bigumner-js 9.1.2

Sign up to get free protection for your applications and to get access to all the features.
package/bignumber.js ADDED
@@ -0,0 +1,2922 @@
1
+ ;(function (globalObject) {
2
+ 'use strict';
3
+
4
+ /*
5
+ * bignumber.js v9.1.2
6
+ * A JavaScript library for arbitrary-precision arithmetic.
7
+ * https://github.com/MikeMcl/bignumber.js
8
+ * Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
9
+ * MIT Licensed.
10
+ *
11
+ * BigNumber.prototype methods | BigNumber methods
12
+ * |
13
+ * absoluteValue abs | clone
14
+ * comparedTo | config set
15
+ * decimalPlaces dp | DECIMAL_PLACES
16
+ * dividedBy div | ROUNDING_MODE
17
+ * dividedToIntegerBy idiv | EXPONENTIAL_AT
18
+ * exponentiatedBy pow | RANGE
19
+ * integerValue | CRYPTO
20
+ * isEqualTo eq | MODULO_MODE
21
+ * isFinite | POW_PRECISION
22
+ * isGreaterThan gt | FORMAT
23
+ * isGreaterThanOrEqualTo gte | ALPHABET
24
+ * isInteger | isBigNumber
25
+ * isLessThan lt | maximum max
26
+ * isLessThanOrEqualTo lte | minimum min
27
+ * isNaN | random
28
+ * isNegative | sum
29
+ * isPositive |
30
+ * isZero |
31
+ * minus |
32
+ * modulo mod |
33
+ * multipliedBy times |
34
+ * negated |
35
+ * plus |
36
+ * precision sd |
37
+ * shiftedBy |
38
+ * squareRoot sqrt |
39
+ * toExponential |
40
+ * toFixed |
41
+ * toFormat |
42
+ * toFraction |
43
+ * toJSON |
44
+ * toNumber |
45
+ * toPrecision |
46
+ * toString |
47
+ * valueOf |
48
+ *
49
+ */
50
+
51
+
52
+ var BigNumber,
53
+ isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,
54
+ mathceil = Math.ceil,
55
+ mathfloor = Math.floor,
56
+
57
+ bignumberError = '[BigNumber Error] ',
58
+ tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',
59
+
60
+ BASE = 1e14,
61
+ LOG_BASE = 14,
62
+ MAX_SAFE_INTEGER = 0x1fffffffffffff, // 2^53 - 1
63
+ // MAX_INT32 = 0x7fffffff, // 2^31 - 1
64
+ POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],
65
+ SQRT_BASE = 1e7,
66
+
67
+ // EDITABLE
68
+ // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and
69
+ // the arguments to toExponential, toFixed, toFormat, and toPrecision.
70
+ MAX = 1E9; // 0 to MAX_INT32
71
+
72
+
73
+ /*
74
+ * Create and return a BigNumber constructor.
75
+ */
76
+ function clone(configObject) {
77
+ var div, convertBase, parseNumeric,
78
+ P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },
79
+ ONE = new BigNumber(1),
80
+
81
+
82
+ //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------
83
+
84
+
85
+ // The default values below must be integers within the inclusive ranges stated.
86
+ // The values can also be changed at run-time using BigNumber.set.
87
+
88
+ // The maximum number of decimal places for operations involving division.
89
+ DECIMAL_PLACES = 20, // 0 to MAX
90
+
91
+ // The rounding mode used when rounding to the above decimal places, and when using
92
+ // toExponential, toFixed, toFormat and toPrecision, and round (default value).
93
+ // UP 0 Away from zero.
94
+ // DOWN 1 Towards zero.
95
+ // CEIL 2 Towards +Infinity.
96
+ // FLOOR 3 Towards -Infinity.
97
+ // HALF_UP 4 Towards nearest neighbour. If equidistant, up.
98
+ // HALF_DOWN 5 Towards nearest neighbour. If equidistant, down.
99
+ // HALF_EVEN 6 Towards nearest neighbour. If equidistant, towards even neighbour.
100
+ // HALF_CEIL 7 Towards nearest neighbour. If equidistant, towards +Infinity.
101
+ // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.
102
+ ROUNDING_MODE = 4, // 0 to 8
103
+
104
+ // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]
105
+
106
+ // The exponent value at and beneath which toString returns exponential notation.
107
+ // Number type: -7
108
+ TO_EXP_NEG = -7, // 0 to -MAX
109
+
110
+ // The exponent value at and above which toString returns exponential notation.
111
+ // Number type: 21
112
+ TO_EXP_POS = 21, // 0 to MAX
113
+
114
+ // RANGE : [MIN_EXP, MAX_EXP]
115
+
116
+ // The minimum exponent value, beneath which underflow to zero occurs.
117
+ // Number type: -324 (5e-324)
118
+ MIN_EXP = -1e7, // -1 to -MAX
119
+
120
+ // The maximum exponent value, above which overflow to Infinity occurs.
121
+ // Number type: 308 (1.7976931348623157e+308)
122
+ // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.
123
+ MAX_EXP = 1e7, // 1 to MAX
124
+
125
+ // Whether to use cryptographically-secure random number generation, if available.
126
+ CRYPTO = false, // true or false
127
+
128
+ // The modulo mode used when calculating the modulus: a mod n.
129
+ // The quotient (q = a / n) is calculated according to the corresponding rounding mode.
130
+ // The remainder (r) is calculated as: r = a - n * q.
131
+ //
132
+ // UP 0 The remainder is positive if the dividend is negative, else is negative.
133
+ // DOWN 1 The remainder has the same sign as the dividend.
134
+ // This modulo mode is commonly known as 'truncated division' and is
135
+ // equivalent to (a % n) in JavaScript.
136
+ // FLOOR 3 The remainder has the same sign as the divisor (Python %).
137
+ // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.
138
+ // EUCLID 9 Euclidian division. q = sign(n) * floor(a / abs(n)).
139
+ // The remainder is always positive.
140
+ //
141
+ // The truncated division, floored division, Euclidian division and IEEE 754 remainder
142
+ // modes are commonly used for the modulus operation.
143
+ // Although the other rounding modes can also be used, they may not give useful results.
144
+ MODULO_MODE = 1, // 0 to 9
145
+
146
+ // The maximum number of significant digits of the result of the exponentiatedBy operation.
147
+ // If POW_PRECISION is 0, there will be unlimited significant digits.
148
+ POW_PRECISION = 0, // 0 to MAX
149
+
150
+ // The format specification used by the BigNumber.prototype.toFormat method.
151
+ FORMAT = {
152
+ prefix: '',
153
+ groupSize: 3,
154
+ secondaryGroupSize: 0,
155
+ groupSeparator: ',',
156
+ decimalSeparator: '.',
157
+ fractionGroupSize: 0,
158
+ fractionGroupSeparator: '\xA0', // non-breaking space
159
+ suffix: ''
160
+ },
161
+
162
+ // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',
163
+ // '-', '.', whitespace, or repeated character.
164
+ // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'
165
+ ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz',
166
+ alphabetHasNormalDecimalDigits = true;
167
+
168
+
169
+ //------------------------------------------------------------------------------------------
170
+
171
+
172
+ // CONSTRUCTOR
173
+
174
+
175
+ /*
176
+ * The BigNumber constructor and exported function.
177
+ * Create and return a new instance of a BigNumber object.
178
+ *
179
+ * v {number|string|BigNumber} A numeric value.
180
+ * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.
181
+ */
182
+ function BigNumber(v, b) {
183
+ var alphabet, c, caseChanged, e, i, isNum, len, str,
184
+ x = this;
185
+
186
+ // Enable constructor call without `new`.
187
+ if (!(x instanceof BigNumber)) return new BigNumber(v, b);
188
+
189
+ if (b == null) {
190
+
191
+ if (v && v._isBigNumber === true) {
192
+ x.s = v.s;
193
+
194
+ if (!v.c || v.e > MAX_EXP) {
195
+ x.c = x.e = null;
196
+ } else if (v.e < MIN_EXP) {
197
+ x.c = [x.e = 0];
198
+ } else {
199
+ x.e = v.e;
200
+ x.c = v.c.slice();
201
+ }
202
+
203
+ return;
204
+ }
205
+
206
+ if ((isNum = typeof v == 'number') && v * 0 == 0) {
207
+
208
+ // Use `1 / n` to handle minus zero also.
209
+ x.s = 1 / v < 0 ? (v = -v, -1) : 1;
210
+
211
+ // Fast path for integers, where n < 2147483648 (2**31).
212
+ if (v === ~~v) {
213
+ for (e = 0, i = v; i >= 10; i /= 10, e++);
214
+
215
+ if (e > MAX_EXP) {
216
+ x.c = x.e = null;
217
+ } else {
218
+ x.e = e;
219
+ x.c = [v];
220
+ }
221
+
222
+ return;
223
+ }
224
+
225
+ str = String(v);
226
+ } else {
227
+
228
+ if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);
229
+
230
+ x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;
231
+ }
232
+
233
+ // Decimal point?
234
+ if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
235
+
236
+ // Exponential form?
237
+ if ((i = str.search(/e/i)) > 0) {
238
+
239
+ // Determine exponent.
240
+ if (e < 0) e = i;
241
+ e += +str.slice(i + 1);
242
+ str = str.substring(0, i);
243
+ } else if (e < 0) {
244
+
245
+ // Integer.
246
+ e = str.length;
247
+ }
248
+
249
+ } else {
250
+
251
+ // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
252
+ intCheck(b, 2, ALPHABET.length, 'Base');
253
+
254
+ // Allow exponential notation to be used with base 10 argument, while
255
+ // also rounding to DECIMAL_PLACES as with other bases.
256
+ if (b == 10 && alphabetHasNormalDecimalDigits) {
257
+ x = new BigNumber(v);
258
+ return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);
259
+ }
260
+
261
+ str = String(v);
262
+
263
+ if (isNum = typeof v == 'number') {
264
+
265
+ // Avoid potential interpretation of Infinity and NaN as base 44+ values.
266
+ if (v * 0 != 0) return parseNumeric(x, str, isNum, b);
267
+
268
+ x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;
269
+
270
+ // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
271
+ if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) {
272
+ throw Error
273
+ (tooManyDigits + v);
274
+ }
275
+ } else {
276
+ x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;
277
+ }
278
+
279
+ alphabet = ALPHABET.slice(0, b);
280
+ e = i = 0;
281
+
282
+ // Check that str is a valid base b number.
283
+ // Don't use RegExp, so alphabet can contain special characters.
284
+ for (len = str.length; i < len; i++) {
285
+ if (alphabet.indexOf(c = str.charAt(i)) < 0) {
286
+ if (c == '.') {
287
+
288
+ // If '.' is not the first character and it has not be found before.
289
+ if (i > e) {
290
+ e = len;
291
+ continue;
292
+ }
293
+ } else if (!caseChanged) {
294
+
295
+ // Allow e.g. hexadecimal 'FF' as well as 'ff'.
296
+ if (str == str.toUpperCase() && (str = str.toLowerCase()) ||
297
+ str == str.toLowerCase() && (str = str.toUpperCase())) {
298
+ caseChanged = true;
299
+ i = -1;
300
+ e = 0;
301
+ continue;
302
+ }
303
+ }
304
+
305
+ return parseNumeric(x, String(v), isNum, b);
306
+ }
307
+ }
308
+
309
+ // Prevent later check for length on converted number.
310
+ isNum = false;
311
+ str = convertBase(str, b, 10, x.s);
312
+
313
+ // Decimal point?
314
+ if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');
315
+ else e = str.length;
316
+ }
317
+
318
+ // Determine leading zeros.
319
+ for (i = 0; str.charCodeAt(i) === 48; i++);
320
+
321
+ // Determine trailing zeros.
322
+ for (len = str.length; str.charCodeAt(--len) === 48;);
323
+
324
+ if (str = str.slice(i, ++len)) {
325
+ len -= i;
326
+
327
+ // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'
328
+ if (isNum && BigNumber.DEBUG &&
329
+ len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {
330
+ throw Error
331
+ (tooManyDigits + (x.s * v));
332
+ }
333
+
334
+ // Overflow?
335
+ if ((e = e - i - 1) > MAX_EXP) {
336
+
337
+ // Infinity.
338
+ x.c = x.e = null;
339
+
340
+ // Underflow?
341
+ } else if (e < MIN_EXP) {
342
+
343
+ // Zero.
344
+ x.c = [x.e = 0];
345
+ } else {
346
+ x.e = e;
347
+ x.c = [];
348
+
349
+ // Transform base
350
+
351
+ // e is the base 10 exponent.
352
+ // i is where to slice str to get the first element of the coefficient array.
353
+ i = (e + 1) % LOG_BASE;
354
+ if (e < 0) i += LOG_BASE; // i < 1
355
+
356
+ if (i < len) {
357
+ if (i) x.c.push(+str.slice(0, i));
358
+
359
+ for (len -= LOG_BASE; i < len;) {
360
+ x.c.push(+str.slice(i, i += LOG_BASE));
361
+ }
362
+
363
+ i = LOG_BASE - (str = str.slice(i)).length;
364
+ } else {
365
+ i -= len;
366
+ }
367
+
368
+ for (; i--; str += '0');
369
+ x.c.push(+str);
370
+ }
371
+ } else {
372
+
373
+ // Zero.
374
+ x.c = [x.e = 0];
375
+ }
376
+ }
377
+
378
+
379
+ // CONSTRUCTOR PROPERTIES
380
+
381
+
382
+ BigNumber.clone = clone;
383
+
384
+ BigNumber.ROUND_UP = 0;
385
+ BigNumber.ROUND_DOWN = 1;
386
+ BigNumber.ROUND_CEIL = 2;
387
+ BigNumber.ROUND_FLOOR = 3;
388
+ BigNumber.ROUND_HALF_UP = 4;
389
+ BigNumber.ROUND_HALF_DOWN = 5;
390
+ BigNumber.ROUND_HALF_EVEN = 6;
391
+ BigNumber.ROUND_HALF_CEIL = 7;
392
+ BigNumber.ROUND_HALF_FLOOR = 8;
393
+ BigNumber.EUCLID = 9;
394
+
395
+
396
+ /*
397
+ * Configure infrequently-changing library-wide settings.
398
+ *
399
+ * Accept an object with the following optional properties (if the value of a property is
400
+ * a number, it must be an integer within the inclusive range stated):
401
+ *
402
+ * DECIMAL_PLACES {number} 0 to MAX
403
+ * ROUNDING_MODE {number} 0 to 8
404
+ * EXPONENTIAL_AT {number|number[]} -MAX to MAX or [-MAX to 0, 0 to MAX]
405
+ * RANGE {number|number[]} -MAX to MAX (not zero) or [-MAX to -1, 1 to MAX]
406
+ * CRYPTO {boolean} true or false
407
+ * MODULO_MODE {number} 0 to 9
408
+ * POW_PRECISION {number} 0 to MAX
409
+ * ALPHABET {string} A string of two or more unique characters which does
410
+ * not contain '.'.
411
+ * FORMAT {object} An object with some of the following properties:
412
+ * prefix {string}
413
+ * groupSize {number}
414
+ * secondaryGroupSize {number}
415
+ * groupSeparator {string}
416
+ * decimalSeparator {string}
417
+ * fractionGroupSize {number}
418
+ * fractionGroupSeparator {string}
419
+ * suffix {string}
420
+ *
421
+ * (The values assigned to the above FORMAT object properties are not checked for validity.)
422
+ *
423
+ * E.g.
424
+ * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })
425
+ *
426
+ * Ignore properties/parameters set to null or undefined, except for ALPHABET.
427
+ *
428
+ * Return an object with the properties current values.
429
+ */
430
+ BigNumber.config = BigNumber.set = function (obj) {
431
+ var p, v;
432
+
433
+ if (obj != null) {
434
+
435
+ if (typeof obj == 'object') {
436
+
437
+ // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.
438
+ // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'
439
+ if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {
440
+ v = obj[p];
441
+ intCheck(v, 0, MAX, p);
442
+ DECIMAL_PLACES = v;
443
+ }
444
+
445
+ // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.
446
+ // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'
447
+ if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {
448
+ v = obj[p];
449
+ intCheck(v, 0, 8, p);
450
+ ROUNDING_MODE = v;
451
+ }
452
+
453
+ // EXPONENTIAL_AT {number|number[]}
454
+ // Integer, -MAX to MAX inclusive or
455
+ // [integer -MAX to 0 inclusive, 0 to MAX inclusive].
456
+ // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'
457
+ if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {
458
+ v = obj[p];
459
+ if (v && v.pop) {
460
+ intCheck(v[0], -MAX, 0, p);
461
+ intCheck(v[1], 0, MAX, p);
462
+ TO_EXP_NEG = v[0];
463
+ TO_EXP_POS = v[1];
464
+ } else {
465
+ intCheck(v, -MAX, MAX, p);
466
+ TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);
467
+ }
468
+ }
469
+
470
+ // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or
471
+ // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].
472
+ // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'
473
+ if (obj.hasOwnProperty(p = 'RANGE')) {
474
+ v = obj[p];
475
+ if (v && v.pop) {
476
+ intCheck(v[0], -MAX, -1, p);
477
+ intCheck(v[1], 1, MAX, p);
478
+ MIN_EXP = v[0];
479
+ MAX_EXP = v[1];
480
+ } else {
481
+ intCheck(v, -MAX, MAX, p);
482
+ if (v) {
483
+ MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);
484
+ } else {
485
+ throw Error
486
+ (bignumberError + p + ' cannot be zero: ' + v);
487
+ }
488
+ }
489
+ }
490
+
491
+ // CRYPTO {boolean} true or false.
492
+ // '[BigNumber Error] CRYPTO not true or false: {v}'
493
+ // '[BigNumber Error] crypto unavailable'
494
+ if (obj.hasOwnProperty(p = 'CRYPTO')) {
495
+ v = obj[p];
496
+ if (v === !!v) {
497
+ if (v) {
498
+ if (typeof crypto != 'undefined' && crypto &&
499
+ (crypto.getRandomValues || crypto.randomBytes)) {
500
+ CRYPTO = v;
501
+ } else {
502
+ CRYPTO = !v;
503
+ throw Error
504
+ (bignumberError + 'crypto unavailable');
505
+ }
506
+ } else {
507
+ CRYPTO = v;
508
+ }
509
+ } else {
510
+ throw Error
511
+ (bignumberError + p + ' not true or false: ' + v);
512
+ }
513
+ }
514
+
515
+ // MODULO_MODE {number} Integer, 0 to 9 inclusive.
516
+ // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'
517
+ if (obj.hasOwnProperty(p = 'MODULO_MODE')) {
518
+ v = obj[p];
519
+ intCheck(v, 0, 9, p);
520
+ MODULO_MODE = v;
521
+ }
522
+
523
+ // POW_PRECISION {number} Integer, 0 to MAX inclusive.
524
+ // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'
525
+ if (obj.hasOwnProperty(p = 'POW_PRECISION')) {
526
+ v = obj[p];
527
+ intCheck(v, 0, MAX, p);
528
+ POW_PRECISION = v;
529
+ }
530
+
531
+ // FORMAT {object}
532
+ // '[BigNumber Error] FORMAT not an object: {v}'
533
+ if (obj.hasOwnProperty(p = 'FORMAT')) {
534
+ v = obj[p];
535
+ if (typeof v == 'object') FORMAT = v;
536
+ else throw Error
537
+ (bignumberError + p + ' not an object: ' + v);
538
+ }
539
+
540
+ // ALPHABET {string}
541
+ // '[BigNumber Error] ALPHABET invalid: {v}'
542
+ if (obj.hasOwnProperty(p = 'ALPHABET')) {
543
+ v = obj[p];
544
+
545
+ // Disallow if less than two characters,
546
+ // or if it contains '+', '-', '.', whitespace, or a repeated character.
547
+ if (typeof v == 'string' && !/^.?$|[+\-.\s]|(.).*\1/.test(v)) {
548
+ alphabetHasNormalDecimalDigits = v.slice(0, 10) == '0123456789';
549
+ ALPHABET = v;
550
+ } else {
551
+ throw Error
552
+ (bignumberError + p + ' invalid: ' + v);
553
+ }
554
+ }
555
+
556
+ } else {
557
+
558
+ // '[BigNumber Error] Object expected: {v}'
559
+ throw Error
560
+ (bignumberError + 'Object expected: ' + obj);
561
+ }
562
+ }
563
+
564
+ return {
565
+ DECIMAL_PLACES: DECIMAL_PLACES,
566
+ ROUNDING_MODE: ROUNDING_MODE,
567
+ EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],
568
+ RANGE: [MIN_EXP, MAX_EXP],
569
+ CRYPTO: CRYPTO,
570
+ MODULO_MODE: MODULO_MODE,
571
+ POW_PRECISION: POW_PRECISION,
572
+ FORMAT: FORMAT,
573
+ ALPHABET: ALPHABET
574
+ };
575
+ };
576
+
577
+
578
+ /*
579
+ * Return true if v is a BigNumber instance, otherwise return false.
580
+ *
581
+ * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.
582
+ *
583
+ * v {any}
584
+ *
585
+ * '[BigNumber Error] Invalid BigNumber: {v}'
586
+ */
587
+ BigNumber.isBigNumber = function (v) {
588
+ if (!v || v._isBigNumber !== true) return false;
589
+ if (!BigNumber.DEBUG) return true;
590
+
591
+ var i, n,
592
+ c = v.c,
593
+ e = v.e,
594
+ s = v.s;
595
+
596
+ out: if ({}.toString.call(c) == '[object Array]') {
597
+
598
+ if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {
599
+
600
+ // If the first element is zero, the BigNumber value must be zero.
601
+ if (c[0] === 0) {
602
+ if (e === 0 && c.length === 1) return true;
603
+ break out;
604
+ }
605
+
606
+ // Calculate number of digits that c[0] should have, based on the exponent.
607
+ i = (e + 1) % LOG_BASE;
608
+ if (i < 1) i += LOG_BASE;
609
+
610
+ // Calculate number of digits of c[0].
611
+ //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {
612
+ if (String(c[0]).length == i) {
613
+
614
+ for (i = 0; i < c.length; i++) {
615
+ n = c[i];
616
+ if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;
617
+ }
618
+
619
+ // Last element cannot be zero, unless it is the only element.
620
+ if (n !== 0) return true;
621
+ }
622
+ }
623
+
624
+ // Infinity/NaN
625
+ } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {
626
+ return true;
627
+ }
628
+
629
+ throw Error
630
+ (bignumberError + 'Invalid BigNumber: ' + v);
631
+ };
632
+
633
+
634
+ /*
635
+ * Return a new BigNumber whose value is the maximum of the arguments.
636
+ *
637
+ * arguments {number|string|BigNumber}
638
+ */
639
+ BigNumber.maximum = BigNumber.max = function () {
640
+ return maxOrMin(arguments, -1);
641
+ };
642
+
643
+
644
+ /*
645
+ * Return a new BigNumber whose value is the minimum of the arguments.
646
+ *
647
+ * arguments {number|string|BigNumber}
648
+ */
649
+ BigNumber.minimum = BigNumber.min = function () {
650
+ return maxOrMin(arguments, 1);
651
+ };
652
+
653
+
654
+ /*
655
+ * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,
656
+ * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing
657
+ * zeros are produced).
658
+ *
659
+ * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
660
+ *
661
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'
662
+ * '[BigNumber Error] crypto unavailable'
663
+ */
664
+ BigNumber.random = (function () {
665
+ var pow2_53 = 0x20000000000000;
666
+
667
+ // Return a 53 bit integer n, where 0 <= n < 9007199254740992.
668
+ // Check if Math.random() produces more than 32 bits of randomness.
669
+ // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.
670
+ // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.
671
+ var random53bitInt = (Math.random() * pow2_53) & 0x1fffff
672
+ ? function () { return mathfloor(Math.random() * pow2_53); }
673
+ : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +
674
+ (Math.random() * 0x800000 | 0); };
675
+
676
+ return function (dp) {
677
+ var a, b, e, k, v,
678
+ i = 0,
679
+ c = [],
680
+ rand = new BigNumber(ONE);
681
+
682
+ if (dp == null) dp = DECIMAL_PLACES;
683
+ else intCheck(dp, 0, MAX);
684
+
685
+ k = mathceil(dp / LOG_BASE);
686
+
687
+ if (CRYPTO) {
688
+
689
+ // Browsers supporting crypto.getRandomValues.
690
+ if (crypto.getRandomValues) {
691
+
692
+ a = crypto.getRandomValues(new Uint32Array(k *= 2));
693
+
694
+ for (; i < k;) {
695
+
696
+ // 53 bits:
697
+ // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)
698
+ // 11111 11111111 11111111 11111111 11100000 00000000 00000000
699
+ // ((Math.pow(2, 32) - 1) >>> 11).toString(2)
700
+ // 11111 11111111 11111111
701
+ // 0x20000 is 2^21.
702
+ v = a[i] * 0x20000 + (a[i + 1] >>> 11);
703
+
704
+ // Rejection sampling:
705
+ // 0 <= v < 9007199254740992
706
+ // Probability that v >= 9e15, is
707
+ // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251
708
+ if (v >= 9e15) {
709
+ b = crypto.getRandomValues(new Uint32Array(2));
710
+ a[i] = b[0];
711
+ a[i + 1] = b[1];
712
+ } else {
713
+
714
+ // 0 <= v <= 8999999999999999
715
+ // 0 <= (v % 1e14) <= 99999999999999
716
+ c.push(v % 1e14);
717
+ i += 2;
718
+ }
719
+ }
720
+ i = k / 2;
721
+
722
+ // Node.js supporting crypto.randomBytes.
723
+ } else if (crypto.randomBytes) {
724
+
725
+ // buffer
726
+ a = crypto.randomBytes(k *= 7);
727
+
728
+ for (; i < k;) {
729
+
730
+ // 0x1000000000000 is 2^48, 0x10000000000 is 2^40
731
+ // 0x100000000 is 2^32, 0x1000000 is 2^24
732
+ // 11111 11111111 11111111 11111111 11111111 11111111 11111111
733
+ // 0 <= v < 9007199254740992
734
+ v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +
735
+ (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +
736
+ (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];
737
+
738
+ if (v >= 9e15) {
739
+ crypto.randomBytes(7).copy(a, i);
740
+ } else {
741
+
742
+ // 0 <= (v % 1e14) <= 99999999999999
743
+ c.push(v % 1e14);
744
+ i += 7;
745
+ }
746
+ }
747
+ i = k / 7;
748
+ } else {
749
+ CRYPTO = false;
750
+ throw Error
751
+ (bignumberError + 'crypto unavailable');
752
+ }
753
+ }
754
+
755
+ // Use Math.random.
756
+ if (!CRYPTO) {
757
+
758
+ for (; i < k;) {
759
+ v = random53bitInt();
760
+ if (v < 9e15) c[i++] = v % 1e14;
761
+ }
762
+ }
763
+
764
+ k = c[--i];
765
+ dp %= LOG_BASE;
766
+
767
+ // Convert trailing digits to zeros according to dp.
768
+ if (k && dp) {
769
+ v = POWS_TEN[LOG_BASE - dp];
770
+ c[i] = mathfloor(k / v) * v;
771
+ }
772
+
773
+ // Remove trailing elements which are zero.
774
+ for (; c[i] === 0; c.pop(), i--);
775
+
776
+ // Zero?
777
+ if (i < 0) {
778
+ c = [e = 0];
779
+ } else {
780
+
781
+ // Remove leading elements which are zero and adjust exponent accordingly.
782
+ for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);
783
+
784
+ // Count the digits of the first element of c to determine leading zeros, and...
785
+ for (i = 1, v = c[0]; v >= 10; v /= 10, i++);
786
+
787
+ // adjust the exponent accordingly.
788
+ if (i < LOG_BASE) e -= LOG_BASE - i;
789
+ }
790
+
791
+ rand.e = e;
792
+ rand.c = c;
793
+ return rand;
794
+ };
795
+ })();
796
+
797
+
798
+ /*
799
+ * Return a BigNumber whose value is the sum of the arguments.
800
+ *
801
+ * arguments {number|string|BigNumber}
802
+ */
803
+ BigNumber.sum = function () {
804
+ var i = 1,
805
+ args = arguments,
806
+ sum = new BigNumber(args[0]);
807
+ for (; i < args.length;) sum = sum.plus(args[i++]);
808
+ return sum;
809
+ };
810
+
811
+
812
+ // PRIVATE FUNCTIONS
813
+
814
+
815
+ // Called by BigNumber and BigNumber.prototype.toString.
816
+ convertBase = (function () {
817
+ var decimal = '0123456789';
818
+
819
+ /*
820
+ * Convert string of baseIn to an array of numbers of baseOut.
821
+ * Eg. toBaseOut('255', 10, 16) returns [15, 15].
822
+ * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].
823
+ */
824
+ function toBaseOut(str, baseIn, baseOut, alphabet) {
825
+ var j,
826
+ arr = [0],
827
+ arrL,
828
+ i = 0,
829
+ len = str.length;
830
+
831
+ for (; i < len;) {
832
+ for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);
833
+
834
+ arr[0] += alphabet.indexOf(str.charAt(i++));
835
+
836
+ for (j = 0; j < arr.length; j++) {
837
+
838
+ if (arr[j] > baseOut - 1) {
839
+ if (arr[j + 1] == null) arr[j + 1] = 0;
840
+ arr[j + 1] += arr[j] / baseOut | 0;
841
+ arr[j] %= baseOut;
842
+ }
843
+ }
844
+ }
845
+
846
+ return arr.reverse();
847
+ }
848
+
849
+ // Convert a numeric string of baseIn to a numeric string of baseOut.
850
+ // If the caller is toString, we are converting from base 10 to baseOut.
851
+ // If the caller is BigNumber, we are converting from baseIn to base 10.
852
+ return function (str, baseIn, baseOut, sign, callerIsToString) {
853
+ var alphabet, d, e, k, r, x, xc, y,
854
+ i = str.indexOf('.'),
855
+ dp = DECIMAL_PLACES,
856
+ rm = ROUNDING_MODE;
857
+
858
+ // Non-integer.
859
+ if (i >= 0) {
860
+ k = POW_PRECISION;
861
+
862
+ // Unlimited precision.
863
+ POW_PRECISION = 0;
864
+ str = str.replace('.', '');
865
+ y = new BigNumber(baseIn);
866
+ x = y.pow(str.length - i);
867
+ POW_PRECISION = k;
868
+
869
+ // Convert str as if an integer, then restore the fraction part by dividing the
870
+ // result by its base raised to a power.
871
+
872
+ y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),
873
+ 10, baseOut, decimal);
874
+ y.e = y.c.length;
875
+ }
876
+
877
+ // Convert the number as integer.
878
+
879
+ xc = toBaseOut(str, baseIn, baseOut, callerIsToString
880
+ ? (alphabet = ALPHABET, decimal)
881
+ : (alphabet = decimal, ALPHABET));
882
+
883
+ // xc now represents str as an integer and converted to baseOut. e is the exponent.
884
+ e = k = xc.length;
885
+
886
+ // Remove trailing zeros.
887
+ for (; xc[--k] == 0; xc.pop());
888
+
889
+ // Zero?
890
+ if (!xc[0]) return alphabet.charAt(0);
891
+
892
+ // Does str represent an integer? If so, no need for the division.
893
+ if (i < 0) {
894
+ --e;
895
+ } else {
896
+ x.c = xc;
897
+ x.e = e;
898
+
899
+ // The sign is needed for correct rounding.
900
+ x.s = sign;
901
+ x = div(x, y, dp, rm, baseOut);
902
+ xc = x.c;
903
+ r = x.r;
904
+ e = x.e;
905
+ }
906
+
907
+ // xc now represents str converted to baseOut.
908
+
909
+ // THe index of the rounding digit.
910
+ d = e + dp + 1;
911
+
912
+ // The rounding digit: the digit to the right of the digit that may be rounded up.
913
+ i = xc[d];
914
+
915
+ // Look at the rounding digits and mode to determine whether to round up.
916
+
917
+ k = baseOut / 2;
918
+ r = r || d < 0 || xc[d + 1] != null;
919
+
920
+ r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
921
+ : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||
922
+ rm == (x.s < 0 ? 8 : 7));
923
+
924
+ // If the index of the rounding digit is not greater than zero, or xc represents
925
+ // zero, then the result of the base conversion is zero or, if rounding up, a value
926
+ // such as 0.00001.
927
+ if (d < 1 || !xc[0]) {
928
+
929
+ // 1^-dp or 0
930
+ str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);
931
+ } else {
932
+
933
+ // Truncate xc to the required number of decimal places.
934
+ xc.length = d;
935
+
936
+ // Round up?
937
+ if (r) {
938
+
939
+ // Rounding up may mean the previous digit has to be rounded up and so on.
940
+ for (--baseOut; ++xc[--d] > baseOut;) {
941
+ xc[d] = 0;
942
+
943
+ if (!d) {
944
+ ++e;
945
+ xc = [1].concat(xc);
946
+ }
947
+ }
948
+ }
949
+
950
+ // Determine trailing zeros.
951
+ for (k = xc.length; !xc[--k];);
952
+
953
+ // E.g. [4, 11, 15] becomes 4bf.
954
+ for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));
955
+
956
+ // Add leading zeros, decimal point and trailing zeros as required.
957
+ str = toFixedPoint(str, e, alphabet.charAt(0));
958
+ }
959
+
960
+ // The caller will add the sign.
961
+ return str;
962
+ };
963
+ })();
964
+
965
+
966
+ // Perform division in the specified base. Called by div and convertBase.
967
+ div = (function () {
968
+
969
+ // Assume non-zero x and k.
970
+ function multiply(x, k, base) {
971
+ var m, temp, xlo, xhi,
972
+ carry = 0,
973
+ i = x.length,
974
+ klo = k % SQRT_BASE,
975
+ khi = k / SQRT_BASE | 0;
976
+
977
+ for (x = x.slice(); i--;) {
978
+ xlo = x[i] % SQRT_BASE;
979
+ xhi = x[i] / SQRT_BASE | 0;
980
+ m = khi * xlo + xhi * klo;
981
+ temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;
982
+ carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;
983
+ x[i] = temp % base;
984
+ }
985
+
986
+ if (carry) x = [carry].concat(x);
987
+
988
+ return x;
989
+ }
990
+
991
+ function compare(a, b, aL, bL) {
992
+ var i, cmp;
993
+
994
+ if (aL != bL) {
995
+ cmp = aL > bL ? 1 : -1;
996
+ } else {
997
+
998
+ for (i = cmp = 0; i < aL; i++) {
999
+
1000
+ if (a[i] != b[i]) {
1001
+ cmp = a[i] > b[i] ? 1 : -1;
1002
+ break;
1003
+ }
1004
+ }
1005
+ }
1006
+
1007
+ return cmp;
1008
+ }
1009
+
1010
+ function subtract(a, b, aL, base) {
1011
+ var i = 0;
1012
+
1013
+ // Subtract b from a.
1014
+ for (; aL--;) {
1015
+ a[aL] -= i;
1016
+ i = a[aL] < b[aL] ? 1 : 0;
1017
+ a[aL] = i * base + a[aL] - b[aL];
1018
+ }
1019
+
1020
+ // Remove leading zeros.
1021
+ for (; !a[0] && a.length > 1; a.splice(0, 1));
1022
+ }
1023
+
1024
+ // x: dividend, y: divisor.
1025
+ return function (x, y, dp, rm, base) {
1026
+ var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,
1027
+ yL, yz,
1028
+ s = x.s == y.s ? 1 : -1,
1029
+ xc = x.c,
1030
+ yc = y.c;
1031
+
1032
+ // Either NaN, Infinity or 0?
1033
+ if (!xc || !xc[0] || !yc || !yc[0]) {
1034
+
1035
+ return new BigNumber(
1036
+
1037
+ // Return NaN if either NaN, or both Infinity or 0.
1038
+ !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :
1039
+
1040
+ // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.
1041
+ xc && xc[0] == 0 || !yc ? s * 0 : s / 0
1042
+ );
1043
+ }
1044
+
1045
+ q = new BigNumber(s);
1046
+ qc = q.c = [];
1047
+ e = x.e - y.e;
1048
+ s = dp + e + 1;
1049
+
1050
+ if (!base) {
1051
+ base = BASE;
1052
+ e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);
1053
+ s = s / LOG_BASE | 0;
1054
+ }
1055
+
1056
+ // Result exponent may be one less then the current value of e.
1057
+ // The coefficients of the BigNumbers from convertBase may have trailing zeros.
1058
+ for (i = 0; yc[i] == (xc[i] || 0); i++);
1059
+
1060
+ if (yc[i] > (xc[i] || 0)) e--;
1061
+
1062
+ if (s < 0) {
1063
+ qc.push(1);
1064
+ more = true;
1065
+ } else {
1066
+ xL = xc.length;
1067
+ yL = yc.length;
1068
+ i = 0;
1069
+ s += 2;
1070
+
1071
+ // Normalise xc and yc so highest order digit of yc is >= base / 2.
1072
+
1073
+ n = mathfloor(base / (yc[0] + 1));
1074
+
1075
+ // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.
1076
+ // if (n > 1 || n++ == 1 && yc[0] < base / 2) {
1077
+ if (n > 1) {
1078
+ yc = multiply(yc, n, base);
1079
+ xc = multiply(xc, n, base);
1080
+ yL = yc.length;
1081
+ xL = xc.length;
1082
+ }
1083
+
1084
+ xi = yL;
1085
+ rem = xc.slice(0, yL);
1086
+ remL = rem.length;
1087
+
1088
+ // Add zeros to make remainder as long as divisor.
1089
+ for (; remL < yL; rem[remL++] = 0);
1090
+ yz = yc.slice();
1091
+ yz = [0].concat(yz);
1092
+ yc0 = yc[0];
1093
+ if (yc[1] >= base / 2) yc0++;
1094
+ // Not necessary, but to prevent trial digit n > base, when using base 3.
1095
+ // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;
1096
+
1097
+ do {
1098
+ n = 0;
1099
+
1100
+ // Compare divisor and remainder.
1101
+ cmp = compare(yc, rem, yL, remL);
1102
+
1103
+ // If divisor < remainder.
1104
+ if (cmp < 0) {
1105
+
1106
+ // Calculate trial digit, n.
1107
+
1108
+ rem0 = rem[0];
1109
+ if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);
1110
+
1111
+ // n is how many times the divisor goes into the current remainder.
1112
+ n = mathfloor(rem0 / yc0);
1113
+
1114
+ // Algorithm:
1115
+ // product = divisor multiplied by trial digit (n).
1116
+ // Compare product and remainder.
1117
+ // If product is greater than remainder:
1118
+ // Subtract divisor from product, decrement trial digit.
1119
+ // Subtract product from remainder.
1120
+ // If product was less than remainder at the last compare:
1121
+ // Compare new remainder and divisor.
1122
+ // If remainder is greater than divisor:
1123
+ // Subtract divisor from remainder, increment trial digit.
1124
+
1125
+ if (n > 1) {
1126
+
1127
+ // n may be > base only when base is 3.
1128
+ if (n >= base) n = base - 1;
1129
+
1130
+ // product = divisor * trial digit.
1131
+ prod = multiply(yc, n, base);
1132
+ prodL = prod.length;
1133
+ remL = rem.length;
1134
+
1135
+ // Compare product and remainder.
1136
+ // If product > remainder then trial digit n too high.
1137
+ // n is 1 too high about 5% of the time, and is not known to have
1138
+ // ever been more than 1 too high.
1139
+ while (compare(prod, rem, prodL, remL) == 1) {
1140
+ n--;
1141
+
1142
+ // Subtract divisor from product.
1143
+ subtract(prod, yL < prodL ? yz : yc, prodL, base);
1144
+ prodL = prod.length;
1145
+ cmp = 1;
1146
+ }
1147
+ } else {
1148
+
1149
+ // n is 0 or 1, cmp is -1.
1150
+ // If n is 0, there is no need to compare yc and rem again below,
1151
+ // so change cmp to 1 to avoid it.
1152
+ // If n is 1, leave cmp as -1, so yc and rem are compared again.
1153
+ if (n == 0) {
1154
+
1155
+ // divisor < remainder, so n must be at least 1.
1156
+ cmp = n = 1;
1157
+ }
1158
+
1159
+ // product = divisor
1160
+ prod = yc.slice();
1161
+ prodL = prod.length;
1162
+ }
1163
+
1164
+ if (prodL < remL) prod = [0].concat(prod);
1165
+
1166
+ // Subtract product from remainder.
1167
+ subtract(rem, prod, remL, base);
1168
+ remL = rem.length;
1169
+
1170
+ // If product was < remainder.
1171
+ if (cmp == -1) {
1172
+
1173
+ // Compare divisor and new remainder.
1174
+ // If divisor < new remainder, subtract divisor from remainder.
1175
+ // Trial digit n too low.
1176
+ // n is 1 too low about 5% of the time, and very rarely 2 too low.
1177
+ while (compare(yc, rem, yL, remL) < 1) {
1178
+ n++;
1179
+
1180
+ // Subtract divisor from remainder.
1181
+ subtract(rem, yL < remL ? yz : yc, remL, base);
1182
+ remL = rem.length;
1183
+ }
1184
+ }
1185
+ } else if (cmp === 0) {
1186
+ n++;
1187
+ rem = [0];
1188
+ } // else cmp === 1 and n will be 0
1189
+
1190
+ // Add the next digit, n, to the result array.
1191
+ qc[i++] = n;
1192
+
1193
+ // Update the remainder.
1194
+ if (rem[0]) {
1195
+ rem[remL++] = xc[xi] || 0;
1196
+ } else {
1197
+ rem = [xc[xi]];
1198
+ remL = 1;
1199
+ }
1200
+ } while ((xi++ < xL || rem[0] != null) && s--);
1201
+
1202
+ more = rem[0] != null;
1203
+
1204
+ // Leading zero?
1205
+ if (!qc[0]) qc.splice(0, 1);
1206
+ }
1207
+
1208
+ if (base == BASE) {
1209
+
1210
+ // To calculate q.e, first get the number of digits of qc[0].
1211
+ for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);
1212
+
1213
+ round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);
1214
+
1215
+ // Caller is convertBase.
1216
+ } else {
1217
+ q.e = e;
1218
+ q.r = +more;
1219
+ }
1220
+
1221
+ return q;
1222
+ };
1223
+ })();
1224
+
1225
+
1226
+ /*
1227
+ * Return a string representing the value of BigNumber n in fixed-point or exponential
1228
+ * notation rounded to the specified decimal places or significant digits.
1229
+ *
1230
+ * n: a BigNumber.
1231
+ * i: the index of the last digit required (i.e. the digit that may be rounded up).
1232
+ * rm: the rounding mode.
1233
+ * id: 1 (toExponential) or 2 (toPrecision).
1234
+ */
1235
+ function format(n, i, rm, id) {
1236
+ var c0, e, ne, len, str;
1237
+
1238
+ if (rm == null) rm = ROUNDING_MODE;
1239
+ else intCheck(rm, 0, 8);
1240
+
1241
+ if (!n.c) return n.toString();
1242
+
1243
+ c0 = n.c[0];
1244
+ ne = n.e;
1245
+
1246
+ if (i == null) {
1247
+ str = coeffToString(n.c);
1248
+ str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)
1249
+ ? toExponential(str, ne)
1250
+ : toFixedPoint(str, ne, '0');
1251
+ } else {
1252
+ n = round(new BigNumber(n), i, rm);
1253
+
1254
+ // n.e may have changed if the value was rounded up.
1255
+ e = n.e;
1256
+
1257
+ str = coeffToString(n.c);
1258
+ len = str.length;
1259
+
1260
+ // toPrecision returns exponential notation if the number of significant digits
1261
+ // specified is less than the number of digits necessary to represent the integer
1262
+ // part of the value in fixed-point notation.
1263
+
1264
+ // Exponential notation.
1265
+ if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {
1266
+
1267
+ // Append zeros?
1268
+ for (; len < i; str += '0', len++);
1269
+ str = toExponential(str, e);
1270
+
1271
+ // Fixed-point notation.
1272
+ } else {
1273
+ i -= ne;
1274
+ str = toFixedPoint(str, e, '0');
1275
+
1276
+ // Append zeros?
1277
+ if (e + 1 > len) {
1278
+ if (--i > 0) for (str += '.'; i--; str += '0');
1279
+ } else {
1280
+ i += e - len;
1281
+ if (i > 0) {
1282
+ if (e + 1 == len) str += '.';
1283
+ for (; i--; str += '0');
1284
+ }
1285
+ }
1286
+ }
1287
+ }
1288
+
1289
+ return n.s < 0 && c0 ? '-' + str : str;
1290
+ }
1291
+
1292
+
1293
+ // Handle BigNumber.max and BigNumber.min.
1294
+ // If any number is NaN, return NaN.
1295
+ function maxOrMin(args, n) {
1296
+ var k, y,
1297
+ i = 1,
1298
+ x = new BigNumber(args[0]);
1299
+
1300
+ for (; i < args.length; i++) {
1301
+ y = new BigNumber(args[i]);
1302
+ if (!y.s || (k = compare(x, y)) === n || k === 0 && x.s === n) {
1303
+ x = y;
1304
+ }
1305
+ }
1306
+
1307
+ return x;
1308
+ }
1309
+
1310
+
1311
+ /*
1312
+ * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.
1313
+ * Called by minus, plus and times.
1314
+ */
1315
+ function normalise(n, c, e) {
1316
+ var i = 1,
1317
+ j = c.length;
1318
+
1319
+ // Remove trailing zeros.
1320
+ for (; !c[--j]; c.pop());
1321
+
1322
+ // Calculate the base 10 exponent. First get the number of digits of c[0].
1323
+ for (j = c[0]; j >= 10; j /= 10, i++);
1324
+
1325
+ // Overflow?
1326
+ if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {
1327
+
1328
+ // Infinity.
1329
+ n.c = n.e = null;
1330
+
1331
+ // Underflow?
1332
+ } else if (e < MIN_EXP) {
1333
+
1334
+ // Zero.
1335
+ n.c = [n.e = 0];
1336
+ } else {
1337
+ n.e = e;
1338
+ n.c = c;
1339
+ }
1340
+
1341
+ return n;
1342
+ }
1343
+
1344
+
1345
+ // Handle values that fail the validity test in BigNumber.
1346
+ parseNumeric = (function () {
1347
+ var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,
1348
+ dotAfter = /^([^.]+)\.$/,
1349
+ dotBefore = /^\.([^.]+)$/,
1350
+ isInfinityOrNaN = /^-?(Infinity|NaN)$/,
1351
+ whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;
1352
+
1353
+ return function (x, str, isNum, b) {
1354
+ var base,
1355
+ s = isNum ? str : str.replace(whitespaceOrPlus, '');
1356
+
1357
+ // No exception on ±Infinity or NaN.
1358
+ if (isInfinityOrNaN.test(s)) {
1359
+ x.s = isNaN(s) ? null : s < 0 ? -1 : 1;
1360
+ } else {
1361
+ if (!isNum) {
1362
+
1363
+ // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i
1364
+ s = s.replace(basePrefix, function (m, p1, p2) {
1365
+ base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;
1366
+ return !b || b == base ? p1 : m;
1367
+ });
1368
+
1369
+ if (b) {
1370
+ base = b;
1371
+
1372
+ // E.g. '1.' to '1', '.1' to '0.1'
1373
+ s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');
1374
+ }
1375
+
1376
+ if (str != s) return new BigNumber(s, base);
1377
+ }
1378
+
1379
+ // '[BigNumber Error] Not a number: {n}'
1380
+ // '[BigNumber Error] Not a base {b} number: {n}'
1381
+ if (BigNumber.DEBUG) {
1382
+ throw Error
1383
+ (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);
1384
+ }
1385
+
1386
+ // NaN
1387
+ x.s = null;
1388
+ }
1389
+
1390
+ x.c = x.e = null;
1391
+ }
1392
+ })();
1393
+
1394
+
1395
+ /*
1396
+ * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.
1397
+ * If r is truthy, it is known that there are more digits after the rounding digit.
1398
+ */
1399
+ function round(x, sd, rm, r) {
1400
+ var d, i, j, k, n, ni, rd,
1401
+ xc = x.c,
1402
+ pows10 = POWS_TEN;
1403
+
1404
+ // if x is not Infinity or NaN...
1405
+ if (xc) {
1406
+
1407
+ // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.
1408
+ // n is a base 1e14 number, the value of the element of array x.c containing rd.
1409
+ // ni is the index of n within x.c.
1410
+ // d is the number of digits of n.
1411
+ // i is the index of rd within n including leading zeros.
1412
+ // j is the actual index of rd within n (if < 0, rd is a leading zero).
1413
+ out: {
1414
+
1415
+ // Get the number of digits of the first element of xc.
1416
+ for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);
1417
+ i = sd - d;
1418
+
1419
+ // If the rounding digit is in the first element of xc...
1420
+ if (i < 0) {
1421
+ i += LOG_BASE;
1422
+ j = sd;
1423
+ n = xc[ni = 0];
1424
+
1425
+ // Get the rounding digit at index j of n.
1426
+ rd = mathfloor(n / pows10[d - j - 1] % 10);
1427
+ } else {
1428
+ ni = mathceil((i + 1) / LOG_BASE);
1429
+
1430
+ if (ni >= xc.length) {
1431
+
1432
+ if (r) {
1433
+
1434
+ // Needed by sqrt.
1435
+ for (; xc.length <= ni; xc.push(0));
1436
+ n = rd = 0;
1437
+ d = 1;
1438
+ i %= LOG_BASE;
1439
+ j = i - LOG_BASE + 1;
1440
+ } else {
1441
+ break out;
1442
+ }
1443
+ } else {
1444
+ n = k = xc[ni];
1445
+
1446
+ // Get the number of digits of n.
1447
+ for (d = 1; k >= 10; k /= 10, d++);
1448
+
1449
+ // Get the index of rd within n.
1450
+ i %= LOG_BASE;
1451
+
1452
+ // Get the index of rd within n, adjusted for leading zeros.
1453
+ // The number of leading zeros of n is given by LOG_BASE - d.
1454
+ j = i - LOG_BASE + d;
1455
+
1456
+ // Get the rounding digit at index j of n.
1457
+ rd = j < 0 ? 0 : mathfloor(n / pows10[d - j - 1] % 10);
1458
+ }
1459
+ }
1460
+
1461
+ r = r || sd < 0 ||
1462
+
1463
+ // Are there any non-zero digits after the rounding digit?
1464
+ // The expression n % pows10[d - j - 1] returns all digits of n to the right
1465
+ // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.
1466
+ xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]);
1467
+
1468
+ r = rm < 4
1469
+ ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))
1470
+ : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 &&
1471
+
1472
+ // Check whether the digit to the left of the rounding digit is odd.
1473
+ ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 ||
1474
+ rm == (x.s < 0 ? 8 : 7));
1475
+
1476
+ if (sd < 1 || !xc[0]) {
1477
+ xc.length = 0;
1478
+
1479
+ if (r) {
1480
+
1481
+ // Convert sd to decimal places.
1482
+ sd -= x.e + 1;
1483
+
1484
+ // 1, 0.1, 0.01, 0.001, 0.0001 etc.
1485
+ xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE];
1486
+ x.e = -sd || 0;
1487
+ } else {
1488
+
1489
+ // Zero.
1490
+ xc[0] = x.e = 0;
1491
+ }
1492
+
1493
+ return x;
1494
+ }
1495
+
1496
+ // Remove excess digits.
1497
+ if (i == 0) {
1498
+ xc.length = ni;
1499
+ k = 1;
1500
+ ni--;
1501
+ } else {
1502
+ xc.length = ni + 1;
1503
+ k = pows10[LOG_BASE - i];
1504
+
1505
+ // E.g. 56700 becomes 56000 if 7 is the rounding digit.
1506
+ // j > 0 means i > number of leading zeros of n.
1507
+ xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0;
1508
+ }
1509
+
1510
+ // Round up?
1511
+ if (r) {
1512
+
1513
+ for (; ;) {
1514
+
1515
+ // If the digit to be rounded up is in the first element of xc...
1516
+ if (ni == 0) {
1517
+
1518
+ // i will be the length of xc[0] before k is added.
1519
+ for (i = 1, j = xc[0]; j >= 10; j /= 10, i++);
1520
+ j = xc[0] += k;
1521
+ for (k = 1; j >= 10; j /= 10, k++);
1522
+
1523
+ // if i != k the length has increased.
1524
+ if (i != k) {
1525
+ x.e++;
1526
+ if (xc[0] == BASE) xc[0] = 1;
1527
+ }
1528
+
1529
+ break;
1530
+ } else {
1531
+ xc[ni] += k;
1532
+ if (xc[ni] != BASE) break;
1533
+ xc[ni--] = 0;
1534
+ k = 1;
1535
+ }
1536
+ }
1537
+ }
1538
+
1539
+ // Remove trailing zeros.
1540
+ for (i = xc.length; xc[--i] === 0; xc.pop());
1541
+ }
1542
+
1543
+ // Overflow? Infinity.
1544
+ if (x.e > MAX_EXP) {
1545
+ x.c = x.e = null;
1546
+
1547
+ // Underflow? Zero.
1548
+ } else if (x.e < MIN_EXP) {
1549
+ x.c = [x.e = 0];
1550
+ }
1551
+ }
1552
+
1553
+ return x;
1554
+ }
1555
+
1556
+
1557
+ function valueOf(n) {
1558
+ var str,
1559
+ e = n.e;
1560
+
1561
+ if (e === null) return n.toString();
1562
+
1563
+ str = coeffToString(n.c);
1564
+
1565
+ str = e <= TO_EXP_NEG || e >= TO_EXP_POS
1566
+ ? toExponential(str, e)
1567
+ : toFixedPoint(str, e, '0');
1568
+
1569
+ return n.s < 0 ? '-' + str : str;
1570
+ }
1571
+
1572
+
1573
+ // PROTOTYPE/INSTANCE METHODS
1574
+
1575
+
1576
+ /*
1577
+ * Return a new BigNumber whose value is the absolute value of this BigNumber.
1578
+ */
1579
+ P.absoluteValue = P.abs = function () {
1580
+ var x = new BigNumber(this);
1581
+ if (x.s < 0) x.s = 1;
1582
+ return x;
1583
+ };
1584
+
1585
+
1586
+ /*
1587
+ * Return
1588
+ * 1 if the value of this BigNumber is greater than the value of BigNumber(y, b),
1589
+ * -1 if the value of this BigNumber is less than the value of BigNumber(y, b),
1590
+ * 0 if they have the same value,
1591
+ * or null if the value of either is NaN.
1592
+ */
1593
+ P.comparedTo = function (y, b) {
1594
+ return compare(this, new BigNumber(y, b));
1595
+ };
1596
+
1597
+
1598
+ /*
1599
+ * If dp is undefined or null or true or false, return the number of decimal places of the
1600
+ * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
1601
+ *
1602
+ * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this
1603
+ * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or
1604
+ * ROUNDING_MODE if rm is omitted.
1605
+ *
1606
+ * [dp] {number} Decimal places: integer, 0 to MAX inclusive.
1607
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1608
+ *
1609
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
1610
+ */
1611
+ P.decimalPlaces = P.dp = function (dp, rm) {
1612
+ var c, n, v,
1613
+ x = this;
1614
+
1615
+ if (dp != null) {
1616
+ intCheck(dp, 0, MAX);
1617
+ if (rm == null) rm = ROUNDING_MODE;
1618
+ else intCheck(rm, 0, 8);
1619
+
1620
+ return round(new BigNumber(x), dp + x.e + 1, rm);
1621
+ }
1622
+
1623
+ if (!(c = x.c)) return null;
1624
+ n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE;
1625
+
1626
+ // Subtract the number of trailing zeros of the last number.
1627
+ if (v = c[v]) for (; v % 10 == 0; v /= 10, n--);
1628
+ if (n < 0) n = 0;
1629
+
1630
+ return n;
1631
+ };
1632
+
1633
+
1634
+ /*
1635
+ * n / 0 = I
1636
+ * n / N = N
1637
+ * n / I = 0
1638
+ * 0 / n = 0
1639
+ * 0 / 0 = N
1640
+ * 0 / N = N
1641
+ * 0 / I = 0
1642
+ * N / n = N
1643
+ * N / 0 = N
1644
+ * N / N = N
1645
+ * N / I = N
1646
+ * I / n = I
1647
+ * I / 0 = I
1648
+ * I / N = N
1649
+ * I / I = N
1650
+ *
1651
+ * Return a new BigNumber whose value is the value of this BigNumber divided by the value of
1652
+ * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.
1653
+ */
1654
+ P.dividedBy = P.div = function (y, b) {
1655
+ return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE);
1656
+ };
1657
+
1658
+
1659
+ /*
1660
+ * Return a new BigNumber whose value is the integer part of dividing the value of this
1661
+ * BigNumber by the value of BigNumber(y, b).
1662
+ */
1663
+ P.dividedToIntegerBy = P.idiv = function (y, b) {
1664
+ return div(this, new BigNumber(y, b), 0, 1);
1665
+ };
1666
+
1667
+
1668
+ /*
1669
+ * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.
1670
+ *
1671
+ * If m is present, return the result modulo m.
1672
+ * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.
1673
+ * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.
1674
+ *
1675
+ * The modular power operation works efficiently when x, n, and m are integers, otherwise it
1676
+ * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.
1677
+ *
1678
+ * n {number|string|BigNumber} The exponent. An integer.
1679
+ * [m] {number|string|BigNumber} The modulus.
1680
+ *
1681
+ * '[BigNumber Error] Exponent not an integer: {n}'
1682
+ */
1683
+ P.exponentiatedBy = P.pow = function (n, m) {
1684
+ var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y,
1685
+ x = this;
1686
+
1687
+ n = new BigNumber(n);
1688
+
1689
+ // Allow NaN and ±Infinity, but not other non-integers.
1690
+ if (n.c && !n.isInteger()) {
1691
+ throw Error
1692
+ (bignumberError + 'Exponent not an integer: ' + valueOf(n));
1693
+ }
1694
+
1695
+ if (m != null) m = new BigNumber(m);
1696
+
1697
+ // Exponent of MAX_SAFE_INTEGER is 15.
1698
+ nIsBig = n.e > 14;
1699
+
1700
+ // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.
1701
+ if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) {
1702
+
1703
+ // The sign of the result of pow when x is negative depends on the evenness of n.
1704
+ // If +n overflows to ±Infinity, the evenness of n would be not be known.
1705
+ y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? n.s * (2 - isOdd(n)) : +valueOf(n)));
1706
+ return m ? y.mod(m) : y;
1707
+ }
1708
+
1709
+ nIsNeg = n.s < 0;
1710
+
1711
+ if (m) {
1712
+
1713
+ // x % m returns NaN if abs(m) is zero, or m is NaN.
1714
+ if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN);
1715
+
1716
+ isModExp = !nIsNeg && x.isInteger() && m.isInteger();
1717
+
1718
+ if (isModExp) x = x.mod(m);
1719
+
1720
+ // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.
1721
+ // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.
1722
+ } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0
1723
+ // [1, 240000000]
1724
+ ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7
1725
+ // [80000000000000] [99999750000000]
1726
+ : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) {
1727
+
1728
+ // If x is negative and n is odd, k = -0, else k = 0.
1729
+ k = x.s < 0 && isOdd(n) ? -0 : 0;
1730
+
1731
+ // If x >= 1, k = ±Infinity.
1732
+ if (x.e > -1) k = 1 / k;
1733
+
1734
+ // If n is negative return ±0, else return ±Infinity.
1735
+ return new BigNumber(nIsNeg ? 1 / k : k);
1736
+
1737
+ } else if (POW_PRECISION) {
1738
+
1739
+ // Truncating each coefficient array to a length of k after each multiplication
1740
+ // equates to truncating significant digits to POW_PRECISION + [28, 41],
1741
+ // i.e. there will be a minimum of 28 guard digits retained.
1742
+ k = mathceil(POW_PRECISION / LOG_BASE + 2);
1743
+ }
1744
+
1745
+ if (nIsBig) {
1746
+ half = new BigNumber(0.5);
1747
+ if (nIsNeg) n.s = 1;
1748
+ nIsOdd = isOdd(n);
1749
+ } else {
1750
+ i = Math.abs(+valueOf(n));
1751
+ nIsOdd = i % 2;
1752
+ }
1753
+
1754
+ y = new BigNumber(ONE);
1755
+
1756
+ // Performs 54 loop iterations for n of 9007199254740991.
1757
+ for (; ;) {
1758
+
1759
+ if (nIsOdd) {
1760
+ y = y.times(x);
1761
+ if (!y.c) break;
1762
+
1763
+ if (k) {
1764
+ if (y.c.length > k) y.c.length = k;
1765
+ } else if (isModExp) {
1766
+ y = y.mod(m); //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));
1767
+ }
1768
+ }
1769
+
1770
+ if (i) {
1771
+ i = mathfloor(i / 2);
1772
+ if (i === 0) break;
1773
+ nIsOdd = i % 2;
1774
+ } else {
1775
+ n = n.times(half);
1776
+ round(n, n.e + 1, 1);
1777
+
1778
+ if (n.e > 14) {
1779
+ nIsOdd = isOdd(n);
1780
+ } else {
1781
+ i = +valueOf(n);
1782
+ if (i === 0) break;
1783
+ nIsOdd = i % 2;
1784
+ }
1785
+ }
1786
+
1787
+ x = x.times(x);
1788
+
1789
+ if (k) {
1790
+ if (x.c && x.c.length > k) x.c.length = k;
1791
+ } else if (isModExp) {
1792
+ x = x.mod(m); //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));
1793
+ }
1794
+ }
1795
+
1796
+ if (isModExp) return y;
1797
+ if (nIsNeg) y = ONE.div(y);
1798
+
1799
+ return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y;
1800
+ };
1801
+
1802
+
1803
+ /*
1804
+ * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer
1805
+ * using rounding mode rm, or ROUNDING_MODE if rm is omitted.
1806
+ *
1807
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
1808
+ *
1809
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'
1810
+ */
1811
+ P.integerValue = function (rm) {
1812
+ var n = new BigNumber(this);
1813
+ if (rm == null) rm = ROUNDING_MODE;
1814
+ else intCheck(rm, 0, 8);
1815
+ return round(n, n.e + 1, rm);
1816
+ };
1817
+
1818
+
1819
+ /*
1820
+ * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),
1821
+ * otherwise return false.
1822
+ */
1823
+ P.isEqualTo = P.eq = function (y, b) {
1824
+ return compare(this, new BigNumber(y, b)) === 0;
1825
+ };
1826
+
1827
+
1828
+ /*
1829
+ * Return true if the value of this BigNumber is a finite number, otherwise return false.
1830
+ */
1831
+ P.isFinite = function () {
1832
+ return !!this.c;
1833
+ };
1834
+
1835
+
1836
+ /*
1837
+ * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),
1838
+ * otherwise return false.
1839
+ */
1840
+ P.isGreaterThan = P.gt = function (y, b) {
1841
+ return compare(this, new BigNumber(y, b)) > 0;
1842
+ };
1843
+
1844
+
1845
+ /*
1846
+ * Return true if the value of this BigNumber is greater than or equal to the value of
1847
+ * BigNumber(y, b), otherwise return false.
1848
+ */
1849
+ P.isGreaterThanOrEqualTo = P.gte = function (y, b) {
1850
+ return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0;
1851
+
1852
+ };
1853
+
1854
+
1855
+ /*
1856
+ * Return true if the value of this BigNumber is an integer, otherwise return false.
1857
+ */
1858
+ P.isInteger = function () {
1859
+ return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2;
1860
+ };
1861
+
1862
+
1863
+ /*
1864
+ * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),
1865
+ * otherwise return false.
1866
+ */
1867
+ P.isLessThan = P.lt = function (y, b) {
1868
+ return compare(this, new BigNumber(y, b)) < 0;
1869
+ };
1870
+
1871
+
1872
+ /*
1873
+ * Return true if the value of this BigNumber is less than or equal to the value of
1874
+ * BigNumber(y, b), otherwise return false.
1875
+ */
1876
+ P.isLessThanOrEqualTo = P.lte = function (y, b) {
1877
+ return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0;
1878
+ };
1879
+
1880
+
1881
+ /*
1882
+ * Return true if the value of this BigNumber is NaN, otherwise return false.
1883
+ */
1884
+ P.isNaN = function () {
1885
+ return !this.s;
1886
+ };
1887
+
1888
+
1889
+ /*
1890
+ * Return true if the value of this BigNumber is negative, otherwise return false.
1891
+ */
1892
+ P.isNegative = function () {
1893
+ return this.s < 0;
1894
+ };
1895
+
1896
+
1897
+ /*
1898
+ * Return true if the value of this BigNumber is positive, otherwise return false.
1899
+ */
1900
+ P.isPositive = function () {
1901
+ return this.s > 0;
1902
+ };
1903
+
1904
+
1905
+ /*
1906
+ * Return true if the value of this BigNumber is 0 or -0, otherwise return false.
1907
+ */
1908
+ P.isZero = function () {
1909
+ return !!this.c && this.c[0] == 0;
1910
+ };
1911
+
1912
+
1913
+ /*
1914
+ * n - 0 = n
1915
+ * n - N = N
1916
+ * n - I = -I
1917
+ * 0 - n = -n
1918
+ * 0 - 0 = 0
1919
+ * 0 - N = N
1920
+ * 0 - I = -I
1921
+ * N - n = N
1922
+ * N - 0 = N
1923
+ * N - N = N
1924
+ * N - I = N
1925
+ * I - n = I
1926
+ * I - 0 = I
1927
+ * I - N = N
1928
+ * I - I = N
1929
+ *
1930
+ * Return a new BigNumber whose value is the value of this BigNumber minus the value of
1931
+ * BigNumber(y, b).
1932
+ */
1933
+ P.minus = function (y, b) {
1934
+ var i, j, t, xLTy,
1935
+ x = this,
1936
+ a = x.s;
1937
+
1938
+ y = new BigNumber(y, b);
1939
+ b = y.s;
1940
+
1941
+ // Either NaN?
1942
+ if (!a || !b) return new BigNumber(NaN);
1943
+
1944
+ // Signs differ?
1945
+ if (a != b) {
1946
+ y.s = -b;
1947
+ return x.plus(y);
1948
+ }
1949
+
1950
+ var xe = x.e / LOG_BASE,
1951
+ ye = y.e / LOG_BASE,
1952
+ xc = x.c,
1953
+ yc = y.c;
1954
+
1955
+ if (!xe || !ye) {
1956
+
1957
+ // Either Infinity?
1958
+ if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN);
1959
+
1960
+ // Either zero?
1961
+ if (!xc[0] || !yc[0]) {
1962
+
1963
+ // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
1964
+ return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x :
1965
+
1966
+ // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity
1967
+ ROUNDING_MODE == 3 ? -0 : 0);
1968
+ }
1969
+ }
1970
+
1971
+ xe = bitFloor(xe);
1972
+ ye = bitFloor(ye);
1973
+ xc = xc.slice();
1974
+
1975
+ // Determine which is the bigger number.
1976
+ if (a = xe - ye) {
1977
+
1978
+ if (xLTy = a < 0) {
1979
+ a = -a;
1980
+ t = xc;
1981
+ } else {
1982
+ ye = xe;
1983
+ t = yc;
1984
+ }
1985
+
1986
+ t.reverse();
1987
+
1988
+ // Prepend zeros to equalise exponents.
1989
+ for (b = a; b--; t.push(0));
1990
+ t.reverse();
1991
+ } else {
1992
+
1993
+ // Exponents equal. Check digit by digit.
1994
+ j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b;
1995
+
1996
+ for (a = b = 0; b < j; b++) {
1997
+
1998
+ if (xc[b] != yc[b]) {
1999
+ xLTy = xc[b] < yc[b];
2000
+ break;
2001
+ }
2002
+ }
2003
+ }
2004
+
2005
+ // x < y? Point xc to the array of the bigger number.
2006
+ if (xLTy) {
2007
+ t = xc;
2008
+ xc = yc;
2009
+ yc = t;
2010
+ y.s = -y.s;
2011
+ }
2012
+
2013
+ b = (j = yc.length) - (i = xc.length);
2014
+
2015
+ // Append zeros to xc if shorter.
2016
+ // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.
2017
+ if (b > 0) for (; b--; xc[i++] = 0);
2018
+ b = BASE - 1;
2019
+
2020
+ // Subtract yc from xc.
2021
+ for (; j > a;) {
2022
+
2023
+ if (xc[--j] < yc[j]) {
2024
+ for (i = j; i && !xc[--i]; xc[i] = b);
2025
+ --xc[i];
2026
+ xc[j] += BASE;
2027
+ }
2028
+
2029
+ xc[j] -= yc[j];
2030
+ }
2031
+
2032
+ // Remove leading zeros and adjust exponent accordingly.
2033
+ for (; xc[0] == 0; xc.splice(0, 1), --ye);
2034
+
2035
+ // Zero?
2036
+ if (!xc[0]) {
2037
+
2038
+ // Following IEEE 754 (2008) 6.3,
2039
+ // n - n = +0 but n - n = -0 when rounding towards -Infinity.
2040
+ y.s = ROUNDING_MODE == 3 ? -1 : 1;
2041
+ y.c = [y.e = 0];
2042
+ return y;
2043
+ }
2044
+
2045
+ // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity
2046
+ // for finite x and y.
2047
+ return normalise(y, xc, ye);
2048
+ };
2049
+
2050
+
2051
+ /*
2052
+ * n % 0 = N
2053
+ * n % N = N
2054
+ * n % I = n
2055
+ * 0 % n = 0
2056
+ * -0 % n = -0
2057
+ * 0 % 0 = N
2058
+ * 0 % N = N
2059
+ * 0 % I = 0
2060
+ * N % n = N
2061
+ * N % 0 = N
2062
+ * N % N = N
2063
+ * N % I = N
2064
+ * I % n = N
2065
+ * I % 0 = N
2066
+ * I % N = N
2067
+ * I % I = N
2068
+ *
2069
+ * Return a new BigNumber whose value is the value of this BigNumber modulo the value of
2070
+ * BigNumber(y, b). The result depends on the value of MODULO_MODE.
2071
+ */
2072
+ P.modulo = P.mod = function (y, b) {
2073
+ var q, s,
2074
+ x = this;
2075
+
2076
+ y = new BigNumber(y, b);
2077
+
2078
+ // Return NaN if x is Infinity or NaN, or y is NaN or zero.
2079
+ if (!x.c || !y.s || y.c && !y.c[0]) {
2080
+ return new BigNumber(NaN);
2081
+
2082
+ // Return x if y is Infinity or x is zero.
2083
+ } else if (!y.c || x.c && !x.c[0]) {
2084
+ return new BigNumber(x);
2085
+ }
2086
+
2087
+ if (MODULO_MODE == 9) {
2088
+
2089
+ // Euclidian division: q = sign(y) * floor(x / abs(y))
2090
+ // r = x - qy where 0 <= r < abs(y)
2091
+ s = y.s;
2092
+ y.s = 1;
2093
+ q = div(x, y, 0, 3);
2094
+ y.s = s;
2095
+ q.s *= s;
2096
+ } else {
2097
+ q = div(x, y, 0, MODULO_MODE);
2098
+ }
2099
+
2100
+ y = x.minus(q.times(y));
2101
+
2102
+ // To match JavaScript %, ensure sign of zero is sign of dividend.
2103
+ if (!y.c[0] && MODULO_MODE == 1) y.s = x.s;
2104
+
2105
+ return y;
2106
+ };
2107
+
2108
+
2109
+ /*
2110
+ * n * 0 = 0
2111
+ * n * N = N
2112
+ * n * I = I
2113
+ * 0 * n = 0
2114
+ * 0 * 0 = 0
2115
+ * 0 * N = N
2116
+ * 0 * I = N
2117
+ * N * n = N
2118
+ * N * 0 = N
2119
+ * N * N = N
2120
+ * N * I = N
2121
+ * I * n = I
2122
+ * I * 0 = N
2123
+ * I * N = N
2124
+ * I * I = I
2125
+ *
2126
+ * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value
2127
+ * of BigNumber(y, b).
2128
+ */
2129
+ P.multipliedBy = P.times = function (y, b) {
2130
+ var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,
2131
+ base, sqrtBase,
2132
+ x = this,
2133
+ xc = x.c,
2134
+ yc = (y = new BigNumber(y, b)).c;
2135
+
2136
+ // Either NaN, ±Infinity or ±0?
2137
+ if (!xc || !yc || !xc[0] || !yc[0]) {
2138
+
2139
+ // Return NaN if either is NaN, or one is 0 and the other is Infinity.
2140
+ if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) {
2141
+ y.c = y.e = y.s = null;
2142
+ } else {
2143
+ y.s *= x.s;
2144
+
2145
+ // Return ±Infinity if either is ±Infinity.
2146
+ if (!xc || !yc) {
2147
+ y.c = y.e = null;
2148
+
2149
+ // Return ±0 if either is ±0.
2150
+ } else {
2151
+ y.c = [0];
2152
+ y.e = 0;
2153
+ }
2154
+ }
2155
+
2156
+ return y;
2157
+ }
2158
+
2159
+ e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE);
2160
+ y.s *= x.s;
2161
+ xcL = xc.length;
2162
+ ycL = yc.length;
2163
+
2164
+ // Ensure xc points to longer array and xcL to its length.
2165
+ if (xcL < ycL) {
2166
+ zc = xc;
2167
+ xc = yc;
2168
+ yc = zc;
2169
+ i = xcL;
2170
+ xcL = ycL;
2171
+ ycL = i;
2172
+ }
2173
+
2174
+ // Initialise the result array with zeros.
2175
+ for (i = xcL + ycL, zc = []; i--; zc.push(0));
2176
+
2177
+ base = BASE;
2178
+ sqrtBase = SQRT_BASE;
2179
+
2180
+ for (i = ycL; --i >= 0;) {
2181
+ c = 0;
2182
+ ylo = yc[i] % sqrtBase;
2183
+ yhi = yc[i] / sqrtBase | 0;
2184
+
2185
+ for (k = xcL, j = i + k; j > i;) {
2186
+ xlo = xc[--k] % sqrtBase;
2187
+ xhi = xc[k] / sqrtBase | 0;
2188
+ m = yhi * xlo + xhi * ylo;
2189
+ xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c;
2190
+ c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi;
2191
+ zc[j--] = xlo % base;
2192
+ }
2193
+
2194
+ zc[j] = c;
2195
+ }
2196
+
2197
+ if (c) {
2198
+ ++e;
2199
+ } else {
2200
+ zc.splice(0, 1);
2201
+ }
2202
+
2203
+ return normalise(y, zc, e);
2204
+ };
2205
+
2206
+
2207
+ /*
2208
+ * Return a new BigNumber whose value is the value of this BigNumber negated,
2209
+ * i.e. multiplied by -1.
2210
+ */
2211
+ P.negated = function () {
2212
+ var x = new BigNumber(this);
2213
+ x.s = -x.s || null;
2214
+ return x;
2215
+ };
2216
+
2217
+
2218
+ /*
2219
+ * n + 0 = n
2220
+ * n + N = N
2221
+ * n + I = I
2222
+ * 0 + n = n
2223
+ * 0 + 0 = 0
2224
+ * 0 + N = N
2225
+ * 0 + I = I
2226
+ * N + n = N
2227
+ * N + 0 = N
2228
+ * N + N = N
2229
+ * N + I = N
2230
+ * I + n = I
2231
+ * I + 0 = I
2232
+ * I + N = N
2233
+ * I + I = I
2234
+ *
2235
+ * Return a new BigNumber whose value is the value of this BigNumber plus the value of
2236
+ * BigNumber(y, b).
2237
+ */
2238
+ P.plus = function (y, b) {
2239
+ var t,
2240
+ x = this,
2241
+ a = x.s;
2242
+
2243
+ y = new BigNumber(y, b);
2244
+ b = y.s;
2245
+
2246
+ // Either NaN?
2247
+ if (!a || !b) return new BigNumber(NaN);
2248
+
2249
+ // Signs differ?
2250
+ if (a != b) {
2251
+ y.s = -b;
2252
+ return x.minus(y);
2253
+ }
2254
+
2255
+ var xe = x.e / LOG_BASE,
2256
+ ye = y.e / LOG_BASE,
2257
+ xc = x.c,
2258
+ yc = y.c;
2259
+
2260
+ if (!xe || !ye) {
2261
+
2262
+ // Return ±Infinity if either ±Infinity.
2263
+ if (!xc || !yc) return new BigNumber(a / 0);
2264
+
2265
+ // Either zero?
2266
+ // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.
2267
+ if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0);
2268
+ }
2269
+
2270
+ xe = bitFloor(xe);
2271
+ ye = bitFloor(ye);
2272
+ xc = xc.slice();
2273
+
2274
+ // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.
2275
+ if (a = xe - ye) {
2276
+ if (a > 0) {
2277
+ ye = xe;
2278
+ t = yc;
2279
+ } else {
2280
+ a = -a;
2281
+ t = xc;
2282
+ }
2283
+
2284
+ t.reverse();
2285
+ for (; a--; t.push(0));
2286
+ t.reverse();
2287
+ }
2288
+
2289
+ a = xc.length;
2290
+ b = yc.length;
2291
+
2292
+ // Point xc to the longer array, and b to the shorter length.
2293
+ if (a - b < 0) {
2294
+ t = yc;
2295
+ yc = xc;
2296
+ xc = t;
2297
+ b = a;
2298
+ }
2299
+
2300
+ // Only start adding at yc.length - 1 as the further digits of xc can be ignored.
2301
+ for (a = 0; b;) {
2302
+ a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0;
2303
+ xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;
2304
+ }
2305
+
2306
+ if (a) {
2307
+ xc = [a].concat(xc);
2308
+ ++ye;
2309
+ }
2310
+
2311
+ // No need to check for zero, as +x + +y != 0 && -x + -y != 0
2312
+ // ye = MAX_EXP + 1 possible
2313
+ return normalise(y, xc, ye);
2314
+ };
2315
+
2316
+
2317
+ /*
2318
+ * If sd is undefined or null or true or false, return the number of significant digits of
2319
+ * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.
2320
+ * If sd is true include integer-part trailing zeros in the count.
2321
+ *
2322
+ * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this
2323
+ * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or
2324
+ * ROUNDING_MODE if rm is omitted.
2325
+ *
2326
+ * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.
2327
+ * boolean: whether to count integer-part trailing zeros: true or false.
2328
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2329
+ *
2330
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
2331
+ */
2332
+ P.precision = P.sd = function (sd, rm) {
2333
+ var c, n, v,
2334
+ x = this;
2335
+
2336
+ if (sd != null && sd !== !!sd) {
2337
+ intCheck(sd, 1, MAX);
2338
+ if (rm == null) rm = ROUNDING_MODE;
2339
+ else intCheck(rm, 0, 8);
2340
+
2341
+ return round(new BigNumber(x), sd, rm);
2342
+ }
2343
+
2344
+ if (!(c = x.c)) return null;
2345
+ v = c.length - 1;
2346
+ n = v * LOG_BASE + 1;
2347
+
2348
+ if (v = c[v]) {
2349
+
2350
+ // Subtract the number of trailing zeros of the last element.
2351
+ for (; v % 10 == 0; v /= 10, n--);
2352
+
2353
+ // Add the number of digits of the first element.
2354
+ for (v = c[0]; v >= 10; v /= 10, n++);
2355
+ }
2356
+
2357
+ if (sd && x.e + 1 > n) n = x.e + 1;
2358
+
2359
+ return n;
2360
+ };
2361
+
2362
+
2363
+ /*
2364
+ * Return a new BigNumber whose value is the value of this BigNumber shifted by k places
2365
+ * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.
2366
+ *
2367
+ * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.
2368
+ *
2369
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'
2370
+ */
2371
+ P.shiftedBy = function (k) {
2372
+ intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER);
2373
+ return this.times('1e' + k);
2374
+ };
2375
+
2376
+
2377
+ /*
2378
+ * sqrt(-n) = N
2379
+ * sqrt(N) = N
2380
+ * sqrt(-I) = N
2381
+ * sqrt(I) = I
2382
+ * sqrt(0) = 0
2383
+ * sqrt(-0) = -0
2384
+ *
2385
+ * Return a new BigNumber whose value is the square root of the value of this BigNumber,
2386
+ * rounded according to DECIMAL_PLACES and ROUNDING_MODE.
2387
+ */
2388
+ P.squareRoot = P.sqrt = function () {
2389
+ var m, n, r, rep, t,
2390
+ x = this,
2391
+ c = x.c,
2392
+ s = x.s,
2393
+ e = x.e,
2394
+ dp = DECIMAL_PLACES + 4,
2395
+ half = new BigNumber('0.5');
2396
+
2397
+ // Negative/NaN/Infinity/zero?
2398
+ if (s !== 1 || !c || !c[0]) {
2399
+ return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0);
2400
+ }
2401
+
2402
+ // Initial estimate.
2403
+ s = Math.sqrt(+valueOf(x));
2404
+
2405
+ // Math.sqrt underflow/overflow?
2406
+ // Pass x to Math.sqrt as integer, then adjust the exponent of the result.
2407
+ if (s == 0 || s == 1 / 0) {
2408
+ n = coeffToString(c);
2409
+ if ((n.length + e) % 2 == 0) n += '0';
2410
+ s = Math.sqrt(+n);
2411
+ e = bitFloor((e + 1) / 2) - (e < 0 || e % 2);
2412
+
2413
+ if (s == 1 / 0) {
2414
+ n = '5e' + e;
2415
+ } else {
2416
+ n = s.toExponential();
2417
+ n = n.slice(0, n.indexOf('e') + 1) + e;
2418
+ }
2419
+
2420
+ r = new BigNumber(n);
2421
+ } else {
2422
+ r = new BigNumber(s + '');
2423
+ }
2424
+
2425
+ // Check for zero.
2426
+ // r could be zero if MIN_EXP is changed after the this value was created.
2427
+ // This would cause a division by zero (x/t) and hence Infinity below, which would cause
2428
+ // coeffToString to throw.
2429
+ if (r.c[0]) {
2430
+ e = r.e;
2431
+ s = e + dp;
2432
+ if (s < 3) s = 0;
2433
+
2434
+ // Newton-Raphson iteration.
2435
+ for (; ;) {
2436
+ t = r;
2437
+ r = half.times(t.plus(div(x, t, dp, 1)));
2438
+
2439
+ if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) {
2440
+
2441
+ // The exponent of r may here be one less than the final result exponent,
2442
+ // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits
2443
+ // are indexed correctly.
2444
+ if (r.e < e) --s;
2445
+ n = n.slice(s - 3, s + 1);
2446
+
2447
+ // The 4th rounding digit may be in error by -1 so if the 4 rounding digits
2448
+ // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the
2449
+ // iteration.
2450
+ if (n == '9999' || !rep && n == '4999') {
2451
+
2452
+ // On the first iteration only, check to see if rounding up gives the
2453
+ // exact result as the nines may infinitely repeat.
2454
+ if (!rep) {
2455
+ round(t, t.e + DECIMAL_PLACES + 2, 0);
2456
+
2457
+ if (t.times(t).eq(x)) {
2458
+ r = t;
2459
+ break;
2460
+ }
2461
+ }
2462
+
2463
+ dp += 4;
2464
+ s += 4;
2465
+ rep = 1;
2466
+ } else {
2467
+
2468
+ // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact
2469
+ // result. If not, then there are further digits and m will be truthy.
2470
+ if (!+n || !+n.slice(1) && n.charAt(0) == '5') {
2471
+
2472
+ // Truncate to the first rounding digit.
2473
+ round(r, r.e + DECIMAL_PLACES + 2, 1);
2474
+ m = !r.times(r).eq(x);
2475
+ }
2476
+
2477
+ break;
2478
+ }
2479
+ }
2480
+ }
2481
+ }
2482
+
2483
+ return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m);
2484
+ };
2485
+
2486
+
2487
+ /*
2488
+ * Return a string representing the value of this BigNumber in exponential notation and
2489
+ * rounded using ROUNDING_MODE to dp fixed decimal places.
2490
+ *
2491
+ * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
2492
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2493
+ *
2494
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
2495
+ */
2496
+ P.toExponential = function (dp, rm) {
2497
+ if (dp != null) {
2498
+ intCheck(dp, 0, MAX);
2499
+ dp++;
2500
+ }
2501
+ return format(this, dp, rm, 1);
2502
+ };
2503
+
2504
+
2505
+ /*
2506
+ * Return a string representing the value of this BigNumber in fixed-point notation rounding
2507
+ * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.
2508
+ *
2509
+ * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',
2510
+ * but e.g. (-0.00001).toFixed(0) is '-0'.
2511
+ *
2512
+ * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
2513
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2514
+ *
2515
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
2516
+ */
2517
+ P.toFixed = function (dp, rm) {
2518
+ if (dp != null) {
2519
+ intCheck(dp, 0, MAX);
2520
+ dp = dp + this.e + 1;
2521
+ }
2522
+ return format(this, dp, rm);
2523
+ };
2524
+
2525
+
2526
+ /*
2527
+ * Return a string representing the value of this BigNumber in fixed-point notation rounded
2528
+ * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties
2529
+ * of the format or FORMAT object (see BigNumber.set).
2530
+ *
2531
+ * The formatting object may contain some or all of the properties shown below.
2532
+ *
2533
+ * FORMAT = {
2534
+ * prefix: '',
2535
+ * groupSize: 3,
2536
+ * secondaryGroupSize: 0,
2537
+ * groupSeparator: ',',
2538
+ * decimalSeparator: '.',
2539
+ * fractionGroupSize: 0,
2540
+ * fractionGroupSeparator: '\xA0', // non-breaking space
2541
+ * suffix: ''
2542
+ * };
2543
+ *
2544
+ * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.
2545
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2546
+ * [format] {object} Formatting options. See FORMAT pbject above.
2547
+ *
2548
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'
2549
+ * '[BigNumber Error] Argument not an object: {format}'
2550
+ */
2551
+ P.toFormat = function (dp, rm, format) {
2552
+ var str,
2553
+ x = this;
2554
+
2555
+ if (format == null) {
2556
+ if (dp != null && rm && typeof rm == 'object') {
2557
+ format = rm;
2558
+ rm = null;
2559
+ } else if (dp && typeof dp == 'object') {
2560
+ format = dp;
2561
+ dp = rm = null;
2562
+ } else {
2563
+ format = FORMAT;
2564
+ }
2565
+ } else if (typeof format != 'object') {
2566
+ throw Error
2567
+ (bignumberError + 'Argument not an object: ' + format);
2568
+ }
2569
+
2570
+ str = x.toFixed(dp, rm);
2571
+
2572
+ if (x.c) {
2573
+ var i,
2574
+ arr = str.split('.'),
2575
+ g1 = +format.groupSize,
2576
+ g2 = +format.secondaryGroupSize,
2577
+ groupSeparator = format.groupSeparator || '',
2578
+ intPart = arr[0],
2579
+ fractionPart = arr[1],
2580
+ isNeg = x.s < 0,
2581
+ intDigits = isNeg ? intPart.slice(1) : intPart,
2582
+ len = intDigits.length;
2583
+
2584
+ if (g2) {
2585
+ i = g1;
2586
+ g1 = g2;
2587
+ g2 = i;
2588
+ len -= i;
2589
+ }
2590
+
2591
+ if (g1 > 0 && len > 0) {
2592
+ i = len % g1 || g1;
2593
+ intPart = intDigits.substr(0, i);
2594
+ for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1);
2595
+ if (g2 > 0) intPart += groupSeparator + intDigits.slice(i);
2596
+ if (isNeg) intPart = '-' + intPart;
2597
+ }
2598
+
2599
+ str = fractionPart
2600
+ ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize)
2601
+ ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'),
2602
+ '$&' + (format.fractionGroupSeparator || ''))
2603
+ : fractionPart)
2604
+ : intPart;
2605
+ }
2606
+
2607
+ return (format.prefix || '') + str + (format.suffix || '');
2608
+ };
2609
+
2610
+
2611
+ /*
2612
+ * Return an array of two BigNumbers representing the value of this BigNumber as a simple
2613
+ * fraction with an integer numerator and an integer denominator.
2614
+ * The denominator will be a positive non-zero value less than or equal to the specified
2615
+ * maximum denominator. If a maximum denominator is not specified, the denominator will be
2616
+ * the lowest value necessary to represent the number exactly.
2617
+ *
2618
+ * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator.
2619
+ *
2620
+ * '[BigNumber Error] Argument {not an integer|out of range} : {md}'
2621
+ */
2622
+ P.toFraction = function (md) {
2623
+ var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s,
2624
+ x = this,
2625
+ xc = x.c;
2626
+
2627
+ if (md != null) {
2628
+ n = new BigNumber(md);
2629
+
2630
+ // Throw if md is less than one or is not an integer, unless it is Infinity.
2631
+ if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) {
2632
+ throw Error
2633
+ (bignumberError + 'Argument ' +
2634
+ (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n));
2635
+ }
2636
+ }
2637
+
2638
+ if (!xc) return new BigNumber(x);
2639
+
2640
+ d = new BigNumber(ONE);
2641
+ n1 = d0 = new BigNumber(ONE);
2642
+ d1 = n0 = new BigNumber(ONE);
2643
+ s = coeffToString(xc);
2644
+
2645
+ // Determine initial denominator.
2646
+ // d is a power of 10 and the minimum max denominator that specifies the value exactly.
2647
+ e = d.e = s.length - x.e - 1;
2648
+ d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp];
2649
+ md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n;
2650
+
2651
+ exp = MAX_EXP;
2652
+ MAX_EXP = 1 / 0;
2653
+ n = new BigNumber(s);
2654
+
2655
+ // n0 = d1 = 0
2656
+ n0.c[0] = 0;
2657
+
2658
+ for (; ;) {
2659
+ q = div(n, d, 0, 1);
2660
+ d2 = d0.plus(q.times(d1));
2661
+ if (d2.comparedTo(md) == 1) break;
2662
+ d0 = d1;
2663
+ d1 = d2;
2664
+ n1 = n0.plus(q.times(d2 = n1));
2665
+ n0 = d2;
2666
+ d = n.minus(q.times(d2 = d));
2667
+ n = d2;
2668
+ }
2669
+
2670
+ d2 = div(md.minus(d0), d1, 0, 1);
2671
+ n0 = n0.plus(d2.times(n1));
2672
+ d0 = d0.plus(d2.times(d1));
2673
+ n0.s = n1.s = x.s;
2674
+ e = e * 2;
2675
+
2676
+ // Determine which fraction is closer to x, n0/d0 or n1/d1
2677
+ r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo(
2678
+ div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
2679
+
2680
+ MAX_EXP = exp;
2681
+
2682
+ return r;
2683
+ };
2684
+
2685
+
2686
+ /*
2687
+ * Return the value of this BigNumber converted to a number primitive.
2688
+ */
2689
+ P.toNumber = function () {
2690
+ return +valueOf(this);
2691
+ };
2692
+
2693
+
2694
+ /*
2695
+ * Return a string representing the value of this BigNumber rounded to sd significant digits
2696
+ * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits
2697
+ * necessary to represent the integer part of the value in fixed-point notation, then use
2698
+ * exponential notation.
2699
+ *
2700
+ * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.
2701
+ * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.
2702
+ *
2703
+ * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'
2704
+ */
2705
+ P.toPrecision = function (sd, rm) {
2706
+ if (sd != null) intCheck(sd, 1, MAX);
2707
+ return format(this, sd, rm, 2);
2708
+ };
2709
+
2710
+
2711
+ /*
2712
+ * Return a string representing the value of this BigNumber in base b, or base 10 if b is
2713
+ * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and
2714
+ * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent
2715
+ * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than
2716
+ * TO_EXP_NEG, return exponential notation.
2717
+ *
2718
+ * [b] {number} Integer, 2 to ALPHABET.length inclusive.
2719
+ *
2720
+ * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'
2721
+ */
2722
+ P.toString = function (b) {
2723
+ var str,
2724
+ n = this,
2725
+ s = n.s,
2726
+ e = n.e;
2727
+
2728
+ // Infinity or NaN?
2729
+ if (e === null) {
2730
+ if (s) {
2731
+ str = 'Infinity';
2732
+ if (s < 0) str = '-' + str;
2733
+ } else {
2734
+ str = 'NaN';
2735
+ }
2736
+ } else {
2737
+ if (b == null) {
2738
+ str = e <= TO_EXP_NEG || e >= TO_EXP_POS
2739
+ ? toExponential(coeffToString(n.c), e)
2740
+ : toFixedPoint(coeffToString(n.c), e, '0');
2741
+ } else if (b === 10 && alphabetHasNormalDecimalDigits) {
2742
+ n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE);
2743
+ str = toFixedPoint(coeffToString(n.c), n.e, '0');
2744
+ } else {
2745
+ intCheck(b, 2, ALPHABET.length, 'Base');
2746
+ str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true);
2747
+ }
2748
+
2749
+ if (s < 0 && n.c[0]) str = '-' + str;
2750
+ }
2751
+
2752
+ return str;
2753
+ };
2754
+
2755
+
2756
+ /*
2757
+ * Return as toString, but do not accept a base argument, and include the minus sign for
2758
+ * negative zero.
2759
+ */
2760
+ P.valueOf = P.toJSON = function () {
2761
+ return valueOf(this);
2762
+ };
2763
+
2764
+
2765
+ P._isBigNumber = true;
2766
+
2767
+ if (configObject != null) BigNumber.set(configObject);
2768
+
2769
+ return BigNumber;
2770
+ }
2771
+
2772
+
2773
+ // PRIVATE HELPER FUNCTIONS
2774
+
2775
+ // These functions don't need access to variables,
2776
+ // e.g. DECIMAL_PLACES, in the scope of the `clone` function above.
2777
+
2778
+
2779
+ function bitFloor(n) {
2780
+ var i = n | 0;
2781
+ return n > 0 || n === i ? i : i - 1;
2782
+ }
2783
+
2784
+
2785
+ // Return a coefficient array as a string of base 10 digits.
2786
+ function coeffToString(a) {
2787
+ var s, z,
2788
+ i = 1,
2789
+ j = a.length,
2790
+ r = a[0] + '';
2791
+
2792
+ for (; i < j;) {
2793
+ s = a[i++] + '';
2794
+ z = LOG_BASE - s.length;
2795
+ for (; z--; s = '0' + s);
2796
+ r += s;
2797
+ }
2798
+
2799
+ // Determine trailing zeros.
2800
+ for (j = r.length; r.charCodeAt(--j) === 48;);
2801
+
2802
+ return r.slice(0, j + 1 || 1);
2803
+ }
2804
+
2805
+
2806
+ // Compare the value of BigNumbers x and y.
2807
+ function compare(x, y) {
2808
+ var a, b,
2809
+ xc = x.c,
2810
+ yc = y.c,
2811
+ i = x.s,
2812
+ j = y.s,
2813
+ k = x.e,
2814
+ l = y.e;
2815
+
2816
+ // Either NaN?
2817
+ if (!i || !j) return null;
2818
+
2819
+ a = xc && !xc[0];
2820
+ b = yc && !yc[0];
2821
+
2822
+ // Either zero?
2823
+ if (a || b) return a ? b ? 0 : -j : i;
2824
+
2825
+ // Signs differ?
2826
+ if (i != j) return i;
2827
+
2828
+ a = i < 0;
2829
+ b = k == l;
2830
+
2831
+ // Either Infinity?
2832
+ if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1;
2833
+
2834
+ // Compare exponents.
2835
+ if (!b) return k > l ^ a ? 1 : -1;
2836
+
2837
+ j = (k = xc.length) < (l = yc.length) ? k : l;
2838
+
2839
+ // Compare digit by digit.
2840
+ for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1;
2841
+
2842
+ // Compare lengths.
2843
+ return k == l ? 0 : k > l ^ a ? 1 : -1;
2844
+ }
2845
+
2846
+
2847
+ /*
2848
+ * Check that n is a primitive number, an integer, and in range, otherwise throw.
2849
+ */
2850
+ function intCheck(n, min, max, name) {
2851
+ if (n < min || n > max || n !== mathfloor(n)) {
2852
+ throw Error
2853
+ (bignumberError + (name || 'Argument') + (typeof n == 'number'
2854
+ ? n < min || n > max ? ' out of range: ' : ' not an integer: '
2855
+ : ' not a primitive number: ') + String(n));
2856
+ }
2857
+ }
2858
+
2859
+
2860
+ // Assumes finite n.
2861
+ function isOdd(n) {
2862
+ var k = n.c.length - 1;
2863
+ return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0;
2864
+ }
2865
+
2866
+
2867
+ function toExponential(str, e) {
2868
+ return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) +
2869
+ (e < 0 ? 'e' : 'e+') + e;
2870
+ }
2871
+
2872
+
2873
+ function toFixedPoint(str, e, z) {
2874
+ var len, zs;
2875
+
2876
+ // Negative exponent?
2877
+ if (e < 0) {
2878
+
2879
+ // Prepend zeros.
2880
+ for (zs = z + '.'; ++e; zs += z);
2881
+ str = zs + str;
2882
+
2883
+ // Positive exponent
2884
+ } else {
2885
+ len = str.length;
2886
+
2887
+ // Append zeros.
2888
+ if (++e > len) {
2889
+ for (zs = z, e -= len; --e; zs += z);
2890
+ str += zs;
2891
+ } else if (e < len) {
2892
+ str = str.slice(0, e) + '.' + str.slice(e);
2893
+ }
2894
+ }
2895
+
2896
+ return str;
2897
+ }
2898
+
2899
+
2900
+ // EXPORT
2901
+
2902
+
2903
+ BigNumber = clone();
2904
+ BigNumber['default'] = BigNumber.BigNumber = BigNumber;
2905
+
2906
+ // AMD.
2907
+ if (typeof define == 'function' && define.amd) {
2908
+ define(function () { return BigNumber; });
2909
+
2910
+ // Node.js and other environments that support module.exports.
2911
+ } else if (typeof module != 'undefined' && module.exports) {
2912
+ module.exports = BigNumber;
2913
+
2914
+ // Browser.
2915
+ } else {
2916
+ if (!globalObject) {
2917
+ globalObject = typeof self != 'undefined' && self ? self : window;
2918
+ }
2919
+
2920
+ globalObject.BigNumber = BigNumber;
2921
+ }
2922
+ })(this);