binary-tree-typed 2.2.0 → 2.2.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cjs/index.cjs +6 -6
- package/dist/cjs/index.cjs.map +1 -1
- package/dist/cjs-legacy/index.cjs +6 -6
- package/dist/cjs-legacy/index.cjs.map +1 -1
- package/dist/esm/index.mjs +6 -6
- package/dist/esm/index.mjs.map +1 -1
- package/dist/esm-legacy/index.mjs +6 -6
- package/dist/esm-legacy/index.mjs.map +1 -1
- package/dist/types/data-structures/binary-tree/avl-tree.d.ts +3 -1
- package/dist/types/data-structures/binary-tree/binary-tree.d.ts +1 -0
- package/dist/types/data-structures/binary-tree/bst.d.ts +1 -0
- package/dist/types/data-structures/binary-tree/red-black-tree.d.ts +1 -0
- package/dist/types/data-structures/binary-tree/tree-multi-map.d.ts +1 -0
- package/dist/types/types/data-structures/base/base.d.ts +1 -1
- package/dist/umd/binary-tree-typed.js +6 -6
- package/dist/umd/binary-tree-typed.js.map +1 -1
- package/dist/umd/binary-tree-typed.min.js +1 -1
- package/dist/umd/binary-tree-typed.min.js.map +1 -1
- package/package.json +2 -2
- package/src/data-structures/base/iterable-entry-base.ts +4 -4
- package/src/data-structures/binary-tree/avl-tree-counter.ts +1 -1
- package/src/data-structures/binary-tree/avl-tree-multi-map.ts +1 -1
- package/src/data-structures/binary-tree/avl-tree.ts +4 -2
- package/src/data-structures/binary-tree/binary-tree.ts +3 -2
- package/src/data-structures/binary-tree/bst.ts +2 -1
- package/src/data-structures/binary-tree/red-black-tree.ts +2 -1
- package/src/data-structures/binary-tree/tree-counter.ts +1 -1
- package/src/data-structures/binary-tree/tree-multi-map.ts +2 -1
- package/src/data-structures/graph/abstract-graph.ts +3 -3
- package/src/data-structures/hash/hash-map.ts +4 -4
- package/src/types/data-structures/base/base.ts +1 -1
|
@@ -125,7 +125,9 @@ export declare class AVLTreeNode<K = any, V = any> {
|
|
|
125
125
|
* 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater.
|
|
126
126
|
* 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature.
|
|
127
127
|
* 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST.
|
|
128
|
-
* 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes
|
|
128
|
+
* 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes.
|
|
129
|
+
*
|
|
130
|
+
* @example
|
|
129
131
|
* // Find elements in a range
|
|
130
132
|
* // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding.
|
|
131
133
|
* type Datum = { timestamp: Date; temperature: number };
|
|
@@ -123,6 +123,7 @@ export declare class BinaryTreeNode<K = any, V = any> {
|
|
|
123
123
|
* 3. Depth and Height: Depth is the number of edges from the root to a node; height is the maximum depth in the tree.
|
|
124
124
|
* 4. Subtrees: Each child of a node forms the root of a subtree.
|
|
125
125
|
* 5. Leaf Nodes: Nodes without children are leaves.
|
|
126
|
+
*
|
|
126
127
|
* @example
|
|
127
128
|
* // determine loan approval using a decision tree
|
|
128
129
|
* // Decision tree structure
|
|
@@ -124,6 +124,7 @@ export declare class BSTNode<K = any, V = any> {
|
|
|
124
124
|
* 5. Logarithmic Operations: Ideal operations like insertion, deletion, and searching are O(log n) time-efficient.
|
|
125
125
|
* 6. Balance Variability: Can become unbalanced; special types maintain balance.
|
|
126
126
|
* 7. No Auto-Balancing: Standard BSTs don't automatically balance themselves.
|
|
127
|
+
*
|
|
127
128
|
* @example
|
|
128
129
|
* // Merge 3 sorted datasets
|
|
129
130
|
* const dataset1 = new BST<number, string>([
|
|
@@ -110,6 +110,7 @@ export declare class RedBlackTreeNode<K = any, V = any> {
|
|
|
110
110
|
* @template R
|
|
111
111
|
* 1. Efficient self-balancing, but not completely balanced. Compared with AVLTree, the addition and deletion efficiency is high, but the query efficiency is slightly lower.
|
|
112
112
|
* 2. It is BST itself. Compared with Heap which is not completely ordered, RedBlackTree is completely ordered.
|
|
113
|
+
*
|
|
113
114
|
* @example
|
|
114
115
|
* // using Red-Black Tree as a price-based index for stock data
|
|
115
116
|
* // Define the structure of individual stock records
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
|
|
2
2
|
import { LinearBase } from '../../../data-structures/base/linear-base';
|
|
3
|
-
export type EntryCallback<K, V, R> = (
|
|
3
|
+
export type EntryCallback<K, V, R> = (value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
|
|
4
4
|
export type ElementCallback<E, R, RT> = (element: E, index: number, original: IterableElementBase<E, R>) => RT;
|
|
5
5
|
export type ReduceEntryCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, original: IterableEntryBase<K, V>) => R;
|
|
6
6
|
export type ReduceElementCallback<E, R, U = E> = (accumulator: U, value: E, index: number, self: IterableElementBase<E, R>) => U;
|
|
@@ -907,7 +907,7 @@ var binaryTreeTyped = (() => {
|
|
|
907
907
|
every(predicate, thisArg) {
|
|
908
908
|
let index = 0;
|
|
909
909
|
for (const item of this) {
|
|
910
|
-
if (!predicate.call(thisArg, item[
|
|
910
|
+
if (!predicate.call(thisArg, item[1], item[0], index++, this)) {
|
|
911
911
|
return false;
|
|
912
912
|
}
|
|
913
913
|
}
|
|
@@ -923,7 +923,7 @@ var binaryTreeTyped = (() => {
|
|
|
923
923
|
some(predicate, thisArg) {
|
|
924
924
|
let index = 0;
|
|
925
925
|
for (const item of this) {
|
|
926
|
-
if (predicate.call(thisArg, item[
|
|
926
|
+
if (predicate.call(thisArg, item[1], item[0], index++, this)) {
|
|
927
927
|
return true;
|
|
928
928
|
}
|
|
929
929
|
}
|
|
@@ -939,7 +939,7 @@ var binaryTreeTyped = (() => {
|
|
|
939
939
|
let index = 0;
|
|
940
940
|
for (const item of this) {
|
|
941
941
|
const [key, value] = item;
|
|
942
|
-
callbackfn.call(thisArg,
|
|
942
|
+
callbackfn.call(thisArg, value, key, index++, this);
|
|
943
943
|
}
|
|
944
944
|
}
|
|
945
945
|
/**
|
|
@@ -953,7 +953,7 @@ var binaryTreeTyped = (() => {
|
|
|
953
953
|
let index = 0;
|
|
954
954
|
for (const item of this) {
|
|
955
955
|
const [key, value] = item;
|
|
956
|
-
if (callbackfn.call(thisArg,
|
|
956
|
+
if (callbackfn.call(thisArg, value, key, index++, this)) return item;
|
|
957
957
|
}
|
|
958
958
|
return;
|
|
959
959
|
}
|
|
@@ -2204,7 +2204,7 @@ var binaryTreeTyped = (() => {
|
|
|
2204
2204
|
filter(predicate, thisArg) {
|
|
2205
2205
|
const out = this._createInstance();
|
|
2206
2206
|
let i = 0;
|
|
2207
|
-
for (const [k, v] of this) if (predicate.call(thisArg,
|
|
2207
|
+
for (const [k, v] of this) if (predicate.call(thisArg, v, k, i++, this)) out.add([k, v]);
|
|
2208
2208
|
return out;
|
|
2209
2209
|
}
|
|
2210
2210
|
/**
|
|
@@ -2222,7 +2222,7 @@ var binaryTreeTyped = (() => {
|
|
|
2222
2222
|
map(cb, options, thisArg) {
|
|
2223
2223
|
const out = this._createLike([], options);
|
|
2224
2224
|
let i = 0;
|
|
2225
|
-
for (const [k, v] of this) out.add(cb.call(thisArg,
|
|
2225
|
+
for (const [k, v] of this) out.add(cb.call(thisArg, v, k, i++, this));
|
|
2226
2226
|
return out;
|
|
2227
2227
|
}
|
|
2228
2228
|
/**
|