binary-tree-typed 2.2.0 → 2.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. package/dist/cjs/index.cjs +6 -6
  2. package/dist/cjs/index.cjs.map +1 -1
  3. package/dist/cjs-legacy/index.cjs +6 -6
  4. package/dist/cjs-legacy/index.cjs.map +1 -1
  5. package/dist/esm/index.mjs +6 -6
  6. package/dist/esm/index.mjs.map +1 -1
  7. package/dist/esm-legacy/index.mjs +6 -6
  8. package/dist/esm-legacy/index.mjs.map +1 -1
  9. package/dist/types/data-structures/binary-tree/avl-tree.d.ts +3 -1
  10. package/dist/types/data-structures/binary-tree/binary-tree.d.ts +1 -0
  11. package/dist/types/data-structures/binary-tree/bst.d.ts +1 -0
  12. package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +1 -0
  13. package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +1 -0
  14. package/dist/types/types/data-structures/base/base.d.ts +1 -1
  15. package/dist/umd/binary-tree-typed.js +6 -6
  16. package/dist/umd/binary-tree-typed.js.map +1 -1
  17. package/dist/umd/binary-tree-typed.min.js +1 -1
  18. package/dist/umd/binary-tree-typed.min.js.map +1 -1
  19. package/package.json +2 -2
  20. package/src/data-structures/base/iterable-entry-base.ts +4 -4
  21. package/src/data-structures/binary-tree/avl-tree-counter.ts +1 -1
  22. package/src/data-structures/binary-tree/avl-tree-multi-map.ts +1 -1
  23. package/src/data-structures/binary-tree/avl-tree.ts +4 -2
  24. package/src/data-structures/binary-tree/binary-tree.ts +3 -2
  25. package/src/data-structures/binary-tree/bst.ts +2 -1
  26. package/src/data-structures/binary-tree/red-black-tree.ts +2 -1
  27. package/src/data-structures/binary-tree/tree-counter.ts +1 -1
  28. package/src/data-structures/binary-tree/tree-multi-map.ts +2 -1
  29. package/src/data-structures/graph/abstract-graph.ts +3 -3
  30. package/src/data-structures/hash/hash-map.ts +4 -4
  31. package/src/types/data-structures/base/base.ts +1 -1
@@ -125,7 +125,9 @@ export declare class AVLTreeNode<K = any, V = any> {
125
125
  * 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater.
126
126
  * 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature.
127
127
  * 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST.
128
- * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.@example
128
+ * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
129
+ *
130
+ * @example
129
131
  * // Find elements in a range
130
132
  * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
131
133
  * type Datum = { timestamp: Date; temperature: number };
@@ -123,6 +123,7 @@ export declare class BinaryTreeNode<K = any, V = any> {
123
123
  * 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree.
124
124
  * 4. Subtrees: Each child of a node forms the root of a subtree.
125
125
  * 5. Leaf Nodes: Nodes without children are leaves.
126
+ *
126
127
  * @example
127
128
  * // determine loan approval using a decision tree
128
129
  * // Decision tree structure
@@ -124,6 +124,7 @@ export declare class BSTNode<K = any, V = any> {
124
124
  * 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
125
125
  * 6. Balance Variability: Can become unbalanced; special types maintain balance.
126
126
  * 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
127
+ *
127
128
  * @example
128
129
  * // Merge 3 sorted datasets
129
130
  * const dataset1 = new BST<number, string>([
@@ -110,6 +110,7 @@ export declare class RedBlackTreeNode<K = any, V = any> {
110
110
  * @template R
111
111
  * 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high, but the query efficiency is slightly lower.
112
112
  * 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
113
+ *
113
114
  * @example
114
115
  * // using Red-Black Tree as a price-based index for stock data
115
116
  * // Define the structure of individual stock records
@@ -113,6 +113,7 @@ export declare class TreeMultiMapNode<K = any, V = any> {
113
113
  * @template K
114
114
  * @template V
115
115
  * @template R
116
+ *
116
117
  * @example
117
118
  * // players ranked by score with their equipment
118
119
  * type Equipment = {
@@ -1,6 +1,6 @@
1
1
  import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
2
2
  import { LinearBase } from '../../../data-structures/base/linear-base';
3
- export type EntryCallback<K, V, R> = (key: K, value: V, index: number, original: IterableEntryBase<K, V>) => R;
3
+ export type EntryCallback<K, V, R> = (value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
4
4
  export type ElementCallback<E, R, RT> = (element: E, index: number, original: IterableElementBase<E, R>) => RT;
5
5
  export type ReduceEntryCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
6
6
  export type ReduceElementCallback<E, R, U = E> = (accumulator: U, value: E, index: number, self: IterableElementBase<E, R>) => U;
@@ -907,7 +907,7 @@ var binaryTreeTyped = (() => {
907
907
  every(predicate, thisArg) {
908
908
  let index = 0;
909
909
  for (const item of this) {
910
- if (!predicate.call(thisArg, item[0], item[1], index++, this)) {
910
+ if (!predicate.call(thisArg, item[1], item[0], index++, this)) {
911
911
  return false;
912
912
  }
913
913
  }
@@ -923,7 +923,7 @@ var binaryTreeTyped = (() => {
923
923
  some(predicate, thisArg) {
924
924
  let index = 0;
925
925
  for (const item of this) {
926
- if (predicate.call(thisArg, item[0], item[1], index++, this)) {
926
+ if (predicate.call(thisArg, item[1], item[0], index++, this)) {
927
927
  return true;
928
928
  }
929
929
  }
@@ -939,7 +939,7 @@ var binaryTreeTyped = (() => {
939
939
  let index = 0;
940
940
  for (const item of this) {
941
941
  const [key, value] = item;
942
- callbackfn.call(thisArg, key, value, index++, this);
942
+ callbackfn.call(thisArg, value, key, index++, this);
943
943
  }
944
944
  }
945
945
  /**
@@ -953,7 +953,7 @@ var binaryTreeTyped = (() => {
953
953
  let index = 0;
954
954
  for (const item of this) {
955
955
  const [key, value] = item;
956
- if (callbackfn.call(thisArg, key, value, index++, this)) return item;
956
+ if (callbackfn.call(thisArg, value, key, index++, this)) return item;
957
957
  }
958
958
  return;
959
959
  }
@@ -2204,7 +2204,7 @@ var binaryTreeTyped = (() => {
2204
2204
  filter(predicate, thisArg) {
2205
2205
  const out = this._createInstance();
2206
2206
  let i = 0;
2207
- for (const [k, v] of this) if (predicate.call(thisArg, k, v, i++, this)) out.add([k, v]);
2207
+ for (const [k, v] of this) if (predicate.call(thisArg, v, k, i++, this)) out.add([k, v]);
2208
2208
  return out;
2209
2209
  }
2210
2210
  /**
@@ -2222,7 +2222,7 @@ var binaryTreeTyped = (() => {
2222
2222
  map(cb, options, thisArg) {
2223
2223
  const out = this._createLike([], options);
2224
2224
  let i = 0;
2225
- for (const [k, v] of this) out.add(cb.call(thisArg, k, v, i++, this));
2225
+ for (const [k, v] of this) out.add(cb.call(thisArg, v, k, i++, this));
2226
2226
  return out;
2227
2227
  }
2228
2228
  /**