(() => {
16007
+ resolve(exporter.parse(this.whiteModelGroup));
16008
+ this.material.opacity = 0.8;
16009
+ this.material.transparent = true;
16010
+ }, 20);
16011
+ });
16012
+ }
16013
+ /**
16014
+ * 转为 glb
16015
+ * @param binary
16016
+ * @returns
16017
+ */
16018
+ toGltf(binary = true) {
16019
+ if (!glbExporter) glbExporter = new gltf.GLTFExporter();
16020
+ return new Promise(async (resolve) => {
16021
+ await this.promise;
16022
+ this.material.opacity = 1;
16023
+ this.material.needsUpdate = true;
16024
+ setTimeout(async () => {
16025
+ glbExporter.parse(this.whiteModelGroup.children, (gltf2) => {
16026
+ resolve(gltf2);
16027
+ this.material.opacity = 0.8;
16028
+ this.material.transparent = true;
16029
+ }, () => {
16030
+ resolve(void 0);
16031
+ }, {
16032
+ binary
16033
+ });
16034
+ }, 20);
16035
+ });
16036
+ }
16037
+ /**
16038
+ * 转为 OBJBlob
16039
+ * @returns
16040
+ */
16041
+ async toOBJBlob() {
16042
+ const buffer = await this.toOBJ();
16043
+ if (buffer) {
16044
+ return new Blob([buffer], { type: "application/octet-stream" });
16045
+ }
16046
+ }
16047
+ /**
16048
+ * 转为 GltfBlob
16049
+ * @returns
16050
+ */
16051
+ async toGltfBlob(binary = true) {
16052
+ const buffer = await this.toGltf(binary);
16053
+ if (buffer) {
16054
+ if (binary) return new Blob([buffer], { type: "application/octet-stream" });
16055
+ else return new Blob([JSON.stringify(buffer)], { type: "application/json" });
16056
+ }
16057
+ }
16058
+ /**
16059
+ * 下载 OBJ
16060
+ * @param filename
16061
+ * @returns
16062
+ */
16063
+ async downloadOBJ(filename) {
16064
+ if (typeof window !== "undefined") {
16065
+ const blob = await this.toOBJBlob();
16066
+ if (!blob) return;
16067
+ const a = document.createElement("a");
16068
+ a.href = URL.createObjectURL(blob);
16069
+ a.download = filename;
16070
+ a.click();
16071
+ } else if (typeof global !== "undefined") {
16072
+ const buffer = await this.toOBJ();
16073
+ if (buffer) {
16074
+ const fs2 = await include("fs", false);
16075
+ fs2.writeFileSync(filename, buffer);
16076
+ }
16077
+ }
16078
+ }
16079
+ /**
16080
+ * 下载 Gltf
16081
+ * @param filename
16082
+ * @returns
16083
+ */
16084
+ async downloadGltf(filename, binary = true) {
16085
+ if (typeof window !== "undefined") {
16086
+ const blob = await this.toGltfBlob(binary);
16087
+ if (!blob) return;
16088
+ const a = document.createElement("a");
16089
+ a.href = URL.createObjectURL(blob);
16090
+ a.download = filename;
16091
+ a.click();
16092
+ } else if (typeof global !== "undefined") {
16093
+ const buffer = await this.toGltf(binary);
16094
+ if (buffer) {
16095
+ const fs2 = await include("fs", false);
16096
+ fs2.writeFileSync(filename, binary ? Buffer.from(buffer) : JSON.stringify(buffer));
16097
+ }
16673
16098
  }
16674
- const direction2 = point1.y < point2.y ? point1.direction(point2) : point2.direction(point1);
16675
- group2.rotateZ(direction2.angleBetween2(direction));
16676
- }
16677
- /** 构建物品模型
16678
- */
16679
- async buildItem() {
16680
- const octree = new Octree();
16681
- octree.fromGraphNode(this.wallGroup);
16682
- await Promise.all(this.itemList.map(async (item) => await this.getModel(item, octree)));
16683
16099
  }
16684
16100
  }
16685
- const exporter = new OBJExporter();
16686
- let glbExporter;
16687
- function lineSqueezing(p1, p2, width = 0.1) {
16688
- const normal = p2.normal(p1);
16689
- const pDirect = p2.direction(p1).mutiplyScalar(width * 0.5);
16690
- const nDirect = p1.direction(p2).mutiplyScalar(width * 0.5);
16691
- const offsetX = normal.x * width * 0.5;
16692
- const offsetY = normal.y * width * 0.5;
16693
- return {
16694
- points: [
16695
- // 第一条线
16696
- new Point(p1.x + offsetX, p1.y + offsetY).add(nDirect),
16697
- new Point(p2.x + offsetX, p2.y + offsetY).add(pDirect),
16698
- // 第二条线
16699
- new Point(p1.x - offsetX, p1.y - offsetY).add(nDirect),
16700
- new Point(p2.x - offsetX, p2.y - offsetY).add(pDirect)
16701
- ],
16702
- indices: [0, 1, 1, 3, 3, 2, 2, 0],
16703
- rectIndices: [0, 1, 3, 2, 0]
16704
- };
16705
- }
16706
- class WhiteModel extends Component {
16707
- static name = "WhiteModel";
16101
+ class DetailsPoint extends Component {
16102
+ static name = "DetailsPoint";
16708
16103
  Dxf = null;
16104
+ WhiteModel = null;
16709
16105
  Variable = null;
16710
- // dxf数据白模
16711
- whiteModelGroup = new THREE.Group();
16712
- // dxf数据白模边缘线
16713
- whiteModelLineGroup = new THREE.Group();
16714
- // 原始数据白模
16715
- originalWhiteMode = new THREE.Group();
16716
- material = new THREE.MeshStandardMaterial({ color: 16777215, transparent: true, opacity: 0.8, side: THREE.DoubleSide });
16717
- itemList = [];
16718
- promise;
16719
- /** 设置物品列表
16720
- * @param itemList
16721
- */
16722
- setItemList(itemList) {
16723
- if (Array.isArray(itemList)) this.itemList = itemList;
16724
- else if ("itemInfo" in itemList) this.itemList = itemList.itemInfo;
16725
- }
16106
+ desPoints = [];
16107
+ raylines = [];
16108
+ data = [];
16726
16109
  onAddFromParent(parent) {
16727
16110
  this.Dxf = parent.findComponentByName("Dxf");
16728
16111
  this.Variable = parent.findComponentByName("Variable");
16729
- this.originalWhiteMode.visible = false;
16730
- this.Dxf?.addEventListener("lineOffset", () => {
16731
- this.promise = this.updateModel();
16112
+ this.Dxf?.addEventListener("setDta", () => {
16113
+ this.updateModel();
16732
16114
  });
16733
16115
  }
16734
- async updateModel() {
16735
- const dxfSystem = this.parent;
16736
- this.Variable?.set("whiteModelVisible", false);
16737
- const dxf = this.Dxf;
16738
- this.originalWhiteMode.clear();
16739
- this.whiteModelGroup.clear();
16740
- this.whiteModelLineGroup.clear();
16741
- this.whiteModelGroup.add(this.whiteModelLineGroup);
16742
- this.whiteModelGroup.position.z = dxf.originalZAverage;
16743
- this.originalWhiteMode.position.z = dxf.originalZAverage;
16744
- const lines = dxfSystem.Dxf.getLineSegments(true);
16745
- const sceneAutoGenerat = new SceneAutoGenerat(lines, this.itemList, dxfSystem.Dxf.originalZAverage, dxfSystem.CorrectionDxf.trajectory);
16746
- await sceneAutoGenerat.init();
16747
- const group2 = sceneAutoGenerat.scene;
16748
- if (group2) {
16749
- this.whiteModelLineGroup.add(group2.clone(true));
16116
+ /**
16117
+ * 设置值
16118
+ * @param data
16119
+ */
16120
+ async set(data) {
16121
+ if (typeof data === "string") {
16122
+ if (typeof global !== "undefined") {
16123
+ const packageName = "fs";
16124
+ const { default: fs2 } = await import(
16125
+ /* @vite-ignore */
16126
+ packageName
16127
+ );
16128
+ const buffer = fs2.readFileSync(data);
16129
+ const json = JSON.parse(buffer.toString("utf-8"));
16130
+ this.set(json);
16131
+ return;
16132
+ } else {
16133
+ throw new Error("非node环境不允许使用路径");
16134
+ }
16750
16135
  }
16751
- const walls = dxf.originalData.map(({ start, end, insetionArr }) => {
16752
- const startVec3 = new Point(start.x, start.y).mutiplyScalar(dxf.scale), endVec3 = new Point(end.x, end.y).mutiplyScalar(dxf.scale), { points, indices, rectIndices } = lineSqueezing(startVec3, endVec3, dxf.width);
16753
- return {
16754
- points,
16755
- indices,
16756
- rectIndices,
16757
- insetions: (insetionArr ?? []).map((insetion) => insetion.index)
16758
- };
16759
- });
16760
- walls.forEach((wall) => {
16761
- const shape = new THREE.Shape();
16762
- wall.rectIndices.forEach((index2, i) => {
16763
- const p = wall.points[index2];
16764
- if (i === 0) shape.moveTo(p.x, p.y);
16765
- else shape.lineTo(p.x, p.y);
16136
+ this.data = data;
16137
+ this.updateModel();
16138
+ }
16139
+ /**
16140
+ * 设置射线辅助
16141
+ */
16142
+ racasterHelper(position, direction, far) {
16143
+ this.raylines.push([
16144
+ position.clone(),
16145
+ position.clone().add(direction.clone().multiplyScalar(far))
16146
+ ]);
16147
+ direction.z = 0;
16148
+ this.raylines.push([
16149
+ position.clone(),
16150
+ position.clone().add(direction.clone().multiplyScalar(far))
16151
+ ]);
16152
+ }
16153
+ _timer = null;
16154
+ /**
16155
+ * 更新模型
16156
+ */
16157
+ updateModel() {
16158
+ if (this._timer) clearTimeout(this._timer);
16159
+ this._timer = setTimeout(() => {
16160
+ this._timer = null;
16161
+ const whiteModel = this.parent?.findComponentByName("WhiteModel");
16162
+ this.raylines.length = 0;
16163
+ this.desPoints.length = 0;
16164
+ this.data.forEach((item) => {
16165
+ const position = new THREE.Vector3(
16166
+ item.position.x,
16167
+ item.position.y,
16168
+ item.position.z
16169
+ );
16170
+ const direction = new THREE.Vector3(
16171
+ item.direction.x,
16172
+ item.direction.y,
16173
+ item.direction.z
16174
+ );
16175
+ const far = 100;
16176
+ this.racasterHelper(position, direction, far);
16177
+ direction.z = 0;
16178
+ const raycaster = new THREE.Raycaster(position, direction, 0, far);
16179
+ const list = raycaster.intersectObject(whiteModel.originalWhiteMode);
16180
+ if (list.length) {
16181
+ const { point } = list[0];
16182
+ this.desPoints.push({
16183
+ message: item.desc,
16184
+ position,
16185
+ intersection: point
16186
+ });
16187
+ }
16766
16188
  });
16767
- const geometry = new THREE.ExtrudeGeometry(shape, {
16768
- depth: 2.8,
16769
- bevelSize: 0
16189
+ this.dispatchEvent({
16190
+ type: "handleSuccess",
16191
+ desPoints: this.desPoints
16192
+ });
16193
+ }, 50);
16194
+ }
16195
+ }
16196
+ class DxfLineModel extends Component {
16197
+ static name = "DxfLineModel";
16198
+ dxfLineModel = new THREE.LineSegments();
16199
+ dxfDoorsLineModel = new THREE.LineSegments();
16200
+ dxfModelGroup = new THREE.Group();
16201
+ onAddFromParent(parent) {
16202
+ const dxf = parent.findComponentByName("Dxf");
16203
+ this.dxfModelGroup.add(this.dxfLineModel);
16204
+ this.dxfModelGroup.add(this.dxfDoorsLineModel);
16205
+ this.dxfDoorsLineModel.material = new THREE.LineBasicMaterial({ color: 16776960, vertexColors: true });
16206
+ dxf?.addEventListener("lineOffset", () => this.updateMode());
16207
+ }
16208
+ updateMode() {
16209
+ const dxf = this.parent?.findComponentByName("Dxf");
16210
+ this.dxfLineModel.clear();
16211
+ const dxfArray = dxf.to3DArray(1 / dxf.scale, 0);
16212
+ this.dxfLineModel.geometry = new THREE.BufferGeometry().setAttribute("position", new THREE.BufferAttribute(dxfArray, 3, true));
16213
+ const doorsArray = new Float32Array(
16214
+ dxf.doorLineSegment.flatMap(({ start, end }) => [start.x, start.y, 0, end.x, end.y, 0])
16215
+ ).map((n) => n / dxf.scale);
16216
+ const doorsColorArray = new Float32Array(dxf.doorLineSegment.flatMap(() => [1, 0, 0, 0, 1, 0]));
16217
+ this.dxfDoorsLineModel.geometry = new THREE.BufferGeometry().setAttribute("position", new THREE.BufferAttribute(doorsArray, 3, true)).setAttribute("color", new THREE.BufferAttribute(doorsColorArray, 3));
16218
+ this.dxfModelGroup.position.z = dxf.originalZAverage;
16219
+ this.dispatchEvent({
16220
+ type: "modelUpdate",
16221
+ model: this.dxfModelGroup
16222
+ });
16223
+ }
16224
+ }
16225
+ const index$2 = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
16226
+ __proto__: null,
16227
+ DetailsPoint,
16228
+ DxfLineModel,
16229
+ WhiteModel
16230
+ }, Symbol.toStringTag, { value: "Module" }));
16231
+ function ModelDataPlugin_(dxfSystem, option = {}) {
16232
+ const {
16233
+ detailsPoint = true,
16234
+ whiteModel = true,
16235
+ dxfLineModel = true
16236
+ } = option;
16237
+ dxfLineModel && dxfSystem.addComponent(new DxfLineModel());
16238
+ whiteModel && dxfSystem.addComponent(new WhiteModel());
16239
+ detailsPoint && dxfSystem.addComponent(new DetailsPoint());
16240
+ }
16241
+ const ModelDataPlugin = Object.assign(ModelDataPlugin_, {
16242
+ create(option = {}) {
16243
+ return (dxfSystem) => ModelDataPlugin_(dxfSystem, option);
16244
+ }
16245
+ });
16246
+ const index$1 = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
16247
+ __proto__: null,
16248
+ ModelDataPlugin,
16249
+ components: index$2
16250
+ }, Symbol.toStringTag, { value: "Module" }));
16251
+ class Lines extends THREE.LineSegments {
16252
+ geometry = new THREE.BufferGeometry();
16253
+ points = [];
16254
+ pointsObject3D;
16255
+ constructor(points = [], color = 16777215) {
16256
+ super();
16257
+ this.geometry = this.geometry;
16258
+ this.addPoint(...points);
16259
+ this.frustumCulled = false;
16260
+ this.pointsObject3D = new THREE.Points(this.geometry, new THREE.PointsMaterial({
16261
+ sizeAttenuation: false,
16262
+ size: 10
16263
+ }));
16264
+ this.material = new THREE.LineBasicMaterial({ color });
16265
+ }
16266
+ addPoint(...points) {
16267
+ this.points.push(...points);
16268
+ this.updateGeometry();
16269
+ }
16270
+ setPoint(...points) {
16271
+ this.points.length = 0;
16272
+ this.addPoint(...points);
16273
+ }
16274
+ _timer = null;
16275
+ updateGeometry() {
16276
+ if (this._timer) clearTimeout(this._timer);
16277
+ this._timer = setTimeout(() => {
16278
+ const array = this.points.flatMap((p, i) => {
16279
+ if (i === 0) return [];
16280
+ else {
16281
+ const p0 = this.points[i - 1];
16282
+ return [p0.x, p0.y, p0.z, p.x, p.y, p.z];
16283
+ }
16770
16284
  });
16771
- if (geometry.attributes.position.array.filter((num) => Number.isNaN(num)).length) return;
16772
- const mesh = new THREE.Mesh(geometry);
16773
- this.originalWhiteMode?.add(mesh);
16774
- });
16775
- this.dispatchEvent({
16776
- type: "updateModel",
16777
- originalWhiteMode: this.originalWhiteMode,
16778
- whiteModelGroup: this.whiteModelGroup
16285
+ const position = new THREE.BufferAttribute(new Float32Array(array), 3);
16286
+ this.geometry.setAttribute("position", position);
16287
+ this._timer = null;
16779
16288
  });
16780
- return this.whiteModelLineGroup;
16781
16289
  }
16782
- /**
16783
- * 转为obj
16784
- * @returns
16785
- */
16786
- toOBJ() {
16290
+ }
16291
+ function selectLocalFileFun() {
16292
+ return new Promise((resolve) => {
16293
+ const input = document.createElement("input");
16294
+ input.type = "file";
16295
+ input.accept = "application/json";
16296
+ input.click();
16297
+ input.onchange = () => {
16298
+ if (input.files?.length) resolve(input.files[0]);
16299
+ else resolve(null);
16300
+ };
16301
+ });
16302
+ }
16303
+ const SelectLocalFile = Object.assign(selectLocalFileFun, {
16304
+ arrayBuffer() {
16787
16305
  return new Promise(async (resolve) => {
16788
- await this.promise;
16789
- this.material.opacity = 1;
16790
- this.material.needsUpdate = true;
16791
- setTimeout(() => {
16792
- resolve(exporter.parse(this.whiteModelGroup));
16793
- this.material.opacity = 0.8;
16794
- this.material.transparent = true;
16795
- }, 20);
16306
+ const file = await selectLocalFileFun();
16307
+ if (file instanceof File) {
16308
+ const fileReader = new FileReader();
16309
+ fileReader.onload = () => {
16310
+ resolve(fileReader.result);
16311
+ };
16312
+ fileReader.readAsArrayBuffer(file);
16313
+ } else resolve(null);
16796
16314
  });
16797
- }
16798
- /**
16799
- * 转为 glb
16800
- * @param binary
16801
- * @returns
16802
- */
16803
- toGltf(binary = true) {
16804
- if (!glbExporter) glbExporter = new gltf.GLTFExporter();
16315
+ },
16316
+ text() {
16805
16317
  return new Promise(async (resolve) => {
16806
- await this.promise;
16807
- this.material.opacity = 1;
16808
- this.material.needsUpdate = true;
16809
- setTimeout(async () => {
16810
- glbExporter.parse(this.whiteModelGroup.children, (gltf2) => {
16811
- resolve(gltf2);
16812
- this.material.opacity = 0.8;
16813
- this.material.transparent = true;
16814
- }, () => {
16815
- resolve(void 0);
16816
- }, {
16817
- binary
16818
- });
16819
- }, 20);
16318
+ const file = await selectLocalFileFun();
16319
+ if (file instanceof File) {
16320
+ const fileReader = new FileReader();
16321
+ fileReader.onload = () => {
16322
+ resolve(fileReader.result);
16323
+ };
16324
+ fileReader.readAsText(file, "utf-8");
16325
+ } else resolve(null);
16820
16326
  });
16327
+ },
16328
+ async json() {
16329
+ const text = await this.text();
16330
+ if (text) return JSON.parse(text);
16331
+ }
16332
+ });
16333
+ class CommandFlow extends EventDispatcher {
16334
+ list = [];
16335
+ rollbacklist = [];
16336
+ revokeRollbacklist = [];
16337
+ // 是否写入操作记录
16338
+ writeOperationList = true;
16339
+ loop = false;
16340
+ setLoop(loop) {
16341
+ this.loop = loop;
16342
+ return this;
16821
16343
  }
16822
16344
  /**
16823
- * 转为 OBJBlob
16345
+ *
16346
+ * @param operation
16824
16347
  * @returns
16825
16348
  */
16826
- async toOBJBlob() {
16827
- const buffer = await this.toOBJ();
16828
- if (buffer) {
16829
- return new Blob([buffer], { type: "application/octet-stream" });
16830
- }
16349
+ add(operation) {
16350
+ this.list.push(operation);
16351
+ return this;
16831
16352
  }
16832
- /**
16833
- * 转为 GltfBlob
16353
+ /** 添加回滚回调列表
16354
+ * @param callBack
16355
+ */
16356
+ addRollback(callBack) {
16357
+ this.rollbacklist.push(callBack);
16358
+ return this;
16359
+ }
16360
+ /** 添加撤回回滚回调列表
16361
+ * @param callBack
16834
16362
  * @returns
16835
16363
  */
16836
- async toGltfBlob(binary = true) {
16837
- const buffer = await this.toGltf(binary);
16838
- if (buffer) {
16839
- if (binary) return new Blob([buffer], { type: "application/octet-stream" });
16840
- else return new Blob([JSON.stringify(buffer)], { type: "application/json" });
16841
- }
16364
+ addRevokeRollback(callBack) {
16365
+ this.revokeRollbacklist.push(callBack);
16366
+ return this;
16367
+ }
16368
+ }
16369
+ class CommandManager extends EventDispatcher {
16370
+ commandFlowMap = /* @__PURE__ */ new Map();
16371
+ lock = false;
16372
+ abortController = null;
16373
+ resolve = null;
16374
+ currentName = null;
16375
+ _disabled = false;
16376
+ set disabled(disabled) {
16377
+ this._disabled = disabled;
16378
+ if (this._disabled) this.cancel();
16379
+ }
16380
+ get disabled() {
16381
+ return this._disabled;
16842
16382
  }
16843
16383
  /**
16844
- * 下载 OBJ
16845
- * @param filename
16384
+ * 操作记录
16385
+ */
16386
+ operationList = [];
16387
+ rollbackList = [];
16388
+ constructor() {
16389
+ super();
16390
+ }
16391
+ /** 添加命令流
16392
+ * @param name
16846
16393
  * @returns
16847
16394
  */
16848
- async downloadOBJ(filename) {
16849
- if (typeof window !== "undefined") {
16850
- const blob = await this.toOBJBlob();
16851
- if (!blob) return;
16852
- const a = document.createElement("a");
16853
- a.href = URL.createObjectURL(blob);
16854
- a.download = filename;
16855
- a.click();
16856
- } else if (typeof global !== "undefined") {
16857
- const buffer = await this.toOBJ();
16858
- if (buffer) {
16859
- const fs2 = await include("fs", false);
16860
- fs2.writeFileSync(filename, buffer);
16861
- }
16862
- }
16395
+ addCommandFlow(name) {
16396
+ if (this.commandFlowMap.has(name)) throw new Error(`${name} 命令已经存在`);
16397
+ const commandFlow = new CommandFlow();
16398
+ this.commandFlowMap.set(name, commandFlow);
16399
+ return commandFlow;
16863
16400
  }
16864
- /**
16865
- * 下载 Gltf
16866
- * @param filename
16401
+ executionPromise = null;
16402
+ executionResolve = null;
16403
+ /** 执行控制流
16404
+ * @param name
16867
16405
  * @returns
16868
16406
  */
16869
- async downloadGltf(filename, binary = true) {
16870
- if (typeof window !== "undefined") {
16871
- const blob = await this.toGltfBlob(binary);
16872
- if (!blob) return;
16873
- const a = document.createElement("a");
16874
- a.href = URL.createObjectURL(blob);
16875
- a.download = filename;
16876
- a.click();
16877
- } else if (typeof global !== "undefined") {
16878
- const buffer = await this.toGltf(binary);
16879
- if (buffer) {
16880
- const fs2 = await include("fs", false);
16881
- fs2.writeFileSync(filename, binary ? Buffer.from(buffer) : JSON.stringify(buffer));
16407
+ async start(name, data = null, step = 0) {
16408
+ if (this.disabled) throw new Error("命令管理器已禁用,无法启动新的命令流");
16409
+ this.dispatchEvent({
16410
+ type: "startedBefore",
16411
+ name,
16412
+ currentName: this.currentName
16413
+ });
16414
+ this.executionPromise && await this.executionPromise;
16415
+ this.executionPromise = null;
16416
+ if (this.lock) {
16417
+ throw new Error("命令管理器已被 " + this.currentName + " 命令锁定,无法启动新的命令流,请退出或等待命令执行结束");
16418
+ }
16419
+ const commandFlow = this.commandFlowMap.get(name);
16420
+ if (!commandFlow) {
16421
+ throw new Error(`命令流 ${name} 不存在`);
16422
+ }
16423
+ this.lock = true;
16424
+ this.abortController = new AbortController();
16425
+ this.currentName = name;
16426
+ commandFlow.dispatchEvent({ type: "started" });
16427
+ this.dispatchEvent({ type: "started", name });
16428
+ try {
16429
+ for (let i = step; i < commandFlow.list.length; i++) {
16430
+ const operation = commandFlow.list[i];
16431
+ commandFlow.dispatchEvent({ type: "executing", index: i });
16432
+ this.dispatchEvent({ type: "executing", name, index: i });
16433
+ data = await new Promise((resolve) => {
16434
+ this.resolve = resolve;
16435
+ operation(resolve, data);
16436
+ });
16437
+ if (this.abortController.signal.aborted) {
16438
+ commandFlow.dispatchEvent({ type: "executionInterrupt", index: i });
16439
+ this.dispatchEvent({ type: "executionInterrupt", name, index: i });
16440
+ this.dispatchEvent({ type: "cancel", name });
16441
+ break;
16442
+ } else {
16443
+ commandFlow.dispatchEvent({ type: "executionCompleted", index: i, data });
16444
+ this.dispatchEvent({ type: "executionCompleted", name, index: i, data });
16445
+ }
16446
+ }
16447
+ } catch (error) {
16448
+ console.error(error);
16449
+ } finally {
16450
+ this.lock = false;
16451
+ this.currentName = null;
16452
+ if (this.abortController && !this.abortController.signal.aborted) {
16453
+ commandFlow.dispatchEvent({ type: "completed", data });
16454
+ this.dispatchEvent({ type: "completed", name, data });
16455
+ if (commandFlow.writeOperationList) {
16456
+ this.operationList.push({ name, data });
16457
+ this.rollbackList.length = 0;
16458
+ }
16459
+ if (commandFlow.loop) queueMicrotask(() => this.start(name));
16460
+ }
16461
+ this.abortController = null;
16462
+ commandFlow.dispatchEvent({ type: "finally" });
16463
+ this.dispatchEvent({ type: "finally", name });
16464
+ if (this.executionResolve) {
16465
+ this.executionResolve(null);
16466
+ this.executionResolve = null;
16882
16467
  }
16883
16468
  }
16469
+ return data;
16884
16470
  }
16885
- }
16886
- class DetailsPoint extends Component {
16887
- static name = "DetailsPoint";
16888
- Dxf = null;
16889
- WhiteModel = null;
16890
- Variable = null;
16891
- desPoints = [];
16892
- raylines = [];
16893
- data = [];
16894
- onAddFromParent(parent) {
16895
- this.Dxf = parent.findComponentByName("Dxf");
16896
- this.Variable = parent.findComponentByName("Variable");
16897
- this.Dxf?.addEventListener("setDta", () => {
16898
- this.updateModel();
16899
- });
16900
- }
16901
- /**
16902
- * 设置值
16903
- * @param data
16471
+ /** 取消当前命令
16904
16472
  */
16905
- async set(data) {
16906
- if (typeof data === "string") {
16907
- if (typeof global !== "undefined") {
16908
- const packageName = "fs";
16909
- const { default: fs2 } = await import(
16910
- /* @vite-ignore */
16911
- packageName
16912
- );
16913
- const buffer = fs2.readFileSync(data);
16914
- const json = JSON.parse(buffer.toString("utf-8"));
16915
- this.set(json);
16916
- return;
16917
- } else {
16918
- throw new Error("非node环境不允许使用路径");
16919
- }
16473
+ cancel() {
16474
+ if (this.abortController) {
16475
+ this.abortController.abort();
16476
+ if (this.resolve) this.resolve();
16477
+ this.executionPromise = new Promise((resolve) => this.executionResolve = resolve);
16920
16478
  }
16921
- this.data = data;
16922
- this.updateModel();
16923
16479
  }
16924
16480
  /**
16925
- * 设置射线辅助
16481
+ * 回滚
16926
16482
  */
16927
- racasterHelper(position, direction, far) {
16928
- this.raylines.push([
16929
- position.clone(),
16930
- position.clone().add(direction.clone().multiplyScalar(far))
16931
- ]);
16932
- direction.z = 0;
16933
- this.raylines.push([
16934
- position.clone(),
16935
- position.clone().add(direction.clone().multiplyScalar(far))
16936
- ]);
16483
+ rollback() {
16484
+ try {
16485
+ const operation = this.operationList.pop();
16486
+ if (!operation) return false;
16487
+ const commandFlow = this.commandFlowMap.get(operation.name);
16488
+ if (!commandFlow) return false;
16489
+ const data = commandFlow.rollbacklist.reduce((data2, callBack) => callBack(data2), operation.data);
16490
+ this.dispatchEvent({ type: "rollback", name: operation.name });
16491
+ this.rollbackList.push({
16492
+ data,
16493
+ name: operation.name
16494
+ });
16495
+ return true;
16496
+ } catch (error) {
16497
+ throw new Error(`回滚失败:${error}`);
16498
+ }
16937
16499
  }
16938
- _timer = null;
16939
16500
  /**
16940
- * 更新模型
16501
+ * 撤销回滚
16941
16502
  */
16942
- updateModel() {
16943
- if (this._timer) clearTimeout(this._timer);
16944
- this._timer = setTimeout(() => {
16945
- this._timer = null;
16946
- const whiteModel = this.parent?.findComponentByName("WhiteModel");
16947
- this.raylines.length = 0;
16948
- this.desPoints.length = 0;
16949
- this.data.forEach((item) => {
16950
- const position = new THREE.Vector3(
16951
- item.position.x,
16952
- item.position.y,
16953
- item.position.z
16954
- );
16955
- const direction = new THREE.Vector3(
16956
- item.direction.x,
16957
- item.direction.y,
16958
- item.direction.z
16959
- );
16960
- const far = 100;
16961
- this.racasterHelper(position, direction, far);
16962
- direction.z = 0;
16963
- const raycaster = new THREE.Raycaster(position, direction, 0, far);
16964
- const list = raycaster.intersectObject(whiteModel.originalWhiteMode);
16965
- if (list.length) {
16966
- const { point } = list[0];
16967
- this.desPoints.push({
16968
- message: item.desc,
16969
- position,
16970
- intersection: point
16971
- });
16972
- }
16973
- });
16974
- this.dispatchEvent({
16975
- type: "handleSuccess",
16976
- desPoints: this.desPoints
16977
- });
16978
- }, 50);
16979
- }
16980
- }
16981
- class DxfLineModel extends Component {
16982
- static name = "DxfLineModel";
16983
- dxfLineModel = new THREE.LineSegments();
16984
- dxfDoorsLineModel = new THREE.LineSegments();
16985
- dxfModelGroup = new THREE.Group();
16986
- onAddFromParent(parent) {
16987
- const dxf = parent.findComponentByName("Dxf");
16988
- this.dxfModelGroup.add(this.dxfLineModel);
16989
- this.dxfModelGroup.add(this.dxfDoorsLineModel);
16990
- this.dxfDoorsLineModel.material = new THREE.LineBasicMaterial({ color: 16776960, vertexColors: true });
16991
- dxf?.addEventListener("lineOffset", () => this.updateMode());
16503
+ revokeRollback() {
16504
+ try {
16505
+ const operation = this.rollbackList.pop();
16506
+ if (!operation) return false;
16507
+ const commandFlow = this.commandFlowMap.get(operation.name);
16508
+ if (!commandFlow) return false;
16509
+ const data = commandFlow.revokeRollbacklist.reduce((data2, callBack) => callBack(data2), operation.data);
16510
+ this.dispatchEvent({ type: "revokeRollback", name: operation.name });
16511
+ this.operationList.push({ name: operation.name, data });
16512
+ return true;
16513
+ } catch (error) {
16514
+ throw new Error(`撤回回滚失败:${error}`);
16515
+ }
16992
16516
  }
16993
- updateMode() {
16994
- const dxf = this.parent?.findComponentByName("Dxf");
16995
- this.dxfLineModel.clear();
16996
- const dxfArray = dxf.to3DArray(1 / dxf.scale, 0);
16997
- this.dxfLineModel.geometry = new THREE.BufferGeometry().setAttribute("position", new THREE.BufferAttribute(dxfArray, 3, true));
16998
- const doorsArray = new Float32Array(
16999
- dxf.doorLineSegment.flatMap(({ start, end }) => [start.x, start.y, 0, end.x, end.y, 0])
17000
- ).map((n) => n / dxf.scale);
17001
- const doorsColorArray = new Float32Array(dxf.doorLineSegment.flatMap(() => [1, 0, 0, 0, 1, 0]));
17002
- this.dxfDoorsLineModel.geometry = new THREE.BufferGeometry().setAttribute("position", new THREE.BufferAttribute(doorsArray, 3, true)).setAttribute("color", new THREE.BufferAttribute(doorsColorArray, 3));
17003
- this.dxfModelGroup.position.z = dxf.originalZAverage;
17004
- this.dispatchEvent({
17005
- type: "modelUpdate",
17006
- model: this.dxfModelGroup
17007
- });
16517
+ destroy() {
16518
+ this.cancel();
16519
+ this.addEventListener("cancel", () => {
16520
+ this.commandFlowMap.clear();
16521
+ this.lock = false;
16522
+ this.abortController = null;
16523
+ this.resolve = null;
16524
+ this.executionResolve = null;
16525
+ this.executionPromise = null;
16526
+ this.currentName = null;
16527
+ this.operationList.length = 0;
16528
+ this.rollbackList.length = 0;
16529
+ }, { once: true });
17008
16530
  }
17009
16531
  }
17010
- const index$1 = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
17011
- __proto__: null,
17012
- DetailsPoint,
17013
- DxfLineModel,
17014
- WhiteModel
17015
- }, Symbol.toStringTag, { value: "Module" }));
17016
- function ModelDataPlugin_(dxfSystem, option = {}) {
17017
- const {
17018
- detailsPoint = true,
17019
- whiteModel = true,
17020
- dxfLineModel = true
17021
- } = option;
17022
- dxfLineModel && dxfSystem.addComponent(new DxfLineModel());
17023
- whiteModel && dxfSystem.addComponent(new WhiteModel());
17024
- detailsPoint && dxfSystem.addComponent(new DetailsPoint());
17025
- }
17026
- const ModelDataPlugin = Object.assign(ModelDataPlugin_, {
17027
- create(option = {}) {
17028
- return (dxfSystem) => ModelDataPlugin_(dxfSystem, option);
17029
- }
17030
- });
17031
16532
  const index = /* @__PURE__ */ Object.freeze(/* @__PURE__ */ Object.defineProperty({
17032
16533
  __proto__: null,
17033
- ModelDataPlugin,
17034
- components: index$1
16534
+ ArrayMap,
16535
+ AxisAlignCorr,
16536
+ BoundExt,
16537
+ Box2,
16538
+ CommandFlow,
16539
+ CommandManager,
16540
+ Component,
16541
+ ComponentManager,
16542
+ CountMap,
16543
+ DoubleWallHelper,
16544
+ DxfSystem,
16545
+ EventDispatcher,
16546
+ GltfInit,
16547
+ LineGroupType,
16548
+ LineIndexGenerator,
16549
+ LineSegment,
16550
+ LineSegmentUndirectedGraph,
16551
+ Lines,
16552
+ MapEnhance,
16553
+ Point,
16554
+ PointVirtualGrid,
16555
+ Polygon,
16556
+ PvgList,
16557
+ Quadtree,
16558
+ Rectangle,
16559
+ SceneAutoGenerat,
16560
+ SelectLocalFile,
16561
+ SetMap,
16562
+ UndirectedGraph,
16563
+ UnionFindSet,
16564
+ buildBayWindowGroup,
16565
+ buildDoubleWallGroup,
16566
+ clippingDoubleWall,
16567
+ clippingLineUserData,
16568
+ cloneUserData,
16569
+ closedPathArea,
16570
+ components,
16571
+ findCircleEdges,
16572
+ findClosedPolygons,
16573
+ findDiscretePoint,
16574
+ findDiscretePointLine,
16575
+ findDiscretePointLine2,
16576
+ findLargestCircle,
16577
+ findRingEdges,
16578
+ findVerticalReference,
16579
+ gltf,
16580
+ lineDataToOriginalData,
16581
+ lineDataToThreeVJiaJson,
16582
+ lineSegmentClipping,
16583
+ mergeLineUserData,
16584
+ mergeSmallestCircle,
16585
+ mergeWindow,
16586
+ originalDataToLineData,
16587
+ recomputedWindow,
16588
+ recomputedWindowCenter,
16589
+ ringsDeduplication: ringsDeduplication$1,
16590
+ smallestCircle,
16591
+ toOriginalDataItem,
16592
+ tools,
16593
+ uuid
17035
16594
  }, Symbol.toStringTag, { value: "Module" }));
17036
16595
  function loadRenderPlugin() {
17037
16596
  return import("./index2.js");
@@ -17074,7 +16633,7 @@ if (typeof globalThis !== "undefined") {
17074
16633
  globalThis.Log = Log;
17075
16634
  }
17076
16635
  async function createEditor(dom, camera, orbitControls = false, viewPermission) {
17077
- const mp = await Promise.resolve().then(() => index);
16636
+ const mp = await Promise.resolve().then(() => index$1);
17078
16637
  const rp = await loadRenderPlugin();
17079
16638
  const editor = await loadEditorPlugin();
17080
16639
  const dxfSystem = new DxfSystem().usePlugin(mp.ModelDataPlugin.create({
@@ -17121,7 +16680,7 @@ async function getModels(originData, trajectory, itemList) {
17121
16680
  };
17122
16681
  }
17123
16682
  async function buildJson(opt) {
17124
- const mp = await Promise.resolve().then(() => index);
16683
+ const mp = await Promise.resolve().then(() => index$1);
17125
16684
  const dxfSystem = new DxfSystem();
17126
16685
  let { json, trajectory, axisAlignCorrOption, download, itemInfo } = opt;
17127
16686
  dxfSystem.usePlugin(mp.ModelDataPlugin);
@@ -17224,8 +16783,8 @@ export {
17224
16783
  getFileAll as j,
17225
16784
  getGlobalDxfSystem as k,
17226
16785
  Dxf as l,
17227
- index as m,
17228
- index$2 as n,
16786
+ index$1 as m,
16787
+ index as n,
17229
16788
  components as o,
17230
16789
  recomputedWindow as r,
17231
16790
  uuid as u