brainsmatics 1.1.28 → 1.1.29
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/{deflate-e200076b.mjs → deflate-3f0c9223.mjs} +1 -1
- package/dist/{deflate-e36b21f5.js → deflate-6ca69617.js} +1 -1
- package/dist/{index-4ffbb91c.mjs → index-7c325264.mjs} +25 -17
- package/dist/{index-22eef44a.js → index-bb1fe86b.js} +6 -4
- package/dist/index.js +1 -1
- package/dist/index.mjs +1 -1
- package/dist/{lerc-6d206204.mjs → lerc-66b0b5ef.mjs} +1 -1
- package/dist/{lerc-fea72562.js → lerc-f84f2604.js} +1 -1
- package/package.json +1 -1
|
@@ -1 +1 @@
|
|
|
1
|
-
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const r=require("./index-
|
|
1
|
+
"use strict";Object.defineProperty(exports,Symbol.toStringTag,{value:"Module"});const r=require("./index-bb1fe86b.js"),t=require("./basedecoder-0503cc54.js");require("react");require("react-dom");class d extends t.BaseDecoder{decodeBlock(e){return r.inflate_1(new Uint8Array(e)).buffer}}exports.default=d;
|
|
@@ -127447,7 +127447,15 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127447
127447
|
},
|
|
127448
127448
|
yAxis: {
|
|
127449
127449
|
type: "value",
|
|
127450
|
-
name: h("5000.7055") ||
|
|
127450
|
+
name: h("5000.7055") || `Silhouette
|
|
127451
|
+
Coefficient`,
|
|
127452
|
+
nameTextStyle: {
|
|
127453
|
+
fontSize: 12,
|
|
127454
|
+
overflow: "break",
|
|
127455
|
+
width: 80,
|
|
127456
|
+
lineHeight: 14
|
|
127457
|
+
// 行高,控制换行效果
|
|
127458
|
+
}
|
|
127451
127459
|
},
|
|
127452
127460
|
tooltip: {
|
|
127453
127461
|
position: "top-right",
|
|
@@ -127533,11 +127541,10 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127533
127541
|
show: !1
|
|
127534
127542
|
},
|
|
127535
127543
|
grid: {
|
|
127536
|
-
top:
|
|
127537
|
-
bottom: 140
|
|
127544
|
+
top: 65 + 20 * Math.ceil(sn.length / 5)
|
|
127538
127545
|
},
|
|
127539
127546
|
xAxis: {
|
|
127540
|
-
name: h("5000.7057") || "t-SNE",
|
|
127547
|
+
name: h("5000.7057") || "t-SNE 1",
|
|
127541
127548
|
nameLocation: "end",
|
|
127542
127549
|
nameRotate: 90
|
|
127543
127550
|
},
|
|
@@ -127619,7 +127626,7 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127619
127626
|
function ft(we, je, Qe, ot) {
|
|
127620
127627
|
const Pt = Math.floor((je - 40) / 50);
|
|
127621
127628
|
return we.map((sn, hn) => {
|
|
127622
|
-
const zt = Math.floor(hn / Pt), lr = hn % Pt * 50, Gn = 25 + zt *
|
|
127629
|
+
const zt = Math.floor(hn / Pt), lr = 30 + hn % Pt * 50, Gn = 25 + zt * 20;
|
|
127623
127630
|
return {
|
|
127624
127631
|
type: "group",
|
|
127625
127632
|
left: lr,
|
|
@@ -127627,7 +127634,7 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127627
127634
|
children: [
|
|
127628
127635
|
{
|
|
127629
127636
|
type: "rect",
|
|
127630
|
-
shape: { width: 20, height:
|
|
127637
|
+
shape: { width: 20, height: 15 },
|
|
127631
127638
|
style: { fill: sn.color, stroke: vr.current.includes(sn.value) ? "#ff0000" : "#333" },
|
|
127632
127639
|
onclick: () => Ee(sn, Qe, we, ot),
|
|
127633
127640
|
cursor: "pointer",
|
|
@@ -127731,7 +127738,7 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127731
127738
|
je.push(pt);
|
|
127732
127739
|
}
|
|
127733
127740
|
}
|
|
127734
|
-
fetch("
|
|
127741
|
+
fetch("/app-api/echarts-api/echarts_data", {
|
|
127735
127742
|
method: "POST",
|
|
127736
127743
|
headers: {
|
|
127737
127744
|
"Content-Type": "application/json"
|
|
@@ -127845,7 +127852,7 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127845
127852
|
R.createElement(
|
|
127846
127853
|
"div",
|
|
127847
127854
|
{ style: { marginTop: 40 } },
|
|
127848
|
-
R.createElement("h1", { style: { marginLeft: 15 } }, h("5000.7052") || "基于神经元形态的聚类及评估"),
|
|
127855
|
+
R.createElement("h1", { style: { marginLeft: 15, margin: 0, display: "block", textAlign: "center" } }, h("5000.7052") || "基于神经元形态的聚类及评估"),
|
|
127849
127856
|
R.createElement(
|
|
127850
127857
|
"div",
|
|
127851
127858
|
{ style: { display: "flex", justifyContent: "center", marginTop: 10 } },
|
|
@@ -127858,14 +127865,14 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127858
127865
|
R.createElement("p", null, h("5000.7056") || "折线图:本图根据投射靶区分布情况,对所选单神经元进行了不同数量的聚类,并对聚类结果使用轮廓系数进行了评估。通常来说,轮廓系数越大,表示聚类效果越好。您可以点击鼠标左键,选中一个您满意的聚类数。")
|
|
127859
127866
|
)
|
|
127860
127867
|
});
|
|
127861
|
-
} }, "使用说明")
|
|
127868
|
+
} }, h("5000.7061") || "使用说明")
|
|
127862
127869
|
)
|
|
127863
127870
|
),
|
|
127864
127871
|
R.createElement("div", { ref: Ti, style: { width: "100%", height: "300px" } }),
|
|
127865
127872
|
R.createElement(
|
|
127866
127873
|
"div",
|
|
127867
127874
|
null,
|
|
127868
|
-
R.createElement("h1", { style: { marginLeft: 25 } }, h("5000.7059") || "聚类神经元的降维与可视化"),
|
|
127875
|
+
R.createElement("h1", { style: { marginLeft: 25, margin: 0, display: "block", textAlign: "center" } }, h("5000.7059") || "聚类神经元的降维与可视化"),
|
|
127869
127876
|
R.createElement(
|
|
127870
127877
|
"div",
|
|
127871
127878
|
{ style: { display: "flex", justifyContent: "center", marginTop: 10 } },
|
|
@@ -127878,7 +127885,7 @@ const zCe = Date.now(), X4n = cu((t, e) => {
|
|
|
127878
127885
|
R.createElement("p", null, h("5000.7060") || "点状图:本图根据t-SNE算法,将神经元以散点形式绘制在了由2个主成分所构成的分布图上,每种颜色代表1个类别。点击分布图中的任意一个点,该点所对应的神经元将在主窗口中被重新渲染为所属类别的颜色。点击分布图上方代表任意一个类别的色块,所有属于该类别的神经元都将在主窗口中被重新渲染为该类别的颜色。")
|
|
127879
127886
|
)
|
|
127880
127887
|
});
|
|
127881
|
-
} }, "使用说明")
|
|
127888
|
+
} }, h("5000.7061") || "使用说明")
|
|
127882
127889
|
)
|
|
127883
127890
|
),
|
|
127884
127891
|
R.createElement("div", { ref: dr, style: { width: "100%", height: "440px" } })
|
|
@@ -131561,11 +131568,11 @@ Bb(6, () => {
|
|
|
131561
131568
|
throw new Error("old style JPEG compression is not supported.");
|
|
131562
131569
|
});
|
|
131563
131570
|
Bb(7, () => import("./jpeg-335c778f.mjs").then((t) => t.default));
|
|
131564
|
-
Bb([8, 32946], () => import("./deflate-
|
|
131571
|
+
Bb([8, 32946], () => import("./deflate-3f0c9223.mjs").then((t) => t.default));
|
|
131565
131572
|
Bb(32773, () => import("./packbits-8b95f4d7.mjs").then((t) => t.default));
|
|
131566
131573
|
Bb(
|
|
131567
131574
|
34887,
|
|
131568
|
-
() => import("./lerc-
|
|
131575
|
+
() => import("./lerc-66b0b5ef.mjs").then(async (t) => (await t.zstd.init(), t)).then((t) => t.default)
|
|
131569
131576
|
);
|
|
131570
131577
|
Bb(50001, () => import("./webimage-affb95d1.mjs").then((t) => t.default));
|
|
131571
131578
|
function Hk(t, e, n, r = 1) {
|
|
@@ -194227,13 +194234,14 @@ const a4n = {
|
|
|
194227
194234
|
"5000.7049": "Default mode is manual; You can switch to Auto mode to perform intelligent planning",
|
|
194228
194235
|
"5000.7050": "Please down-sample the slice image to ~10μm/pixel before uploading",
|
|
194229
194236
|
"5000.70251": "Clustering Analysis",
|
|
194230
|
-
"5000.7052": "
|
|
194237
|
+
"5000.7052": "Morpho- clustering & evaluation",
|
|
194231
194238
|
"5000.7054": "Num of Clusters",
|
|
194232
|
-
"5000.7055":
|
|
194239
|
+
"5000.7055": `Silhouette
|
|
194240
|
+
Coefficient`,
|
|
194233
194241
|
"5000.7056": "Line chart:Based on the distribution of projection targets, the selected single neurons were clustered with varied clustering numbers, and the clustering results were evaluated using the Silhouette Coefficient. In general, a larger silhouette coefficient indicates a better clustering performance. You can left-click to select a clustering number that satisfied.",
|
|
194234
|
-
"5000.7057": "t-SNE",
|
|
194242
|
+
"5000.7057": "t-SNE 1",
|
|
194235
194243
|
"5000.7058": "t-SNE 2",
|
|
194236
|
-
"5000.7059": "
|
|
194244
|
+
"5000.7059": "Clustering & evaluation",
|
|
194237
194245
|
"5000.7060": "Dot chart:In this figure, neurons are plotted as scattered points using the t-SNE algorithm on a distribution map composed of two principal components, with each color representing one cluster. Clicking any point on the distribution map will re-render the corresponding neuron in the main window with the color of its cluster. Clicking the color block above the distribution map that represents a given cluster will re-render all neurons belonging to that cluster in the main window with the same color.",
|
|
194238
194246
|
"5000.7061": "Introduction"
|
|
194239
194247
|
}, o4n = {
|