bg2e-js 2.1.0 → 2.1.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/bg2e-js.js CHANGED
@@ -21,7 +21,7 @@ const Oe = {
21
21
  }
22
22
  }, ii = 3.141592653589793, ni = 0.01745329251994, si = 57.29577951308233, _n = 1.5707963267948966, $n = 0.785398163397448, es = 0.392699081698724, ts = 6.283185307179586, dt = 1e-7, Ze = Float32Array, rs = Float64Array, is = 3402823e32, ke = (r, e) => r.length >= e;
23
23
  let Gt = Date.now();
24
- const ns = (r) => typeof r != "number" ? !1 : r && (r & r - 1) === 0, Ce = (r) => r > -dt && r < dt ? 0 : r, Q = (r) => Ce(r) === 0, T = (r, e) => Math.abs(r - e) < dt, qe = (r) => Math.fround(Ce(r * ni)), oi = (r) => Math.fround(Ce(r * si)), ss = (r) => Math.fround(Ce(Math.sin(r))), os = (r) => Math.fround(Ce(Math.cos(r))), ai = (r) => Math.fround(Ce(Math.tan(r))), as = (r) => Math.fround(Ce(1 / ai(r))), hs = (r) => Math.fround(Ce(Math.atan(r))), As = (r, e) => Math.fround(Ce(Math.atan2f(r, e))), fs = () => Math.random(), cs = () => (Gt = (Gt * 9301 + 49297) % 233280, 0 + Gt / 233280 * 1), gs = (r, e) => Math.fround(Math.max(r, e)), ls = (r, e) => Math.fround(Math.min(r, e)), us = (r) => Math.fround(Math.abs(r)), ds = (r) => Math.fround(Math.sqrt(r)), $ = (r, e, t) => (t = t > 1 ? 1 : t, Math.fround((1 - t) * r + t * e)), ws = (r) => Math.fround(r * r), ee = (r, e, t) => Math.fround(Math.max(e, Math.min(r, t))), vs = {
24
+ const ns = (r) => typeof r != "number" ? !1 : r && (r & r - 1) === 0, Ce = (r) => r > -dt && r < dt ? 0 : r, x = (r) => Ce(r) === 0, y = (r, e) => Math.abs(r - e) < dt, qe = (r) => Math.fround(Ce(r * ni)), oi = (r) => Math.fround(Ce(r * si)), ss = (r) => Math.fround(Ce(Math.sin(r))), os = (r) => Math.fround(Ce(Math.cos(r))), ai = (r) => Math.fround(Ce(Math.tan(r))), as = (r) => Math.fround(Ce(1 / ai(r))), hs = (r) => Math.fround(Ce(Math.atan(r))), As = (r, e) => Math.fround(Ce(Math.atan2f(r, e))), fs = () => Math.random(), cs = () => (Gt = (Gt * 9301 + 49297) % 233280, 0 + Gt / 233280 * 1), gs = (r, e) => Math.fround(Math.max(r, e)), ls = (r, e) => Math.fround(Math.min(r, e)), us = (r) => Math.fround(Math.abs(r)), ds = (r) => Math.fround(Math.sqrt(r)), $ = (r, e, t) => (t = t > 1 ? 1 : t, Math.fround((1 - t) * r + t * e)), ws = (r) => Math.fround(r * r), ee = (r, e, t) => Math.fround(Math.max(e, Math.min(r, t))), vs = {
25
25
  Axis: Oe,
26
26
  PI: ii,
27
27
  DEG_TO_RAD: ni,
@@ -36,8 +36,8 @@ const ns = (r) => typeof r != "number" ? !1 : r && (r & r - 1) === 0, Ce = (r) =
36
36
  FLOAT_MAX: is,
37
37
  checkPowerOfTwo: ns,
38
38
  checkZero: Ce,
39
- isZero: Q,
40
- equals: T,
39
+ isZero: x,
40
+ equals: y,
41
41
  degreesToRadians: qe,
42
42
  radiansToDegrees: oi,
43
43
  sin: ss,
@@ -513,11 +513,11 @@ class h extends Ze {
513
513
  return !1;
514
514
  switch (e.length) {
515
515
  case 2:
516
- return T(e[0], t[0]) && T(e[1], t[1]);
516
+ return y(e[0], t[0]) && y(e[1], t[1]);
517
517
  case 3:
518
- return T(e[0], t[0]) && T(e[1], t[1]) && T(e[2], t[2]);
518
+ return y(e[0], t[0]) && y(e[1], t[1]) && y(e[2], t[2]);
519
519
  case 4:
520
- return T(e[0], t[0]) && T(e[1], t[1]) && T(e[2], t[2]) && T(e[3], t[3]);
520
+ return y(e[0], t[0]) && y(e[1], t[1]) && y(e[2], t[2]) && y(e[3], t[3]);
521
521
  default:
522
522
  throw new Error(`Invalid vector size: ${e.length}`);
523
523
  }
@@ -525,11 +525,11 @@ class h extends Ze {
525
525
  static IsZero(e) {
526
526
  switch (e.length) {
527
527
  case 2:
528
- return Q(e[0]) || Q(e[1]);
528
+ return x(e[0]) || x(e[1]);
529
529
  case 3:
530
- return Q(e[0]) || Q(e[1]) || Q(e[2]);
530
+ return x(e[0]) || x(e[1]) || x(e[2]);
531
531
  case 4:
532
- return Q(e[0]) || Q(e[1]) || Q(e[2]) || Q(e[3]);
532
+ return x(e[0]) || x(e[1]) || x(e[2]) || x(e[3]);
533
533
  default:
534
534
  throw new Error(`Invalid vector size: ${e.length}`);
535
535
  }
@@ -716,10 +716,10 @@ class me extends Ze {
716
716
  return n.setRow(0, o), n.setRow(1, a), n.setRow(2, s), n;
717
717
  }
718
718
  static IsZero(e) {
719
- return Q(v[0]) && Q(v[1]) && Q(v[2]) && Q(v[3]) && Q(v[4]) && Q(v[5]) && Q(v[6]) && Q(v[7]) && Q(v[8]);
719
+ return x(v[0]) && x(v[1]) && x(v[2]) && x(v[3]) && x(v[4]) && x(v[5]) && x(v[6]) && x(v[7]) && x(v[8]);
720
720
  }
721
721
  static IsIdentity(e) {
722
- return T(v[0], 1) && Q(v[1]) && Q(v[2]) && Q(v[3]) && T(v[4], 1) && Q(v[5]) && Q(v[6]) && Q(v[7]) && T(v[8], 1);
722
+ return y(v[0], 1) && x(v[1]) && x(v[2]) && x(v[3]) && y(v[4], 1) && x(v[5]) && x(v[6]) && x(v[7]) && y(v[8], 1);
723
723
  }
724
724
  static GetScale(e) {
725
725
  return new h(
@@ -729,7 +729,7 @@ class me extends Ze {
729
729
  );
730
730
  }
731
731
  static Equals(e, t) {
732
- return T(e[0], t[0]) && T(e[1], t[1]) && T(e[2], t[2]) && T(e[3], t[3]) && T(e[4], t[4]) && T(e[5], t[5]) && T(e[6], t[6]) && T(e[7], t[7]) && T(e[8], t[8]);
732
+ return y(e[0], t[0]) && y(e[1], t[1]) && y(e[2], t[2]) && y(e[3], t[3]) && y(e[4], t[4]) && y(e[5], t[5]) && y(e[6], t[6]) && y(e[7], t[7]) && y(e[8], t[8]);
733
733
  }
734
734
  static IsNaN(e) {
735
735
  return isNaN(e[0]) || isNaN(e[1]) || isNaN(e[2]) && isNaN(e[3]) || isNaN(e[4]) || isNaN(e[5]) && isNaN(e[6]) || isNaN(e[7]) || isNaN(e[8]);
@@ -740,7 +740,7 @@ class me extends Ze {
740
740
  return new Mat4(t).mult(e);
741
741
  }
742
742
  }
743
- let p = class H extends Ze {
743
+ let C = class z extends Ze {
744
744
  constructor() {
745
745
  const e = [
746
746
  0,
@@ -784,12 +784,12 @@ let p = class H extends Ze {
784
784
  return this.frustum(-a, a, -o, o, n, s), this;
785
785
  }
786
786
  frustum(e, t, n, s, o, a) {
787
- let A = t - e, f = s - n, g = a - o;
788
- return this.setRow(0, new h(o * 2 / A, 0, 0, 0)), this.setRow(1, new h(0, o * 2 / f, 0, 0)), this.setRow(2, new h((t + e) / A, (s + n) / f, -(a + o) / g, -1)), this.setRow(3, new h(0, 0, -(a * o * 2) / g, 0)), this;
787
+ let A = t - e, g = s - n, d = a - o;
788
+ return this.setRow(0, new h(o * 2 / A, 0, 0, 0)), this.setRow(1, new h(0, o * 2 / g, 0, 0)), this.setRow(2, new h((t + e) / A, (s + n) / g, -(a + o) / d, -1)), this.setRow(3, new h(0, 0, -(a * o * 2) / d, 0)), this;
789
789
  }
790
790
  ortho(e, t, n, s, o, a) {
791
- let A = t - e, f = s - n, g = a - o;
792
- return this[0] = 2 / A, this[1] = 0, this[2] = 0, this[3] = 0, this[4] = 0, this[5] = 2 / f, this[6] = 0, this[7] = 0, this[8] = 0, this[9] = 0, this[10] = -2 / g, this[11] = 0, this[12] = -(e + t) / A, this[13] = -(s + n) / f, this[14] = -(a + o) / g, this[15] = 1, this;
791
+ let A = t - e, g = s - n, d = a - o;
792
+ return this[0] = 2 / A, this[1] = 0, this[2] = 0, this[3] = 0, this[4] = 0, this[5] = 2 / g, this[6] = 0, this[7] = 0, this[8] = 0, this[9] = 0, this[10] = -2 / d, this[11] = 0, this[12] = -(e + t) / A, this[13] = -(s + n) / g, this[14] = -(a + o) / d, this[15] = 1, this;
793
793
  }
794
794
  lookAt(e, t, n) {
795
795
  this.identity();
@@ -909,22 +909,22 @@ let p = class H extends Ze {
909
909
  );
910
910
  }
911
911
  get forwardVector() {
912
- return H.TransformDirection(this, new h(0, 0, 1));
912
+ return z.TransformDirection(this, new h(0, 0, 1));
913
913
  }
914
914
  get rightVector() {
915
- return H.TransformDirection(this, new h(1, 0, 0));
915
+ return z.TransformDirection(this, new h(1, 0, 0));
916
916
  }
917
917
  get upVector() {
918
- return H.TransformDirection(this, new h(0, 1, 0));
918
+ return z.TransformDirection(this, new h(0, 1, 0));
919
919
  }
920
920
  get backwardVector() {
921
- return H.TransformDirection(this, new h(0, 0, -1));
921
+ return z.TransformDirection(this, new h(0, 0, -1));
922
922
  }
923
923
  get leftVector() {
924
- return H.TransformDirection(this, new h(-1, 0, 0));
924
+ return z.TransformDirection(this, new h(-1, 0, 0));
925
925
  }
926
926
  get downVector() {
927
- return H.TransformDirection(this, new h(0, -1, 0));
927
+ return z.TransformDirection(this, new h(0, -1, 0));
928
928
  }
929
929
  row(e) {
930
930
  return new h(
@@ -966,13 +966,13 @@ let p = class H extends Ze {
966
966
  return e.length == 9 ? (this[0] = e[0], this[1] = e[1], this[2] = e[2], this[3] = 0, this[4] = e[3], this[5] = e[4], this[6] = e[5], this[7] = 0, this[8] = e[6], this[9] = e[7], this[10] = e[8], this[11] = 0, this[12] = 0, this[13] = 0, this[14] = 0, this[15] = 1) : e.length == 16 && (this[0] = e[0], this[1] = e[1], this[2] = e[2], this[3] = e[3], this[4] = e[4], this[5] = e[5], this[6] = e[6], this[7] = e[7], this[8] = e[8], this[9] = e[9], this[10] = e[10], this[11] = e[11], this[12] = e[12], this[13] = e[13], this[14] = e[14], this[15] = e[15]), this;
967
967
  }
968
968
  translate(e, t, n) {
969
- return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), this.mult(H.MakeTranslation(e, t, n)), this;
969
+ return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), this.mult(z.MakeTranslation(e, t, n)), this;
970
970
  }
971
971
  rotate(e, t, n, s) {
972
- return ke(t, 3) && (n = t[1], s = t[2], t = t[0]), this.mult(H.MakeRotation(e, t, n, s)), this;
972
+ return ke(t, 3) && (n = t[1], s = t[2], t = t[0]), this.mult(z.MakeRotation(e, t, n, s)), this;
973
973
  }
974
974
  scale(e, t, n) {
975
- return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), this.mult(H.MakeScale(e, t, n)), this;
975
+ return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), this.mult(z.MakeScale(e, t, n)), this;
976
976
  }
977
977
  toString() {
978
978
  return `[ ${this[0]}, ${this[1]}, ${this[2]}, ${this[3]}
@@ -998,8 +998,8 @@ let p = class H extends Ze {
998
998
  mult(e) {
999
999
  if (typeof e == "number")
1000
1000
  return this[0] *= e, this[1] *= e, this[2] *= e, this[3] *= e, this[4] *= e, this[5] *= e, this[6] *= e, this[7] *= e, this[8] *= e, this[9] *= e, this[10] *= e, this[11] *= e, this[12] *= e, this[13] *= e, this[14] *= e, this[15] *= e, this;
1001
- const t = this.row(0), n = this.row(1), s = this.row(2), o = this.row(3), a = e.col(0), A = e.col(1), f = e.col(2), g = e.col(3);
1002
- return this[0] = h.Dot(t, a), this[1] = h.Dot(t, A), this[2] = h.Dot(t, f), this[3] = h.Dot(t, g), this[4] = h.Dot(n, a), this[5] = h.Dot(n, A), this[6] = h.Dot(n, f), this[7] = h.Dot(n, g), this[8] = h.Dot(s, a), this[9] = h.Dot(s, A), this[10] = h.Dot(s, f), this[11] = h.Dot(s, g), this[12] = h.Dot(o, a), this[13] = h.Dot(o, A), this[14] = h.Dot(o, f), this[15] = h.Dot(o, g), this;
1001
+ const t = this.row(0), n = this.row(1), s = this.row(2), o = this.row(3), a = e.col(0), A = e.col(1), g = e.col(2), d = e.col(3);
1002
+ return this[0] = h.Dot(t, a), this[1] = h.Dot(t, A), this[2] = h.Dot(t, g), this[3] = h.Dot(t, d), this[4] = h.Dot(n, a), this[5] = h.Dot(n, A), this[6] = h.Dot(n, g), this[7] = h.Dot(n, d), this[8] = h.Dot(s, a), this[9] = h.Dot(s, A), this[10] = h.Dot(s, g), this[11] = h.Dot(s, d), this[12] = h.Dot(o, a), this[13] = h.Dot(o, A), this[14] = h.Dot(o, g), this[15] = h.Dot(o, d), this;
1003
1003
  }
1004
1004
  multVector(e) {
1005
1005
  if (e.length < 3)
@@ -1013,9 +1013,9 @@ let p = class H extends Ze {
1013
1013
  );
1014
1014
  }
1015
1015
  invert() {
1016
- const e = this[0], t = this[1], n = this[2], s = this[3], o = this[4], a = this[5], A = this[6], f = this[7], g = this[8], m = this[9], b = this[10], C = this[11], B = this[12], x = this[13], y = this[14], j = this[15], Z = e * a - t * o, W = e * A - n * o, z = e * f - s * o, U = t * A - n * a, l = t * f - s * a, d = n * f - s * A, w = g * x - m * B, c = g * y - b * B, P = g * j - C * B, I = m * y - b * x, F = m * j - C * x, _ = b * j - C * y;
1017
- let k = Z * _ - W * F + z * I + U * P - l * c + d * w;
1018
- return k ? (k = 1 / k, this[0] = (a * _ - A * F + f * I) * k, this[1] = (n * F - t * _ - s * I) * k, this[2] = (x * d - y * l + j * U) * k, this[3] = (b * l - m * d - C * U) * k, this[4] = (A * P - o * _ - f * c) * k, this[5] = (e * _ - n * P + s * c) * k, this[6] = (y * z - B * d - j * W) * k, this[7] = (g * d - b * z + C * W) * k, this[8] = (o * F - a * P + f * w) * k, this[9] = (t * P - e * F - s * w) * k, this[10] = (B * l - x * z + j * Z) * k, this[11] = (m * z - g * l - C * Z) * k, this[12] = (a * c - o * I - A * w) * k, this[13] = (e * I - t * c + n * w) * k, this[14] = (x * W - B * U - y * Z) * k, this[15] = (g * U - m * W + b * Z) * k) : this.zero(), this;
1016
+ const e = this[0], t = this[1], n = this[2], s = this[3], o = this[4], a = this[5], A = this[6], g = this[7], d = this[8], m = this[9], Q = this[10], p = this[11], B = this[12], T = this[13], D = this[14], G = this[15], Y = e * a - t * o, L = e * A - n * o, M = e * g - s * o, I = t * A - n * a, l = t * g - s * a, f = n * g - s * A, w = d * T - m * B, c = d * D - Q * B, P = d * G - p * B, R = m * D - Q * T, X = m * G - p * T, _ = Q * G - p * D;
1017
+ let K = Y * _ - L * X + M * R + I * P - l * c + f * w;
1018
+ return K ? (K = 1 / K, this[0] = (a * _ - A * X + g * R) * K, this[1] = (n * X - t * _ - s * R) * K, this[2] = (T * f - D * l + G * I) * K, this[3] = (Q * l - m * f - p * I) * K, this[4] = (A * P - o * _ - g * c) * K, this[5] = (e * _ - n * P + s * c) * K, this[6] = (D * M - B * f - G * L) * K, this[7] = (d * f - Q * M + p * L) * K, this[8] = (o * X - a * P + g * w) * K, this[9] = (t * P - e * X - s * w) * K, this[10] = (B * l - T * M + G * Y) * K, this[11] = (m * M - d * l - p * Y) * K, this[12] = (a * c - o * R - A * w) * K, this[13] = (e * R - t * c + n * w) * K, this[14] = (T * L - B * I - D * Y) * K, this[15] = (d * I - m * L + Q * Y) * K) : this.zero(), this;
1019
1019
  }
1020
1020
  traspose() {
1021
1021
  const e = new h(this[0], this[4], this[8], this[12]), t = new h(this[1], this[5], this[9], this[13]), n = new h(this[2], this[6], this[10], this[14]), s = new h(this[3], this[7], this[11], this[15]);
@@ -1023,17 +1023,17 @@ let p = class H extends Ze {
1023
1023
  }
1024
1024
  ///////// Factory methods
1025
1025
  static MakeIdentity() {
1026
- return new H().identity();
1026
+ return new z().identity();
1027
1027
  }
1028
1028
  static MakeZero() {
1029
- return new H().zero();
1029
+ return new z().zero();
1030
1030
  }
1031
1031
  static MakeWithQuaternion(e) {
1032
- const t = H.MakeIdentity();
1032
+ const t = z.MakeIdentity();
1033
1033
  return t.setRotation(me.MakeWithQuaternion(e)), t;
1034
1034
  }
1035
1035
  static MakeTranslation(e, t, n) {
1036
- return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), new H(
1036
+ return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), new z(
1037
1037
  1,
1038
1038
  0,
1039
1039
  0,
@@ -1055,18 +1055,18 @@ let p = class H extends Ze {
1055
1055
  static MakeRotation(e, t, n, s) {
1056
1056
  const o = new h(t, n, s);
1057
1057
  o.normalize();
1058
- var a = Math.cos(e), A = 1 - a, f = Math.sin(e);
1059
- return new H(
1058
+ var a = Math.cos(e), A = 1 - a, g = Math.sin(e);
1059
+ return new z(
1060
1060
  o.x * o.x * A + a,
1061
- o.x * o.y * A + o.z * f,
1062
- o.x * o.z * A - o.y * f,
1061
+ o.x * o.y * A + o.z * g,
1062
+ o.x * o.z * A - o.y * g,
1063
1063
  0,
1064
- o.y * o.x * A - o.z * f,
1064
+ o.y * o.x * A - o.z * g,
1065
1065
  o.y * o.y * A + a,
1066
- o.y * o.z * A + o.x * f,
1066
+ o.y * o.z * A + o.x * g,
1067
1067
  0,
1068
- o.z * o.x * A + o.y * f,
1069
- o.z * o.y * A - o.x * f,
1068
+ o.z * o.x * A + o.y * g,
1069
+ o.z * o.y * A - o.x * g,
1070
1070
  o.z * o.z * A + a,
1071
1071
  0,
1072
1072
  0,
@@ -1076,11 +1076,11 @@ let p = class H extends Ze {
1076
1076
  );
1077
1077
  }
1078
1078
  static MakeRotationWithDirection(e, t = new h(0, 1, 0)) {
1079
- const n = H.MakeIdentity();
1079
+ const n = z.MakeIdentity();
1080
1080
  return n.setRotation(me.MakeRotationWithDirection(e, t)), n;
1081
1081
  }
1082
1082
  static MakeScale(e, t, n) {
1083
- return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), new H(
1083
+ return ke(e, 3) && (t = e[1], n = e[2], e = e[0]), new z(
1084
1084
  e,
1085
1085
  0,
1086
1086
  0,
@@ -1100,37 +1100,37 @@ let p = class H extends Ze {
1100
1100
  );
1101
1101
  }
1102
1102
  static MakePerspective(e, t, n, s) {
1103
- return new H().perspective(e, t, n, s);
1103
+ return new z().perspective(e, t, n, s);
1104
1104
  }
1105
1105
  static MakeFrustum(e, t, n, s, o, a) {
1106
- return new H().frustum(e, t, n, s, o, a);
1106
+ return new z().frustum(e, t, n, s, o, a);
1107
1107
  }
1108
1108
  static MakeOrtho(e, t, n, s, o, a) {
1109
- return new H().ortho(e, t, n, s, o, a);
1109
+ return new z().ortho(e, t, n, s, o, a);
1110
1110
  }
1111
1111
  static MakeLookAt(e, t, n) {
1112
- return new H().lookAt(e, t, n);
1112
+ return new z().lookAt(e, t, n);
1113
1113
  }
1114
1114
  // Other static methods. This function multyplies two B x A matrices. It works opposite than the non-static mult() function:
1115
1115
  // A.mult(B) is the same as Mat4.Mult(B,A)
1116
1116
  static Mult(e, t) {
1117
- return new H(t).mult(e);
1117
+ return new z(t).mult(e);
1118
1118
  }
1119
1119
  static Unproject(e, t, n, s, o, a) {
1120
- let A = new H(o);
1120
+ let A = new z(o);
1121
1121
  A.mult(s), A.invert();
1122
- const f = new h(
1122
+ const g = new h(
1123
1123
  (e - a.y) / a.width * 2 - 1,
1124
1124
  (t - a.x) / a.height * 2 - 1,
1125
1125
  n * 2 - 1,
1126
1126
  1
1127
- ), g = new Vec4(A.multVector(f));
1128
- return g.z == 0 ? g.set(0) : g.set(
1129
- g.x / g.w,
1130
- g.y / g.w,
1131
- g.z / g.w,
1132
- g.w / g.w
1133
- ), g;
1127
+ ), d = new Vec4(A.multVector(g));
1128
+ return d.z == 0 ? d.set(0) : d.set(
1129
+ d.x / d.w,
1130
+ d.y / d.w,
1131
+ d.z / d.w,
1132
+ d.w / d.w
1133
+ ), d;
1134
1134
  }
1135
1135
  static GetScale(e) {
1136
1136
  return new h(
@@ -1140,8 +1140,8 @@ let p = class H extends Ze {
1140
1140
  );
1141
1141
  }
1142
1142
  static GetRotation(e) {
1143
- const t = H.GetScale(e);
1144
- return new H(
1143
+ const t = z.GetScale(e);
1144
+ return new z(
1145
1145
  e[0] / t.x,
1146
1146
  e[1] / t.y,
1147
1147
  e[2] / t.z,
@@ -1164,27 +1164,27 @@ let p = class H extends Ze {
1164
1164
  return new h(e[12], e[13], e[14]);
1165
1165
  }
1166
1166
  static GetInverted(e) {
1167
- const t = new H(e);
1167
+ const t = new z(e);
1168
1168
  return t.invert(), t;
1169
1169
  }
1170
1170
  static GetNormalMatrix(e) {
1171
- return new H(e).invert().traspose().mat3;
1171
+ return new z(e).invert().traspose().mat3;
1172
1172
  }
1173
1173
  static Equals(e, t) {
1174
1174
  return e[0] == t[0] && e[1] == t[1] && e[2] == t[2] && e[3] == t[3] && e[4] == t[4] && e[5] == t[5] && e[6] == t[6] && e[7] == t[7] && e[8] == t[8] && e[9] == t[9] && e[10] == t[10] && e[11] == t[11] && e[12] == t[12] && e[13] == t[13] && e[14] == t[14] && e[15] == t[15];
1175
1175
  }
1176
1176
  static TransformDirection(e, t) {
1177
- const n = new h(t), s = new H(e);
1177
+ const n = new h(t), s = new z(e);
1178
1178
  return s.setRow(3, new h(0, 0, 0, 1)), n.assign(s.multVector(n).xyz), n.normalize(), n;
1179
1179
  }
1180
1180
  static IsNan() {
1181
1181
  return isNaN(this[0]) || isNaN(this[1]) || isNaN(this[2]) || isNaN(this[3]) || isNaN(this[4]) || isNaN(this[5]) || isNaN(this[6]) || isNaN(this[7]) || isNaN(this[8]) || isNaN(this[9]) || isNaN(this[10]) || isNaN(this[11]) || isNaN(this[12]) || isNaN(this[13]) || isNaN(this[14]) || isNaN(this[15]);
1182
1182
  }
1183
1183
  static IsZero(e) {
1184
- return Q(e[0]) && Q(e[1]) && Q(e[2]) && Q(e[3]) && Q(e[4]) && Q(e[5]) && Q(e[6]) && Q(e[7]) && Q(e[8]) && Q(e[9]) && Q(e[10]) && Q(e[11]) && Q(e[12]) && Q(e[13]) && Q(e[14]) && Q(e[15]);
1184
+ return x(e[0]) && x(e[1]) && x(e[2]) && x(e[3]) && x(e[4]) && x(e[5]) && x(e[6]) && x(e[7]) && x(e[8]) && x(e[9]) && x(e[10]) && x(e[11]) && x(e[12]) && x(e[13]) && x(e[14]) && x(e[15]);
1185
1185
  }
1186
1186
  static IsIdentity(e) {
1187
- return T(e[0], 1) && T(e[1], 0) && T(e[2], 0) && T(e[3], 0) && T(e[4], 0) && T(e[5], 1) && T(e[6], 0) && T(e[7], 0) && T(e[8], 0) && T(e[9], 0) && T(e[10], 1) && T(e[11], 0) && T(e[12], 0) && T(e[13], 0) && T(e[14], 0) && T(e[15], 1);
1187
+ return y(e[0], 1) && y(e[1], 0) && y(e[2], 0) && y(e[3], 0) && y(e[4], 0) && y(e[5], 1) && y(e[6], 0) && y(e[7], 0) && y(e[8], 0) && y(e[9], 0) && y(e[10], 1) && y(e[11], 0) && y(e[12], 0) && y(e[13], 0) && y(e[14], 0) && y(e[15], 1);
1188
1188
  }
1189
1189
  };
1190
1190
  class ms extends h {
@@ -1219,7 +1219,7 @@ class ms extends h {
1219
1219
  }
1220
1220
  class hi {
1221
1221
  constructor(e) {
1222
- if (!e instanceof p)
1222
+ if (!e instanceof C)
1223
1223
  throw Error("MatrixStrategy: invalid target object. Target object must be of type bg.math.Mat4");
1224
1224
  this._target = e;
1225
1225
  }
@@ -1235,53 +1235,53 @@ class hi {
1235
1235
  }
1236
1236
  (function(r) {
1237
1237
  function e(l) {
1238
- for (var d = "", w = "", c = 0, P = 0, I = 0, F = l.length; F > I; I++) {
1239
- var _ = l.charCodeAt(I);
1240
- 128 > _ ? P++ : (w = 2048 > _ ? String.fromCharCode(_ >> 6 | 192, 63 & _ | 128) : String.fromCharCode(_ >> 12 | 224, _ >> 6 & 63 | 128, 63 & _ | 128), P > c && (d += l.slice(c, P)), d += w, c = P = I + 1);
1238
+ for (var f = "", w = "", c = 0, P = 0, R = 0, X = l.length; X > R; R++) {
1239
+ var _ = l.charCodeAt(R);
1240
+ 128 > _ ? P++ : (w = 2048 > _ ? String.fromCharCode(_ >> 6 | 192, 63 & _ | 128) : String.fromCharCode(_ >> 12 | 224, _ >> 6 & 63 | 128, 63 & _ | 128), P > c && (f += l.slice(c, P)), f += w, c = P = R + 1);
1241
1241
  }
1242
- return P > c && (d += l.slice(c, F)), d;
1242
+ return P > c && (f += l.slice(c, X)), f;
1243
1243
  }
1244
1244
  function t(l) {
1245
- var d, w;
1246
- if (l += "", j = !1, Z = W = l.length, W > 63) {
1247
- for (n(l.substring(0, 64)), a(b), j = !0, d = 128; W >= d; d += 64) n(l.substring(d - 64, d)), A(b);
1248
- l = l.substring(d - 64), W = l.length;
1245
+ var f, w;
1246
+ if (l += "", G = !1, Y = L = l.length, L > 63) {
1247
+ for (n(l.substring(0, 64)), a(Q), G = !0, f = 128; L >= f; f += 64) n(l.substring(f - 64, f)), A(Q);
1248
+ l = l.substring(f - 64), L = l.length;
1249
1249
  }
1250
- for (m[0] = m[1] = m[2] = m[3] = m[4] = m[5] = m[6] = m[7] = m[8] = m[9] = m[10] = m[11] = m[12] = m[13] = m[14] = m[15] = 0, d = 0; W > d; d++) w = 3 & d, w === 0 ? m[d >> 2] = l.charCodeAt(d) : m[d >> 2] |= l.charCodeAt(d) << x[w];
1251
- return m[d >> 2] |= C[3 & d], d > 55 ? (j ? A(m) : (a(m), j = !0), A([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Z << 3, 0])) : (m[14] = Z << 3, void (j ? A(m) : a(m)));
1250
+ for (m[0] = m[1] = m[2] = m[3] = m[4] = m[5] = m[6] = m[7] = m[8] = m[9] = m[10] = m[11] = m[12] = m[13] = m[14] = m[15] = 0, f = 0; L > f; f++) w = 3 & f, w === 0 ? m[f >> 2] = l.charCodeAt(f) : m[f >> 2] |= l.charCodeAt(f) << T[w];
1251
+ return m[f >> 2] |= p[3 & f], f > 55 ? (G ? A(m) : (a(m), G = !0), A([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, Y << 3, 0])) : (m[14] = Y << 3, void (G ? A(m) : a(m)));
1252
1252
  }
1253
1253
  function n(l) {
1254
- for (var d = 16; d--; ) {
1255
- var w = d << 2;
1256
- b[d] = l.charCodeAt(w) + (l.charCodeAt(w + 1) << 8) + (l.charCodeAt(w + 2) << 16) + (l.charCodeAt(w + 3) << 24);
1254
+ for (var f = 16; f--; ) {
1255
+ var w = f << 2;
1256
+ Q[f] = l.charCodeAt(w) + (l.charCodeAt(w + 1) << 8) + (l.charCodeAt(w + 2) << 16) + (l.charCodeAt(w + 3) << 24);
1257
1257
  }
1258
1258
  }
1259
- function s(l, d, w) {
1260
- t(d ? l : e(l));
1261
- var c = y[0];
1262
- return g[1] = B[15 & c], g[0] = B[15 & (c >>= 4)], g[3] = B[15 & (c >>= 4)], g[2] = B[15 & (c >>= 4)], g[5] = B[15 & (c >>= 4)], g[4] = B[15 & (c >>= 4)], g[7] = B[15 & (c >>= 4)], g[6] = B[15 & (c >>= 4)], c = y[1], g[9] = B[15 & c], g[8] = B[15 & (c >>= 4)], g[11] = B[15 & (c >>= 4)], g[10] = B[15 & (c >>= 4)], g[13] = B[15 & (c >>= 4)], g[12] = B[15 & (c >>= 4)], g[15] = B[15 & (c >>= 4)], g[14] = B[15 & (c >>= 4)], c = y[2], g[17] = B[15 & c], g[16] = B[15 & (c >>= 4)], g[19] = B[15 & (c >>= 4)], g[18] = B[15 & (c >>= 4)], g[21] = B[15 & (c >>= 4)], g[20] = B[15 & (c >>= 4)], g[23] = B[15 & (c >>= 4)], g[22] = B[15 & (c >>= 4)], c = y[3], g[25] = B[15 & c], g[24] = B[15 & (c >>= 4)], g[27] = B[15 & (c >>= 4)], g[26] = B[15 & (c >>= 4)], g[29] = B[15 & (c >>= 4)], g[28] = B[15 & (c >>= 4)], g[31] = B[15 & (c >>= 4)], g[30] = B[15 & (c >>= 4)], w ? g : g.join("");
1259
+ function s(l, f, w) {
1260
+ t(f ? l : e(l));
1261
+ var c = D[0];
1262
+ return d[1] = B[15 & c], d[0] = B[15 & (c >>= 4)], d[3] = B[15 & (c >>= 4)], d[2] = B[15 & (c >>= 4)], d[5] = B[15 & (c >>= 4)], d[4] = B[15 & (c >>= 4)], d[7] = B[15 & (c >>= 4)], d[6] = B[15 & (c >>= 4)], c = D[1], d[9] = B[15 & c], d[8] = B[15 & (c >>= 4)], d[11] = B[15 & (c >>= 4)], d[10] = B[15 & (c >>= 4)], d[13] = B[15 & (c >>= 4)], d[12] = B[15 & (c >>= 4)], d[15] = B[15 & (c >>= 4)], d[14] = B[15 & (c >>= 4)], c = D[2], d[17] = B[15 & c], d[16] = B[15 & (c >>= 4)], d[19] = B[15 & (c >>= 4)], d[18] = B[15 & (c >>= 4)], d[21] = B[15 & (c >>= 4)], d[20] = B[15 & (c >>= 4)], d[23] = B[15 & (c >>= 4)], d[22] = B[15 & (c >>= 4)], c = D[3], d[25] = B[15 & c], d[24] = B[15 & (c >>= 4)], d[27] = B[15 & (c >>= 4)], d[26] = B[15 & (c >>= 4)], d[29] = B[15 & (c >>= 4)], d[28] = B[15 & (c >>= 4)], d[31] = B[15 & (c >>= 4)], d[30] = B[15 & (c >>= 4)], w ? d : d.join("");
1263
1263
  }
1264
- function o(l, d, w, c, P, I, F) {
1265
- return d += l + c + F, (d << P | d >>> I) + w << 0;
1264
+ function o(l, f, w, c, P, R, X) {
1265
+ return f += l + c + X, (f << P | f >>> R) + w << 0;
1266
1266
  }
1267
1267
  function a(l) {
1268
- f(0, 0, 0, 0, l), y[0] = z[0] + 1732584193 << 0, y[1] = z[1] - 271733879 << 0, y[2] = z[2] - 1732584194 << 0, y[3] = z[3] + 271733878 << 0;
1268
+ g(0, 0, 0, 0, l), D[0] = M[0] + 1732584193 << 0, D[1] = M[1] - 271733879 << 0, D[2] = M[2] - 1732584194 << 0, D[3] = M[3] + 271733878 << 0;
1269
1269
  }
1270
1270
  function A(l) {
1271
- f(y[0], y[1], y[2], y[3], l), y[0] = z[0] + y[0] << 0, y[1] = z[1] + y[1] << 0, y[2] = z[2] + y[2] << 0, y[3] = z[3] + y[3] << 0;
1271
+ g(D[0], D[1], D[2], D[3], l), D[0] = M[0] + D[0] << 0, D[1] = M[1] + D[1] << 0, D[2] = M[2] + D[2] << 0, D[3] = M[3] + D[3] << 0;
1272
1272
  }
1273
- function f(l, d, w, c, P) {
1274
- var I, F;
1275
- j ? (l = o((w ^ c) & d ^ c, l, d, P[0], 7, 25, -680876936), c = o((d ^ w) & l ^ w, c, l, P[1], 12, 20, -389564586), w = o((l ^ d) & c ^ d, w, c, P[2], 17, 15, 606105819), d = o((c ^ l) & w ^ l, d, w, P[3], 22, 10, -1044525330)) : (l = P[0] - 680876937, l = (l << 7 | l >>> 25) - 271733879 << 0, c = P[1] - 117830708 + (2004318071 & l ^ -1732584194), c = (c << 12 | c >>> 20) + l << 0, w = P[2] - 1126478375 + ((-271733879 ^ l) & c ^ -271733879), w = (w << 17 | w >>> 15) + c << 0, d = P[3] - 1316259209 + ((c ^ l) & w ^ l), d = (d << 22 | d >>> 10) + w << 0), l = o((w ^ c) & d ^ c, l, d, P[4], 7, 25, -176418897), c = o((d ^ w) & l ^ w, c, l, P[5], 12, 20, 1200080426), w = o((l ^ d) & c ^ d, w, c, P[6], 17, 15, -1473231341), d = o((c ^ l) & w ^ l, d, w, P[7], 22, 10, -45705983), l = o((w ^ c) & d ^ c, l, d, P[8], 7, 25, 1770035416), c = o((d ^ w) & l ^ w, c, l, P[9], 12, 20, -1958414417), w = o((l ^ d) & c ^ d, w, c, P[10], 17, 15, -42063), d = o((c ^ l) & w ^ l, d, w, P[11], 22, 10, -1990404162), l = o((w ^ c) & d ^ c, l, d, P[12], 7, 25, 1804603682), c = o((d ^ w) & l ^ w, c, l, P[13], 12, 20, -40341101), w = o((l ^ d) & c ^ d, w, c, P[14], 17, 15, -1502002290), d = o((c ^ l) & w ^ l, d, w, P[15], 22, 10, 1236535329), l = o((d ^ w) & c ^ w, l, d, P[1], 5, 27, -165796510), c = o((l ^ d) & w ^ d, c, l, P[6], 9, 23, -1069501632), w = o((c ^ l) & d ^ l, w, c, P[11], 14, 18, 643717713), d = o((w ^ c) & l ^ c, d, w, P[0], 20, 12, -373897302), l = o((d ^ w) & c ^ w, l, d, P[5], 5, 27, -701558691), c = o((l ^ d) & w ^ d, c, l, P[10], 9, 23, 38016083), w = o((c ^ l) & d ^ l, w, c, P[15], 14, 18, -660478335), d = o((w ^ c) & l ^ c, d, w, P[4], 20, 12, -405537848), l = o((d ^ w) & c ^ w, l, d, P[9], 5, 27, 568446438), c = o((l ^ d) & w ^ d, c, l, P[14], 9, 23, -1019803690), w = o((c ^ l) & d ^ l, w, c, P[3], 14, 18, -187363961), d = o((w ^ c) & l ^ c, d, w, P[8], 20, 12, 1163531501), l = o((d ^ w) & c ^ w, l, d, P[13], 5, 27, -1444681467), c = o((l ^ d) & w ^ d, c, l, P[2], 9, 23, -51403784), w = o((c ^ l) & d ^ l, w, c, P[7], 14, 18, 1735328473), d = o((w ^ c) & l ^ c, d, w, P[12], 20, 12, -1926607734), I = d ^ w, l = o(I ^ c, l, d, P[5], 4, 28, -378558), c = o(I ^ l, c, l, P[8], 11, 21, -2022574463), F = c ^ l, w = o(F ^ d, w, c, P[11], 16, 16, 1839030562), d = o(F ^ w, d, w, P[14], 23, 9, -35309556), I = d ^ w, l = o(I ^ c, l, d, P[1], 4, 28, -1530992060), c = o(I ^ l, c, l, P[4], 11, 21, 1272893353), F = c ^ l, w = o(F ^ d, w, c, P[7], 16, 16, -155497632), d = o(F ^ w, d, w, P[10], 23, 9, -1094730640), I = d ^ w, l = o(I ^ c, l, d, P[13], 4, 28, 681279174), c = o(I ^ l, c, l, P[0], 11, 21, -358537222), F = c ^ l, w = o(F ^ d, w, c, P[3], 16, 16, -722521979), d = o(F ^ w, d, w, P[6], 23, 9, 76029189), I = d ^ w, l = o(I ^ c, l, d, P[9], 4, 28, -640364487), c = o(I ^ l, c, l, P[12], 11, 21, -421815835), F = c ^ l, w = o(F ^ d, w, c, P[15], 16, 16, 530742520), d = o(F ^ w, d, w, P[2], 23, 9, -995338651), l = o(w ^ (d | ~c), l, d, P[0], 6, 26, -198630844), c = o(d ^ (l | ~w), c, l, P[7], 10, 22, 1126891415), w = o(l ^ (c | ~d), w, c, P[14], 15, 17, -1416354905), d = o(c ^ (w | ~l), d, w, P[5], 21, 11, -57434055), l = o(w ^ (d | ~c), l, d, P[12], 6, 26, 1700485571), c = o(d ^ (l | ~w), c, l, P[3], 10, 22, -1894986606), w = o(l ^ (c | ~d), w, c, P[10], 15, 17, -1051523), d = o(c ^ (w | ~l), d, w, P[1], 21, 11, -2054922799), l = o(w ^ (d | ~c), l, d, P[8], 6, 26, 1873313359), c = o(d ^ (l | ~w), c, l, P[15], 10, 22, -30611744), w = o(l ^ (c | ~d), w, c, P[6], 15, 17, -1560198380), d = o(c ^ (w | ~l), d, w, P[13], 21, 11, 1309151649), l = o(w ^ (d | ~c), l, d, P[4], 6, 26, -145523070), c = o(d ^ (l | ~w), c, l, P[11], 10, 22, -1120210379), w = o(l ^ (c | ~d), w, c, P[2], 15, 17, 718787259), d = o(c ^ (w | ~l), d, w, P[9], 21, 11, -343485551), z[0] = l, z[1] = d, z[2] = w, z[3] = c;
1273
+ function g(l, f, w, c, P) {
1274
+ var R, X;
1275
+ G ? (l = o((w ^ c) & f ^ c, l, f, P[0], 7, 25, -680876936), c = o((f ^ w) & l ^ w, c, l, P[1], 12, 20, -389564586), w = o((l ^ f) & c ^ f, w, c, P[2], 17, 15, 606105819), f = o((c ^ l) & w ^ l, f, w, P[3], 22, 10, -1044525330)) : (l = P[0] - 680876937, l = (l << 7 | l >>> 25) - 271733879 << 0, c = P[1] - 117830708 + (2004318071 & l ^ -1732584194), c = (c << 12 | c >>> 20) + l << 0, w = P[2] - 1126478375 + ((-271733879 ^ l) & c ^ -271733879), w = (w << 17 | w >>> 15) + c << 0, f = P[3] - 1316259209 + ((c ^ l) & w ^ l), f = (f << 22 | f >>> 10) + w << 0), l = o((w ^ c) & f ^ c, l, f, P[4], 7, 25, -176418897), c = o((f ^ w) & l ^ w, c, l, P[5], 12, 20, 1200080426), w = o((l ^ f) & c ^ f, w, c, P[6], 17, 15, -1473231341), f = o((c ^ l) & w ^ l, f, w, P[7], 22, 10, -45705983), l = o((w ^ c) & f ^ c, l, f, P[8], 7, 25, 1770035416), c = o((f ^ w) & l ^ w, c, l, P[9], 12, 20, -1958414417), w = o((l ^ f) & c ^ f, w, c, P[10], 17, 15, -42063), f = o((c ^ l) & w ^ l, f, w, P[11], 22, 10, -1990404162), l = o((w ^ c) & f ^ c, l, f, P[12], 7, 25, 1804603682), c = o((f ^ w) & l ^ w, c, l, P[13], 12, 20, -40341101), w = o((l ^ f) & c ^ f, w, c, P[14], 17, 15, -1502002290), f = o((c ^ l) & w ^ l, f, w, P[15], 22, 10, 1236535329), l = o((f ^ w) & c ^ w, l, f, P[1], 5, 27, -165796510), c = o((l ^ f) & w ^ f, c, l, P[6], 9, 23, -1069501632), w = o((c ^ l) & f ^ l, w, c, P[11], 14, 18, 643717713), f = o((w ^ c) & l ^ c, f, w, P[0], 20, 12, -373897302), l = o((f ^ w) & c ^ w, l, f, P[5], 5, 27, -701558691), c = o((l ^ f) & w ^ f, c, l, P[10], 9, 23, 38016083), w = o((c ^ l) & f ^ l, w, c, P[15], 14, 18, -660478335), f = o((w ^ c) & l ^ c, f, w, P[4], 20, 12, -405537848), l = o((f ^ w) & c ^ w, l, f, P[9], 5, 27, 568446438), c = o((l ^ f) & w ^ f, c, l, P[14], 9, 23, -1019803690), w = o((c ^ l) & f ^ l, w, c, P[3], 14, 18, -187363961), f = o((w ^ c) & l ^ c, f, w, P[8], 20, 12, 1163531501), l = o((f ^ w) & c ^ w, l, f, P[13], 5, 27, -1444681467), c = o((l ^ f) & w ^ f, c, l, P[2], 9, 23, -51403784), w = o((c ^ l) & f ^ l, w, c, P[7], 14, 18, 1735328473), f = o((w ^ c) & l ^ c, f, w, P[12], 20, 12, -1926607734), R = f ^ w, l = o(R ^ c, l, f, P[5], 4, 28, -378558), c = o(R ^ l, c, l, P[8], 11, 21, -2022574463), X = c ^ l, w = o(X ^ f, w, c, P[11], 16, 16, 1839030562), f = o(X ^ w, f, w, P[14], 23, 9, -35309556), R = f ^ w, l = o(R ^ c, l, f, P[1], 4, 28, -1530992060), c = o(R ^ l, c, l, P[4], 11, 21, 1272893353), X = c ^ l, w = o(X ^ f, w, c, P[7], 16, 16, -155497632), f = o(X ^ w, f, w, P[10], 23, 9, -1094730640), R = f ^ w, l = o(R ^ c, l, f, P[13], 4, 28, 681279174), c = o(R ^ l, c, l, P[0], 11, 21, -358537222), X = c ^ l, w = o(X ^ f, w, c, P[3], 16, 16, -722521979), f = o(X ^ w, f, w, P[6], 23, 9, 76029189), R = f ^ w, l = o(R ^ c, l, f, P[9], 4, 28, -640364487), c = o(R ^ l, c, l, P[12], 11, 21, -421815835), X = c ^ l, w = o(X ^ f, w, c, P[15], 16, 16, 530742520), f = o(X ^ w, f, w, P[2], 23, 9, -995338651), l = o(w ^ (f | ~c), l, f, P[0], 6, 26, -198630844), c = o(f ^ (l | ~w), c, l, P[7], 10, 22, 1126891415), w = o(l ^ (c | ~f), w, c, P[14], 15, 17, -1416354905), f = o(c ^ (w | ~l), f, w, P[5], 21, 11, -57434055), l = o(w ^ (f | ~c), l, f, P[12], 6, 26, 1700485571), c = o(f ^ (l | ~w), c, l, P[3], 10, 22, -1894986606), w = o(l ^ (c | ~f), w, c, P[10], 15, 17, -1051523), f = o(c ^ (w | ~l), f, w, P[1], 21, 11, -2054922799), l = o(w ^ (f | ~c), l, f, P[8], 6, 26, 1873313359), c = o(f ^ (l | ~w), c, l, P[15], 10, 22, -30611744), w = o(l ^ (c | ~f), w, c, P[6], 15, 17, -1560198380), f = o(c ^ (w | ~l), f, w, P[13], 21, 11, 1309151649), l = o(w ^ (f | ~c), l, f, P[4], 6, 26, -145523070), c = o(f ^ (l | ~w), c, l, P[11], 10, 22, -1120210379), w = o(l ^ (c | ~f), w, c, P[2], 15, 17, 718787259), f = o(c ^ (w | ~l), f, w, P[9], 21, 11, -343485551), M[0] = l, M[1] = f, M[2] = w, M[3] = c;
1276
1276
  }
1277
- var g = [], m = [], b = [], C = [], B = "0123456789abcdef".split(""), x = [], y = [], j = !1, Z = 0, W = 0, z = [];
1278
- if (r.Int32Array) m = new Int32Array(16), b = new Int32Array(16), C = new Int32Array(4), x = new Int32Array(4), y = new Int32Array(4), z = new Int32Array(4);
1277
+ var d = [], m = [], Q = [], p = [], B = "0123456789abcdef".split(""), T = [], D = [], G = !1, Y = 0, L = 0, M = [];
1278
+ if (r.Int32Array) m = new Int32Array(16), Q = new Int32Array(16), p = new Int32Array(4), T = new Int32Array(4), D = new Int32Array(4), M = new Int32Array(4);
1279
1279
  else {
1280
- var U;
1281
- for (U = 0; 16 > U; U++) m[U] = b[U] = 0;
1282
- for (U = 0; 4 > U; U++) C[U] = x[U] = y[U] = z[U] = 0;
1280
+ var I;
1281
+ for (I = 0; 16 > I; I++) m[I] = Q[I] = 0;
1282
+ for (I = 0; 4 > I; I++) p[I] = T[I] = D[I] = M[I] = 0;
1283
1283
  }
1284
- C[0] = 128, C[1] = 32768, C[2] = 8388608, C[3] = -2147483648, x[0] = 0, x[1] = 8, x[2] = 16, x[3] = 24, r.md5 = r.md5 || s;
1284
+ p[0] = 128, p[1] = 32768, p[2] = 8388608, p[3] = -2147483648, T[0] = 0, T[1] = 8, T[2] = 16, T[3] = 24, r.md5 = r.md5 || s;
1285
1285
  })(typeof global > "u" ? window : global);
1286
1286
  const Ai = (r) => md5(r), Pt = () => {
1287
1287
  let r = (/* @__PURE__ */ new Date()).getTime();
@@ -1502,7 +1502,7 @@ class di extends et {
1502
1502
  return await this.writeStrategy.writeData(e, t, { encoding: "utf-8" });
1503
1503
  }
1504
1504
  }
1505
- const G = {
1505
+ const k = {
1506
1506
  PolyList: "PolyList",
1507
1507
  // Array of meshes
1508
1508
  Drawable: "Drawable",
@@ -1632,7 +1632,7 @@ const Ye = (r, e = null) => {
1632
1632
  if (r.length < 4 || e !== null && e.length < 4)
1633
1633
  throw new Error("Invalid color component length");
1634
1634
  };
1635
- class D extends h {
1635
+ class E extends h {
1636
1636
  constructor() {
1637
1637
  if (arguments.length === 1 && arguments[0].length === 4)
1638
1638
  super(arguments[0]);
@@ -1647,43 +1647,43 @@ class D extends h {
1647
1647
  throw new Error("Invalid initialization parameters in Color constructor");
1648
1648
  }
1649
1649
  static Yellow() {
1650
- return new D([1, 1, 0, 1]);
1650
+ return new E([1, 1, 0, 1]);
1651
1651
  }
1652
1652
  static Orange() {
1653
- return new D([1, 0.5, 0, 1]);
1653
+ return new E([1, 0.5, 0, 1]);
1654
1654
  }
1655
1655
  static Red() {
1656
- return new D([1, 0, 0, 1]);
1656
+ return new E([1, 0, 0, 1]);
1657
1657
  }
1658
1658
  static Violet() {
1659
- return new D([0.5, 0, 1, 1]);
1659
+ return new E([0.5, 0, 1, 1]);
1660
1660
  }
1661
1661
  static Blue() {
1662
- return new D([0, 0, 1, 1]);
1662
+ return new E([0, 0, 1, 1]);
1663
1663
  }
1664
1664
  static Green() {
1665
- return new D([0, 1, 0, 1]);
1665
+ return new E([0, 1, 0, 1]);
1666
1666
  }
1667
1667
  static White() {
1668
- return new D([1, 1, 1, 1]);
1668
+ return new E([1, 1, 1, 1]);
1669
1669
  }
1670
1670
  static LightGray() {
1671
- return new D([0.8, 0.8, 0.8, 1]);
1671
+ return new E([0.8, 0.8, 0.8, 1]);
1672
1672
  }
1673
1673
  static Gray() {
1674
- return new D([0.5, 0.5, 0.5, 1]);
1674
+ return new E([0.5, 0.5, 0.5, 1]);
1675
1675
  }
1676
1676
  static DarkGray() {
1677
- return new D([0.2, 0.2, 0.2, 1]);
1677
+ return new E([0.2, 0.2, 0.2, 1]);
1678
1678
  }
1679
1679
  static Black() {
1680
- return new D([0, 0, 0, 1]);
1680
+ return new E([0, 0, 0, 1]);
1681
1681
  }
1682
1682
  static Brown() {
1683
- return new D([0.4, 0.2, 0, 1]);
1683
+ return new E([0.4, 0.2, 0, 1]);
1684
1684
  }
1685
1685
  static Transparent() {
1686
- return new D([0, 0, 0, 0]);
1686
+ return new E([0, 0, 0, 0]);
1687
1687
  }
1688
1688
  get r() {
1689
1689
  return this[0];
@@ -1719,7 +1719,7 @@ class D extends h {
1719
1719
  throw new Error("Invalid parameter settings rgb values in Color");
1720
1720
  }
1721
1721
  static Max(e, t) {
1722
- return Ye(e, t), new D([
1722
+ return Ye(e, t), new E([
1723
1723
  e[0] > t[0] ? e[0] : t[0],
1724
1724
  e[1] > t[1] ? e[1] : t[1],
1725
1725
  e[2] > t[2] ? e[2] : t[2],
@@ -1727,7 +1727,7 @@ class D extends h {
1727
1727
  ]);
1728
1728
  }
1729
1729
  static Min(e, t) {
1730
- return Ye(e, t), new D([
1730
+ return Ye(e, t), new E([
1731
1731
  e[0] < t[0] ? e[0] : t[0],
1732
1732
  e[1] < t[1] ? e[1] : t[1],
1733
1733
  e[2] < t[2] ? e[2] : t[2],
@@ -1735,7 +1735,7 @@ class D extends h {
1735
1735
  ]);
1736
1736
  }
1737
1737
  static Add(e, t) {
1738
- return Ye(e, t), new D([
1738
+ return Ye(e, t), new E([
1739
1739
  e[0] + t[0],
1740
1740
  e[1] + t[1],
1741
1741
  e[2] + t[2],
@@ -1743,7 +1743,7 @@ class D extends h {
1743
1743
  ]);
1744
1744
  }
1745
1745
  static Sub(e, t) {
1746
- return Ye(e, t), new D([
1746
+ return Ye(e, t), new E([
1747
1747
  e[0] - t[0],
1748
1748
  e[1] - t[1],
1749
1749
  e[2] - t[2],
@@ -1751,7 +1751,7 @@ class D extends h {
1751
1751
  ]);
1752
1752
  }
1753
1753
  static Mult(e, t) {
1754
- Ye(e), new D([e[0] * t, e[1] * t, e[2] * t, e[3] * t]);
1754
+ Ye(e), new E([e[0] * t, e[1] * t, e[2] * t, e[3] * t]);
1755
1755
  }
1756
1756
  static Div(e, t) {
1757
1757
  switch (e.length) {
@@ -1782,7 +1782,7 @@ const Rs = Object.freeze({
1782
1782
  TRIANGLE_STRIP: 3,
1783
1783
  LINES: 4,
1784
1784
  LINE_STRIP: 5
1785
- }), Y = Object.freeze({
1785
+ }), V = Object.freeze({
1786
1786
  LAYER_0: 1,
1787
1787
  OPAQUE_DEFAULT: 1,
1788
1788
  // layer 0 is the default layer for opaque objects
@@ -1823,7 +1823,7 @@ const Rs = Object.freeze({
1823
1823
  // Layer 31 is the default layer for mouse pick selection
1824
1824
  ALL: 4294967295,
1825
1825
  AUTO: 0
1826
- }), Ci = (r, e) => r.renderLayers === Y.AUTO ? (e.isTransparent ? Y.TRANSPARENT_DEFAULT : Y.OPAQUE_DEFAULT) | Y.SELECTION_DEFAULT : r.renderLayers, wt = Object.freeze({
1826
+ }), Ci = (r, e) => r.renderLayers === V.AUTO ? (e.isTransparent ? V.TRANSPARENT_DEFAULT : V.OPAQUE_DEFAULT) | V.SELECTION_DEFAULT : r.renderLayers, wt = Object.freeze({
1827
1827
  CW: 0,
1828
1828
  CCW: 1
1829
1829
  }), Me = Object.freeze({
@@ -1832,31 +1832,27 @@ const Rs = Object.freeze({
1832
1832
  FRONT_AND_BACK: 2
1833
1833
  });
1834
1834
  function zr(r) {
1835
- const e = [], t = (o) => ({
1836
- pos: new h(r.vertex[o] * 3, r.vertex[o + 1] * 3, r.vertex[o + 2] * 3),
1837
- uv: new h(r.texCoord0[o] * 2, r.texCoord0[o + 1] * 2)
1838
- }), n = (o, a) => h.Sub(o.uv, a.uv), s = (o, a) => 1 / (o.x * a.y - o.y * a.x);
1839
- if (r.index.length % 3 === 0)
1840
- for (let o = 0; o < r.index.length - 2; o += 3) {
1841
- let a = t(r.index[o + 1]), A = t(r.index[o]), f = t(r.index[o + 2]), g = h.Sub(A.pos, a.pos), m = h.Sub(f.pos, a.pos), b = n(A, a), C = n(f, a), B = s(b, C);
1842
- isFinite(B) || (a.uv.x = a.uv.x * 1.3, a.uv.y = a.uv.y * 0.8, b = n(A, a), C = n(f, a), B = s(b, C)), isFinite(B) || (f.uv.x = f.uv.x * 1.1, f.uv.y = f.uv.y * 0.9, b = n(A, a), C = n(f, a), B = s(b, C));
1843
- const x = new h(
1844
- (g.x * C.y - m.x * b.y) * B,
1845
- (g.y * C.y - m.y * b.y) * B,
1846
- (g.z * C.y - m.z * b.y) * B
1847
- );
1848
- x.normalize(), e.push(x.x), e.push(x.y), e.push(x.z), e.push(x.x), e.push(x.y), e.push(x.z), e.push(x.x), e.push(x.y), e.push(x.z);
1849
- }
1850
- else {
1851
- for (let o = 0; o < r.vertex.length; o += 3)
1852
- e.push(0, 0, 1);
1853
- console.warn("Could not generate tangents: invalid type of faces found.");
1835
+ const e = (n) => ({
1836
+ pos: new h(r.vertex[n] * 3, r.vertex[n + 1] * 3, r.vertex[n + 2] * 3),
1837
+ uv: new h(r.texCoord0[n] * 2, r.texCoord0[n + 1] * 2)
1838
+ }), t = [];
1839
+ for (let n = 0; n < r.index.length; n += 3) {
1840
+ const s = r.index[n], o = r.index[n + 1], a = r.index[n + 2], A = e(s), g = e(o), d = e(a), m = A.pos, Q = g.pos, p = d.pos, B = A.uv, T = g.uv, D = d.uv;
1841
+ let G = h.Sub(Q, m), Y = h.Sub(p, m), L = h.Sub(T, B), M = h.Sub(D, B), I = 1 / (L.x * M.y - M.x * L.y), l = 0;
1842
+ for (; (isNaN(I) || !isFinite(I)) && l < 4; )
1843
+ l === 0 ? (G = h.Sub(m, Q), Y = h.Sub(p, Q), L = h.Sub(B, T), M = h.Sub(D, T)) : l === 1 ? (G = h.Sub(Q, p), Y = h.Sub(m, p), L = h.Sub(T, D), M = h.Sub(B, D)) : l === 2 ? (B.x = B.x * 1.3, B.y = B.y * 0.8, L = h.Sub(T, B), M = h.Sub(D, B)) : l === 3 && (D.x = D.x * 1.1, D.y = D.y * 0.9, L = h.Sub(T, B), M = h.Sub(D, B)), I = 1 / (L.x * M.y - M.x * L.y), l++;
1844
+ const f = new h(
1845
+ I * (M.y * G.x - L.y * Y.x),
1846
+ I * (M.y * G.y - L.y * Y.y),
1847
+ I * (M.y * G.z - L.y * Y.z)
1848
+ );
1849
+ f.normalize(), t.push(f.x), t.push(f.y), t.push(f.z), t.push(f.x), t.push(f.y), t.push(f.z), t.push(f.x), t.push(f.y), t.push(f.z), t[s * 3] = f.x, t[s * 3 + 1] = f.y, t[s * 3 + 2] = f.z, t[o * 3] = f.x, t[o * 3 + 1] = f.y, t[o * 3 + 2] = f.z, t[a * 3] = f.x, t[a * 3 + 1] = f.y, t[a * 3 + 2] = f.z;
1854
1850
  }
1855
- r._tangent = e;
1851
+ r._tangent = t;
1856
1852
  }
1857
1853
  class xe {
1858
1854
  constructor() {
1859
- this._renderLayers = Y.AUTO, this._drawMode = we.TRIANGLES, this._lineWidth = 1, this._name = "", this._groupName = "", this._visible = !0, this._visibleToShadows = !0, this._cullFace = Me.BACK, this._frontFace = wt.CCW, this._enableCullFace = !0, this._vertex = [], this._normal = [], this._texCoord0 = [], this._texCoord1 = [], this._texCoord2 = [], this._color = [], this._index = [], this._colorCode = D.Black(), this._selected = !1, this._selectable = !0;
1855
+ this._renderLayers = V.AUTO, this._drawMode = we.TRIANGLES, this._lineWidth = 1, this._name = "", this._groupName = "", this._visible = !0, this._visibleToShadows = !0, this._cullFace = Me.BACK, this._frontFace = wt.CCW, this._enableCullFace = !0, this._vertex = [], this._normal = [], this._texCoord0 = [], this._texCoord1 = [], this._texCoord2 = [], this._color = [], this._index = [], this._colorCode = E.Black(), this._selected = !1, this._selectable = !0;
1860
1856
  }
1861
1857
  clone() {
1862
1858
  const e = new xe();
@@ -2010,7 +2006,7 @@ class xe {
2010
2006
  this.renderer && this.renderer.destroy();
2011
2007
  }
2012
2008
  static ApplyTransform(e, t) {
2013
- const n = new p(t), s = new p(t.mat3);
2009
+ const n = new C(t), s = new C(t.mat3);
2014
2010
  if (e.normal.length > 0 && e.normal.length != e.vertex.length)
2015
2011
  throw new Error(`Unexpected number of normal coordinates found in polyList '${e.name}'`);
2016
2012
  for (let o = 0; o < e.vertex.length - 2; o += 3) {
@@ -2099,11 +2095,11 @@ const Ee = Object.freeze({
2099
2095
  VIDEO: 5,
2100
2096
  PROCEDURAL: 6,
2101
2097
  RENDER_TARGET: 7
2102
- }), X = Object.freeze({
2098
+ }), j = Object.freeze({
2103
2099
  REPEAT: 0,
2104
2100
  CLAMP: 1,
2105
2101
  MIRRORED_REPEAT: 2
2106
- }), L = Object.freeze({
2102
+ }), S = Object.freeze({
2107
2103
  NEAREST_MIPMAP_NEAREST: 0,
2108
2104
  LINEAR_MIPMAP_NEAREST: 1,
2109
2105
  NEAREST_MIPMAP_LINEAR: 2,
@@ -2119,7 +2115,7 @@ const Ee = Object.freeze({
2119
2115
  DYNAMIC_CUBEMAP: 2,
2120
2116
  FROM_BASE64: 3,
2121
2117
  CANVAS_2D: 4
2122
- }), N = Object.freeze({
2118
+ }), H = Object.freeze({
2123
2119
  COLOR_ATTACHMENT_0: 0,
2124
2120
  COLOR_ATTACHMENT_1: 1,
2125
2121
  COLOR_ATTACHMENT_2: 2,
@@ -2141,7 +2137,7 @@ const Ee = Object.freeze({
2141
2137
  }), ge = Object.freeze({
2142
2138
  UNSIGNED_BYTE: 0,
2143
2139
  FLOAT32: 1
2144
- }), S = Object.freeze({
2140
+ }), O = Object.freeze({
2145
2141
  R: 1,
2146
2142
  G: 2,
2147
2143
  B: 3,
@@ -2210,17 +2206,17 @@ const jt = {}, Gs = async (r) => (Yt || (Yt = new tt()), jt[r] ? console.log(`Im
2210
2206
  const o = s.getContext("2d");
2211
2207
  o.fillStyle = "#00000000", o.clearRect(0, 0, s.width, s.height), o.fillRect(0, 0, s.width, s.height), o.scale(1, -1), o.drawImage(n, 0, 0, s.width, -s.height);
2212
2208
  const a = new Image();
2213
- await new Promise((f) => {
2209
+ await new Promise((g) => {
2214
2210
  a.onload = () => {
2215
- a._hash = pi(a), f();
2211
+ a._hash = pi(a), g();
2216
2212
  }, a.src = s.toDataURL();
2217
2213
  }), e(a);
2218
2214
  })), jt[r]), Ir = async (r) => {
2219
2215
  const t = await new Promise((A) => {
2220
- const f = new Image();
2221
- f.onload = () => {
2222
- A(f);
2223
- }, f.src = r;
2216
+ const g = new Image();
2217
+ g.onload = () => {
2218
+ A(g);
2219
+ }, g.src = r;
2224
2220
  }), n = document.createElement("canvas");
2225
2221
  n.width = t.naturalWidth, n.height = t.naturalHeight;
2226
2222
  const s = n.getContext("2d");
@@ -2232,9 +2228,9 @@ const jt = {}, Gs = async (r) => (Yt || (Yt = new tt()), jt[r] ? console.log(`Im
2232
2228
  }, o.src = n.toDataURL("image/png");
2233
2229
  }), o;
2234
2230
  };
2235
- class E {
2231
+ class b {
2236
2232
  constructor(e = null) {
2237
- this._canvas = e || rt.FirstCanvas(), this._dirty = !0, this._dataType = Ee.NONE, this._wrapModeX = X.REPEAT, this._wrapModeY = X.REPEAT, this._magFilter = L.LINEAR, this._minFilter = L.LINEAR, this._target = se.TEXTURE_2D, this._size = new h(64, 64), this._fileName = "", this._proceduralFunction = fe.PLAIN_COLOR, this._proceduralParameters = {}, this._renderTargetAttachment = N.COLOR_ATTACHMENT_0, this._componentFormat = ge.UNSIGNED_BYTE, this._imageData = null, this._references = 0, this._name = "";
2233
+ this._canvas = e || rt.FirstCanvas(), this._dirty = !0, this._dataType = Ee.NONE, this._wrapModeX = j.REPEAT, this._wrapModeY = j.REPEAT, this._magFilter = S.LINEAR, this._minFilter = S.LINEAR, this._target = se.TEXTURE_2D, this._size = new h(64, 64), this._fileName = "", this._proceduralFunction = fe.PLAIN_COLOR, this._proceduralParameters = {}, this._renderTargetAttachment = H.COLOR_ATTACHMENT_0, this._componentFormat = ge.UNSIGNED_BYTE, this._imageData = null, this._references = 0, this._name = "";
2238
2234
  }
2239
2235
  get canvas() {
2240
2236
  return this._canvas;
@@ -2249,7 +2245,7 @@ class E {
2249
2245
  this._references--;
2250
2246
  }
2251
2247
  clone() {
2252
- const e = new E(this.canvas);
2248
+ const e = new b(this.canvas);
2253
2249
  return e.assign(this), e;
2254
2250
  }
2255
2251
  assign(e) {
@@ -2265,7 +2261,7 @@ class E {
2265
2261
  return this._dataType;
2266
2262
  }
2267
2263
  set dataType(e) {
2268
- this._dataType = e, this.isPowerOfTwo || (this.wrapModeXY = X.CLAMP), this.magFilter = L.LINEAR, this.minFilter = L.LINEAR, this._dirty = !0;
2264
+ this._dataType = e, this.isPowerOfTwo || (this.wrapModeXY = j.CLAMP), this.magFilter = S.LINEAR, this.minFilter = S.LINEAR, this._dirty = !0;
2269
2265
  }
2270
2266
  get isPowerOfTwo() {
2271
2267
  const e = (t) => t !== 0 && (t & t - 1) === 0;
@@ -2290,7 +2286,7 @@ class E {
2290
2286
  return this._magFilter;
2291
2287
  }
2292
2288
  set magFilter(e) {
2293
- e === L.LINEAR || e === L.NEAREST ? (this._magFilter = e, this._dirty = !0) : console.warn(`Unsupported texture magnification filter: ${Ve[e]}. Command ignored.`);
2289
+ e === S.LINEAR || e === S.NEAREST ? (this._magFilter = e, this._dirty = !0) : console.warn(`Unsupported texture magnification filter: ${Ve[e]}. Command ignored.`);
2294
2290
  }
2295
2291
  get minFilter() {
2296
2292
  return this._minFilter;
@@ -2345,7 +2341,7 @@ class E {
2345
2341
  this._componentFormat = e, this._dirty = !0;
2346
2342
  }
2347
2343
  get mipmapRequired() {
2348
- return this._minFilter === L.NEAREST_MIPMAP_NEAREST || this._minFilter === L.LINEAR_MIPMAP_NEAREST || this._minFilter === L.NEAREST_MIPMAP_LINEAR || this._minFilter === L.LINEAR_MIPMAP_LINEAR || this._magFilter === L.NEAREST_MIPMAP_NEAREST || this._magFilter === L.LINEAR_MIPMAP_NEAREST || this._magFilter === L.NEAREST_MIPMAP_LINEAR || this._magFilter === L.LINEAR_MIPMAP_LINEAR;
2344
+ return this._minFilter === S.NEAREST_MIPMAP_NEAREST || this._minFilter === S.LINEAR_MIPMAP_NEAREST || this._minFilter === S.NEAREST_MIPMAP_LINEAR || this._minFilter === S.LINEAR_MIPMAP_LINEAR || this._magFilter === S.NEAREST_MIPMAP_NEAREST || this._magFilter === S.LINEAR_MIPMAP_NEAREST || this._magFilter === S.NEAREST_MIPMAP_LINEAR || this._magFilter === S.LINEAR_MIPMAP_LINEAR;
2349
2345
  }
2350
2346
  // If imageData === undefined it's because the function loadImageData() has not been called
2351
2347
  get imageData() {
@@ -2365,7 +2361,7 @@ class E {
2365
2361
  this.renderer && this.renderer.destroy();
2366
2362
  }
2367
2363
  async deserialize(e) {
2368
- this._dataType = e.dataType !== void 0 ? Ee[e.dataType] : Ee.NONE, this._wrapModeX = e.wrapModeX !== void 0 ? X[e.wrapModeX] : X.REPEAT, this._wrapModeY = e.wrapModeY !== void 0 ? X[e.wrapModeY] : X.REPEAT, this._magFilter = e.magFilter !== void 0 ? L[e.magFilter] : L.LINEAR, this._minFilter = e.minFilter !== void 0 ? L[e.minFilter] : L.LINEAR, this._target = e.target !== void 0 ? se[e.target] : se.TEXTURE_2D, this._size = e.size?.length === 2 ? new h(e.size[0], e.size[1]) : new h(64, 64), this._fileName = e.fileName !== void 0 ? e.fileName : "", this._proceduralFunction = e.proceduralFunction !== void 0 ? fe[e.proceduralFunction] : fe.PLAIN_COLOR, this._proceduralParameters = e.proceduralParameters !== void 0 ? e.proceduralParameters : {}, this._renderTargetAttachment = e.renderTargetAttachment !== void 0 ? e.renderTargetAttachment : N.COLOR_ATTACHMENT_0, this._componentFormat = e.componentFormat !== void 0 ? e.componentFormat : ge.UNSIGNED_BYTE, this._name = e.name !== void 0 ? e.name : this._name, this._dirty = !0;
2364
+ this._dataType = e.dataType !== void 0 ? Ee[e.dataType] : Ee.NONE, this._wrapModeX = e.wrapModeX !== void 0 ? j[e.wrapModeX] : j.REPEAT, this._wrapModeY = e.wrapModeY !== void 0 ? j[e.wrapModeY] : j.REPEAT, this._magFilter = e.magFilter !== void 0 ? S[e.magFilter] : S.LINEAR, this._minFilter = e.minFilter !== void 0 ? S[e.minFilter] : S.LINEAR, this._target = e.target !== void 0 ? se[e.target] : se.TEXTURE_2D, this._size = e.size?.length === 2 ? new h(e.size[0], e.size[1]) : new h(64, 64), this._fileName = e.fileName !== void 0 ? e.fileName : "", this._proceduralFunction = e.proceduralFunction !== void 0 ? fe[e.proceduralFunction] : fe.PLAIN_COLOR, this._proceduralParameters = e.proceduralParameters !== void 0 ? e.proceduralParameters : {}, this._renderTargetAttachment = e.renderTargetAttachment !== void 0 ? e.renderTargetAttachment : H.COLOR_ATTACHMENT_0, this._componentFormat = e.componentFormat !== void 0 ? e.componentFormat : ge.UNSIGNED_BYTE, this._name = e.name !== void 0 ? e.name : this._name, this._dirty = !0;
2369
2365
  }
2370
2366
  async serialize(e) {
2371
2367
  e.dataType = bi[this.dataType], e.wrapModeX = vt[this.wrapModeX], e.wrapModeY = vt[this.wrapModeY], e.magFilter = Ve[this.magFilter], e.minFilter = Ve[this.minFilter], e.target = ye[this.target], e.size = this.size, e.fileName = this.fileName, e.proceduralFunction = xi[this.proceduralFunction], e.proceduralParameters = this.proceduralParameters, e.renderTargetAttachment = We[this.renderTargetAttachment], e.componentFormat = Qi[this.componentFormat], e.name = this._name;
@@ -2384,7 +2380,7 @@ class E {
2384
2380
  return;
2385
2381
  if (!Array.isArray(this.proceduralParameters) && !(this.proceduralParameters instanceof h) || this.proceduralParameters.length < 3)
2386
2382
  throw new Error("Error generating procedural plain color texture. invalid 'proceduralParameters' set.");
2387
- const t = new D(this.proceduralParameters), n = document.createElement("canvas");
2383
+ const t = new E(this.proceduralParameters), n = document.createElement("canvas");
2388
2384
  n.width = this.size.x, n.height = this.size.y;
2389
2385
  const s = n.getContext("2d");
2390
2386
  s.fillStyle = t.hexColor, s.fillRect(0, 0, this.size.x, this.size.y), await new Promise((a) => {
@@ -2516,22 +2512,22 @@ const Us = Object.freeze({
2516
2512
  "castShadows",
2517
2513
  "unlit"
2518
2514
  ], Vt = (r, e) => {
2519
- if (!r instanceof D && !r instanceof E)
2515
+ if (!r instanceof E && !r instanceof b)
2520
2516
  throw new Error(`Invalid parameter setting '${e}' material attribute. The required parameter type is Color or Texture`);
2521
2517
  }, Xs = (r, e) => {
2522
- if (!r instanceof D)
2518
+ if (!r instanceof E)
2523
2519
  throw new Error(`Invalid parameter setting '${e}' material attribute. The required parameter type is Color`);
2524
2520
  }, Se = (r, e) => {
2525
2521
  if (!r instanceof h || r.length != 2)
2526
2522
  throw new Error(`Invalid parameter setting '${e}' material attribute. The required parameter type is Vec with two elements.`);
2527
2523
  }, ht = (r, e) => {
2528
- if (!r instanceof E && typeof r != "number")
2524
+ if (!r instanceof b && typeof r != "number")
2529
2525
  throw new Error(`Invalid parameter setting '${e}' material attribute. The required parameter type is Texture or numeric value.`);
2530
- }, q = (r) => r instanceof D ? new D(r) : r instanceof h ? new h(r) : r instanceof E ? r.clone() : r, ks = (r) => {
2526
+ }, q = (r) => r instanceof E ? new E(r) : r instanceof h ? new h(r) : r instanceof b ? r.clone() : r, ks = (r) => {
2531
2527
  const e = { type: "", data: {} };
2532
- if (r instanceof D)
2528
+ if (r instanceof E)
2533
2529
  e.type = "Color", e.data = r;
2534
- else if (r instanceof E)
2530
+ else if (r instanceof b)
2535
2531
  e.type = "Texture", r.serialize(e.data);
2536
2532
  else
2537
2533
  throw new Error("Invalid parameter found in material serialization");
@@ -2545,8 +2541,8 @@ const Us = Object.freeze({
2545
2541
  return console.debug(`Texture '${n}' already loaded. Reusing texture.`), s.getTexture(n);
2546
2542
  {
2547
2543
  console.log(`Texture not found in cache. Loading texture '${n}'`);
2548
- const o = new E(t);
2549
- return o.fileName = e + r, o.dataType = Ee.IMAGE, o.minFilter = L.LINEAR_MIPMAP_LINEAR, o.magFilter = L.LINEAR, o.wrapModeX = X.REPEAT, o.wrapModeY = X.REPEAT, s.registerTexture(o), o;
2544
+ const o = new b(t);
2545
+ return o.fileName = e + r, o.dataType = Ee.IMAGE, o.minFilter = S.LINEAR_MIPMAP_LINEAR, o.magFilter = S.LINEAR, o.wrapModeX = j.REPEAT, o.wrapModeY = j.REPEAT, s.registerTexture(o), o;
2550
2546
  }
2551
2547
  } else if (Array.isArray(r) && (r.length === 3 || r.length === 4)) {
2552
2548
  if (r.length === 3)
@@ -2555,9 +2551,9 @@ const Us = Object.freeze({
2555
2551
  return new h(r[0], r[1], r[2], r[3]);
2556
2552
  } else {
2557
2553
  if (r.type === "Color")
2558
- return new D(r.data);
2554
+ return new E(r.data);
2559
2555
  if (r.type === "Texture") {
2560
- const n = new E(t);
2556
+ const n = new b(t);
2561
2557
  return n.deserialize(r.data), n;
2562
2558
  } else
2563
2559
  reject(new Error("Invalid parameter found in material deserialization"));
@@ -2572,7 +2568,7 @@ const Us = Object.freeze({
2572
2568
  } else return null;
2573
2569
  }, Ks = (r) => {
2574
2570
  const e = { type: "", data: "" };
2575
- if (r instanceof E)
2571
+ if (r instanceof b)
2576
2572
  e.type = "Texture", r.serialize(e.data);
2577
2573
  else if (typeof r == "number")
2578
2574
  e.type = "number", e.data = r;
@@ -2588,8 +2584,8 @@ const Us = Object.freeze({
2588
2584
  return console.debug(`Texture '${n}' already loaded. Reusing texture.`), s.getTexture(n);
2589
2585
  {
2590
2586
  console.log(`Texture not found in cache. Loading texture '${n}'`);
2591
- const o = new E(t);
2592
- return o.fileName = e + r, o.dataType = Ee.IMAGE, o.wrapModeX = X.REPEAT, o.wrapModeY = X.REPEAT, o.minFilter = L.LINEAR_MIPMAP_LINEAR, o.magFilter = L.LINEAR, s.registerTexture(o), o;
2587
+ const o = new b(t);
2588
+ return o.fileName = e + r, o.dataType = Ee.IMAGE, o.wrapModeX = j.REPEAT, o.wrapModeY = j.REPEAT, o.minFilter = S.LINEAR_MIPMAP_LINEAR, o.magFilter = S.LINEAR, s.registerTexture(o), o;
2593
2589
  }
2594
2590
  } else {
2595
2591
  if (typeof r == "number")
@@ -2597,7 +2593,7 @@ const Us = Object.freeze({
2597
2593
  if (Array.isArray(r))
2598
2594
  return r.reduce((n, s) => n + s) / r.length;
2599
2595
  if (r.type === "Texture") {
2600
- const n = new E(t);
2596
+ const n = new b(t);
2601
2597
  return n.deserialize(r.data), n;
2602
2598
  } else {
2603
2599
  if (r.type === "number")
@@ -2621,7 +2617,7 @@ const Us = Object.freeze({
2621
2617
  if (Ti.indexOf(r) !== -1)
2622
2618
  return js(e[r]);
2623
2619
  if (yi.indexOf(r) !== -1)
2624
- return new D(e[r]);
2620
+ return new E(e[r]);
2625
2621
  if (Mi.indexOf(r) !== -1)
2626
2622
  return e[r];
2627
2623
  throw new Error(`Error in material attribute deserialization: invalid attribute '${r}'`);
@@ -2632,7 +2628,7 @@ class le {
2632
2628
  return await s.deserialize(e, t, n), s;
2633
2629
  }
2634
2630
  constructor(e = null) {
2635
- this._canvas = e || rt.FirstCanvas(), this._type = Us.PBR, this._renderer = null, this._diffuse = D.White(), this._diffuseScale = new h(1, 1), this._diffuseUV = 0, this._alphaCutoff = 0.5, this._isTransparent = !1, this._metallic = 0, this._metallicChannel = 0, this._metallicScale = new h(1, 1), this._metallicUV = 0, this._roughness = 1, this._roughnessChannel = 0, this._roughnessScale = new h(1, 1), this._roughnessUV = 0, this._fresnel = D.White(), this._lightEmission = 0, this._lightEmissionChannel = 0, this._lightEmissionScale = new h(1, 1), this._lightEmissionUV = 0, this._ambientOcclussion = 1, this._ambientOcclussionChannel = 0, this._ambientOcclussionUV = 1, this._normal = new D({ r: 0.5, g: 0.5, b: 1 }), this._normalScale = new h(1, 1), this._normalUV = 0, this._height = 0, this._heightChannel = 0, this._heightScale = new h(1, 1), this._heightUV = 0, this._heightIntensity = 1, this._castShadows = !0, this._unlit = !1, this._dirty = !0;
2631
+ this._canvas = e || rt.FirstCanvas(), this._type = Us.PBR, this._renderer = null, this._diffuse = E.White(), this._diffuseScale = new h(1, 1), this._diffuseUV = 0, this._alphaCutoff = 0.5, this._isTransparent = !1, this._metallic = 0, this._metallicChannel = 0, this._metallicScale = new h(1, 1), this._metallicUV = 0, this._roughness = 1, this._roughnessChannel = 0, this._roughnessScale = new h(1, 1), this._roughnessUV = 0, this._fresnel = E.White(), this._lightEmission = 0, this._lightEmissionChannel = 0, this._lightEmissionScale = new h(1, 1), this._lightEmissionUV = 0, this._ambientOcclussion = 1, this._ambientOcclussionChannel = 0, this._ambientOcclussionUV = 1, this._normal = new E({ r: 0.5, g: 0.5, b: 1 }), this._normalScale = new h(1, 1), this._normalUV = 0, this._height = 0, this._heightChannel = 0, this._heightScale = new h(1, 1), this._heightUV = 0, this._heightIntensity = 1, this._castShadows = !0, this._unlit = !1, this._dirty = !0;
2636
2632
  }
2637
2633
  get canvas() {
2638
2634
  return this._canvas;
@@ -2670,7 +2666,7 @@ class le {
2670
2666
  return this._diffuse;
2671
2667
  }
2672
2668
  set diffuse(e) {
2673
- Vt(e, "diffuse"), this._diffuse instanceof E && this._diffuse.decReferences(), this._diffuse = e, this._diffuse instanceof E && this._diffuse.incReferences(), this._dirty = !0;
2669
+ Vt(e, "diffuse"), this._diffuse instanceof b && this._diffuse.decReferences(), this._diffuse = e, this._diffuse instanceof b && this._diffuse.incReferences(), this._dirty = !0;
2674
2670
  }
2675
2671
  get diffuseScale() {
2676
2672
  return this._diffuseScale;
@@ -2700,7 +2696,7 @@ class le {
2700
2696
  return this._metallic;
2701
2697
  }
2702
2698
  set metallic(e) {
2703
- ht(e, "metallic"), this._metallic instanceof E && this._metallic.decReferences(), this._metallic = e, this._metallic instanceof E && this._metallic.incReferences(), this._dirty = !0;
2699
+ ht(e, "metallic"), this._metallic instanceof b && this._metallic.decReferences(), this._metallic = e, this._metallic instanceof b && this._metallic.incReferences(), this._dirty = !0;
2704
2700
  }
2705
2701
  get metallicChannel() {
2706
2702
  return this._metallicChannel;
@@ -2724,7 +2720,7 @@ class le {
2724
2720
  return this._roughness;
2725
2721
  }
2726
2722
  set roughness(e) {
2727
- ht(e, "roughness"), this._roughness instanceof E && this._roughness.decReferences(), this._roughness = e, this._roughness instanceof E && this._roughness.incReferences(), this._dirty = !0;
2723
+ ht(e, "roughness"), this._roughness instanceof b && this._roughness.decReferences(), this._roughness = e, this._roughness instanceof b && this._roughness.incReferences(), this._dirty = !0;
2728
2724
  }
2729
2725
  get roughnessChannel() {
2730
2726
  return this._roughnessChannel;
@@ -2754,7 +2750,7 @@ class le {
2754
2750
  return this._lightEmission;
2755
2751
  }
2756
2752
  set lightEmission(e) {
2757
- ht(e, "lightEmission"), this._lightEmission instanceof E && this._lightEmission.decReferences(), this._lightEmission = e, this._lightEmission instanceof E && this._lightEmission.incReferences(), this._dirty = !0;
2753
+ ht(e, "lightEmission"), this._lightEmission instanceof b && this._lightEmission.decReferences(), this._lightEmission = e, this._lightEmission instanceof b && this._lightEmission.incReferences(), this._dirty = !0;
2758
2754
  }
2759
2755
  get lightEmissionChannel() {
2760
2756
  return this._lightEmissionChannel;
@@ -2778,7 +2774,7 @@ class le {
2778
2774
  return this._ambientOcclussion;
2779
2775
  }
2780
2776
  set ambientOcclussion(e) {
2781
- Vt(e, "ambientOcclussion"), this._ambientOcclussion instanceof E && this._ambientOcclussion.decReferences(), this._ambientOcclussion = e, this._ambientOcclussion instanceof E && this._ambientOcclussion.incReferences(), this._dirty = !0;
2777
+ Vt(e, "ambientOcclussion"), this._ambientOcclussion instanceof b && this._ambientOcclussion.decReferences(), this._ambientOcclussion = e, this._ambientOcclussion instanceof b && this._ambientOcclussion.incReferences(), this._dirty = !0;
2782
2778
  }
2783
2779
  get ambientOcclussionChannel() {
2784
2780
  return this._ambientOcclussionChannel;
@@ -2796,7 +2792,7 @@ class le {
2796
2792
  return this._normal;
2797
2793
  }
2798
2794
  set normal(e) {
2799
- Vt(e, "normal"), this._normal instanceof E && this._normal.decReferences(), this._normal = e, this._normal instanceof E && this._normal.incReferences(), this._dirty = !0;
2795
+ Vt(e, "normal"), this._normal instanceof b && this._normal.decReferences(), this._normal = e, this._normal instanceof b && this._normal.incReferences(), this._dirty = !0;
2800
2796
  }
2801
2797
  get normalScale() {
2802
2798
  return this._normalScale;
@@ -2864,19 +2860,19 @@ class le {
2864
2860
  const o = Kt[s];
2865
2861
  if (e[o] !== void 0) {
2866
2862
  let a = null;
2867
- o === "type" ? a = Sr("class", e, t, this.canvas) : (a = Sr(o, e, t, this.canvas), a instanceof E && n.push(a.loadImageData())), a !== null && (this[o] = a);
2863
+ o === "type" ? a = Sr("class", e, t, this.canvas) : (a = Sr(o, e, t, this.canvas), a instanceof b && n.push(a.loadImageData())), a !== null && (this[o] = a);
2868
2864
  }
2869
2865
  }
2870
2866
  return await Promise.all(n);
2871
2867
  }
2872
2868
  destroy() {
2873
2869
  const e = (t) => {
2874
- this[t] instanceof E && this[t].decReferences();
2870
+ this[t] instanceof b && this[t].decReferences();
2875
2871
  };
2876
2872
  mr.forEach(e), Pr.forEach(e), this.renderer && this.renderer.destroy();
2877
2873
  }
2878
2874
  }
2879
- class J {
2875
+ class Z {
2880
2876
  constructor(e) {
2881
2877
  this._renderer = e;
2882
2878
  }
@@ -2899,11 +2895,11 @@ const Ke = {
2899
2895
  function Js() {
2900
2896
  delete this._program.__shaderProgram__, this._gl.deleteProgram(this._program), this._program = null;
2901
2897
  }
2902
- class R {
2898
+ class F {
2903
2899
  static Create(e, t, n, s) {
2904
2900
  if (!n || !s)
2905
2901
  throw new Error("ShaderProgram.Create(): Invalid vertex or fragment code");
2906
- const o = new R(e, t);
2902
+ const o = new F(e, t);
2907
2903
  return Array.isArray(n) || (n = [n]), Array.isArray(s) || (s = [s]), n.forEach((a) => o.attachVertexSource(a)), s.forEach((a) => o.attachFragmentSource(a)), o.link(), o;
2908
2904
  }
2909
2905
  static GetShaderProgram(e) {
@@ -3074,12 +3070,12 @@ ${e.getProgramInfoLog(this._program)}`);
3074
3070
  tex1: o = null,
3075
3071
  tex2: a = null,
3076
3072
  color: A = null,
3077
- tangent: f = null
3073
+ tangent: g = null
3078
3074
  }) {
3079
- this.positionAttribPointer(e.positionAttribParams(t)), n && this.normalAttribPointer(e.normalAttribParams(n)), s && this.texCoordAttribPointer(e.texCoord0AttribParams(s)), o && this.texCoordAttribPointer(e.texCoord1AttribParams(o)), a && this.texCoordAttribPointer(e.texCoord2AttribParams(o)), f && this.tangentAttribPointer(e.tangentAttribParams(f)), A && this.colorAttribPointer(e.colorAttribParams(A));
3075
+ this.positionAttribPointer(e.positionAttribParams(t)), n && this.normalAttribPointer(e.normalAttribParams(n)), s && this.texCoordAttribPointer(e.texCoord0AttribParams(s)), o && this.texCoordAttribPointer(e.texCoord1AttribParams(o)), a && this.texCoordAttribPointer(e.texCoord2AttribParams(o)), g && this.tangentAttribPointer(e.tangentAttribParams(g)), A && this.colorAttribPointer(e.colorAttribParams(A));
3080
3076
  }
3081
3077
  bindMatrix(e, t) {
3082
- t instanceof p ? this.uniformMatrix4fv(e, !1, t) : t instanceof me && this.uniformMatrix3fv(e, !1, t);
3078
+ t instanceof C ? this.uniformMatrix4fv(e, !1, t) : t instanceof me && this.uniformMatrix3fv(e, !1, t);
3083
3079
  }
3084
3080
  bindVector(e, t) {
3085
3081
  switch (t.length) {
@@ -3139,22 +3135,22 @@ const Rr = {
3139
3135
  }`
3140
3136
  }
3141
3137
  };
3142
- class Ni extends J {
3138
+ class Ni extends Z {
3143
3139
  constructor(e) {
3144
3140
  if (super(e), e.typeId !== "WebGL")
3145
3141
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
3146
3142
  }
3147
3143
  async load() {
3148
3144
  const { gl: e } = this.renderer;
3149
- this._program = new R(e, "DefaultPresentTextureShader"), this._program.attachVertexSource(Rr.webgl.vertex), this._program.attachFragmentSource(Rr.webgl.fragment), this._program.link();
3145
+ this._program = new F(e, "DefaultPresentTextureShader"), this._program.attachVertexSource(Rr.webgl.vertex), this._program.attachFragmentSource(Rr.webgl.fragment), this._program.link();
3150
3146
  }
3151
3147
  setup(e, t, n, s, o) {
3152
3148
  const { gl: a } = this.renderer;
3153
3149
  this.renderer.state.shaderProgram = this._program, a.activeTexture(a.TEXTURE0), this._program.uniform1i("uTexture", 0);
3154
3150
  const A = t.material;
3155
- if (A.diffuse instanceof E) {
3156
- const f = t.getTextureRenderer("diffuse").getApiObject(), g = ye[A.diffuse.target];
3157
- a.bindTexture(a[g], f);
3151
+ if (A.diffuse instanceof b) {
3152
+ const g = t.getTextureRenderer("diffuse").getApiObject(), d = ye[A.diffuse.target];
3153
+ a.bindTexture(a[d], g);
3158
3154
  } else
3159
3155
  throw new Error("PresentTextureShader: invalid material setup. The diffuse material attribute must to be a texture");
3160
3156
  this._program.positionAttribPointer(e.positionAttribParams("position")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("texCoord"));
@@ -3209,26 +3205,26 @@ const Or = {
3209
3205
  }`
3210
3206
  }
3211
3207
  };
3212
- class Hi extends J {
3208
+ class Hi extends Z {
3213
3209
  constructor(e) {
3214
3210
  if (super(e), e.typeId !== "WebGL")
3215
3211
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
3216
3212
  }
3217
3213
  async load() {
3218
3214
  const { gl: e } = this.renderer;
3219
- this._program = new R(e, "IrradianceMapCubeShader"), this._program.attachVertexSource(Or.webgl.vertex), this._program.attachFragmentSource(Or.webgl.fragment(0.1)), this._program.link();
3215
+ this._program = new F(e, "IrradianceMapCubeShader"), this._program.attachVertexSource(Or.webgl.vertex), this._program.attachFragmentSource(Or.webgl.fragment(0.1)), this._program.link();
3220
3216
  }
3221
3217
  setup(e, t, n, s, o) {
3222
3218
  const { material: a } = t, { gl: A } = this.renderer;
3223
3219
  this.renderer.state.shaderProgram = this._program;
3224
- const f = p.Mult(o, s);
3225
- if (this._program.uniformMatrix4fv("uMVP", !1, f), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uCubemap", 0), a.diffuse instanceof h)
3220
+ const g = C.Mult(o, s);
3221
+ if (this._program.uniformMatrix4fv("uMVP", !1, g), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uCubemap", 0), a.diffuse instanceof h)
3226
3222
  throw new Error("Invalid material configuration in IrradianceMapCubeShader: diffuse component must be a cube map texture");
3227
- const g = t.getTextureRenderer("diffuse").getApiObject();
3228
- A.bindTexture(A.TEXTURE_CUBE_MAP, g), this._program.positionAttribPointer(e.positionAttribParams("vertPosition"));
3223
+ const d = t.getTextureRenderer("diffuse").getApiObject();
3224
+ A.bindTexture(A.TEXTURE_CUBE_MAP, d), this._program.positionAttribPointer(e.positionAttribParams("vertPosition"));
3229
3225
  }
3230
3226
  destroy() {
3231
- R.Delete(this._program), this._program = null;
3227
+ F.Delete(this._program), this._program = null;
3232
3228
  }
3233
3229
  }
3234
3230
  const Fr = {
@@ -3323,7 +3319,7 @@ const Fr = {
3323
3319
  }`
3324
3320
  }
3325
3321
  };
3326
- class Li extends J {
3322
+ class Li extends Z {
3327
3323
  constructor(e) {
3328
3324
  if (super(e), e.typeId !== "WebGL")
3329
3325
  throw Error("SpecularMapCubeShader is only compatible with WebGL renderer");
@@ -3333,24 +3329,24 @@ class Li extends J {
3333
3329
  }
3334
3330
  async load() {
3335
3331
  const { gl: e } = this.renderer;
3336
- this._roughness = 0.4, this._program = new R(e, "SpecularMapCubeShader"), this._program.attachVertexSource(Fr.webgl.vertex), this._program.attachFragmentSource(Fr.webgl.fragment(128, this._roughness)), this._program.link();
3332
+ this._roughness = 0.4, this._program = new F(e, "SpecularMapCubeShader"), this._program.attachVertexSource(Fr.webgl.vertex), this._program.attachFragmentSource(Fr.webgl.fragment(128, this._roughness)), this._program.link();
3337
3333
  }
3338
3334
  setup(e, t, n, s, o) {
3339
3335
  const { material: a } = t, { gl: A } = this.renderer;
3340
3336
  this.renderer.state.shaderProgram = this._program;
3341
- const f = p.Mult(o, s);
3342
- if (this._program.uniformMatrix4fv("uMVP", !1, f), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uCubemap", 0), a.diffuse instanceof h)
3337
+ const g = C.Mult(o, s);
3338
+ if (this._program.uniformMatrix4fv("uMVP", !1, g), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uCubemap", 0), a.diffuse instanceof h)
3343
3339
  throw new Error("Invalid material configuration in SpecularMapCubeShader: diffuse component must be a cube map");
3344
- const g = t.getTextureRenderer("diffuse").getApiObject();
3345
- A.bindTexture(A.TEXTURE_CUBE_MAP, g), this._program.positionAttribPointer(e.positionAttribParams("vertPosition"));
3340
+ const d = t.getTextureRenderer("diffuse").getApiObject();
3341
+ A.bindTexture(A.TEXTURE_CUBE_MAP, d), this._program.positionAttribPointer(e.positionAttribParams("vertPosition"));
3346
3342
  }
3347
3343
  destroy() {
3348
- R.Delete(this._program), this._program = null;
3344
+ F.Delete(this._program), this._program = null;
3349
3345
  }
3350
3346
  }
3351
3347
  const Wt = async (r, e) => {
3352
- const t = new E();
3353
- t.renderTargetAttachment = N.COLOR_ATTACHMENT_0, t.target = se.CUBE_MAP;
3348
+ const t = new b();
3349
+ t.renderTargetAttachment = H.COLOR_ATTACHMENT_0, t.target = se.CUBE_MAP;
3354
3350
  const n = r.factory.renderBuffer();
3355
3351
  return await n.attachTexture(t), n.size = e, { renderer: r, texture: t, renderBuffer: n };
3356
3352
  }, Jt = (r) => {
@@ -3452,7 +3448,7 @@ const Gr = {
3452
3448
  }`
3453
3449
  }
3454
3450
  }, At = {};
3455
- class Et extends J {
3451
+ class Et extends Z {
3456
3452
  static GetUnique(e) {
3457
3453
  return At[e.uniqueId] || (At[e.uniqueId] = new Et(e), At[e.uniqueId].load()), At[e.uniqueId];
3458
3454
  }
@@ -3463,25 +3459,25 @@ class Et extends J {
3463
3459
  }
3464
3460
  load() {
3465
3461
  const { gl: e } = this.renderer;
3466
- this._program = new R(e, "DefaultTextureMergerShader"), this._program.attachVertexSource(Gr.webgl.vertex), this._program.attachFragmentSource(Gr.webgl.fragment), this._program.link();
3462
+ this._program = new F(e, "DefaultTextureMergerShader"), this._program.attachVertexSource(Gr.webgl.vertex), this._program.attachFragmentSource(Gr.webgl.fragment), this._program.link();
3467
3463
  }
3468
- setTexture(e, t, n = S.R) {
3469
- if (t < S.R || t > S.A)
3464
+ setTexture(e, t, n = O.R) {
3465
+ if (t < O.R || t > O.A)
3470
3466
  throw new Error(`TextureMergerShader: invalid texture channel set ${t}`);
3471
3467
  this._textures[t] = e, this._textureChannels[t] = n;
3472
3468
  }
3473
3469
  get isComplete() {
3474
- return this._textures[S.R] && this._textures[S.G] && this._textures[S.B] && this._textures[S.A] && !0;
3470
+ return this._textures[O.R] && this._textures[O.G] && this._textures[O.B] && this._textures[O.A] && !0;
3475
3471
  }
3476
3472
  setup(e, t, n, s, o) {
3477
3473
  if (!this.isComplete)
3478
3474
  throw new Error("TextureMergerShader: the texture shader is not complete. Check that the textures are set for all channels");
3479
- this.renderer.state.shaderProgram = this._program, this._program.bindTexture("uTextureR", this.renderer.factory.texture(this._textures[S.R]), 0), this._program.bindTexture("uTextureG", this.renderer.factory.texture(this._textures[S.G]), 1), this._program.bindTexture("uTextureB", this.renderer.factory.texture(this._textures[S.B]), 2), this._program.bindTexture("uTextureA", this.renderer.factory.texture(this._textures[S.A]), 3), this._program.uniform1i("uRChannel", this._textureChannels[S.R]), this._program.uniform1i("uGChannel", this._textureChannels[S.G]), this._program.uniform1i("uBChannel", this._textureChannels[S.B]), this._program.uniform1i("uAChannel", this._textureChannels[S.A]), this._program.positionAttribPointer(e.positionAttribParams("position")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("texCoord"));
3475
+ this.renderer.state.shaderProgram = this._program, this._program.bindTexture("uTextureR", this.renderer.factory.texture(this._textures[O.R]), 0), this._program.bindTexture("uTextureG", this.renderer.factory.texture(this._textures[O.G]), 1), this._program.bindTexture("uTextureB", this.renderer.factory.texture(this._textures[O.B]), 2), this._program.bindTexture("uTextureA", this.renderer.factory.texture(this._textures[O.A]), 3), this._program.uniform1i("uRChannel", this._textureChannels[O.R]), this._program.uniform1i("uGChannel", this._textureChannels[O.G]), this._program.uniform1i("uBChannel", this._textureChannels[O.B]), this._program.uniform1i("uAChannel", this._textureChannels[O.A]), this._program.positionAttribPointer(e.positionAttribParams("position")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("texCoord"));
3480
3476
  }
3481
3477
  }
3482
3478
  class Ii {
3483
3479
  constructor(e) {
3484
- this._renderer = e, this._shader = Et.GetUnique(this.renderer), this._dirty = !0, this._mergedTexture = new E(), this._mergedTexture.renderTargetAttachment = N.COLOR_ATTACHMENT_0, this._mergedTexture.componentFormat = ge.UNSIGNED_BYTE, this._mergedTexture.wrapModeXY = X.REPEAT, this._renderBuffer = this.renderer.factory.renderBuffer(), this._renderBuffer.attachTexture(this._mergedTexture), this._shader.load();
3480
+ this._renderer = e, this._shader = Et.GetUnique(this.renderer), this._dirty = !0, this._mergedTexture = new b(), this._mergedTexture.renderTargetAttachment = H.COLOR_ATTACHMENT_0, this._mergedTexture.componentFormat = ge.UNSIGNED_BYTE, this._mergedTexture.wrapModeXY = j.REPEAT, this._renderBuffer = this.renderer.factory.renderBuffer(), this._renderBuffer.attachTexture(this._mergedTexture), this._shader.load();
3485
3481
  }
3486
3482
  get renderer() {
3487
3483
  return this._renderer;
@@ -3492,7 +3488,7 @@ class Ii {
3492
3488
  set dirty(e) {
3493
3489
  this._dirty = e;
3494
3490
  }
3495
- setTexture(e, t, n = S.R) {
3491
+ setTexture(e, t, n = O.R) {
3496
3492
  this._shader.setTexture(e, t, n), this._dirty = !0;
3497
3493
  }
3498
3494
  get mergedTexture() {
@@ -4079,18 +4075,18 @@ class Ui extends Dt {
4079
4075
  }
4080
4076
  get resourceTypes() {
4081
4077
  return [
4082
- G.Node
4078
+ k.Node
4083
4079
  ];
4084
4080
  }
4085
4081
  async load(e, t, n) {
4086
- if (t !== G.Node)
4082
+ if (t !== k.Node)
4087
4083
  throw new Error(`VitscnjLoaderPlugin.load() unexpected resource type received: ${t}`);
4088
4084
  const s = n.currentPath;
4089
4085
  n.currentPath = wi(e);
4090
4086
  const o = new tt(), a = new it("Scene Root"), { scene: A } = await o.load(e);
4091
- for (const f of A) {
4092
- const g = await Gi(f, n);
4093
- a.addChild(g);
4087
+ for (const g of A) {
4088
+ const d = await Gi(g, n);
4089
+ a.addChild(d);
4094
4090
  }
4095
4091
  return n.currentPath = s, a;
4096
4092
  }
@@ -4120,16 +4116,16 @@ class Ue extends oe {
4120
4116
  }
4121
4117
  assign(e) {
4122
4118
  this.destroy(), this._name = e._name, this._items = [], e._items.forEach((t) => {
4123
- const n = t.polyList.clone(), s = t.material.clone(), o = new p(t.transform);
4119
+ const n = t.polyList.clone(), s = t.material.clone(), o = new C(t.transform);
4124
4120
  this.addPolyList(n, s, o);
4125
4121
  });
4126
4122
  }
4127
- addPolyList(e, t, n = p.MakeIdentity(), s) {
4123
+ addPolyList(e, t, n = C.MakeIdentity(), s) {
4128
4124
  if (!e instanceof xe)
4129
4125
  throw new Error("Error adding polyList to drawable object: polyList is not an instance of PolyList");
4130
4126
  if (!t instanceof le)
4131
4127
  throw new Error("Error adding polyList to drawable object: material is not an instance of Material");
4132
- if (!n instanceof p)
4128
+ if (!n instanceof C)
4133
4129
  throw new Error("Error adding polyList to drawable object: transform is not an instance of Mat4");
4134
4130
  this._items.push({ polyList: e, material: t, transform: n });
4135
4131
  }
@@ -4156,7 +4152,7 @@ class Ue extends oe {
4156
4152
  }, o = Ui.PreferredDrawableFormat() === Br.BG2 ? await n(e.name + ".bg2") || await n(e.name + ".vwglb") : await n(e.name + ".vwglb") || await n(e.name + ".bg2");
4157
4153
  if (!o)
4158
4154
  throw new Error(`Drawable.deserialize(): could not load drawable with name ${e.name}`);
4159
- o.items.forEach(({ polyList: a, material: A, transform: f }) => this.addPolyList(a, A, f)), this.name = o.name;
4155
+ o.items.forEach(({ polyList: a, material: A, transform: g }) => this.addPolyList(a, A, g)), this.name = o.name;
4160
4156
  }
4161
4157
  async serialize(e, t) {
4162
4158
  throw await super.serialize(e, t), new Error("Drawable.serialice() not implemented");
@@ -4171,7 +4167,7 @@ class Ue extends oe {
4171
4167
  e.addPolyList(
4172
4168
  s,
4173
4169
  o,
4174
- p.Mult(n, t)
4170
+ C.Mult(n, t)
4175
4171
  );
4176
4172
  });
4177
4173
  }
@@ -4197,13 +4193,13 @@ class $s {
4197
4193
  }
4198
4194
  loadBg2FileAsJson(e) {
4199
4195
  const t = this.loadBg2File(e), n = this.getBg2FileHeader(t), s = this.getComponentData(t), o = this.getMaterialsData(t), a = this.getJointData(t), A = [];
4200
- for (let f = 0; f < n.numberOfPlist; ++f)
4201
- A.push(this.getPolyList(t, f));
4196
+ for (let g = 0; g < n.numberOfPlist; ++g)
4197
+ A.push(this.getPolyList(t, g));
4202
4198
  return this.freeBg2File(t), { header: n, components: s, materials: o, joints: a, polyLists: A };
4203
4199
  }
4204
4200
  getBg2BufferFromJson(e) {
4205
4201
  const { header: t, materials: n, joints: s, polyLists: o, components: a } = e, A = this.instance._createBg2File(this._debug ? 1 : 0);
4206
- let f = null;
4202
+ let g = null;
4207
4203
  if (A) {
4208
4204
  this.instance._setFileHeader(
4209
4205
  A,
@@ -4213,18 +4209,18 @@ class $s {
4213
4209
  t.version.revision,
4214
4210
  t.numberOfPlist,
4215
4211
  this._debug ? 1 : 0
4216
- ), this.instance.ccall("setMaterialData", null, ["number", "string", "number"], [A, JSON.stringify(n), this._debug ? 1 : 0]), this.instance.ccall("setComponentData", null, ["number", "string", "number"], [A, JSON.stringify(a), this._debug ? 1 : 0]), this.instance.ccall("setJointData", null, ["number", "string", "number"], [A, JSON.stringify(s), this._debug ? 1 : 0]), this.instance.ccall("createPolyListArray", null, ["number", "number", "number"], [A, o.length, this._debug ? 1 : 0]), o.forEach((m, b) => {
4217
- const C = this.instance.ccall("createPolyList", "number", ["string", "string", "number"], [m.name, m.matName, this._debug ? 1 : 0]);
4218
- this.instance._addPolyList(A, C, b, this._debug ? 1 : 0), this.addFloatBuffer(C, m.vertex, Re.VERTEX), this.addFloatBuffer(C, m.normal, Re.NORMAL), this.addFloatBuffer(C, m.texCoord0, Re.TEXCOORD0), this.addFloatBuffer(C, m.texCoord1, Re.TEXCOORD1), this.addFloatBuffer(C, m.texCoord2, Re.TEXCOORD2), this.addIndexBuffer(C, m.index, Re.INDEX);
4212
+ ), this.instance.ccall("setMaterialData", null, ["number", "string", "number"], [A, JSON.stringify(n), this._debug ? 1 : 0]), this.instance.ccall("setComponentData", null, ["number", "string", "number"], [A, JSON.stringify(a), this._debug ? 1 : 0]), this.instance.ccall("setJointData", null, ["number", "string", "number"], [A, JSON.stringify(s), this._debug ? 1 : 0]), this.instance.ccall("createPolyListArray", null, ["number", "number", "number"], [A, o.length, this._debug ? 1 : 0]), o.forEach((m, Q) => {
4213
+ const p = this.instance.ccall("createPolyList", "number", ["string", "string", "number"], [m.name, m.matName, this._debug ? 1 : 0]);
4214
+ this.instance._addPolyList(A, p, Q, this._debug ? 1 : 0), this.addFloatBuffer(p, m.vertex, Re.VERTEX), this.addFloatBuffer(p, m.normal, Re.NORMAL), this.addFloatBuffer(p, m.texCoord0, Re.TEXCOORD0), this.addFloatBuffer(p, m.texCoord1, Re.TEXCOORD1), this.addFloatBuffer(p, m.texCoord2, Re.TEXCOORD2), this.addIndexBuffer(p, m.index, Re.INDEX);
4219
4215
  });
4220
- const g = this.instance._createBufferWithBg2File(A, this._debug ? 1 : 0);
4221
- if (g) {
4222
- const m = new Int32Array(this.instance.HEAPU8.buffer, g, 1)[0], b = new Uint32Array(this.instance.HEAPU8.buffer, g + 4, 1)[0];
4223
- f = new Uint8Array(this.instance.HEAPU8.buffer, b, m).slice(), this.instance._freeBufferWrapper(g, this._debug ? 1 : 0);
4216
+ const d = this.instance._createBufferWithBg2File(A, this._debug ? 1 : 0);
4217
+ if (d) {
4218
+ const m = new Int32Array(this.instance.HEAPU8.buffer, d, 1)[0], Q = new Uint32Array(this.instance.HEAPU8.buffer, d + 4, 1)[0];
4219
+ g = new Uint8Array(this.instance.HEAPU8.buffer, Q, m).slice(), this.instance._freeBufferWrapper(d, this._debug ? 1 : 0);
4224
4220
  }
4225
4221
  this.instance._freeBg2File(A, this._debug ? 1 : 0);
4226
4222
  }
4227
- return f;
4223
+ return g;
4228
4224
  }
4229
4225
  getBg2FileHeader(e) {
4230
4226
  const t = this._instance._getBg2FileHeader(e, this._debug ? 1 : 0), n = new Uint8Array(this.instance.HEAPU8.buffer, t, 4), s = new Int32Array(this.instance.HEAP32.buffer, t + 4, 1)[0];
@@ -4265,18 +4261,18 @@ class $s {
4265
4261
  getPolyList(e, t) {
4266
4262
  const n = this._instance._getPolyList(e, t, this._debug ? 1 : 0);
4267
4263
  if (n) {
4268
- const s = new Int32Array(this.instance.HEAPU8.buffer, n, 16), o = s[0], a = s[1], A = s[2], f = s[3], g = s[4], m = s[5], b = s[6], C = s[7], B = s[8], x = s[9], y = s[10], j = s[11], Z = s[12], W = s[13], z = s[14], U = s[15];
4264
+ const s = new Int32Array(this.instance.HEAPU8.buffer, n, 16), o = s[0], a = s[1], A = s[2], g = s[3], d = s[4], m = s[5], Q = s[6], p = s[7], B = s[8], T = s[9], D = s[10], G = s[11], Y = s[12], L = s[13], M = s[14], I = s[15];
4269
4265
  return {
4270
4266
  name: this.getStringFromCStr(o),
4271
4267
  matName: this.getStringFromCStr(a),
4272
4268
  groupName: this.getStringFromCStr(A),
4273
- visible: f === 1,
4274
- vertex: this.getFloatArray(m, g),
4275
- normal: this.getFloatArray(C, b),
4276
- texCoord0: this.getFloatArray(x, B),
4277
- texCoord1: this.getFloatArray(j, y),
4278
- texCoord2: this.getFloatArray(W, Z),
4279
- index: this.getIntArray(U, z)
4269
+ visible: g === 1,
4270
+ vertex: this.getFloatArray(m, d),
4271
+ normal: this.getFloatArray(p, Q),
4272
+ texCoord0: this.getFloatArray(T, B),
4273
+ texCoord1: this.getFloatArray(G, D),
4274
+ texCoord2: this.getFloatArray(L, Y),
4275
+ index: this.getIntArray(I, M)
4280
4276
  };
4281
4277
  } else
4282
4278
  return null;
@@ -4372,19 +4368,19 @@ class Yi extends Dt {
4372
4368
  }
4373
4369
  get resourceTypes() {
4374
4370
  return [
4375
- G.PolyList,
4376
- G.Drawable,
4377
- G.Node
4371
+ k.PolyList,
4372
+ k.Drawable,
4373
+ k.Node
4378
4374
  ];
4379
4375
  }
4380
4376
  async load(e, t, n) {
4381
4377
  const s = await r0(this._bg2ioPath), o = await this._resource.load(e), a = s.loadBg2FileAsJson(o);
4382
4378
  switch (t) {
4383
- case G.PolyList:
4379
+ case k.PolyList:
4384
4380
  return Xi(a).map((A) => A.plist);
4385
- case G.Drawable:
4381
+ case k.Drawable:
4386
4382
  return ki(a, e, n);
4387
- case G.Node:
4383
+ case k.Node:
4388
4384
  return await i0(a, e, n);
4389
4385
  default:
4390
4386
  throw new Error(`Bg2LoaderPlugin.load() unexpected resource type received: ${t}`);
@@ -4405,7 +4401,7 @@ const Cr = {
4405
4401
  const n = Ts(r), s = new RegExp(n, "i"), o = `Could not find a plugin to ${t.operationType} file '${r}' of type '${e}'.`, a = t.plugins[e];
4406
4402
  if (a) {
4407
4403
  for (const A of a)
4408
- if (A.supportedExtensions.find((f) => s.test(f)))
4404
+ if (A.supportedExtensions.find((g) => s.test(g)))
4409
4405
  return A;
4410
4406
  throw new Error(o);
4411
4407
  } else
@@ -4444,19 +4440,19 @@ class s0 {
4444
4440
  return n || (n = await ji(e, t).load(e, t, this)), n;
4445
4441
  }
4446
4442
  async loadPolyList(e) {
4447
- return await this.loadResource(e, G.PolyList);
4443
+ return await this.loadResource(e, k.PolyList);
4448
4444
  }
4449
4445
  async loadDrawable(e) {
4450
- return await this.loadResource(e, G.Drawable);
4446
+ return await this.loadResource(e, k.Drawable);
4451
4447
  }
4452
4448
  async loadNode(e) {
4453
- return await this.loadResource(e, G.Node);
4449
+ return await this.loadResource(e, k.Node);
4454
4450
  }
4455
4451
  async loadTexture(e) {
4456
- return await this.loadResource(e, G.Texture);
4452
+ return await this.loadResource(e, k.Texture);
4457
4453
  }
4458
4454
  async loadMaterial(e) {
4459
- return await this.loadResource(e, G.Material);
4455
+ return await this.loadResource(e, k.Material);
4460
4456
  }
4461
4457
  }
4462
4458
  class o0 {
@@ -4489,8 +4485,8 @@ function c0(r) {
4489
4485
  for (; e < t; ) {
4490
4486
  let n = e, s = e + 1, o = e + 2;
4491
4487
  o == t ? o = 0 : s == t && (s = 0, o = 2);
4492
- let a = r[n], A = r[s], f = r[o];
4493
- tr(a) && tr(A) && tr(f) ? (er.apply(this, [a]), er.apply(this, [A]), er.apply(this, [f])) : console.warn("Invalid point data found loading OBJ file"), e += 3;
4488
+ let a = r[n], A = r[s], g = r[o];
4489
+ tr(a) && tr(A) && tr(g) ? (er.apply(this, [a]), er.apply(this, [A]), er.apply(this, [g])) : console.warn("Invalid point data found loading OBJ file"), e += 3;
4494
4490
  }
4495
4491
  }
4496
4492
  function g0(r) {
@@ -4503,10 +4499,10 @@ function g0(r) {
4503
4499
  for (; e = n.exec(t); ) {
4504
4500
  let o = Number(e[1]), a = e[3] ? Number(e[3]) : null, A = e[2] ? Number(e[2]) : null;
4505
4501
  o = o < 0 ? this._vertexArray.length + o : o - 1, a = a < 0 ? this._normalArray.length + a : a === null ? null : a - 1, A = A < 0 ? this._texCoordArray.length + A : A === null ? null : A - 1;
4506
- let f = this._vertexArray[o], g = a !== null ? this._normalArray[a] : null, m = A !== null ? this._texCoordArray[A] : null;
4502
+ let g = this._vertexArray[o], d = a !== null ? this._normalArray[a] : null, m = A !== null ? this._texCoordArray[A] : null;
4507
4503
  s.push({
4508
- vertex: f,
4509
- normal: g,
4504
+ vertex: g,
4505
+ normal: d,
4510
4506
  tex: m
4511
4507
  });
4512
4508
  }
@@ -4586,16 +4582,16 @@ class w0 extends Dt {
4586
4582
  }
4587
4583
  get resourceTypes() {
4588
4584
  return [
4589
- G.PolyList,
4590
- G.Drawable
4585
+ k.PolyList,
4586
+ k.Drawable
4591
4587
  ];
4592
4588
  }
4593
4589
  async load(e, t, n) {
4594
4590
  const s = await this._resource.load(e), o = new Xe(s);
4595
4591
  switch (t) {
4596
- case G.PolyList:
4592
+ case k.PolyList:
4597
4593
  return o.polyListArray;
4598
- case G.Drawable:
4594
+ case k.Drawable:
4599
4595
  return d0(o.polyListArray, null, e);
4600
4596
  default:
4601
4597
  throw new Error(`ObjLoaderPlugin.load() unexpected resource type received: ${t}`);
@@ -4624,7 +4620,7 @@ class v0 extends Ki {
4624
4620
  return ["obj"];
4625
4621
  }
4626
4622
  get resourceTypes() {
4627
- return G.Drawable;
4623
+ return k.Drawable;
4628
4624
  }
4629
4625
  async write(e, t, n) {
4630
4626
  console.log(e), console.log(t), console.log(n);
@@ -4640,19 +4636,19 @@ class P0 {
4640
4636
  return await Wi(e, n).write(e, t, n, this);
4641
4637
  }
4642
4638
  async writePolyList(e, t) {
4643
- return await this.writeResource(e, t, G.PolyList);
4639
+ return await this.writeResource(e, t, k.PolyList);
4644
4640
  }
4645
4641
  async writeDrawable(e, t) {
4646
- return await this.writeResource(e, t, G.Drawable);
4642
+ return await this.writeResource(e, t, k.Drawable);
4647
4643
  }
4648
4644
  async writeNode(e, t) {
4649
- return await this.writeResource(e, t, G.Node);
4645
+ return await this.writeResource(e, t, k.Node);
4650
4646
  }
4651
4647
  async writeTexture(e, t) {
4652
- return await this.writeResource(e, t, G.Texture);
4648
+ return await this.writeResource(e, t, k.Texture);
4653
4649
  }
4654
4650
  async writeMaterial(e, t) {
4655
- return await this.writeResource(e, t, G.Material);
4651
+ return await this.writeResource(e, t, k.Material);
4656
4652
  }
4657
4653
  }
4658
4654
  const B0 = {
@@ -4741,7 +4737,7 @@ class C0 {
4741
4737
  e.equirectangularTexture = this.equirectangularTexture, e.irradianceIntensity = this.irradianceIntensity, e.showSkybox = this.showSkybox, e.cubemapSize = this.cubemapSize, e.irradianceMapSize = this.irradianceMapSize, e.specularMapSize = this.specularMapSize, e.specularMapL2Size = this.specularMapL2Size;
4742
4738
  }
4743
4739
  }
4744
- const K = Object.freeze({
4740
+ const W = Object.freeze({
4745
4741
  DIRECTIONAL: 4,
4746
4742
  SPOT: 1,
4747
4743
  POINT: 5,
@@ -4749,7 +4745,7 @@ const K = Object.freeze({
4749
4745
  });
4750
4746
  class $e {
4751
4747
  constructor() {
4752
- this._enabled = !0, this._type = K.DIRECTIONAL, this._direction = new h(0, 0, -1), this._position = new h(0, 0, 0), this._color = new D({ rgb: 0.9 }), this._intensity = 20, this._spotCutoff = 20, this._spotExponent = 30, this._shadowStrength = 0.7, this._castShadows = !0, this._shadowBias = 2e-5, this._projection = p.MakeOrtho(-10, 10, -10, 10, 0.1, 500), this._depthTexture = null;
4748
+ this._enabled = !0, this._type = W.DIRECTIONAL, this._direction = new h(0, 0, -1), this._position = new h(0, 0, 0), this._color = new E({ rgb: 0.9 }), this._intensity = 20, this._spotCutoff = 20, this._spotExponent = 30, this._shadowStrength = 0.7, this._castShadows = !0, this._shadowBias = 2e-5, this._projection = C.MakeOrtho(-10, 10, -10, 10, 0.1, 500), this._depthTexture = null;
4753
4749
  }
4754
4750
  clone() {
4755
4751
  const e = new $e();
@@ -4850,50 +4846,50 @@ class $e {
4850
4846
  async deserialize(e) {
4851
4847
  switch (e.lightType) {
4852
4848
  case "kTypeDirectional":
4853
- case K.DIRECTIONAL:
4854
- this._type = K.DIRECTIONAL;
4849
+ case W.DIRECTIONAL:
4850
+ this._type = W.DIRECTIONAL;
4855
4851
  break;
4856
4852
  case "kTypeSpot":
4857
- case K.SPOT:
4858
- this._type = K.SPOT, this._shadowBias = e.shadowBias;
4853
+ case W.SPOT:
4854
+ this._type = W.SPOT, this._shadowBias = e.shadowBias;
4859
4855
  break;
4860
4856
  case "kTypePoint":
4861
- case K.POINT:
4862
- this._type = K.POINT;
4857
+ case W.POINT:
4858
+ this._type = W.POINT;
4863
4859
  break;
4864
4860
  default:
4865
- this._type = K.DIRECTIONAL;
4861
+ this._type = W.DIRECTIONAL;
4866
4862
  }
4867
- const t = () => this._type === K.DIRECTIONAL ? 1 : 20;
4868
- this._position = e.position || new h(0, 0, 0), this._direction = e.direction || new h(0, 0, -1), e.diffuse ? (this._color = new D(e.diffuse), this._intensity = (e.intensity || 1) * t()) : e.color && (this._color = new D(e.color), this._intensity = e.intensity || t()), this._spotCutoff = e.spotCutoff || 20, this._spotExponent = e.spotExponent || 30, this._shadowStrength = e.shadowStrength || 1, e.projection && (this._projection = new p(e.projection)), this._castShadows = e.castShadows !== void 0 ? e.castShadows : !0;
4863
+ const t = () => this._type === W.DIRECTIONAL ? 1 : 20;
4864
+ this._position = e.position || new h(0, 0, 0), this._direction = e.direction || new h(0, 0, -1), e.diffuse ? (this._color = new E(e.diffuse), this._intensity = (e.intensity || 1) * t()) : e.color && (this._color = new E(e.color), this._intensity = e.intensity || t()), this._spotCutoff = e.spotCutoff || 20, this._spotExponent = e.spotExponent || 30, this._shadowStrength = e.shadowStrength || 1, e.projection && (this._projection = new C(e.projection)), this._castShadows = e.castShadows !== void 0 ? e.castShadows : !0;
4869
4865
  }
4870
4866
  async serialize(e) {
4871
4867
  const t = [];
4872
- t[K.DIRECTIONAL] = "kTypeDirectional", t[K.SPOT] = "kTypeSpot", t[K.POINT] = "kTypePoint", e.lightType = t[this._type], e.position = this._position, e.direction = this._direction, e.color = this._color, e.intensity = this._intensity, e.spotCutoff = this._spotCutoff || 20, e.spotExponent = this._spotExponent || 30, e.shadowStrength = this._shadowStrength, e.projection = this._projection, e.castShadows = this._castShadows, e.shadowBias = this._shadowBias || 29e-4;
4868
+ t[W.DIRECTIONAL] = "kTypeDirectional", t[W.SPOT] = "kTypeSpot", t[W.POINT] = "kTypePoint", e.lightType = t[this._type], e.position = this._position, e.direction = this._direction, e.color = this._color, e.intensity = this._intensity, e.spotCutoff = this._spotCutoff || 20, e.spotExponent = this._spotExponent || 30, e.shadowStrength = this._shadowStrength, e.projection = this._projection, e.castShadows = this._castShadows, e.shadowBias = this._shadowBias || 29e-4;
4873
4869
  }
4874
4870
  }
4875
4871
  const p0 = {
4876
- Color: D,
4872
+ Color: E,
4877
4873
  Environment: C0,
4878
4874
  Light: $e,
4879
- LightType: K,
4875
+ LightType: W,
4880
4876
  Material: le,
4881
4877
  PolyList: xe,
4882
4878
  BufferType: Rs,
4883
4879
  DrawMode: we,
4884
- RenderLayer: Y,
4880
+ RenderLayer: V,
4885
4881
  getLayers: Ci,
4886
4882
  PolyListFrontFace: wt,
4887
4883
  PolyListCullFace: Me,
4888
- Texture: E,
4884
+ Texture: b,
4889
4885
  TextureDataType: Ee,
4890
- TextureWrap: X,
4891
- TextureFilter: L,
4886
+ TextureWrap: j,
4887
+ TextureFilter: S,
4892
4888
  TextureTarget: se,
4893
4889
  ProceduralTextureFunction: fe,
4894
- TextureRenderTargetAttachment: N,
4890
+ TextureRenderTargetAttachment: H,
4895
4891
  TextureComponentFormat: ge,
4896
- TextureChannel: S,
4892
+ TextureChannel: O,
4897
4893
  TextureDataTypeName: bi,
4898
4894
  TextureWrapName: vt,
4899
4895
  TextureFilterName: Ve,
@@ -4920,13 +4916,13 @@ class pe {
4920
4916
  }
4921
4917
  class D0 extends pe {
4922
4918
  constructor() {
4923
- super(), this._matrix = p.MakeIdentity();
4919
+ super(), this._matrix = C.MakeIdentity();
4924
4920
  }
4925
4921
  get matrix() {
4926
4922
  return this._matrix;
4927
4923
  }
4928
4924
  visit(e) {
4929
- e.transform && (this._matrix = p.Mult(this._matrix, e.transform.matrix));
4925
+ e.transform && (this._matrix = C.Mult(this._matrix, e.transform.matrix));
4930
4926
  }
4931
4927
  }
4932
4928
  class ue extends oe {
@@ -4937,8 +4933,8 @@ class ue extends oe {
4937
4933
  const t = new D0();
4938
4934
  return e.acceptReverse(t), t.matrix;
4939
4935
  }
4940
- constructor(e = p.MakeIdentity()) {
4941
- if (super("Transform"), !e instanceof p)
4936
+ constructor(e = C.MakeIdentity()) {
4937
+ if (super("Transform"), !e instanceof C)
4942
4938
  throw new Error("Invalid parameter in Transform component initialization. The parameter must be a Mat4 instance.");
4943
4939
  this._matrix = e;
4944
4940
  }
@@ -4953,7 +4949,7 @@ class ue extends oe {
4953
4949
  return e.assign(this), e;
4954
4950
  }
4955
4951
  assign(e) {
4956
- this._matrix = new p(e.matrix);
4952
+ this._matrix = new C(e.matrix);
4957
4953
  }
4958
4954
  async deserialize(e, t) {
4959
4955
  Array.isArray(e.transformMatrix) && e.transformMatrix.length === 16 ? this._matrix.assign(e.transformMatrix) : console.warn("Transform.deserialize(): invalid transformMatrix attribute found in scene data");
@@ -4962,7 +4958,7 @@ class ue extends oe {
4962
4958
  throw await super.serialize(e, t), new Error("Transform.serialice() not implemented");
4963
4959
  }
4964
4960
  update(e, t) {
4965
- t.assign(p.Mult(t, this._matrix));
4961
+ t.assign(C.Mult(t, this._matrix));
4966
4962
  }
4967
4963
  }
4968
4964
  class xt extends oe {
@@ -4971,10 +4967,10 @@ class xt extends oe {
4971
4967
  }
4972
4968
  willUpdate(e, t) {
4973
4969
  if (this.node) {
4974
- const n = p.MakeIdentity();
4970
+ const n = C.MakeIdentity();
4975
4971
  this.node.children.forEach((s, o) => {
4976
- const a = s.component("Transform"), A = s.component("InputChainJoint"), f = s.component("OutputChainJoint");
4977
- o > 0 && A ? A.joint.applyTransform(n) : n.identity(), a && a.matrix.assign(n), f && f.joint.applyTransform(n);
4972
+ const a = s.component("Transform"), A = s.component("InputChainJoint"), g = s.component("OutputChainJoint");
4973
+ o > 0 && A ? A.joint.applyTransform(n) : n.identity(), a && a.matrix.assign(n), g && g.joint.applyTransform(n);
4978
4974
  });
4979
4975
  }
4980
4976
  }
@@ -5000,7 +4996,7 @@ class Ji {
5000
4996
  return t;
5001
4997
  }
5002
4998
  constructor() {
5003
- this._transform = p.MakeIdentity();
4999
+ this._transform = C.MakeIdentity();
5004
5000
  }
5005
5001
  get transform() {
5006
5002
  return this._transform;
@@ -5167,10 +5163,10 @@ class Qe extends oe {
5167
5163
  return e.__lights;
5168
5164
  }
5169
5165
  static GetFirstShadowCastingLight(e) {
5170
- return (e.sceneChanged || !e.__mainDirectionalLight) && (e.__mainDirectionalLight = Qe.GetLights(e).find((t) => t.light.type === K.DIRECTIONAL || t.light.type === K.SPOT)), e.__mainDirectionalLight;
5166
+ return (e.sceneChanged || !e.__mainDirectionalLight) && (e.__mainDirectionalLight = Qe.GetLights(e).find((t) => t.light.type === W.DIRECTIONAL || t.light.type === W.SPOT)), e.__mainDirectionalLight;
5171
5167
  }
5172
5168
  static GetMainDirectionalLight(e) {
5173
- return (e.sceneChanged || !e.__mainDirectionalLight) && (e.__mainDirectionalLight = Qe.GetLights(e).find((t) => t.light.type === K.DIRECTIONAL)), e.__mainDirectionalLight || Qe.GetFirstShadowCastingLight(e);
5169
+ return (e.sceneChanged || !e.__mainDirectionalLight) && (e.__mainDirectionalLight = Qe.GetLights(e).find((t) => t.light.type === W.DIRECTIONAL)), e.__mainDirectionalLight || Qe.GetFirstShadowCastingLight(e);
5174
5170
  }
5175
5171
  constructor(e = null) {
5176
5172
  super("Light"), this._light = e || new $e();
@@ -5215,14 +5211,14 @@ class Qe extends oe {
5215
5211
  position: o,
5216
5212
  color: a,
5217
5213
  spotCutoff: A,
5218
- spotExponent: f,
5219
- shadowStrength: g,
5214
+ spotExponent: g,
5215
+ shadowStrength: d,
5220
5216
  castShadows: m,
5221
- shadowBias: b,
5222
- intensity: C,
5217
+ shadowBias: Q,
5218
+ intensity: p,
5223
5219
  projection: B
5224
5220
  }) {
5225
- e !== void 0 && (this.light.enabled = e), t !== void 0 && (this.light.type = t), n !== void 0 && (this.light.type = n), s !== void 0 && (this.light.direction = s), o !== void 0 && (this.light.position = o), a !== void 0 && (this.light.color = a), A !== void 0 && (this.light.spotCutoff = A), f !== void 0 && (this.light.spotExponent = f), g !== void 0 && (this.light.shadowStrength = g), m !== void 0 && (this.light.castShadows = m), b !== void 0 && (this.light.shadowBias = b), C !== void 0 && (this.light.intensity = C), B !== void 0 && (this.light.projection = B);
5221
+ e !== void 0 && (this.light.enabled = e), t !== void 0 && (this.light.type = t), n !== void 0 && (this.light.type = n), s !== void 0 && (this.light.direction = s), o !== void 0 && (this.light.position = o), a !== void 0 && (this.light.color = a), A !== void 0 && (this.light.spotCutoff = A), g !== void 0 && (this.light.spotExponent = g), d !== void 0 && (this.light.shadowStrength = d), m !== void 0 && (this.light.castShadows = m), Q !== void 0 && (this.light.shadowBias = Q), p !== void 0 && (this.light.intensity = p), B !== void 0 && (this.light.projection = B);
5226
5222
  }
5227
5223
  async deserialize(e, t) {
5228
5224
  await this._light.deserialize(e);
@@ -5431,14 +5427,14 @@ class re extends oe {
5431
5427
  re.SetMain(e, this);
5432
5428
  }
5433
5429
  constructor() {
5434
- super("Camera"), this._projectionStrategy = null, this._isMain = !1, this._projectionMatrix = p.MakePerspective(45, 1, 0.1, 100), this._viewport = new h(0, 0, 512, 512), this._focusDistance = 5;
5430
+ super("Camera"), this._projectionStrategy = null, this._isMain = !1, this._projectionMatrix = C.MakePerspective(45, 1, 0.1, 100), this._viewport = new h(0, 0, 512, 512), this._focusDistance = 5;
5435
5431
  }
5436
5432
  clone() {
5437
5433
  const e = new re();
5438
5434
  return e.assign(this), e;
5439
5435
  }
5440
5436
  assign(e) {
5441
- e._projectionStrategy = this._projectionStrategy?.clone() || null, e._isMain = !1, e._projectionMatrix = new p(this._projectionMatrix), e._viewport = new h(this._viewport), e._focusDistance = this._focusDistance;
5437
+ e._projectionStrategy = this._projectionStrategy?.clone() || null, e._isMain = !1, e._projectionMatrix = new C(this._projectionMatrix), e._viewport = new h(this._viewport), e._focusDistance = this._focusDistance;
5442
5438
  }
5443
5439
  get isMain() {
5444
5440
  return this._isMain;
@@ -5789,11 +5785,11 @@ class ot extends oe {
5789
5785
  this._rotation = h.Add(this._rotation, s.scale(0.5));
5790
5786
  } else if (this._lastTouch.length == 2) {
5791
5787
  let t = this._lastTouch[0], n = this._lastTouch[1], s = null, o = null;
5792
- e.touches.forEach((b) => {
5793
- b.identifier == t.identifier ? s = b : b.identifier == n.identifier && (o = b);
5788
+ e.touches.forEach((Q) => {
5789
+ Q.identifier == t.identifier ? s = Q : Q.identifier == n.identifier && (o = Q);
5794
5790
  });
5795
- const a = h.Magnitude(h.Sub(new h(t.x, t.y), new h(n.x, n.y))), A = h.Magnitude(h.Sub(new h(s.x, s.y), new h(o.x, o.y))), f = new h(t.y - s.y, n.x - o.x), g = this.transform.matrix.upVector, m = this.transform.matrix.leftVector;
5796
- g.scale(f.x * -1e-3 * this._distance), m.scale(f.y * -1e-3 * this._distance), this._center = h.Add(this._center, h.Add(g, m)), this._distance += (a - A) * 5e-3 * this._distance;
5791
+ const a = h.Magnitude(h.Sub(new h(t.x, t.y), new h(n.x, n.y))), A = h.Magnitude(h.Sub(new h(s.x, s.y), new h(o.x, o.y))), g = new h(t.y - s.y, n.x - o.x), d = this.transform.matrix.upVector, m = this.transform.matrix.leftVector;
5792
+ d.scale(g.x * -1e-3 * this._distance), m.scale(g.y * -1e-3 * this._distance), this._center = h.Add(this._center, h.Add(d, m)), this._distance += (a - A) * 5e-3 * this._distance;
5797
5793
  }
5798
5794
  e.stopPropagation();
5799
5795
  }
@@ -5824,7 +5820,7 @@ class zt extends ot {
5824
5820
  let o = new h([0, 0, 0]);
5825
5821
  this._keys[Pe.UP_ARROW] && (o = h.Add(o, this.transform.matrix.backwardVector)), this._keys[Pe.DOWN_ARROW] && (o = h.Add(o, this.transform.matrix.forwardVector)), this._keys[Pe.LEFT_ARROW] && (o = h.Add(o, this.transform.matrix.leftVector)), this._keys[Pe.RIGHT_ARROW] && (o = h.Add(o, this.transform.matrix.rightVector)), o.scale(this._displacementSpeed), this._center = h.Add(this._center, o);
5826
5822
  }
5827
- this._center0 = this._center0 ?? p.GetPosition(this.transform.matrix), this._distance0 = this._distance0 ?? h.Distance(this._center0, this._center), this._center0 = h.Lerp(this._center0, this._center, e * this._smoothFactor), this._distance0 = $(this._distance0, this._distance, e * this._smoothFactor * 2), this._pitch0 = this._pitch0 ?? this._rotation.x, this._yaw0 = this._yaw0 ?? this._rotation.y, this._pitch0 = $(this._pitch0, this._rotation.x, e * this._smoothFactor), this._yaw0 = $(this._yaw0, this._rotation.y, e * this._smoothFactor), this._distance = ee(this._distance, this.minDistance, this.maxDistance), this._distance0 = ee(this._distance0, this.minDistance, this.maxDistance), this._pitch0 = ee(this._pitch0, this.minPitch, this.maxPitch), this._rotation.x = ee(this._rotation.x, this.minPitch, this.maxPitch);
5823
+ this._center0 = this._center0 ?? C.GetPosition(this.transform.matrix), this._distance0 = this._distance0 ?? h.Distance(this._center0, this._center), this._center0 = h.Lerp(this._center0, this._center, e * this._smoothFactor), this._distance0 = $(this._distance0, this._distance, e * this._smoothFactor * 2), this._pitch0 = this._pitch0 ?? this._rotation.x, this._yaw0 = this._yaw0 ?? this._rotation.y, this._pitch0 = $(this._pitch0, this._rotation.x, e * this._smoothFactor), this._yaw0 = $(this._yaw0, this._rotation.y, e * this._smoothFactor), this._distance = ee(this._distance, this.minDistance, this.maxDistance), this._distance0 = ee(this._distance0, this.minDistance, this.maxDistance), this._pitch0 = ee(this._pitch0, this.minPitch, this.maxPitch), this._rotation.x = ee(this._rotation.x, this.minPitch, this.maxPitch);
5828
5824
  const n = new h(this.minX, this.minY, this.minZ), s = new h(this.maxX, this.maxY, this.maxZ);
5829
5825
  this._center0 = h.Clamp(this._center0, n, s), this._center = h.Clamp(this._center, n, s), this.transform.matrix.identity(), t ? t.viewWidth = this._viewWidth : (this.transform.matrix.translate(0, 0, this._distance0), this.camera && (this.camera.focusDistance = this._distance0)), this.transform.matrix.rotate(qe(-this._pitch0), 1, 0, 0).rotate(qe(this._yaw0), 0, 1, 0).translate(this._center0);
5830
5826
  }
@@ -6161,14 +6157,14 @@ class an {
6161
6157
  }
6162
6158
  getTextureRenderer(e) {
6163
6159
  const t = this.material[e];
6164
- return t instanceof E ? this.renderer.factory.texture(t) : null;
6160
+ return t instanceof b ? this.renderer.factory.texture(t) : null;
6165
6161
  }
6166
6162
  }
6167
6163
  const Je = {
6168
6164
  ADD: 1,
6169
6165
  SUBTRACT: 2,
6170
6166
  REVERSE_SUBTRACT: 3
6171
- }, O = {
6167
+ }, U = {
6172
6168
  NULL: 0,
6173
6169
  ZERO: 1,
6174
6170
  ONE: 2,
@@ -6191,10 +6187,10 @@ class hn {
6191
6187
  setBlendState({
6192
6188
  enabled: e = !1,
6193
6189
  blendEquation: t = Je.ADD,
6194
- blendFuncSrc: n = O.SRC_ALPHA,
6195
- blendFuncDst: s = O.ONE_MINUS_SRC_ALPHA,
6196
- blendFuncSrcAlpha: o = O.SRC_ALPHA,
6197
- blendFuncDstAlpha: a = O.ONE_MINUS_SRC_ALPHA
6190
+ blendFuncSrc: n = U.SRC_ALPHA,
6191
+ blendFuncDst: s = U.ONE_MINUS_SRC_ALPHA,
6192
+ blendFuncSrcAlpha: o = U.SRC_ALPHA,
6193
+ blendFuncDstAlpha: a = U.ONE_MINUS_SRC_ALPHA
6198
6194
  }) {
6199
6195
  this._blendState = {
6200
6196
  enabled: e,
@@ -6360,7 +6356,7 @@ class cn {
6360
6356
  if (this.saveVertexBufferState(), this.type === te.TEXTURE)
6361
6357
  this.beginUpdate(), e(), this.endUpdate();
6362
6358
  else if (this.type === te.CUBE_MAP) {
6363
- const t = p.MakeIdentity(), n = p.MakePerspective(90, 1, 0.1, 1e5);
6359
+ const t = C.MakeIdentity(), n = C.MakePerspective(90, 1, 0.1, 1e5);
6364
6360
  for (let s = 0; s < 6; ++s) {
6365
6361
  const o = ne.POSITIVE_X + s;
6366
6362
  switch (o) {
@@ -6396,9 +6392,9 @@ class St {
6396
6392
  shader: e = null,
6397
6393
  polyListRenderer: t = null,
6398
6394
  materialRenderer: n = null,
6399
- modelMatrix: s = p.MakeIdentity(),
6400
- viewMatrix: o = p.MakeIdentity(),
6401
- projectionMatrix: a = p.MakeIdentity(),
6395
+ modelMatrix: s = C.MakeIdentity(),
6396
+ viewMatrix: o = C.MakeIdentity(),
6397
+ projectionMatrix: a = C.MakeIdentity(),
6402
6398
  pipeline: A = null
6403
6399
  }) {
6404
6400
  this._shader = e, this._polyListRenderer = t, this._materialRenderer = n, this._modelMatrix = s, this._viewMatrix = o, this._projectionMatrix = a, this._pipeline = A;
@@ -6453,7 +6449,7 @@ class St {
6453
6449
  }
6454
6450
  isLayerEnabled(e) {
6455
6451
  const { polyList: t } = this._polyListRenderer, { material: n } = this._materialRenderer;
6456
- return (t.renderLayers === Y.AUTO ? n.isTransparent ? Y.TRANSPARENT_DEFAULT : Y.OPAQUE_DEFAULT : t.renderLayers) & e;
6452
+ return (t.renderLayers === V.AUTO ? n.isTransparent ? V.TRANSPARENT_DEFAULT : V.OPAQUE_DEFAULT : t.renderLayers) & e;
6457
6453
  }
6458
6454
  draw({ overrideShader: e = null, overrideViewMatrix: t = null, overrideProjectionMatrix: n = null } = {}) {
6459
6455
  if (!this.polyListRenderer.polyList.visible)
@@ -6471,7 +6467,7 @@ class St {
6471
6467
  }
6472
6468
  class Rt {
6473
6469
  constructor(e) {
6474
- this._renderer = e, this._queues = [], this._viewMatrix = p.MakeIdentity(), this._projectionMatrix = p.MakeIdentity(), this._lights = [];
6470
+ this._renderer = e, this._queues = [], this._viewMatrix = C.MakeIdentity(), this._projectionMatrix = C.MakeIdentity(), this._lights = [];
6475
6471
  }
6476
6472
  get renderer() {
6477
6473
  return this._renderer;
@@ -6499,19 +6495,19 @@ class Rt {
6499
6495
  }
6500
6496
  enableQueue(e, t, { beginOperation: n = null, endOperation: s = null, enabled: o = !0 } = {}) {
6501
6497
  const a = this.renderer.factory.pipeline(), A = this.renderer.factory.pipeline();
6502
- if (e === Y.TRANSPARENT_DEFAULT) {
6503
- const g = {
6498
+ if (e === V.TRANSPARENT_DEFAULT) {
6499
+ const d = {
6504
6500
  enabled: !0,
6505
- blendFuncSrc: O.SRC_ALPHA,
6506
- blendFuncDst: O.ONE_MINUS_SRC_ALPHA,
6507
- blendFuncSrcAlpha: O.ONE,
6508
- blendFuncDstAlpha: O.ONE_MINUS_SRC_ALPHA
6501
+ blendFuncSrc: U.SRC_ALPHA,
6502
+ blendFuncDst: U.ONE_MINUS_SRC_ALPHA,
6503
+ blendFuncSrcAlpha: U.ONE,
6504
+ blendFuncDstAlpha: U.ONE_MINUS_SRC_ALPHA
6509
6505
  };
6510
- a.setBlendState(g), A.setBlendState(g);
6506
+ a.setBlendState(d), A.setBlendState(d);
6511
6507
  }
6512
6508
  a.create(), A.cullFace = !1, A.create();
6513
- const f = this.getQueue(e);
6514
- f ? f.enabled = !0 : this._queues.push({
6509
+ const g = this.getQueue(e);
6510
+ g ? g.enabled = !0 : this._queues.push({
6515
6511
  layer: e,
6516
6512
  shader: t,
6517
6513
  beginOperation: n,
@@ -6536,11 +6532,11 @@ class Rt {
6536
6532
  }
6537
6533
  addPolyList(e, t, n) {
6538
6534
  const s = Ci(e.polyList, t.material);
6539
- this._queues.forEach(({ layer: o, shader: a, queue: A, pipelines: f }) => {
6535
+ this._queues.forEach(({ layer: o, shader: a, queue: A, pipelines: g }) => {
6540
6536
  if (s & o) {
6541
- const { polyList: g } = e;
6537
+ const { polyList: d } = e;
6542
6538
  let m = null;
6543
- g.enableCullFace ? m = f.cullBackFace : m = f.cullFaceDisabled, A.push(new St({
6539
+ d.enableCullFace ? m = g.cullBackFace : m = g.cullFaceDisabled, A.push(new St({
6544
6540
  shader: a,
6545
6541
  polyListRenderer: e,
6546
6542
  materialRenderer: t,
@@ -6564,7 +6560,7 @@ class Rt {
6564
6560
  }
6565
6561
  class Ot extends pe {
6566
6562
  constructor(e) {
6567
- super(), this._renderQueue = e, this._delta = 0, this._modelMatrix = p.MakeIdentity(), this._matrixStack = [];
6563
+ super(), this._renderQueue = e, this._delta = 0, this._modelMatrix = C.MakeIdentity(), this._matrixStack = [];
6568
6564
  }
6569
6565
  get delta() {
6570
6566
  return this._delta;
@@ -6576,10 +6572,10 @@ class Ot extends pe {
6576
6572
  return this._modelMatrix;
6577
6573
  }
6578
6574
  visit(e) {
6579
- this._matrixStack.push(new p(this._modelMatrix)), e.frame(this._delta, this._modelMatrix, this._renderQueue);
6575
+ this._matrixStack.push(new C(this._modelMatrix)), e.frame(this._delta, this._modelMatrix, this._renderQueue);
6580
6576
  }
6581
6577
  didVisit(e) {
6582
- this._modelMatrix = this._matrixStack[this._matrixStack.length - 1] || p.MakeIdentity(), this._matrixStack.pop();
6578
+ this._modelMatrix = this._matrixStack[this._matrixStack.length - 1] || C.MakeIdentity(), this._matrixStack.pop();
6583
6579
  }
6584
6580
  }
6585
6581
  class gn extends pe {
@@ -6636,10 +6632,10 @@ class un {
6636
6632
  async init({ shadowMapSize: e = new h(1024, 1024) } = {}) {
6637
6633
  typeof e == "number" && (e = new h(e, e)), this._shadowMapSize = e, this._mainDirectionalLight = null, this._opaquePipeline = this.renderer.factory.pipeline(), this._opaquePipeline.setBlendState({ enabled: !1 }), this._opaquePipeline.create(), this._transparentPipeline = this.renderer.factory.pipeline(), this._transparentPipeline.setBlendState({
6638
6634
  enabled: !0,
6639
- blendFuncSrc: O.SRC_ALPHA,
6640
- blendFuncDst: O.ONE_MINUS_SRC_ALPHA,
6641
- blendFuncSrcAlpha: O.ONE,
6642
- blendFuncDstAlpha: O.ONE_MINUS_SRC_ALPHA
6635
+ blendFuncSrc: U.SRC_ALPHA,
6636
+ blendFuncDst: U.ONE_MINUS_SRC_ALPHA,
6637
+ blendFuncSrcAlpha: U.ONE,
6638
+ blendFuncDstAlpha: U.ONE_MINUS_SRC_ALPHA
6643
6639
  }), this._transparentPipeline.create(), this._renderQueue = new Rt(this.renderer), this._initVisitor = new ln(), this._frameVisitor = new Ot(this._renderQueue), this._skyCube = this.renderer.factory.skyCube(), this._shadowRenderer = this.renderer.factory.shadowRenderer(), await this._shadowRenderer.create(this._shadowMapSize);
6644
6640
  }
6645
6641
  async setEnvironment(e) {
@@ -6649,13 +6645,13 @@ class un {
6649
6645
  return this._environment;
6650
6646
  }
6651
6647
  get defaultViewMatrix() {
6652
- return this._defaultViewMatrix || p.MakeIdentity();
6648
+ return this._defaultViewMatrix || C.MakeIdentity();
6653
6649
  }
6654
6650
  set defaultViewMatrix(e) {
6655
6651
  this._defaultViewMatrix = e;
6656
6652
  }
6657
6653
  get defaultProjectionMatrix() {
6658
- return this._defaultProjectionMatrix || p.MakePerspective(55, this.renderer.viewport.aspectRatio, 0.2, 100);
6654
+ return this._defaultProjectionMatrix || C.MakePerspective(55, this.renderer.viewport.aspectRatio, 0.2, 100);
6659
6655
  }
6660
6656
  set defaultProjectionMatrix(e) {
6661
6657
  this._defaultProjectionMatrix = e;
@@ -6678,7 +6674,7 @@ class un {
6678
6674
  e.sceneChanged && await e.asyncAccept(this._initVisitor), this._sceneRoot = e, this._renderQueue.newFrame(), this._frameVisitor.delta = t, this._frameVisitor.modelMatrix.identity();
6679
6675
  const n = re.GetMain(e);
6680
6676
  let s = this.defaultViewMatrix, o = this.defaultProjectionMatrix;
6681
- n && (o = n.projectionMatrix, s = p.GetInverted(ue.GetWorldMatrix(n.node))), this._renderQueue.viewMatrix = s, this._renderQueue.projectionMatrix = o, e.accept(this._frameVisitor), this._skyCube.updateRenderState({
6677
+ n && (o = n.projectionMatrix, s = C.GetInverted(ue.GetWorldMatrix(n.node))), this._renderQueue.viewMatrix = s, this._renderQueue.projectionMatrix = o, e.accept(this._frameVisitor), this._skyCube.updateRenderState({
6682
6678
  viewMatrix: s,
6683
6679
  projectionMatrix: o
6684
6680
  });
@@ -6686,10 +6682,10 @@ class un {
6686
6682
  draw({ clearBuffers: e = !0, drawSky: t = !0 } = {}) {
6687
6683
  const n = Qe.GetMainDirectionalLight(this._sceneRoot), s = re.GetMain(this._sceneRoot);
6688
6684
  if (n && s) {
6689
- const o = s.focusDistance, a = p.MakeOrtho(-o, o, -o, o, 0.1, 500);
6685
+ const o = s.focusDistance, a = C.MakeOrtho(-o, o, -o, o, 0.1, 500);
6690
6686
  n.light.projection = a;
6691
6687
  }
6692
- n && this._shadowRenderer.update(s, n, this._renderQueue), e && this.renderer.frameBuffer.clear(), this.environment && !this.environment.updated && this.environment.updateMaps(), t && (!this._sceneEnvironment || this._sceneEnvironment.showSkybox) && this._skyCube.draw(), this._renderQueue.draw(Y.OPAQUE_DEFAULT), this._renderQueue.draw(Y.TRANSPARENT_DEFAULT);
6688
+ n && this._shadowRenderer.update(s, n, this._renderQueue), e && this.renderer.frameBuffer.clear(), this.environment && !this.environment.updated && this.environment.updateMaps(), t && (!this._sceneEnvironment || this._sceneEnvironment.showSkybox) && this._skyCube.draw(), this._renderQueue.draw(V.OPAQUE_DEFAULT), this._renderQueue.draw(V.TRANSPARENT_DEFAULT);
6693
6689
  }
6694
6690
  destroy() {
6695
6691
  }
@@ -6755,14 +6751,14 @@ const jr = {
6755
6751
  }`
6756
6752
  }
6757
6753
  };
6758
- class Qr extends J {
6754
+ class Qr extends Z {
6759
6755
  constructor(e) {
6760
6756
  if (super(e), e.typeId !== "WebGL")
6761
6757
  throw Error("PickSelectionShdaer is only compatible with WebGL renderer");
6762
6758
  }
6763
6759
  async load() {
6764
6760
  const { gl: e } = this.renderer;
6765
- this._program = new R(e, "PickSelectionShader"), this._program.attachVertexSource(jr.webgl.vertex), this._program.attachFragmentSource(jr.webgl.fragment), this._program.link(), this._forceDraw = !0;
6761
+ this._program = new F(e, "PickSelectionShader"), this._program.attachVertexSource(jr.webgl.vertex), this._program.attachFragmentSource(jr.webgl.fragment), this._program.link(), this._forceDraw = !0;
6766
6762
  }
6767
6763
  set forceDraw(e) {
6768
6764
  this._forceDraw = e;
@@ -6796,7 +6792,7 @@ const dn = (r, e = []) => {
6796
6792
 
6797
6793
  `);
6798
6794
  };
6799
- class M {
6795
+ class N {
6800
6796
  constructor(e, t, n, s, o = []) {
6801
6797
  this._returnType = e, this._name = t, this._params = n, this._body = s, this._deps = o;
6802
6798
  }
@@ -6916,17 +6912,17 @@ function eo(r) {
6916
6912
  const n = e.substring(0, t).trim(), s = e.substring(t + 1, e.lastIndexOf("}")).trim(), o = n.indexOf("("), a = n.lastIndexOf(")");
6917
6913
  if (o === -1 || a === -1)
6918
6914
  throw new Error("Invalid function signature: missing parentheses");
6919
- const A = n.substring(o + 1, a).trim(), g = n.substring(0, o).trim().split(/\s+/);
6920
- let m, b;
6921
- return g.length >= 2 ? (m = g.slice(0, -1).join(" "), b = g[g.length - 1]) : (m = "void", b = g[0]), new M(m, b, A, ` {
6915
+ const A = n.substring(o + 1, a).trim(), d = n.substring(0, o).trim().split(/\s+/);
6916
+ let m, Q;
6917
+ return d.length >= 2 ? (m = d.slice(0, -1).join(" "), Q = d[d.length - 1]) : (m = "void", Q = d[0]), new N(m, Q, A, ` {
6922
6918
  ${s}
6923
6919
  }`);
6924
6920
  }
6925
- const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
6921
+ const Tr = new N("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
6926
6922
  return F0 + (1.0 - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
6927
- }`), yr = new M("vec3", "fresnelSchlickRoughness", "float cosTheta, vec3 F0, float roughness", `{
6923
+ }`), yr = new N("vec3", "fresnelSchlickRoughness", "float cosTheta, vec3 F0, float roughness", `{
6928
6924
  return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
6929
- }`), Mr = new M("float", "distributionGGX", "vec3 N, vec3 H, float roughness", `{
6925
+ }`), Mr = new N("float", "distributionGGX", "vec3 N, vec3 H, float roughness", `{
6930
6926
  float a = roughness * roughness;
6931
6927
  float a2 = a * a;
6932
6928
  float NdotH = max(dot(N, H), 0.0);
@@ -6937,7 +6933,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
6937
6933
  denom = ${Math.PI} * denom * denom;
6938
6934
 
6939
6935
  return num / denom;
6940
- }`), wn = new M("float", "geometrySchlickGGX", "float NdotV, float roughness", `{
6936
+ }`), wn = new N("float", "geometrySchlickGGX", "float NdotV, float roughness", `{
6941
6937
  float r = (roughness + 1.0);
6942
6938
  float k = (r * r) / 8.0;
6943
6939
 
@@ -6945,14 +6941,14 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
6945
6941
  float denom = NdotV * (1.0 - k) + k;
6946
6942
 
6947
6943
  return num / denom;
6948
- }`), Nr = new M("float", "geometrySmith", "vec3 N, vec3 V, vec3 L, float roughness", `{
6944
+ }`), Nr = new N("float", "geometrySmith", "vec3 N, vec3 V, vec3 L, float roughness", `{
6949
6945
  float NdotV = max(dot(N,V), 0.0);
6950
6946
  float NdotL = max(dot(N,L), 0.0);
6951
6947
  float ggx2 = geometrySchlickGGX(NdotV, roughness);
6952
6948
  float ggx1 = geometrySchlickGGX(NdotL, roughness);
6953
6949
 
6954
6950
  return ggx1 * ggx2;
6955
- }`, [wn]), vn = new M(
6951
+ }`, [wn]), vn = new N(
6956
6952
  "vec3",
6957
6953
  "pbrPointLight",
6958
6954
  "vec3 lightPos, vec3 lightColor, vec3 fragPos, vec3 fragNorm, vec3 viewPos, vec3 albedo, float roughness, float metallic, vec3 fresnel",
@@ -6985,7 +6981,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
6985
6981
  return (kD * albedo / ${Math.PI} + specular) * radiance * NdotL;
6986
6982
  }`,
6987
6983
  [Tr, Mr, Nr]
6988
- ), mn = new M(
6984
+ ), mn = new N(
6989
6985
  "vec3",
6990
6986
  "pbrDirectionalLight",
6991
6987
  "vec3 lightDir, vec3 lightColor, vec3 fragPos, vec3 fragNorm, vec3 viewPos, vec3 albedo, float roughness, float metallic, vec3 fresnel, vec3 shadowColor",
@@ -7014,7 +7010,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7014
7010
  return (kD * albedo / ${Math.PI} + specular * fresnel * shadowColor) * lightColor * shadowColor * NdotL;
7015
7011
  }`,
7016
7012
  [Tr, Mr, Nr, yr]
7017
- ), Pn = new M(
7013
+ ), Pn = new N(
7018
7014
  "vec3",
7019
7015
  "getPrefilteredColor",
7020
7016
  "float roughness, vec3 refVec, samplerCube irrMap, samplerCube specMap, samplerCube envMap",
@@ -7030,7 +7026,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7030
7026
  return mix(specMap1, specMap2, roughness);
7031
7027
  }
7032
7028
  }`
7033
- ), to = new M(
7029
+ ), to = new N(
7034
7030
  "vec3",
7035
7031
  "pbrAmbientLight",
7036
7032
  "vec3 fragPos, vec3 N, vec3 V, vec3 albedo, float metallic, float roughness, samplerCube irradianceMap, samplerCube specularMap, samplerCube envMap, sampler2D brdfMap, vec3 fresnel, vec3 shadowColor",
@@ -7052,7 +7048,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7052
7048
  return kD * diffuse + indirectSpecular;
7053
7049
  }`,
7054
7050
  [yr, Pn]
7055
- ), Bn = new M(
7051
+ ), Bn = new N(
7056
7052
  "vec4",
7057
7053
  "applyConvolution",
7058
7054
  "sampler2D texture, vec2 texCoord, vec2 texSize, float[9] convMatrix, float radius",
@@ -7086,7 +7082,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7086
7082
  }
7087
7083
  `,
7088
7084
  []
7089
- ), ro = new M(
7085
+ ), ro = new N(
7090
7086
  "vec3",
7091
7087
  "getShadowColor",
7092
7088
  "vec4 positionFromLightPov, sampler2D shadowMap, float shadowBias, float shadowStrength",
@@ -7113,14 +7109,14 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7113
7109
  }
7114
7110
  `,
7115
7111
  []
7116
- ), io = new M("vec4", "lineal2SRGB", "vec4 color, float gamma", `{
7112
+ ), io = new N("vec4", "lineal2SRGB", "vec4 color, float gamma", `{
7117
7113
  color.rgb = color.rgb / (color.rgb + vec3(1.0));
7118
7114
  return pow(color, vec4(1.0 / gamma));
7119
7115
  }
7120
- `, []), no = new M("vec4", "SRGB2Lineal", "vec4 color, float gamma", `{
7116
+ `, []), no = new N("vec4", "SRGB2Lineal", "vec4 color, float gamma", `{
7121
7117
  return pow(color, vec4(gamma));
7122
7118
  }
7123
- `, []), so = new M("vec4", "brightnessContrast", "vec4 color, float brightness, float contrast", `{
7119
+ `, []), so = new N("vec4", "brightnessContrast", "vec4 color, float brightness, float contrast", `{
7124
7120
  mat4 brightnessMat = mat4(1, 0, 0, 0,
7125
7121
  0, 1, 0, 0,
7126
7122
  0, 0, 1, 0,
@@ -7160,7 +7156,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7160
7156
  fragTexCoord = texCoord;
7161
7157
  gl_Position = vec4(position, 1.0);
7162
7158
  }`,
7163
- fragment: M.GetShaderCode(
7159
+ fragment: N.GetShaderCode(
7164
7160
  `precision mediump float;
7165
7161
  varying vec2 fragTexCoord;
7166
7162
 
@@ -7171,7 +7167,7 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7171
7167
  uniform vec2 uTexSize;
7172
7168
  `,
7173
7169
  [
7174
- new M("void", "main", "", `{
7170
+ new N("void", "main", "", `{
7175
7171
  vec4 selectionColor = applyConvolution(uTexture, fragTexCoord, uTexSize, uConvMatrix, uBorderWidth);
7176
7172
  if (selectionColor.r!=0.0 && selectionColor.g!=0.0 && selectionColor.b!=0.0) {
7177
7173
  gl_FragColor = uBorderColor;
@@ -7184,14 +7180,14 @@ const Tr = new M("vec3", "fresnelSchlick", "float cosTheta, vec3 F0", `{
7184
7180
  )
7185
7181
  }
7186
7182
  };
7187
- class Cn extends J {
7183
+ class Cn extends Z {
7188
7184
  constructor(e) {
7189
7185
  if (super(e), e.typeId !== "WebGL")
7190
7186
  throw Error("SelectionHighlightShader is only compatible with WebGL renderer");
7191
7187
  }
7192
7188
  async load() {
7193
7189
  const { gl: e } = this.renderer;
7194
- this._program = new R(e, "SelectionHighlightShader"), this._program.attachVertexSource(Kr.webgl.vertex), this._program.attachFragmentSource(Kr.webgl.fragment), this._program.link(), this._borderWidth = 3, this._borderColor = new h([0, 0.7, 1, 1]), this._convMatrix = [
7190
+ this._program = new F(e, "SelectionHighlightShader"), this._program.attachVertexSource(Kr.webgl.vertex), this._program.attachFragmentSource(Kr.webgl.fragment), this._program.link(), this._borderWidth = 3, this._borderColor = new h([0, 0.7, 1, 1]), this._convMatrix = [
7195
7191
  0,
7196
7192
  1,
7197
7193
  0,
@@ -7206,10 +7202,10 @@ class Cn extends J {
7206
7202
  setup(e, t, n, s, o) {
7207
7203
  const { gl: a, viewport: A } = this.renderer;
7208
7204
  this.renderer.state.shaderProgram = this._program, a.activeTexture(a.TEXTURE0), this._program.uniform1i("uTexture", 0), this._program.uniform2f("uTexSize", A[2], A[3]), this._program.uniform1f("uBorderWidth", this._borderWidth), this._program.uniform4fv("uBorderColor", this._borderColor), this._program.uniform1fv("uConvMatrix", this._convMatrix, 4);
7209
- const f = t.material;
7210
- if (f.diffuse instanceof E) {
7211
- const g = t.getTextureRenderer("diffuse").getApiObject(), m = ye[f.diffuse.target];
7212
- a.bindTexture(a[m], g);
7205
+ const g = t.material;
7206
+ if (g.diffuse instanceof b) {
7207
+ const d = t.getTextureRenderer("diffuse").getApiObject(), m = ye[g.diffuse.target];
7208
+ a.bindTexture(a[m], d);
7213
7209
  } else
7214
7210
  throw new Error("PresentTextureShader: invalid material setup. The diffuse material attribute must to be a texture");
7215
7211
  this._program.positionAttribPointer(e.positionAttribParams("position")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("texCoord"));
@@ -7221,15 +7217,15 @@ class ao {
7221
7217
  }
7222
7218
  async init() {
7223
7219
  const e = this._renderer;
7224
- this._targetTexture = new E(), this._targetTexture.renderTargetAttachment = N.COLOR_ATTACHMENT_0, this._targetTexture.componentFormat = ge.UNSIGNED_BYTE, this._targetTexture.wrapModeXY = X.CLAMP, this._renderBuffer = e.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._targetTexture), this._shader = new Qr(e), await this._shader.load(), this._shader.forceDraw = !1, this._renderQueue = new Rt(e), this._renderQueue.enableQueue(Y.SELECTION_DEFAULT, this._shader), this._frameVisitor = new Ot(this._renderQueue), this._selectionDrawShader = new Cn(e), await this._selectionDrawShader.load();
7220
+ this._targetTexture = new b(), this._targetTexture.renderTargetAttachment = H.COLOR_ATTACHMENT_0, this._targetTexture.componentFormat = ge.UNSIGNED_BYTE, this._targetTexture.wrapModeXY = j.CLAMP, this._renderBuffer = e.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._targetTexture), this._shader = new Qr(e), await this._shader.load(), this._shader.forceDraw = !1, this._renderQueue = new Rt(e), this._renderQueue.enableQueue(V.SELECTION_DEFAULT, this._shader), this._frameVisitor = new Ot(this._renderQueue), this._selectionDrawShader = new Cn(e), await this._selectionDrawShader.load();
7225
7221
  }
7226
7222
  setViewportSize(e, t) {
7227
7223
  this._renderBuffer.size = new h(e, t);
7228
7224
  }
7229
7225
  draw(e, t) {
7230
- const n = p.GetInverted(ue.GetWorldMatrix(t.node));
7226
+ const n = C.GetInverted(ue.GetWorldMatrix(t.node));
7231
7227
  this._renderQueue.viewMatrix = n, this._renderQueue.projectionMatrix = t.projectionMatrix, this._renderQueue.newFrame(), this._frameVisitor.delta = 0, this._frameVisitor.modelMatrix.identity(), e.accept(this._frameVisitor), this._renderBuffer.update(() => {
7232
- this._renderBuffer.frameBuffer.clear(), this._renderQueue.draw(Y.SELECTION_DEFAULT);
7228
+ this._renderBuffer.frameBuffer.clear(), this._renderQueue.draw(V.SELECTION_DEFAULT);
7233
7229
  });
7234
7230
  const s = this._selectionDrawShader;
7235
7231
  this._renderer.presentTexture(this._targetTexture, { clearBuffers: !1, shader: s });
@@ -7244,18 +7240,18 @@ class ho {
7244
7240
  }
7245
7241
  async init() {
7246
7242
  const e = this._renderer;
7247
- this._targetTexture = new E(), this._targetTexture.renderTargetAttachment = N.COLOR_ATTACHMENT_0, this._targetTexture.componentFormat = ge.UNSIGNED_BYTE, this._targetTexture.wrapModeXY = X.CLAMP, this._renderBuffer = e.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._targetTexture), this._shader = new Qr(e), await this._shader.load(), this._renderQueue = new Rt(e), this._renderQueue.enableQueue(Y.SELECTION_DEFAULT, this._shader), this._frameVisitor = new Ot(this._renderQueue);
7243
+ this._targetTexture = new b(), this._targetTexture.renderTargetAttachment = H.COLOR_ATTACHMENT_0, this._targetTexture.componentFormat = ge.UNSIGNED_BYTE, this._targetTexture.wrapModeXY = j.CLAMP, this._renderBuffer = e.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._targetTexture), this._shader = new Qr(e), await this._shader.load(), this._renderQueue = new Rt(e), this._renderQueue.enableQueue(V.SELECTION_DEFAULT, this._shader), this._frameVisitor = new Ot(this._renderQueue);
7248
7244
  }
7249
7245
  reshape(e, t) {
7250
7246
  this._renderBuffer.size = new h(e, t);
7251
7247
  }
7252
7248
  draw(e, t, n, s, o = 1, a = 1) {
7253
- const A = p.GetInverted(ue.GetWorldMatrix(t.node));
7249
+ const A = C.GetInverted(ue.GetWorldMatrix(t.node));
7254
7250
  this._renderQueue.viewMatrix = A, this._renderQueue.projectionMatrix = t.projectionMatrix, this._renderQueue.newFrame(), this._frameVisitor.delta = 0, this._frameVisitor.modelMatrix.identity(), e.accept(this._frameVisitor);
7255
- let f = null;
7251
+ let g = null;
7256
7252
  return this._renderBuffer.update(() => {
7257
- this._renderBuffer.frameBuffer.clear(), this._renderQueue.draw(Y.SELECTION_DEFAULT), f = this._renderBuffer.readPixels(n, s, o, a);
7258
- }), f;
7253
+ this._renderBuffer.frameBuffer.clear(), this._renderQueue.draw(V.SELECTION_DEFAULT), g = this._renderBuffer.readPixels(n, s, o, a);
7254
+ }), g;
7259
7255
  }
7260
7256
  destroy() {
7261
7257
  this._renderBuffer.destroy(), this._targetTexture.destroy(), this._renderBuffer = null, this._targetTexture = null;
@@ -7287,7 +7283,7 @@ class Ao extends pe {
7287
7283
  let t = e(), n = ct(t);
7288
7284
  for (; this._elements[n]; )
7289
7285
  t = e(), n = ct(t);
7290
- return this._r = t[0], this._g = t[1], this._b = t[2], new D([t[0] / 255, t[1] / 255, t[2] / 255, 1]);
7286
+ return this._r = t[0], this._g = t[1], this._b = t[2], new E([t[0] / 255, t[1] / 255, t[2] / 255, 1]);
7291
7287
  }
7292
7288
  findElement(e) {
7293
7289
  const t = [
@@ -8626,7 +8622,7 @@ function Bo(r, e) {
8626
8622
  function Co(r, e = 0.3, t = new h(0, 0, 1), n = new h(0, 1, 0)) {
8627
8623
  const s = new xe();
8628
8624
  t.normalize(), s.drawMode = we.LINES;
8629
- const o = p.MakeRotationWithDirection(t, n), a = o.multVector(new h(0, 0, -1)), A = o.multVector(new h(e, 0, -1 + e)), f = o.multVector(new h(-e, 0, -1 + e));
8625
+ const o = C.MakeRotationWithDirection(t, n), a = o.multVector(new h(0, 0, -1)), A = o.multVector(new h(e, 0, -1 + e)), g = o.multVector(new h(-e, 0, -1 + e));
8630
8626
  return s.vertex = [
8631
8627
  0,
8632
8628
  0,
@@ -8643,9 +8639,9 @@ function Co(r, e = 0.3, t = new h(0, 0, 1), n = new h(0, 1, 0)) {
8643
8639
  a.x * r,
8644
8640
  a.y * r,
8645
8641
  a.z * r,
8646
- f.x * r,
8647
- f.y * r,
8648
- f.z * r
8642
+ g.x * r,
8643
+ g.y * r,
8644
+ g.z * r
8649
8645
  ], s.normal = [
8650
8646
  0,
8651
8647
  0,
@@ -8726,23 +8722,23 @@ const pn = go, Hr = uo, po = vo, Do = Po, Eo = Bo, Dn = Co, bo = /* @__PURE__ */
8726
8722
  }`
8727
8723
  }
8728
8724
  };
8729
- class xo extends J {
8725
+ class xo extends Z {
8730
8726
  constructor(e) {
8731
8727
  if (super(e), e.typeId !== "WebGL")
8732
8728
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
8733
8729
  }
8734
8730
  async load() {
8735
8731
  const { gl: e } = this.renderer;
8736
- this._program = new R(e, "BasicDiffuseColorShader"), this._program.attachVertexSource(Vr.webgl.vertex), this._program.attachFragmentSource(Vr.webgl.fragment), this._program.link(), this._whiteTexture = new E(), this._whiteTexture.proceduralFunction = fe.PLAIN_COLOR, this._whiteTexture.proceduralParameters = [1, 1, 1, 1], this._whiteTexture.size = new h(4, 4), await this._whiteTexture.loadImageData(), this._whiteTextureRenderer = this.renderer.factory.texture(this._whiteTexture);
8732
+ this._program = new F(e, "BasicDiffuseColorShader"), this._program.attachVertexSource(Vr.webgl.vertex), this._program.attachFragmentSource(Vr.webgl.fragment), this._program.link(), this._whiteTexture = new b(), this._whiteTexture.proceduralFunction = fe.PLAIN_COLOR, this._whiteTexture.proceduralParameters = [1, 1, 1, 1], this._whiteTexture.size = new h(4, 4), await this._whiteTexture.loadImageData(), this._whiteTextureRenderer = this.renderer.factory.texture(this._whiteTexture);
8737
8733
  }
8738
8734
  setup(e, t, n, s, o) {
8739
8735
  const { material: a } = t, { gl: A } = this.renderer;
8740
8736
  this.renderer.state.shaderProgram = this._program, this._program.uniformMatrix4fv("mWorld", !1, n), this._program.uniformMatrix4fv("mView", !1, s), this._program.uniformMatrix4fv("mProj", !1, o), this._program.uniform1i("uTexture", 0);
8741
- let f = this._whiteTextureRenderer;
8742
- a.diffuse instanceof h ? this._program.uniform3fv("uFixedColor", a.diffuse.rgb) : (f = t.getTextureRenderer("diffuse"), this._program.uniform3fv("uFixedColor", new h(1, 1, 1))), f.activeTexture(0), f.bindTexture(), this._program.positionAttribPointer(e.positionAttribParams("vertPosition")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("t0Position"));
8737
+ let g = this._whiteTextureRenderer;
8738
+ a.diffuse instanceof h ? this._program.uniform3fv("uFixedColor", a.diffuse.rgb) : (g = t.getTextureRenderer("diffuse"), this._program.uniform3fv("uFixedColor", new h(1, 1, 1))), g.activeTexture(0), g.bindTexture(), this._program.positionAttribPointer(e.positionAttribParams("vertPosition")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("t0Position"));
8743
8739
  }
8744
8740
  destroy() {
8745
- R.Delete(this._program);
8741
+ F.Delete(this._program);
8746
8742
  }
8747
8743
  }
8748
8744
  const Wr = {
@@ -8762,7 +8758,7 @@ const Wr = {
8762
8758
  fragTexCoord = texCoord;
8763
8759
  gl_Position = uProjMatrix * uViewMatrix * uModelMatrix * vec4(position, 1.0);
8764
8760
  }`,
8765
- fragment: M.GetShaderCode(
8761
+ fragment: N.GetShaderCode(
8766
8762
  `precision mediump float;
8767
8763
 
8768
8764
  varying vec2 fragTexCoord;
@@ -8770,7 +8766,7 @@ const Wr = {
8770
8766
  uniform sampler2D uTexture;
8771
8767
  `,
8772
8768
  [
8773
- new M("void", "main", "", `{
8769
+ new N("void", "main", "", `{
8774
8770
  vec4 color = texture2D(uTexture, fragTexCoord);
8775
8771
  gl_FragColor = uColor;
8776
8772
  }`)
@@ -8778,14 +8774,14 @@ const Wr = {
8778
8774
  )
8779
8775
  }
8780
8776
  };
8781
- class En extends J {
8777
+ class En extends Z {
8782
8778
  constructor(e) {
8783
8779
  if (super(e), e.typeId !== "WebGL")
8784
8780
  throw Error("DebugRenderShader is only compatible with WebGL renderer");
8785
8781
  }
8786
8782
  async load() {
8787
8783
  const { gl: e } = this.renderer;
8788
- this._program = new R(e, "DebugRenderShader"), this._program.attachVertexSource(Wr.webgl.vertex), this._program.attachFragmentSource(Wr.webgl.fragment), this._program.link();
8784
+ this._program = new F(e, "DebugRenderShader"), this._program.attachVertexSource(Wr.webgl.vertex), this._program.attachFragmentSource(Wr.webgl.fragment), this._program.link();
8789
8785
  }
8790
8786
  setup(e, t, n, s, o) {
8791
8787
  const { gl: a } = this.renderer, { material: A } = t;
@@ -8805,14 +8801,14 @@ const Jr = {
8805
8801
  fragTexCoord = texCoord;
8806
8802
  gl_Position = vec4(position, 1.0);
8807
8803
  }`,
8808
- fragment: M.GetShaderCode(
8804
+ fragment: N.GetShaderCode(
8809
8805
  `precision mediump float;
8810
8806
  varying vec2 fragTexCoord;
8811
8807
 
8812
8808
  uniform sampler2D uTexture;
8813
8809
  `,
8814
8810
  [
8815
- new M("void", "main", "", `{
8811
+ new N("void", "main", "", `{
8816
8812
  vec3 color = texture2D(uTexture, fragTexCoord).rgb;
8817
8813
  if (color.r!=0.0 || color.g!=0.0 || color.b!=0.0) {
8818
8814
  gl_FragColor = vec4(color, 1.0);
@@ -8825,14 +8821,14 @@ const Jr = {
8825
8821
  )
8826
8822
  }
8827
8823
  };
8828
- class bn extends J {
8824
+ class bn extends Z {
8829
8825
  constructor(e) {
8830
8826
  if (super(e), e.typeId !== "WebGL")
8831
8827
  throw Error("PresentDebugFramebufferShader is only compatible with WebGL renderer");
8832
8828
  }
8833
8829
  async load() {
8834
8830
  const { gl: e } = this.renderer;
8835
- this._program = new R(e, "PresentDebugFramebufferShader"), this._program.attachVertexSource(Jr.webgl.vertex), this._program.attachFragmentSource(Jr.webgl.fragment), this._program.link(), this._borderWidth = 3, this._borderColor = new h([0, 0.7, 1, 1]), this._convMatrix = [
8831
+ this._program = new F(e, "PresentDebugFramebufferShader"), this._program.attachVertexSource(Jr.webgl.vertex), this._program.attachFragmentSource(Jr.webgl.fragment), this._program.link(), this._borderWidth = 3, this._borderColor = new h([0, 0.7, 1, 1]), this._convMatrix = [
8836
8832
  0,
8837
8833
  1,
8838
8834
  0,
@@ -8847,16 +8843,16 @@ class bn extends J {
8847
8843
  setup(e, t, n, s, o) {
8848
8844
  const { gl: a, viewport: A } = this.renderer;
8849
8845
  this.renderer.state.shaderProgram = this._program, a.activeTexture(a.TEXTURE0), this._program.uniform1i("uTexture", 0);
8850
- const f = t.material;
8851
- if (f.diffuse instanceof E) {
8852
- const g = t.getTextureRenderer("diffuse").getApiObject(), m = ye[f.diffuse.target];
8853
- a.bindTexture(a[m], g);
8846
+ const g = t.material;
8847
+ if (g.diffuse instanceof b) {
8848
+ const d = t.getTextureRenderer("diffuse").getApiObject(), m = ye[g.diffuse.target];
8849
+ a.bindTexture(a[m], d);
8854
8850
  } else
8855
8851
  throw new Error("PresentDebugFramebufferShader: invalid material setup. The diffuse material attribute must to be a texture");
8856
8852
  this._program.positionAttribPointer(e.positionAttribParams("position")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("texCoord"));
8857
8853
  }
8858
8854
  }
8859
- const rr = {}, Zr = (r, e) => (!r && e ? r = p.MakeTranslation(e) : r || (r = p.MakeIdentity()), r);
8855
+ const rr = {}, Zr = (r, e) => (!r && e ? r = C.MakeTranslation(e) : r || (r = C.MakeIdentity()), r);
8860
8856
  class Le {
8861
8857
  static Get(e) {
8862
8858
  return rr[e.uniqueId] || (rr[e.uniqueId] = new Le(e)), rr[e.uniqueId];
@@ -8869,12 +8865,12 @@ class Le {
8869
8865
  }
8870
8866
  async init() {
8871
8867
  const e = this._renderer;
8872
- this._shader = new En(e), await this._shader.load(), this._presentShader = new bn(e), await this._presentShader.load(), this._targetTexture = new E(), this._targetTexture.name = "DebugRendererTargetTexture", this._targetTexture.renderTargetAttachment = N.COLOR_ATTACHMENT_0, this._targetTexture.componentFormat = ge.UNSIGNED_BYTE, this._targetTexture.wrapModeXY = X.CLAMP, this._renderBuffer = e.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._targetTexture);
8868
+ this._shader = new En(e), await this._shader.load(), this._presentShader = new bn(e), await this._presentShader.load(), this._targetTexture = new b(), this._targetTexture.name = "DebugRendererTargetTexture", this._targetTexture.renderTargetAttachment = H.COLOR_ATTACHMENT_0, this._targetTexture.componentFormat = ge.UNSIGNED_BYTE, this._targetTexture.wrapModeXY = j.CLAMP, this._renderBuffer = e.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._targetTexture);
8873
8869
  }
8874
8870
  beginFrame() {
8875
8871
  this._objects = [];
8876
8872
  }
8877
- drawSphere({ radius: e = 1, color: t = D.White(), transformMatrix: n = null, position: s = null } = {}) {
8873
+ drawSphere({ radius: e = 1, color: t = E.White(), transformMatrix: n = null, position: s = null } = {}) {
8878
8874
  n = Zr(n, s), this._objects.push({
8879
8875
  renderer: this._sphereRenderer,
8880
8876
  scale: e,
@@ -8882,7 +8878,7 @@ class Le {
8882
8878
  transformMatrix: n
8883
8879
  });
8884
8880
  }
8885
- drawArrow({ length: e = 1, color: t = D.White(), transformMatrix: n = null, position: s = null } = {}) {
8881
+ drawArrow({ length: e = 1, color: t = E.White(), transformMatrix: n = null, position: s = null } = {}) {
8886
8882
  n = Zr(n, s), this._objects.push({
8887
8883
  renderer: this._arrowRenderer,
8888
8884
  scale: e,
@@ -8894,14 +8890,14 @@ class Le {
8894
8890
  this._renderBuffer.size = new h(e, t);
8895
8891
  }
8896
8892
  draw(e) {
8897
- const n = p.GetInverted(ue.GetWorldMatrix(e.node)), s = e.projectionMatrix;
8893
+ const n = C.GetInverted(ue.GetWorldMatrix(e.node)), s = e.projectionMatrix;
8898
8894
  this._renderBuffer.update(() => {
8899
8895
  this._renderBuffer.frameBuffer.clear(), this._objects.forEach((a) => {
8900
- const f = p.MakeScale(a.scale, a.scale, a.scale).mult(a.transformMatrix);
8896
+ const g = C.MakeScale(a.scale, a.scale, a.scale).mult(a.transformMatrix);
8901
8897
  this._materialRenderer.material.diffuse = a.color, a.renderer.bindBuffers(), this._shader.setup(
8902
8898
  a.renderer,
8903
8899
  this._materialRenderer,
8904
- f,
8900
+ g,
8905
8901
  n,
8906
8902
  s
8907
8903
  ), a.renderer.draw();
@@ -9019,13 +9015,13 @@ const qr = {
9019
9015
  fragTexCoord = texCoord;
9020
9016
  gl_Position = uProjMatrix * uViewMatrix * uModelMatrix * vec4(position, 1.0);
9021
9017
  }`,
9022
- fragment: M.GetShaderCode(
9018
+ fragment: N.GetShaderCode(
9023
9019
  `precision mediump float;
9024
9020
 
9025
9021
  varying vec2 fragTexCoord;
9026
9022
  `,
9027
9023
  [
9028
- new M("void", "main", "", `{
9024
+ new N("void", "main", "", `{
9029
9025
  float d = gl_FragCoord.z / gl_FragCoord.w;
9030
9026
  gl_FragColor = vec4(d, d, d, 1.0);
9031
9027
  }`)
@@ -9033,14 +9029,14 @@ const qr = {
9033
9029
  )
9034
9030
  }
9035
9031
  };
9036
- class xn extends J {
9032
+ class xn extends Z {
9037
9033
  constructor(e) {
9038
9034
  if (super(e), e.typeId !== "WebGL")
9039
9035
  throw Error("DepthRenderShader is only compatible with WebGL renderer");
9040
9036
  }
9041
9037
  async load() {
9042
9038
  const { gl: e } = this.renderer;
9043
- this._program = new R(e, "DepthRenderShader"), this._program.attachVertexSource(qr.webgl.vertex), this._program.attachFragmentSource(qr.webgl.fragment), this._program.link();
9039
+ this._program = new F(e, "DepthRenderShader"), this._program.attachVertexSource(qr.webgl.vertex), this._program.attachFragmentSource(qr.webgl.fragment), this._program.link();
9044
9040
  }
9045
9041
  setup(e, t, n, s, o) {
9046
9042
  const { gl: a } = this.renderer, { material: A } = t;
@@ -9074,7 +9070,7 @@ class Qn {
9074
9070
  return this._depthTexture;
9075
9071
  }
9076
9072
  async create(e = new h(1024, 1024)) {
9077
- this._size = e, this._texture = new E(), this._texture.name = `ShadowMap_${e.width}x${e.height}`, this._texture.renderTargetAttachment = N.COLOR_ATTACHMENT_0, this._texture.componentFormat = ge.UNSIGNED_BYTE, this._texture.wrapModeXY = X.CLAMP, this._renderBuffer = this.renderer.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._texture), this._depthTexture = new E(), this._depthTexture.name = `ShadowMapDepth_${e.width}x${e.height}`, this._depthTexture.renderTargetAttachment = N.DEPTH_ATTACHMENT, this._depthTexture.componentFormat = ge.UNSIGNED_BYTE, this._depthTexture.wrapModeXY = X.CLAMP, await this._renderBuffer.attachTexture(this._depthTexture), this._renderBuffer.size = this._size, this._shader = new xn(this.renderer), await this._shader.load();
9073
+ this._size = e, this._texture = new b(), this._texture.name = `ShadowMap_${e.width}x${e.height}`, this._texture.renderTargetAttachment = H.COLOR_ATTACHMENT_0, this._texture.componentFormat = ge.UNSIGNED_BYTE, this._texture.wrapModeXY = j.CLAMP, this._renderBuffer = this.renderer.factory.renderBuffer(), await this._renderBuffer.attachTexture(this._texture), this._depthTexture = new b(), this._depthTexture.name = `ShadowMapDepth_${e.width}x${e.height}`, this._depthTexture.renderTargetAttachment = H.DEPTH_ATTACHMENT, this._depthTexture.componentFormat = ge.UNSIGNED_BYTE, this._depthTexture.wrapModeXY = j.CLAMP, await this._renderBuffer.attachTexture(this._depthTexture), this._renderBuffer.size = this._size, this._shader = new xn(this.renderer), await this._shader.load();
9078
9074
  }
9079
9075
  getLightTransform(e, t) {
9080
9076
  let n = null;
@@ -9083,16 +9079,16 @@ class Qn {
9083
9079
  let s = null;
9084
9080
  if (t instanceof Qe ? s = t.node : t instanceof Node && (s = t, t = t.lightComponent), !s || !t)
9085
9081
  throw Error("ShadowRenderer.getLightPosition(): invalid light. Light must be a Node or a LightComponent");
9086
- const o = e.focusDistance, a = ue.GetWorldMatrix(n), A = h.Add(p.GetPosition(a), h.Mult(a.forwardVector, -o)), f = ue.GetWorldMatrix(s), g = p.GetRotation(f).forwardVector;
9087
- g.scale(this._shadowMapRenderDistance);
9088
- const m = h.Add(A, g);
9089
- return f.setPosition(m), this._debug && (Le.Get(this._renderer).drawSphere({ radius: 0.1, color: D.Red(), position: A }), Le.Get(this.renderer).drawSphere({ radius: 0.1, color: D.Blue(), position: m }), Le.Get(this.renderer).drawArrow({ length: 0.8, color: D.Green(), transformMatrix: f })), f;
9082
+ const o = e.focusDistance, a = ue.GetWorldMatrix(n), A = h.Add(C.GetPosition(a), h.Mult(a.forwardVector, -o)), g = ue.GetWorldMatrix(s), d = C.GetRotation(g).forwardVector;
9083
+ d.scale(this._shadowMapRenderDistance);
9084
+ const m = h.Add(A, d);
9085
+ return g.setPosition(m), this._debug && (Le.Get(this._renderer).drawSphere({ radius: 0.1, color: E.Red(), position: A }), Le.Get(this.renderer).drawSphere({ radius: 0.1, color: E.Blue(), position: m }), Le.Get(this.renderer).drawArrow({ length: 0.8, color: E.Green(), transformMatrix: g })), g;
9090
9086
  }
9091
9087
  update(e, t, n) {
9092
- const s = p.GetInverted(this.getLightTransform(e, t));
9088
+ const s = C.GetInverted(this.getLightTransform(e, t));
9093
9089
  this._renderBuffer.update(() => {
9094
9090
  this._renderBuffer.renderer.state.clear();
9095
- const o = Y.OPAQUE_DEFAULT, a = n.getQueue(o);
9091
+ const o = V.OPAQUE_DEFAULT, a = n.getQueue(o);
9096
9092
  a && (typeof a.beginOperation == "function" && a.beginOperation(o), a.queue.forEach((A) => {
9097
9093
  A.draw({
9098
9094
  overrideShader: this._shader,
@@ -9132,26 +9128,26 @@ const _r = {
9132
9128
  }`
9133
9129
  }
9134
9130
  };
9135
- class Tn extends J {
9131
+ class Tn extends Z {
9136
9132
  constructor(e) {
9137
9133
  if (super(e), e.typeId !== "WebGL")
9138
9134
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
9139
9135
  }
9140
9136
  async load() {
9141
9137
  const { gl: e } = this.renderer;
9142
- this._program = new R(e, "SkyCubeShader"), this._program.attachVertexSource(_r.webgl.vertex), this._program.attachFragmentSource(_r.webgl.fragment), this._program.link();
9138
+ this._program = new F(e, "SkyCubeShader"), this._program.attachVertexSource(_r.webgl.vertex), this._program.attachFragmentSource(_r.webgl.fragment), this._program.link();
9143
9139
  }
9144
9140
  setup(e, t, n, s, o) {
9145
9141
  const { material: a } = t, { gl: A } = this.renderer;
9146
9142
  this.renderer.state.shaderProgram = this._program;
9147
- const f = p.Mult(o, s);
9148
- if (this._program.uniformMatrix4fv("uMVP", !1, f), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uCubemap", 0), a.diffuse instanceof h)
9143
+ const g = C.Mult(o, s);
9144
+ if (this._program.uniformMatrix4fv("uMVP", !1, g), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uCubemap", 0), a.diffuse instanceof h)
9149
9145
  throw new Error("Invalid material configuration in SkySphereShader: diffuse component must be a cube map texture");
9150
- const g = t.getTextureRenderer("diffuse").getApiObject();
9151
- A.bindTexture(A.TEXTURE_CUBE_MAP, g), this._program.positionAttribPointer(e.positionAttribParams("vertPosition"));
9146
+ const d = t.getTextureRenderer("diffuse").getApiObject();
9147
+ A.bindTexture(A.TEXTURE_CUBE_MAP, d), this._program.positionAttribPointer(e.positionAttribParams("vertPosition"));
9152
9148
  }
9153
9149
  destroy() {
9154
- R.Delete(this._program), this._program = null;
9150
+ F.Delete(this._program), this._program = null;
9155
9151
  }
9156
9152
  }
9157
9153
  let yn = class {
@@ -9170,7 +9166,7 @@ let yn = class {
9170
9166
  this._texture = e, this._material = new le(), this._material.diffuse = this._texture, this._shader = t ? new t(this.renderer) : new Tn(this.renderer), await this._shader.load.apply(this._shader, n);
9171
9167
  }
9172
9168
  updateRenderState({ viewMatrix: e, projectionMatrix: t = null }) {
9173
- const n = p.GetRotation(e);
9169
+ const n = C.GetRotation(e);
9174
9170
  return this._renderState ? (this._renderState.viewMatrix = n, t && (this._renderState.projectionMatrix = t)) : this._renderState = new St({
9175
9171
  shader: this._shader,
9176
9172
  polyListRenderer: this.polyListRenderer,
@@ -9221,24 +9217,24 @@ const $r = {
9221
9217
  }`
9222
9218
  }
9223
9219
  };
9224
- class Mn extends J {
9220
+ class Mn extends Z {
9225
9221
  constructor(e) {
9226
9222
  if (super(e), e.typeId !== "WebGL")
9227
9223
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
9228
9224
  }
9229
9225
  async load() {
9230
9226
  const { gl: e } = this.renderer;
9231
- this._program = new R(e, "SkySphereShader"), this._program.attachVertexSource($r.webgl.vertex), this._program.attachFragmentSource($r.webgl.fragment), this._program.link();
9227
+ this._program = new F(e, "SkySphereShader"), this._program.attachVertexSource($r.webgl.vertex), this._program.attachFragmentSource($r.webgl.fragment), this._program.link();
9232
9228
  }
9233
9229
  setup(e, t, n, s, o) {
9234
9230
  const { material: a } = t, { gl: A } = this.renderer;
9235
9231
  if (this.renderer.state.shaderProgram = this._program, this._program.uniformMatrix4fv("mView", !1, s), this._program.uniformMatrix4fv("mProj", !1, o), A.activeTexture(A.TEXTURE0), this._program.uniform1i("uTexture", 0), a.diffuse instanceof h)
9236
9232
  throw new Error("Invalid material configuration in SkySphereShader: diffuse component must be a texture");
9237
- const f = t.getTextureRenderer("diffuse").getApiObject(), g = ye[a.diffuse.target];
9238
- A.bindTexture(A[g], f), this._program.positionAttribPointer(e.positionAttribParams("vertPosition")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("t0Position"));
9233
+ const g = t.getTextureRenderer("diffuse").getApiObject(), d = ye[a.diffuse.target];
9234
+ A.bindTexture(A[d], g), this._program.positionAttribPointer(e.positionAttribParams("vertPosition")), this._program.texCoordAttribPointer(e.texCoord0AttribParams("t0Position"));
9239
9235
  }
9240
9236
  destroy() {
9241
- R.Delete(this._program);
9237
+ F.Delete(this._program);
9242
9238
  }
9243
9239
  }
9244
9240
  class Nn {
@@ -9249,13 +9245,13 @@ class Nn {
9249
9245
  return this._renderer;
9250
9246
  }
9251
9247
  async load(e, t = null) {
9252
- this._texture = new E(), e ? this._texture.fileName = e : (this._texture.magFilter = L.NEAREST, this._texture.minFilter = L.NEAREST, this._texture.wrapModeXY = X.REPEAT, this._texture.proceduralFunction = fe.PLAIN_COLOR, this._texture.proceduralParameters = D.Black(), this._texture.size = [2, 2]), await this._texture.loadImageData(), this._material = new le(), this._material.diffuse = this._texture, this._shader = t ? new t(this.renderer) : new Mn(this.renderer), await this._shader.load();
9248
+ this._texture = new b(), e ? this._texture.fileName = e : (this._texture.magFilter = S.NEAREST, this._texture.minFilter = S.NEAREST, this._texture.wrapModeXY = j.REPEAT, this._texture.proceduralFunction = fe.PLAIN_COLOR, this._texture.proceduralParameters = E.Black(), this._texture.size = [2, 2]), await this._texture.loadImageData(), this._material = new le(), this._material.diffuse = this._texture, this._shader = t ? new t(this.renderer) : new Mn(this.renderer), await this._shader.load();
9253
9249
  }
9254
9250
  async setTexture(e) {
9255
9251
  this._texture && this._texture.destroy(), this._texture.fileName = e, await this._texture.loadImageData(), this._material.diffuse = this._texture;
9256
9252
  }
9257
9253
  updateRenderState({ viewMatrix: e, projectionMatrix: t = null }) {
9258
- const n = p.GetRotation(e);
9254
+ const n = C.GetRotation(e);
9259
9255
  return this._renderState ? (this._renderState.viewMatrix = n, t && (this._renderState.projectionMatrix = t)) : this._renderState = new St({
9260
9256
  shader: this._shader,
9261
9257
  polyListRenderer: this.polyListRenderer,
@@ -9303,34 +9299,34 @@ class Ln extends on {
9303
9299
  s.clear({ color: e, depth: t, stencil: n });
9304
9300
  }
9305
9301
  }
9306
- const To = "", V = {
9302
+ const To = "", J = {
9307
9303
  whiteTexture: {},
9308
9304
  blackTexture: {},
9309
9305
  normalTexture: {},
9310
9306
  brdfIntegrationTexture: {}
9311
9307
  }, Lr = async (r, e = "") => {
9312
- const t = new E();
9313
- return t.magFilter = L.NEAREST, t.minFilter = L.NEAREST, t.wrapModeXY = X.REPEAT, t.proceduralFunction = fe.PLAIN_COLOR, t.proceduralParameters = r, t.size = [2, 2], e = e || `ColorTexture_${r.r}_${r.g}_${r.b}_${r.a}`, t.name = `${e}_${t.size.width}_${t.size.height}`, await t.loadImageData(), t;
9314
- }, yo = async (r) => (V.whiteTexture[r.uniqueId] || (V.whiteTexture[r.uniqueId] = await Lr(D.White(), "WhiteTexture")), V.whiteTexture[r.uniqueId]), Mo = (r) => {
9315
- if (!V.whiteTexture[r.uniqueId])
9308
+ const t = new b();
9309
+ return t.magFilter = S.NEAREST, t.minFilter = S.NEAREST, t.wrapModeXY = j.REPEAT, t.proceduralFunction = fe.PLAIN_COLOR, t.proceduralParameters = r, t.size = [2, 2], e = e || `ColorTexture_${r.r}_${r.g}_${r.b}_${r.a}`, t.name = `${e}_${t.size.width}_${t.size.height}`, await t.loadImageData(), t;
9310
+ }, yo = async (r) => (J.whiteTexture[r.uniqueId] || (J.whiteTexture[r.uniqueId] = await Lr(E.White(), "WhiteTexture")), J.whiteTexture[r.uniqueId]), Mo = (r) => {
9311
+ if (!J.whiteTexture[r.uniqueId])
9316
9312
  throw new Error("TextureResourceDatabase: whiteTexture is not initialize. Call 'createWhiteTexture' before use 'whiteTexture' function");
9317
- return V.whiteTexture[r.uniqueId];
9318
- }, No = async (r) => (V.blackTexture[r.uniqueId] || (V.blackTexture[r.uniqueId] = await Lr(D.Black(), "BlackTexture")), V.blackTexture[r.uniqueId]), Ho = (r) => {
9319
- if (!V.blackTexture[r.uniqueId])
9313
+ return J.whiteTexture[r.uniqueId];
9314
+ }, No = async (r) => (J.blackTexture[r.uniqueId] || (J.blackTexture[r.uniqueId] = await Lr(E.Black(), "BlackTexture")), J.blackTexture[r.uniqueId]), Ho = (r) => {
9315
+ if (!J.blackTexture[r.uniqueId])
9320
9316
  throw new Error("TextureResourceDatabase: blackTexture is not initialize. Call 'createBlackTexture' before use 'blackTexture' function");
9321
- return V.blackTexture[r.uniqueId];
9322
- }, zn = async (r) => (V.normalTexture[r.uniqueId] || (V.normalTexture[r.uniqueId] = await Lr(new D([0.5, 0.5, 1, 1]), "NormalMapTexture")), V.normalTexture[r.uniqueId]), In = (r) => {
9323
- if (!V.normalTexture[r.uniqueId])
9317
+ return J.blackTexture[r.uniqueId];
9318
+ }, zn = async (r) => (J.normalTexture[r.uniqueId] || (J.normalTexture[r.uniqueId] = await Lr(new E([0.5, 0.5, 1, 1]), "NormalMapTexture")), J.normalTexture[r.uniqueId]), In = (r) => {
9319
+ if (!J.normalTexture[r.uniqueId])
9324
9320
  throw new Error("TextureResourceDatabase: normalTexture is not initialized. Call 'createNormalTexture' before use 'normalTexture' function");
9325
- return V.normalTexture[r.uniqueId];
9321
+ return J.normalTexture[r.uniqueId];
9326
9322
  }, Lo = async (r) => {
9327
- if (!V.brdfIntegrationTexture[r.uniqueId]) {
9328
- const e = new E();
9323
+ if (!J.brdfIntegrationTexture[r.uniqueId]) {
9324
+ const e = new b();
9329
9325
  e.name = "BRDFIntegrationMapTexture", e.target = se.TEXTURE_2D, e.proceduralFunction = fe.FROM_BASE64, e.proceduralParameters = {
9330
9326
  imageData: To
9331
- }, await e.loadImageData(), V.brdfIntegrationTexture[r.uniqueId] = e;
9327
+ }, await e.loadImageData(), J.brdfIntegrationTexture[r.uniqueId] = e;
9332
9328
  }
9333
- return V.brdfIntegrationTexture[r.uniqueId];
9329
+ return J.brdfIntegrationTexture[r.uniqueId];
9334
9330
  };
9335
9331
  class cr extends an {
9336
9332
  static async InitResources(e) {
@@ -9343,8 +9339,8 @@ class cr extends an {
9343
9339
  }
9344
9340
  mergeTextures() {
9345
9341
  if (this.material.dirty) {
9346
- const e = (t, n = this._whiteTexture) => this.material[t] instanceof E ? this.material[t] : n.texture;
9347
- this._textureMerger.setTexture(e("metallic"), S.R, S.R + this.material.metallicChannel), this._textureMerger.setTexture(e("roughness"), S.G, S.R + this.material.roughnessChannel), this._textureMerger.setTexture(e("lightEmission", this._blackTexture), S.B, S.R + this.material.lightEmissionChannel), this._textureMerger.setTexture(e("ambientOcclussion"), S.A, S.R + this.material.ambientOcclussionChannel), this._textureMerger.update(), this.material.dirty = !1;
9342
+ const e = (t, n = this._whiteTexture) => this.material[t] instanceof b ? this.material[t] : n.texture;
9343
+ this._textureMerger.setTexture(e("metallic"), O.R, O.R + this.material.metallicChannel), this._textureMerger.setTexture(e("roughness"), O.G, O.R + this.material.roughnessChannel), this._textureMerger.setTexture(e("lightEmission", this._blackTexture), O.B, O.R + this.material.lightEmissionChannel), this._textureMerger.setTexture(e("ambientOcclussion"), O.A, O.R + this.material.ambientOcclussionChannel), this._textureMerger.update(), this.material.dirty = !1;
9348
9344
  }
9349
9345
  }
9350
9346
  get metallicRoughnessHeightAOTexture() {
@@ -9361,7 +9357,7 @@ class cr extends an {
9361
9357
  // material property ies a texture. If not, it binds the fallbackTexture. If the fallbackTexture
9362
9358
  // value is null, it binds a 2x2 px white texture
9363
9359
  bindTexture(e, t, n, s, o = null) {
9364
- return this.material[t] instanceof E ? (e.bindTexture(n, this.getTextureRenderer(t), s), !0) : o instanceof E ? (e.bindTexture(n, this.renderer.factory.texture(o), s), !1) : (e.bindTexture(n, this._whiteTexture, s), !1);
9360
+ return this.material[t] instanceof b ? (e.bindTexture(n, this.getTextureRenderer(t), s), !0) : o instanceof b ? (e.bindTexture(n, this.renderer.factory.texture(o), s), !1) : (e.bindTexture(n, this._whiteTexture, s), !1);
9365
9361
  }
9366
9362
  // Bind the property to the uniformName uniform of the shader program, if the
9367
9363
  // material property is a color. If not, it binds the fallbackColor vector
@@ -9386,27 +9382,27 @@ const zo = (r, e) => {
9386
9382
  throw new Error(`Invalid blend equation specified in WebGLPipeline: ${e}`);
9387
9383
  }, gt = (r, e) => {
9388
9384
  switch (e) {
9389
- case O.NULL:
9385
+ case U.NULL:
9390
9386
  return null;
9391
- case O.ZERO:
9387
+ case U.ZERO:
9392
9388
  return r.ZERO;
9393
- case O.ONE:
9389
+ case U.ONE:
9394
9390
  return r.ONE;
9395
- case O.SRC_COLOR:
9391
+ case U.SRC_COLOR:
9396
9392
  return r.SRC_COLOR;
9397
- case O.ONE_MINUS_SRC_COLOR:
9393
+ case U.ONE_MINUS_SRC_COLOR:
9398
9394
  return r.ONE_MINUS_SRC_COLOR;
9399
- case O.DST_COLOR:
9395
+ case U.DST_COLOR:
9400
9396
  return r.DST_COLOR;
9401
- case O.ONE_MINUS_DST_COLOR:
9397
+ case U.ONE_MINUS_DST_COLOR:
9402
9398
  return r.ONE_MINUS_DST_COLOR;
9403
- case O.SRC_ALPHA:
9399
+ case U.SRC_ALPHA:
9404
9400
  return r.SRC_ALPHA;
9405
- case O.ONE_MINUS_SRC_ALPHA:
9401
+ case U.ONE_MINUS_SRC_ALPHA:
9406
9402
  return r.ONE_MINUS_SRC_ALPHA;
9407
- case O.DST_ALPHA:
9403
+ case U.DST_ALPHA:
9408
9404
  return r.DST_ALPHA;
9409
- case O.ONE_MINUS_DST_ALPHA:
9405
+ case U.ONE_MINUS_DST_ALPHA:
9410
9406
  return r.ONE_MINUS_DST_ALPHA;
9411
9407
  }
9412
9408
  throw new Error(`Invalid blend function specified in WebGLPipeline: ${e}`);
@@ -9506,17 +9502,17 @@ class Rn extends An {
9506
9502
  return this._vertexBuffer !== null && this._indexArrayFormat !== null && this._indexBuffer !== null;
9507
9503
  }
9508
9504
  refresh() {
9509
- const e = (C, B, x) => C.length && (x === 3 ? [C[B * x], C[B * x + 1], C[B * x + 2]] : x === 2 ? [C[B * x], C[B * x + 1]] : [C[B * x], C[B * x + 1], C[B * x + 2], C[B * x + 3]]), t = this.polyList.vertex.length / 3, n = [];
9510
- for (let C = 0; C < t; ++C) {
9511
- const B = e(this.polyList.vertex, C, 3), x = e(this.polyList.normal, C, 3), y = e(this.polyList.texCoord0, C, 2), j = e(this.polyList.texCoord1, C, 2), Z = e(this.polyList.texCoord2, C, 2), W = e(this.polyList.color, C, 4), z = e(this.polyList.tangent, C, 3);
9512
- n.push(...B), x && n.push(...x), y && n.push(...y), j && n.push(...j), Z && n.push(...Z), W && n.push(...W), z && n.push(...z);
9505
+ const e = (p, B, T) => p.length && (T === 3 ? [p[B * T], p[B * T + 1], p[B * T + 2]] : T === 2 ? [p[B * T], p[B * T + 1]] : [p[B * T], p[B * T + 1], p[B * T + 2], p[B * T + 3]]), t = this.polyList.vertex.length / 3, n = [];
9506
+ for (let p = 0; p < t; ++p) {
9507
+ const B = e(this.polyList.vertex, p, 3), T = e(this.polyList.normal, p, 3), D = e(this.polyList.texCoord0, p, 2), G = e(this.polyList.texCoord1, p, 2), Y = e(this.polyList.texCoord2, p, 2), L = e(this.polyList.color, p, 4), M = e(this.polyList.tangent, p, 3);
9508
+ n.push(...B), T && n.push(...T), D && n.push(...D), G && n.push(...G), Y && n.push(...Y), L && n.push(...L), M && n.push(...M);
9513
9509
  }
9514
9510
  this._stride = 3;
9515
9511
  const s = 0, o = 3;
9516
- let a = 3, A = 3, f = 3, g = 3, m = 3;
9517
- this.hasNormal && (this._stride += 3, a += 3, A += 3, f += 3, g += 3, m += 3), this.hasTexCoord0 && (this._stride += 2, A += 2, f += 2, g += 2, m += 2), this.hasTexCoord1 && (this._stride += 2, f += 2, g += 2, m += 2), this.hasTexCoord2 && (this._stride += 2, g += 2, m += 2), this.hasColor && (this._stride += 4, m += 4), this.hasTangent && (this._stride += 3), this._offsets = { vertex: s, normal: o, texCoord0: a, texCoord1: A, texCoord2: f, color: g, tangent: m }, this._vertexBuffer = Be.CreateArrayBuffer(this.renderer.gl, new Float32Array(n));
9518
- const b = this.polyList.index.length < 65535 ? new Uint16Array(this.polyList.index) : new Uint32Array(this.polyList.index);
9519
- this._indexBuffer = Be.CreateElementArrayBuffer(this.renderer.gl, b), this._indexArrayFormat = b instanceof Uint16Array ? this.renderer.gl.UNSIGNED_SHORT : this.renderer.gl.UNSIGNED_INT;
9512
+ let a = 3, A = 3, g = 3, d = 3, m = 3;
9513
+ this.hasNormal && (this._stride += 3, a += 3, A += 3, g += 3, d += 3, m += 3), this.hasTexCoord0 && (this._stride += 2, A += 2, g += 2, d += 2, m += 2), this.hasTexCoord1 && (this._stride += 2, g += 2, d += 2, m += 2), this.hasTexCoord2 && (this._stride += 2, d += 2, m += 2), this.hasColor && (this._stride += 4, m += 4), this.hasTangent && (this._stride += 3), this._offsets = { vertex: s, normal: o, texCoord0: a, texCoord1: A, texCoord2: g, color: d, tangent: m }, this._vertexBuffer = Be.CreateArrayBuffer(this.renderer.gl, new Float32Array(n));
9514
+ const Q = this.polyList.index.length < 65535 ? new Uint16Array(this.polyList.index) : new Uint32Array(this.polyList.index);
9515
+ this._indexBuffer = Be.CreateElementArrayBuffer(this.renderer.gl, Q), this._indexArrayFormat = Q instanceof Uint16Array ? this.renderer.gl.UNSIGNED_SHORT : this.renderer.gl.UNSIGNED_INT;
9520
9516
  }
9521
9517
  get hasNormal() {
9522
9518
  return this._polyList.normal.length > 0;
@@ -9616,41 +9612,41 @@ function Io(r, e) {
9616
9612
  }
9617
9613
  function So(r, e) {
9618
9614
  switch (Number(e)) {
9619
- case N.COLOR_ATTACHMENT_0:
9615
+ case H.COLOR_ATTACHMENT_0:
9620
9616
  return r.COLOR_ATTACHMENT0;
9621
- case N.COLOR_ATTACHMENT_1:
9617
+ case H.COLOR_ATTACHMENT_1:
9622
9618
  return r.COLOR_ATTACHMENT1;
9623
- case N.COLOR_ATTACHMENT_2:
9619
+ case H.COLOR_ATTACHMENT_2:
9624
9620
  return r.COLOR_ATTACHMENT2;
9625
- case N.COLOR_ATTACHMENT_3:
9621
+ case H.COLOR_ATTACHMENT_3:
9626
9622
  return r.COLOR_ATTACHMENT3;
9627
- case N.COLOR_ATTACHMENT_4:
9623
+ case H.COLOR_ATTACHMENT_4:
9628
9624
  return r.COLOR_ATTACHMENT4;
9629
- case N.COLOR_ATTACHMENT_5:
9625
+ case H.COLOR_ATTACHMENT_5:
9630
9626
  return r.COLOR_ATTACHMENT5;
9631
- case N.COLOR_ATTACHMENT_6:
9627
+ case H.COLOR_ATTACHMENT_6:
9632
9628
  return r.COLOR_ATTACHMENT6;
9633
- case N.COLOR_ATTACHMENT_7:
9629
+ case H.COLOR_ATTACHMENT_7:
9634
9630
  return r.COLOR_ATTACHMENT7;
9635
- case N.COLOR_ATTACHMENT_8:
9631
+ case H.COLOR_ATTACHMENT_8:
9636
9632
  return r.COLOR_ATTACHMENT8;
9637
- case N.COLOR_ATTACHMENT_9:
9633
+ case H.COLOR_ATTACHMENT_9:
9638
9634
  return r.COLOR_ATTACHMENT9;
9639
- case N.COLOR_ATTACHMENT_10:
9635
+ case H.COLOR_ATTACHMENT_10:
9640
9636
  return r.COLOR_ATTACHMENT10;
9641
- case N.COLOR_ATTACHMENT_11:
9637
+ case H.COLOR_ATTACHMENT_11:
9642
9638
  return r.COLOR_ATTACHMENT11;
9643
- case N.COLOR_ATTACHMENT_12:
9639
+ case H.COLOR_ATTACHMENT_12:
9644
9640
  return r.COLOR_ATTACHMENT12;
9645
- case N.COLOR_ATTACHMENT_13:
9641
+ case H.COLOR_ATTACHMENT_13:
9646
9642
  return r.COLOR_ATTACHMENT13;
9647
- case N.COLOR_ATTACHMENT_14:
9643
+ case H.COLOR_ATTACHMENT_14:
9648
9644
  return r.COLOR_ATTACHMENT14;
9649
- case N.COLOR_ATTACHMENT_15:
9645
+ case H.COLOR_ATTACHMENT_15:
9650
9646
  return r.COLOR_ATTACHMENT15;
9651
- case N.DEPTH_ATTACHMENT:
9647
+ case H.DEPTH_ATTACHMENT:
9652
9648
  return r.DEPTH_ATTACHMENT;
9653
- case N.STENCIL_ATTACHMENT:
9649
+ case H.STENCIL_ATTACHMENT:
9654
9650
  return r.STENCIL_ATTACHMET;
9655
9651
  default:
9656
9652
  throw new Error(`RenderBuffer.beginUpdate() Error creating render buffer. Invalid attachment ${e}`);
@@ -9666,7 +9662,7 @@ function Oo() {
9666
9662
  let e = !1;
9667
9663
  for (const t in this.attachments) {
9668
9664
  const n = this.attachments[t], s = n.getApiObject(), o = So(r, t), a = Ro(r, n.texture);
9669
- r.framebufferTexture2D(r.FRAMEBUFFER, o, a, s, 0), e = e || Number(t) === N.DEPTH_ATTACHMENT;
9665
+ r.framebufferTexture2D(r.FRAMEBUFFER, o, a, s, 0), e = e || Number(t) === H.DEPTH_ATTACHMENT;
9670
9666
  }
9671
9667
  if (e || (this._depthBuffer = r.createRenderbuffer(), r.bindRenderbuffer(r.RENDERBUFFER, this._depthBuffer), r.renderbufferStorage(r.RENDERBUFFER, r.DEPTH_COMPONENT16, this.size.width, this.size.height), r.framebufferRenderbuffer(r.FRAMEBUFFER, r.DEPTH_ATTACHMENT, r.RENDERBUFFER, this._depthBuffer)), this.setUpdated(!0), r.checkFramebufferStatus(r.FRAMEBUFFER) !== r.FRAMEBUFFER_COMPLETE)
9672
9668
  throw new Error("Error initializing render buffer: the framebuffer is not complete");
@@ -9684,15 +9680,15 @@ function Go(r) {
9684
9680
  throw new Error("Unexpected number of texture attachments rendering cube map. The cube map renderer supports only one color attachment.");
9685
9681
  this.destroy(), this._framebuffers = [], this._depthBuffers = [];
9686
9682
  const { width: a, height: A } = s.size;
9687
- for (let f = 0; f < 6; ++f) {
9688
- const g = e.createFramebuffer();
9689
- e.bindFramebuffer(e.FRAMEBUFFER, g), this._framebuffers.push(g), e.framebufferTexture2D(e.FRAMEBUFFER, e.COLOR_ATTACHMENT0, e.TEXTURE_CUBE_MAP_POSITIVE_X + f, n, 0);
9683
+ for (let g = 0; g < 6; ++g) {
9684
+ const d = e.createFramebuffer();
9685
+ e.bindFramebuffer(e.FRAMEBUFFER, d), this._framebuffers.push(d), e.framebufferTexture2D(e.FRAMEBUFFER, e.COLOR_ATTACHMENT0, e.TEXTURE_CUBE_MAP_POSITIVE_X + g, n, 0);
9690
9686
  const m = e.createRenderbuffer();
9691
9687
  this._depthBuffers.push(m), e.bindRenderbuffer(e.RENDERBUFFER, m), e.renderbufferStorage(e.RENDERBUFFER, e.DEPTH_COMPONENT16, a, A), e.framebufferRenderbuffer(e.FRAMEBUFFER, e.DEPTH_ATTACHMENT, e.RENDERBUFFER, m);
9692
9688
  }
9693
9689
  if (e.checkFramebufferStatus(e.FRAMEBUFFER) != e.FRAMEBUFFER_COMPLETE) {
9694
- const f = e.checkFramebufferStatus(e.FRAMEBUFFER);
9695
- throw new Error(`Cubemap frame buffer not complete in cube side #${i}: ${Io(e, f)}`);
9690
+ const g = e.checkFramebufferStatus(e.FRAMEBUFFER);
9691
+ throw new Error(`Cubemap frame buffer not complete in cube side #${i}: ${Io(e, g)}`);
9696
9692
  }
9697
9693
  this.setUpdated(!0);
9698
9694
  }
@@ -9741,8 +9737,8 @@ class On extends cn {
9741
9737
  readPixels(e, t, n, s) {
9742
9738
  const a = this.attachments[0]?.texture;
9743
9739
  if (a) {
9744
- const { gl: A } = this.renderer, f = new Uint8Array(n * s * 4);
9745
- return A.readPixels(e, a.size.height - t, n, s, A.RGBA, A.UNSIGNED_BYTE, f), f;
9740
+ const { gl: A } = this.renderer, g = new Uint8Array(n * s * 4);
9741
+ return A.readPixels(e, a.size.height - t, n, s, A.RGBA, A.UNSIGNED_BYTE, g), g;
9746
9742
  }
9747
9743
  }
9748
9744
  }
@@ -10085,7 +10081,7 @@ function Vo(r) {
10085
10081
  function Wo(r, e) {
10086
10082
  if (this._programs[e])
10087
10083
  return this._programs[e];
10088
- const t = M.GetShaderCode(
10084
+ const t = N.GetShaderCode(
10089
10085
  `precision mediump float;
10090
10086
  attribute vec3 inPosition;
10091
10087
  attribute vec3 inNormal;
@@ -10117,7 +10113,7 @@ function Wo(r, e) {
10117
10113
 
10118
10114
  `,
10119
10115
  [
10120
- new M("void", "main", "", `{
10116
+ new N("void", "main", "", `{
10121
10117
 
10122
10118
 
10123
10119
  for (int i = 0; i < ${e}; ++i)
@@ -10144,7 +10140,7 @@ function Wo(r, e) {
10144
10140
  ...ti(),
10145
10141
  ...Ko(),
10146
10142
  ...jo()
10147
- ], s = Vo(M.GetShaderCode(
10143
+ ], s = Vo(N.GetShaderCode(
10148
10144
  `precision mediump float;
10149
10145
  varying vec3 fragPos;
10150
10146
  varying vec3 fragNorm;
@@ -10204,7 +10200,7 @@ function Wo(r, e) {
10204
10200
  uniform float uContrast;
10205
10201
  `,
10206
10202
  [
10207
- new M("void", "main", "", `{
10203
+ new N("void", "main", "", `{
10208
10204
  float gamma = 1.8;
10209
10205
 
10210
10206
  PBRMaterialData mat;
@@ -10276,9 +10272,9 @@ function Wo(r, e) {
10276
10272
  }`, n)
10277
10273
  ]
10278
10274
  ));
10279
- return this._programs[e] = R.Create(r.gl, "PBRLightIBL", t, s), this._programs[e];
10275
+ return this._programs[e] = F.Create(r.gl, "PBRLightIBL", t, s), this._programs[e];
10280
10276
  }
10281
- class kn extends J {
10277
+ class kn extends Z {
10282
10278
  constructor(e) {
10283
10279
  if (super(e), this._lights = [], this._lightTransforms = [], this._brightness = 0.34, this._contrast = 1.4, e.typeId !== "WebGL")
10284
10280
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
@@ -10319,7 +10315,7 @@ class kn extends J {
10319
10315
  throw new Error("BasicPBRLightShader: Invalid light array set.");
10320
10316
  this._lights = e, this._lightTypes = [], this._lightPositions = [], this._lightDirections = [], this._lightColors = [], this._lightIntensities = [], this._lights.forEach((t, n) => {
10321
10317
  this._lightTypes.push(t.type);
10322
- const s = this._lightTransforms[n], o = s && p.GetRotation(s), a = new h(t.position), A = new h(t.direction);
10318
+ const s = this._lightTransforms[n], o = s && C.GetRotation(s), a = new h(t.position), A = new h(t.direction);
10323
10319
  this._lightPositions.push(s ? s.multVector(a).xyz : a), this._lightDirections.push(o ? o.multVector(A).xyz.normalize() : A), this._lightColors.push(new h(t.color)), this._lightIntensities.push(t.intensity);
10324
10320
  }), this._program = Wo.apply(this, [this.renderer, this._lights.length]);
10325
10321
  }
@@ -10345,15 +10341,15 @@ class kn extends J {
10345
10341
  throw new Error("BasicPBRLightShader: lights array not specified");
10346
10342
  const a = t.material;
10347
10343
  t.mergeTextures(), this.renderer.state.shaderProgram = this._program;
10348
- const A = p.GetNormalMatrix(n);
10349
- this._program.bindMatrix("uNormMatrix", A), this._program.bindMatrix("uWorld", n), this._program.bindMatrix("uView", s), this._program.bindMatrix("uViewInverse", p.GetInverted(s)), this._program.bindMatrix("uProj", o), this._cameraPosition ? this._program.bindVector("uCameraPos", this._cameraPosition) : (console.warn("Serious performance warning: camera position not set in BasicPBRLightShader. Extracting the camera position from the view matrix involves inverting the matrix."), this._program.bindVector("uCameraPos", p.GetPosition(p.GetInverted(s)))), t.bindTexture(this._program, "diffuse", "uAlbedoTexture", 0), t.bindTexture(this._program, "normal", "uNormalTexture", 1, In(this.renderer)), t.bindMetallicRoughnessHeightAOTexture(this._program, "uMetallicRoughnessHeightAOTexture", 2), this._program.uniform1f("uAlphaTresshold", a.alphaCutoff), t.bindColor(this._program, "diffuse", "uAlbedo"), t.bindValue(this._program, "metallic", "uMetallic"), t.bindValue(this._program, "roughness", "uRoughness"), t.bindValue(this._program, "lightEmission", "uLightEmission", 0), this._program.uniform1i("uAlbedoMap", a.diffuseUV), this._program.uniform1i("uNormalMap", a.normalUV), this._program.uniform1i("uAOMap", a.ambientOcclussionUV), this._program.uniform1i("uMetallicMap", a.metallicChannel), this._program.uniform1i("uRoughnessMap", a.roughnessChannel), this._program.uniform1i("uLightemissionMap", a.lightEmissionChannel), this._program.bindVector("uAlbedoScale", a.diffuseScale), this._program.bindVector("uNormalScale", a.normalScale), this._program.bindVector("uMetallicScale", a.metallicScale), this._program.bindVector("uRoughnessScale", a.roughnessScale), this._program.bindVector("uLightEmissionScale", a.lightEmissionScale), this._program.bindVector("uFresnel", a.fresnel), this._program.bindTexture("uIrradianceMap", this.renderer.factory.texture(this.irradianceMap), 3), this._program.bindTexture("uSpecularMap", this.renderer.factory.texture(this.specularMap), 4), this._program.bindTexture("uEnvMap", this.renderer.factory.texture(this.environmentMap), 5), this._program.bindTexture("uBRDFIntegrationMap", this.renderer.factory.texture(this._brdfIntegrationTexture), 6), this._program.uniform1f("uBrightness", this._brightness), this._program.uniform1f("uContrast", this._contrast), this._program.uniform1f("uAmbientIntensity", 1);
10350
- let f = null;
10351
- if (this._lights.forEach((g, m) => {
10352
- g._depthTexture && (f = g), this._program.uniform1i(`uLightTypes[${m}]`, this._lightTypes[m]), this._program.bindVector(`uLightPositions[${m}]`, this._lightPositions[m]), this._program.bindVector(`uLightDirections[${m}]`, this._lightDirections[m]), this._program.bindVector(`uLightColors[${m}]`, this._lightColors[m].rgb), this._program.uniform1f(`uLightIntensities[${m}]`, this._lightIntensities[m]), this._program.bindMatrix(`uLightTransforms[${m}]`, this._lightTransforms[m]);
10353
- }), f) {
10354
- this._program.bindTexture("uShadowMap", this.renderer.factory.texture(f.depthTexture), 7);
10355
- const g = p.Mult(f.projection, f.viewMatrix);
10356
- this._program.bindMatrix("uLightPovMvp", g), this._program.uniform1f("uShadowBias", f.shadowBias * 30), this._program.uniform1f("uShadowStrength", f.shadowStrength);
10344
+ const A = C.GetNormalMatrix(n);
10345
+ this._program.bindMatrix("uNormMatrix", A), this._program.bindMatrix("uWorld", n), this._program.bindMatrix("uView", s), this._program.bindMatrix("uViewInverse", C.GetInverted(s)), this._program.bindMatrix("uProj", o), this._cameraPosition ? this._program.bindVector("uCameraPos", this._cameraPosition) : (console.warn("Serious performance warning: camera position not set in BasicPBRLightShader. Extracting the camera position from the view matrix involves inverting the matrix."), this._program.bindVector("uCameraPos", C.GetPosition(C.GetInverted(s)))), t.bindTexture(this._program, "diffuse", "uAlbedoTexture", 0), t.bindTexture(this._program, "normal", "uNormalTexture", 1, In(this.renderer)), t.bindMetallicRoughnessHeightAOTexture(this._program, "uMetallicRoughnessHeightAOTexture", 2), this._program.uniform1f("uAlphaTresshold", a.alphaCutoff), t.bindColor(this._program, "diffuse", "uAlbedo"), t.bindValue(this._program, "metallic", "uMetallic"), t.bindValue(this._program, "roughness", "uRoughness"), t.bindValue(this._program, "lightEmission", "uLightEmission", 0), this._program.uniform1i("uAlbedoMap", a.diffuseUV), this._program.uniform1i("uNormalMap", a.normalUV), this._program.uniform1i("uAOMap", a.ambientOcclussionUV), this._program.uniform1i("uMetallicMap", a.metallicChannel), this._program.uniform1i("uRoughnessMap", a.roughnessChannel), this._program.uniform1i("uLightemissionMap", a.lightEmissionChannel), this._program.bindVector("uAlbedoScale", a.diffuseScale), this._program.bindVector("uNormalScale", a.normalScale), this._program.bindVector("uMetallicScale", a.metallicScale), this._program.bindVector("uRoughnessScale", a.roughnessScale), this._program.bindVector("uLightEmissionScale", a.lightEmissionScale), this._program.bindVector("uFresnel", a.fresnel), this._program.bindTexture("uIrradianceMap", this.renderer.factory.texture(this.irradianceMap), 3), this._program.bindTexture("uSpecularMap", this.renderer.factory.texture(this.specularMap), 4), this._program.bindTexture("uEnvMap", this.renderer.factory.texture(this.environmentMap), 5), this._program.bindTexture("uBRDFIntegrationMap", this.renderer.factory.texture(this._brdfIntegrationTexture), 6), this._program.uniform1f("uBrightness", this._brightness), this._program.uniform1f("uContrast", this._contrast), this._program.uniform1f("uAmbientIntensity", 1);
10346
+ let g = null;
10347
+ if (this._lights.forEach((d, m) => {
10348
+ d._depthTexture && (g = d), this._program.uniform1i(`uLightTypes[${m}]`, this._lightTypes[m]), this._program.bindVector(`uLightPositions[${m}]`, this._lightPositions[m]), this._program.bindVector(`uLightDirections[${m}]`, this._lightDirections[m]), this._program.bindVector(`uLightColors[${m}]`, this._lightColors[m].rgb), this._program.uniform1f(`uLightIntensities[${m}]`, this._lightIntensities[m]), this._program.bindMatrix(`uLightTransforms[${m}]`, this._lightTransforms[m]);
10349
+ }), g) {
10350
+ this._program.bindTexture("uShadowMap", this.renderer.factory.texture(g.depthTexture), 7);
10351
+ const d = C.Mult(g.projection, g.viewMatrix);
10352
+ this._program.bindMatrix("uLightPovMvp", d), this._program.uniform1f("uShadowBias", g.shadowBias * 30), this._program.uniform1f("uShadowStrength", g.shadowStrength);
10357
10353
  }
10358
10354
  this._program.bindAttribs(e, {
10359
10355
  position: "inPosition",
@@ -10364,7 +10360,7 @@ class kn extends J {
10364
10360
  });
10365
10361
  }
10366
10362
  destroy() {
10367
- R.Delete(this._program);
10363
+ F.Delete(this._program);
10368
10364
  }
10369
10365
  }
10370
10366
  class Yn extends un {
@@ -10390,13 +10386,13 @@ class Yn extends un {
10390
10386
  await super.setEnvironment(e), this._shader.environment = e;
10391
10387
  }
10392
10388
  async init(e) {
10393
- await super.init(e), await this.shader.load(), this.renderQueue.enableQueue(Y.OPAQUE_DEFAULT, this._shader), this.renderQueue.enableQueue(Y.TRANSPARENT_DEFAULT, this._shader);
10389
+ await super.init(e), await this.shader.load(), this.renderQueue.enableQueue(V.OPAQUE_DEFAULT, this._shader), this.renderQueue.enableQueue(V.TRANSPARENT_DEFAULT, this._shader);
10394
10390
  }
10395
10391
  frame(e, t) {
10396
10392
  super.frame(e, t);
10397
10393
  const n = re.GetMain(e);
10398
10394
  this.shader.lights = this.renderQueue.lights.map(({ light: a }) => a), this.shader.lightTransforms = this.renderQueue.lights.map(({ transform: a }) => a);
10399
- const s = ue.GetWorldMatrix(n.node), o = p.GetPosition(s);
10395
+ const s = ue.GetWorldMatrix(n.node), o = C.GetPosition(s);
10400
10396
  this.shader.cameraPosition = o;
10401
10397
  }
10402
10398
  }
@@ -10519,7 +10515,7 @@ class Wn {
10519
10515
  }
10520
10516
  get shaderProgram() {
10521
10517
  const e = this.gl.getParameter(this.gl.CURRENT_PROGRAM);
10522
- return e ? R.GetShaderProgram(e) : null;
10518
+ return e ? F.GetShaderProgram(e) : null;
10523
10519
  }
10524
10520
  clear({ color: e = !0, depth: t = !0, stencil: n = !1 } = {}) {
10525
10521
  const s = (e ? this.gl.COLOR_BUFFER_BIT : 0) | (t ? this.gl.DEPTH_BUFFER_BIT : 0) | (n ? this.gl.STENCIL_BUFFER_BIT : 0);
@@ -10566,14 +10562,14 @@ const Jo = (r, e) => {
10566
10562
  Jn(r, e), qo(r, e);
10567
10563
  const t = Jo(r, e), n = Zo(r, e);
10568
10564
  if (r.bindTexture(t, e._apiObject), e.dataType === Ee.RENDER_TARGET) {
10569
- const { width: s, height: o } = e.size, a = e.renderTargetAttachment === N.DEPTH_ATTACHMENT, A = a ? r.DEPTH_COMPONENT : r.RGBA;
10570
- let f = a ? r.DEPTH_COMPONENT : r.RGBA;
10571
- const g = a ? r.UNSIGNED_SHORT : n;
10565
+ const { width: s, height: o } = e.size, a = e.renderTargetAttachment === H.DEPTH_ATTACHMENT, A = a ? r.DEPTH_COMPONENT : r.RGBA;
10566
+ let g = a ? r.DEPTH_COMPONENT : r.RGBA;
10567
+ const d = a ? r.UNSIGNED_SHORT : n;
10572
10568
  if (r.texParameteri(t, r.TEXTURE_MIN_FILTER, r.LINEAR), r.texParameteri(t, r.TEXTURE_MAG_FILTER, r.LINEAR), r.texParameteri(t, r.TEXTURE_WRAP_S, lt(r, e.wrapModeX)), r.texParameteri(t, r.TEXTURE_WRAP_T, lt(r, e.wrapModeY)), t === r.TEXTURE_CUBE_MAP)
10573
10569
  for (let m = 0; m < 6; ++m)
10574
- r.texImage2D(r.TEXTURE_CUBE_MAP_POSITIVE_X + m, 0, A, s, o, 0, f, g, null);
10570
+ r.texImage2D(r.TEXTURE_CUBE_MAP_POSITIVE_X + m, 0, A, s, o, 0, g, d, null);
10575
10571
  else
10576
- r.texImage2D(t, 0, A, s, o, 0, f, g, null);
10572
+ r.texImage2D(t, 0, A, s, o, 0, g, d, null);
10577
10573
  e.imageData.currentSize = new h(e.size);
10578
10574
  } else
10579
10575
  r.texImage2D(t, 0, r.RGBA, r.RGBA, n, e._imageData), r.texParameteri(t, r.TEXTURE_WRAP_S, lt(r, e.wrapModeX)), r.texParameteri(t, r.TEXTURE_WRAP_T, lt(r, e.wrapModeY)), r.texParameteri(t, r.TEXTURE_MAG_FILTER, ri(r, e.magFilter)), r.texParameteri(t, r.TEXTURE_MIN_FILTER, ri(r, e.minFilter)), e.mipmapRequired && r.generateMipmap(t);
@@ -10615,7 +10611,7 @@ const $o = {
10615
10611
  PolyListRenderer: Rn,
10616
10612
  RenderBuffer: On,
10617
10613
  SceneRenderer: Yn,
10618
- ShaderProgram: R,
10614
+ ShaderProgram: F,
10619
10615
  ShaderType: Ke,
10620
10616
  ShadowRenderer: jn,
10621
10617
  SkyCube: Kn,
@@ -10658,19 +10654,19 @@ class qn extends bt {
10658
10654
  await super.init(e), this._canvas = e, this._gl = e.domElement.getContext("webgl", { preserveDrawingBuffer: !0 }), this._gl._bg2e_object = this;
10659
10655
  const t = new URLSearchParams(location.search).get("debug") == "true";
10660
10656
  if (this._debugMode = t, window.WebGLDebugUtils && t) {
10661
- let s = function(A, f, g) {
10662
- throw WebGLDebugUtils.glEnumToString(A) + " was caused by call to: " + f;
10663
- }, a = function(A, f) {
10664
- if (console.log("gl." + A + "(" + WebGLDebugUtils.glFunctionArgsToString(A, f) + ")"), /drawElements/.test(A)) {
10665
- const g = Be.CurrentBuffer(n, ce.ELEMENT_ARRAY_BUFFER), m = Be.CurrentBuffer(n, ce.ARRAY_BUFFER);
10666
- o(g?.id, "ELEMENT_ARRAY_BUFFER"), o(m?.id, "ARRAY_BUFFER");
10667
- } else /bindBuffer/.test(A) && f[0] === n.ELEMENT_ARRAY_BUFFER ? console.log(` BufferID: ${f[1]._bg2e_id_}`) : /bindBuffer/.test(A) && f[0] === n.ARRAY_BUFFER && console.log(` BufferID: ${f[1]._bg2e_id_}`);
10657
+ let s = function(A, g, d) {
10658
+ throw WebGLDebugUtils.glEnumToString(A) + " was caused by call to: " + g;
10659
+ }, a = function(A, g) {
10660
+ if (console.log("gl." + A + "(" + WebGLDebugUtils.glFunctionArgsToString(A, g) + ")"), /drawElements/.test(A)) {
10661
+ const d = Be.CurrentBuffer(n, ce.ELEMENT_ARRAY_BUFFER), m = Be.CurrentBuffer(n, ce.ARRAY_BUFFER);
10662
+ o(d?.id, "ELEMENT_ARRAY_BUFFER"), o(m?.id, "ARRAY_BUFFER");
10663
+ } else /bindBuffer/.test(A) && g[0] === n.ELEMENT_ARRAY_BUFFER ? console.log(` BufferID: ${g[1]._bg2e_id_}`) : /bindBuffer/.test(A) && g[0] === n.ARRAY_BUFFER && console.log(` BufferID: ${g[1]._bg2e_id_}`);
10668
10664
  };
10669
10665
  const n = this._gl;
10670
10666
  console.warn("Using WebGLDebugUtils: this must cause an impact in performance");
10671
- const o = (A, f) => {
10672
- const g = n.getBufferParameter(n[f], n.BUFFER_SIZE);
10673
- console.log(` ${f} id: ${A}, size: ${g}`);
10667
+ const o = (A, g) => {
10668
+ const d = n.getBufferParameter(n[g], n.BUFFER_SIZE);
10669
+ console.log(` ${g} id: ${A}, size: ${d}`);
10674
10670
  };
10675
10671
  this._gl = WebGLDebugUtils.makeDebugContext(this._gl, s, a);
10676
10672
  }
@@ -10748,7 +10744,7 @@ const ra = {
10748
10744
  MaterialRenderer: an,
10749
10745
  Pipeline: hn,
10750
10746
  BlendEquation: Je,
10751
- BlendFunction: O,
10747
+ BlendFunction: U,
10752
10748
  PolyListRenderer: An,
10753
10749
  RenderBuffer: cn,
10754
10750
  RenderBufferType: te,
@@ -10764,7 +10760,7 @@ const ra = {
10764
10760
  BindRendererVisitor: gn,
10765
10761
  InitVisitor: ln,
10766
10762
  EventCallbackVisitor: ie,
10767
- Shader: J,
10763
+ Shader: Z,
10768
10764
  ShadowRenderer: Qn,
10769
10765
  SkyCube: yn,
10770
10766
  SkySphere: Nn,
@@ -10776,7 +10772,7 @@ const ra = {
10776
10772
  function ia(r, e) {
10777
10773
  if (this._programs[e])
10778
10774
  return this._programs[e];
10779
- const t = M.GetShaderCode(
10775
+ const t = N.GetShaderCode(
10780
10776
  `precision mediump float;
10781
10777
  attribute vec3 inPosition;
10782
10778
  attribute vec3 inNormal;
@@ -10795,7 +10791,7 @@ function ia(r, e) {
10795
10791
  varying vec3 fragBitangent;
10796
10792
  `,
10797
10793
  [
10798
- new M("void", "main", "", `{
10794
+ new N("void", "main", "", `{
10799
10795
  fragPos = (uWorld * vec4(inPosition, 1.0)).xyz;
10800
10796
  fragNorm = normalize(uNormMatrix * inNormal);
10801
10797
  fragTangent = normalize(uNormMatrix * inTangent);
@@ -10804,7 +10800,7 @@ function ia(r, e) {
10804
10800
  gl_Position = uProj * uView * uWorld * vec4(inPosition,1.0);
10805
10801
  }`)
10806
10802
  ]
10807
- ), n = M.GetShaderCode(
10803
+ ), n = N.GetShaderCode(
10808
10804
  `precision mediump float;
10809
10805
  varying vec3 fragPos;
10810
10806
  varying vec3 fragNorm;
@@ -10835,7 +10831,7 @@ function ia(r, e) {
10835
10831
  uniform float uLightIntensities[${e}];
10836
10832
  `,
10837
10833
  [
10838
- new M("void", "main", "", `{
10834
+ new N("void", "main", "", `{
10839
10835
  vec3 N = normalize(fragNorm);
10840
10836
  if (!gl_FrontFacing) {
10841
10837
  N = -N;
@@ -10855,12 +10851,12 @@ function ia(r, e) {
10855
10851
  vec3 Lo = vec3(0.0);
10856
10852
  for (int i = 0; i < ${e}; ++i)
10857
10853
  {
10858
- if (uLightTypes[i] == ${K.POINT}) {
10854
+ if (uLightTypes[i] == ${W.POINT}) {
10859
10855
  Lo += pbrPointLight(
10860
10856
  uLightPositions[i], uLightColors[i] * uLightIntensities[i], fragPos, N, V,
10861
10857
  albedo, roughness, metallic, vec3(1.0));
10862
10858
  }
10863
- else if (uLightTypes[i] == ${K.DIRECTIONAL}) {
10859
+ else if (uLightTypes[i] == ${W.DIRECTIONAL}) {
10864
10860
  Lo += pbrDirectionalLight(
10865
10861
  uLightDirections[i], uLightColors[i] * uLightIntensities[i], fragPos, N, V,
10866
10862
  albedo, roughness, metallic, vec3(1.0), vec3(1.0));
@@ -10876,9 +10872,9 @@ function ia(r, e) {
10876
10872
  }`, [vn, mn])
10877
10873
  ]
10878
10874
  );
10879
- return this._programs[e] = R.Create(r.gl, "PBRBasicLight", t, n), this._programs[e];
10875
+ return this._programs[e] = F.Create(r.gl, "PBRBasicLight", t, n), this._programs[e];
10880
10876
  }
10881
- class na extends J {
10877
+ class na extends Z {
10882
10878
  constructor(e) {
10883
10879
  if (super(e), this._lights = [], e.typeId !== "WebGL")
10884
10880
  throw Error("PresentTextureShader is only compatible with WebGL renderer");
@@ -10913,9 +10909,9 @@ class na extends J {
10913
10909
  throw new Error("BasicPBRLightShader: lights array not specified");
10914
10910
  const a = t.material;
10915
10911
  this.renderer.state.shaderProgram = this._program;
10916
- const A = p.GetNormalMatrix(n);
10917
- this._program.bindMatrix("uNormMatrix", A), this._program.bindMatrix("uWorld", n), this._program.bindMatrix("uView", s), this._program.bindMatrix("uProj", o), this._cameraPosition ? this._program.bindVector("uCameraPos", this._cameraPosition) : (console.warn("Serious performance warning: camera position not set in BasicPBRLightShader. Extracting the camera position from the view matrix involves inverting the matrix."), this._program.bindVector("uCameraPos", p.GetPosition(p.GetInverted(s)))), t.bindTexture(this._program, "diffuse", "uAlbedoTexture", 0), t.bindTexture(this._program, "normal", "uNormalTexture", 1, In(this.renderer)), t.bindTexture(this._program, "metallic", "uMetallicTexture", 2), t.bindTexture(this._program, "roughness", "uRoughnessTexture", 3), t.bindColor(this._program, "diffuse", "uAlbedo"), t.bindValue(this._program, "metallic", "uMetallic"), t.bindValue(this._program, "roughness", "uRoughness"), this._program.bindVector("uAlbedoScale", a.diffuseScale), this._program.bindVector("uNormalScale", a.normalScale), this._program.bindVector("uMetallicScale", a.metallicScale), this._program.bindVector("uRoughnessScale", a.roughnessScale), this._lights.forEach((f, g) => {
10918
- this._program.uniform1i(`uLightTypes[${g}]`, this._lightTypes[g]), this._program.bindVector(`uLightPositions[${g}]`, this._lightPositions[g]), this._program.bindVector(`uLightDirections[${g}]`, this._lightDirections[g]), this._program.bindVector(`uLightColors[${g}]`, this._lightColors[g].rgb), this._program.uniform1f(`uLightIntensities[${g}]`, this._lightIntensities[g]);
10912
+ const A = C.GetNormalMatrix(n);
10913
+ this._program.bindMatrix("uNormMatrix", A), this._program.bindMatrix("uWorld", n), this._program.bindMatrix("uView", s), this._program.bindMatrix("uProj", o), this._cameraPosition ? this._program.bindVector("uCameraPos", this._cameraPosition) : (console.warn("Serious performance warning: camera position not set in BasicPBRLightShader. Extracting the camera position from the view matrix involves inverting the matrix."), this._program.bindVector("uCameraPos", C.GetPosition(C.GetInverted(s)))), t.bindTexture(this._program, "diffuse", "uAlbedoTexture", 0), t.bindTexture(this._program, "normal", "uNormalTexture", 1, In(this.renderer)), t.bindTexture(this._program, "metallic", "uMetallicTexture", 2), t.bindTexture(this._program, "roughness", "uRoughnessTexture", 3), t.bindColor(this._program, "diffuse", "uAlbedo"), t.bindValue(this._program, "metallic", "uMetallic"), t.bindValue(this._program, "roughness", "uRoughness"), this._program.bindVector("uAlbedoScale", a.diffuseScale), this._program.bindVector("uNormalScale", a.normalScale), this._program.bindVector("uMetallicScale", a.metallicScale), this._program.bindVector("uRoughnessScale", a.roughnessScale), this._lights.forEach((g, d) => {
10914
+ this._program.uniform1i(`uLightTypes[${d}]`, this._lightTypes[d]), this._program.bindVector(`uLightPositions[${d}]`, this._lightPositions[d]), this._program.bindVector(`uLightDirections[${d}]`, this._lightDirections[d]), this._program.bindVector(`uLightColors[${d}]`, this._lightColors[d].rgb), this._program.uniform1f(`uLightIntensities[${d}]`, this._lightIntensities[d]);
10919
10915
  }), this._program.bindAttribs(e, {
10920
10916
  position: "inPosition",
10921
10917
  normal: "inNormal",
@@ -10924,7 +10920,7 @@ class na extends J {
10924
10920
  });
10925
10921
  }
10926
10922
  destroy() {
10927
- R.Delete(this._program);
10923
+ F.Delete(this._program);
10928
10924
  }
10929
10925
  }
10930
10926
  const sa = {
@@ -10938,7 +10934,7 @@ const sa = {
10938
10934
  PresentDebugFramebufferShader: bn,
10939
10935
  PresentTextureShader: Ni,
10940
10936
  SelectionHighlightShader: Cn,
10941
- ShaderFunction: M,
10937
+ ShaderFunction: N,
10942
10938
  SkyCubeShader: Tn,
10943
10939
  SkySphereShader: Mn,
10944
10940
  SpecularMapCubeShader: Li,
@@ -10973,8 +10969,8 @@ class oa {
10973
10969
  t.bindFramebuffer(t.FRAMEBUFFER, o), t.framebufferTexture2D(t.FRAMEBUFFER, t.COLOR_ATTACHMENT0, t.TEXTURE_2D, e._apiObject, 0);
10974
10970
  let a = new Uint8Array(e.size.width * e.size.height * 4);
10975
10971
  t.readPixels(0, 0, e.size[0], e.size[1], t.RGBA, t.UNSIGNED_BYTE, a);
10976
- const A = new ImageData(new Uint8ClampedArray(a), e.size.width, e.size.height), f = A.width, g = A.height, m = A.data;
10977
- Array.from({ length: g }, (C, B) => a.slice(B * f * 4, (B + 1) * f * 4)).forEach((C, B) => m.set(C, (g - B - 1) * f * 4)), this._context.putImageData(A, 0, 0), t.bindTexture(t.TEXTURE_2D, n), t.bindFramebuffer(t.FRAMEBUFFER, s);
10972
+ const A = new ImageData(new Uint8ClampedArray(a), e.size.width, e.size.height), g = A.width, d = A.height, m = A.data;
10973
+ Array.from({ length: d }, (p, B) => a.slice(B * g * 4, (B + 1) * g * 4)).forEach((p, B) => m.set(p, (d - B - 1) * g * 4)), this._context.putImageData(A, 0, 0), t.bindTexture(t.TEXTURE_2D, n), t.bindFramebuffer(t.FRAMEBUFFER, s);
10978
10974
  }
10979
10975
  }
10980
10976
  const aa = {
@@ -10983,7 +10979,7 @@ const aa = {
10983
10979
  }, ca = K0, ga = p0, la = B0, ua = aa, da = {
10984
10980
  ...vs,
10985
10981
  Mat3: me,
10986
- Mat4: p,
10982
+ Mat4: C,
10987
10983
  Vec: h,
10988
10984
  Quat: ms,
10989
10985
  MatrixStrategy: hi