aws-sdk 2.1672.0 → 2.1674.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -1
- package/apis/amplify-2017-07-25.min.json +76 -55
- package/apis/appstream-2016-12-01.min.json +181 -44
- package/apis/ec2-2016-11-15.min.json +1291 -1208
- package/apis/fis-2020-12-01.min.json +19 -5
- package/apis/glue-2017-03-31.min.json +41 -37
- package/apis/medialive-2017-10-14.min.json +104 -80
- package/apis/sagemaker-2017-07-24.min.json +1005 -979
- package/clients/amplify.d.ts +20 -1
- package/clients/appstream.d.ts +200 -1
- package/clients/computeoptimizer.d.ts +2 -2
- package/clients/ec2.d.ts +104 -12
- package/clients/eks.d.ts +1 -1
- package/clients/fis.d.ts +21 -0
- package/clients/glue.d.ts +6 -0
- package/clients/medialive.d.ts +6 -0
- package/clients/sagemaker.d.ts +42 -8
- package/dist/aws-sdk-core-react-native.js +1 -1
- package/dist/aws-sdk-react-native.js +8 -8
- package/dist/aws-sdk.js +1294 -1211
- package/dist/aws-sdk.min.js +78 -78
- package/lib/core.js +1 -1
- package/package.json +1 -1
package/clients/fis.d.ts
CHANGED
@@ -596,6 +596,23 @@ declare namespace Fis {
|
|
596
596
|
logGroupArn?: CloudWatchLogGroupArn;
|
597
597
|
}
|
598
598
|
export type ExperimentEndTime = Date;
|
599
|
+
export interface ExperimentError {
|
600
|
+
/**
|
601
|
+
* The Amazon Web Services Account ID where the experiment failure occurred.
|
602
|
+
*/
|
603
|
+
accountId?: ExperimentErrorAccountId;
|
604
|
+
/**
|
605
|
+
* The error code for the failed experiment.
|
606
|
+
*/
|
607
|
+
code?: ExperimentErrorCode;
|
608
|
+
/**
|
609
|
+
* Context for the section of the experiment template that failed.
|
610
|
+
*/
|
611
|
+
location?: ExperimentErrorLocation;
|
612
|
+
}
|
613
|
+
export type ExperimentErrorAccountId = string;
|
614
|
+
export type ExperimentErrorCode = string;
|
615
|
+
export type ExperimentErrorLocation = string;
|
599
616
|
export type ExperimentId = string;
|
600
617
|
export interface ExperimentLogConfiguration {
|
601
618
|
/**
|
@@ -645,6 +662,10 @@ declare namespace Fis {
|
|
645
662
|
* The reason for the state.
|
646
663
|
*/
|
647
664
|
reason?: ExperimentStatusReason;
|
665
|
+
/**
|
666
|
+
* The error information of the experiment when the action has failed.
|
667
|
+
*/
|
668
|
+
error?: ExperimentError;
|
648
669
|
}
|
649
670
|
export type ExperimentStatus = "pending"|"initiating"|"running"|"completed"|"stopping"|"stopped"|"failed"|string;
|
650
671
|
export type ExperimentStatusReason = string;
|
package/clients/glue.d.ts
CHANGED
@@ -8485,6 +8485,10 @@ declare namespace Glue {
|
|
8485
8485
|
* Specifies whether to include status details related to a request to create or update an Glue Data Catalog view.
|
8486
8486
|
*/
|
8487
8487
|
IncludeStatusDetails?: BooleanNullable;
|
8488
|
+
/**
|
8489
|
+
* Specifies the table fields returned by the GetTables call. This parameter doesn’t accept an empty list. The request must include NAME. The following are the valid combinations of values: NAME - Names of all tables in the database. NAME, TABLE_TYPE - Names of all tables and the table types.
|
8490
|
+
*/
|
8491
|
+
AttributesToGet?: TableAttributesList;
|
8488
8492
|
}
|
8489
8493
|
export interface GetTablesResponse {
|
8490
8494
|
/**
|
@@ -13870,6 +13874,8 @@ declare namespace Glue {
|
|
13870
13874
|
IsMultiDialectView?: NullableBoolean;
|
13871
13875
|
Status?: TableStatus;
|
13872
13876
|
}
|
13877
|
+
export type TableAttributes = "NAME"|"TABLE_TYPE"|string;
|
13878
|
+
export type TableAttributesList = TableAttributes[];
|
13873
13879
|
export interface TableError {
|
13874
13880
|
/**
|
13875
13881
|
* The name of the table. For Hive compatibility, this must be entirely lowercase.
|
package/clients/medialive.d.ts
CHANGED
@@ -5834,6 +5834,10 @@ The Multiplex must be in the same region as the Channel.
|
|
5834
5834
|
Scte35Pid?: __integer;
|
5835
5835
|
TimedMetadataPid?: __integer;
|
5836
5836
|
VideoPid?: __integer;
|
5837
|
+
AribCaptionsPid?: __integer;
|
5838
|
+
DvbTeletextPids?: __listOf__integer;
|
5839
|
+
EcmPid?: __integer;
|
5840
|
+
Smpte2038Pid?: __integer;
|
5837
5841
|
}
|
5838
5842
|
export interface MultiplexProgramPipelineDetail {
|
5839
5843
|
/**
|
@@ -7607,6 +7611,7 @@ Only specify sources for PULL type Inputs. Leave Destinations empty.
|
|
7607
7611
|
* Name of the multiplex.
|
7608
7612
|
*/
|
7609
7613
|
Name?: __string;
|
7614
|
+
PacketIdentifiersMapping?: MultiplexPacketIdentifiersMapping;
|
7610
7615
|
}
|
7611
7616
|
export interface UpdateMultiplexResponse {
|
7612
7617
|
/**
|
@@ -9315,6 +9320,7 @@ one destination per packager.
|
|
9315
9320
|
}
|
9316
9321
|
export type __listOfSrtCallerSource = SrtCallerSource[];
|
9317
9322
|
export type __listOfSrtCallerSourceRequest = SrtCallerSourceRequest[];
|
9323
|
+
export type MultiplexPacketIdentifiersMapping = {[key: string]: MultiplexProgramPacketIdentifiersMap};
|
9318
9324
|
/**
|
9319
9325
|
* A string in YYYY-MM-DD format that represents the latest possible API version that can be used in this service. Specify 'latest' to use the latest possible version.
|
9320
9326
|
*/
|
package/clients/sagemaker.d.ts
CHANGED
@@ -85,19 +85,19 @@ declare class SageMaker extends Service {
|
|
85
85
|
*/
|
86
86
|
createArtifact(callback?: (err: AWSError, data: SageMaker.Types.CreateArtifactResponse) => void): Request<SageMaker.Types.CreateArtifactResponse, AWSError>;
|
87
87
|
/**
|
88
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
88
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
89
89
|
*/
|
90
90
|
createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
|
91
91
|
/**
|
92
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
92
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
93
93
|
*/
|
94
94
|
createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
|
95
95
|
/**
|
96
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
96
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
97
97
|
*/
|
98
98
|
createAutoMLJobV2(params: SageMaker.Types.CreateAutoMLJobV2Request, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
|
99
99
|
/**
|
100
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
100
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
101
101
|
*/
|
102
102
|
createAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
|
103
103
|
/**
|
@@ -3480,6 +3480,12 @@ declare namespace SageMaker {
|
|
3480
3480
|
SampleWeightAttributeName?: SampleWeightAttributeName;
|
3481
3481
|
}
|
3482
3482
|
export type AutoMLChannelType = "training"|"validation"|string;
|
3483
|
+
export interface AutoMLComputeConfig {
|
3484
|
+
/**
|
3485
|
+
* The configuration for using EMR Serverless to run the AutoML job V2. To allow your AutoML job V2 to automatically initiate a remote job on EMR Serverless when additional compute resources are needed to process large datasets, you need to provide an EmrServerlessComputeConfig object, which includes an ExecutionRoleARN attribute, to the AutoMLComputeConfig of the AutoML job V2 input request. By seamlessly transitioning to EMR Serverless when required, the AutoML job can handle datasets that would otherwise exceed the initially provisioned resources, without any manual intervention from you. EMR Serverless is available for the tabular and time series problem types. We recommend setting up this option for tabular datasets larger than 5 GB and time series datasets larger than 30 GB.
|
3486
|
+
*/
|
3487
|
+
EmrServerlessComputeConfig?: EmrServerlessComputeConfig;
|
3488
|
+
}
|
3483
3489
|
export interface AutoMLContainerDefinition {
|
3484
3490
|
/**
|
3485
3491
|
* The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see ContainerDefinition.
|
@@ -3643,7 +3649,7 @@ declare namespace SageMaker {
|
|
3643
3649
|
*/
|
3644
3650
|
KmsKeyId?: KmsKeyId;
|
3645
3651
|
/**
|
3646
|
-
* The Amazon S3 output path. Must be
|
3652
|
+
* The Amazon S3 output path. Must be 512 characters or less.
|
3647
3653
|
*/
|
3648
3654
|
S3OutputPath: S3Uri;
|
3649
3655
|
}
|
@@ -4001,6 +4007,10 @@ declare namespace SageMaker {
|
|
4001
4007
|
* The generative AI settings for the SageMaker Canvas application.
|
4002
4008
|
*/
|
4003
4009
|
GenerativeAiSettings?: GenerativeAiSettings;
|
4010
|
+
/**
|
4011
|
+
* The settings for running Amazon EMR Serverless data processing jobs in SageMaker Canvas.
|
4012
|
+
*/
|
4013
|
+
EmrServerlessSettings?: EmrServerlessSettings;
|
4004
4014
|
}
|
4005
4015
|
export interface CapacitySize {
|
4006
4016
|
/**
|
@@ -5083,6 +5093,10 @@ declare namespace SageMaker {
|
|
5083
5093
|
* This structure specifies how to split the data into train and validation datasets. The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob, the validation dataset must be less than 2 GB in size. This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
|
5084
5094
|
*/
|
5085
5095
|
DataSplitConfig?: AutoMLDataSplitConfig;
|
5096
|
+
/**
|
5097
|
+
* Specifies the compute configuration for the AutoML job V2.
|
5098
|
+
*/
|
5099
|
+
AutoMLComputeConfig?: AutoMLComputeConfig;
|
5086
5100
|
}
|
5087
5101
|
export interface CreateAutoMLJobV2Response {
|
5088
5102
|
/**
|
@@ -8360,6 +8374,10 @@ declare namespace SageMaker {
|
|
8360
8374
|
* Returns the security configuration for traffic encryption or Amazon VPC settings.
|
8361
8375
|
*/
|
8362
8376
|
SecurityConfig?: AutoMLSecurityConfig;
|
8377
|
+
/**
|
8378
|
+
* The compute configuration used for the AutoML job V2.
|
8379
|
+
*/
|
8380
|
+
AutoMLComputeConfig?: AutoMLComputeConfig;
|
8363
8381
|
}
|
8364
8382
|
export interface DescribeClusterNodeRequest {
|
8365
8383
|
/**
|
@@ -12146,6 +12164,22 @@ declare namespace SageMaker {
|
|
12146
12164
|
export type EdgeVersion = string;
|
12147
12165
|
export type Edges = Edge[];
|
12148
12166
|
export type EfsUid = string;
|
12167
|
+
export interface EmrServerlessComputeConfig {
|
12168
|
+
/**
|
12169
|
+
* The ARN of the IAM role granting the AutoML job V2 the necessary permissions access policies to list, connect to, or manage EMR Serverless jobs. For detailed information about the required permissions of this role, see "How to configure AutoML to initiate a remote job on EMR Serverless for large datasets" in Create a regression or classification job for tabular data using the AutoML API or Create an AutoML job for time-series forecasting using the API.
|
12170
|
+
*/
|
12171
|
+
ExecutionRoleARN: RoleArn;
|
12172
|
+
}
|
12173
|
+
export interface EmrServerlessSettings {
|
12174
|
+
/**
|
12175
|
+
* The Amazon Resource Name (ARN) of the Amazon Web Services IAM role that is assumed for running Amazon EMR Serverless jobs in SageMaker Canvas. This role should have the necessary permissions to read and write data attached and a trust relationship with EMR Serverless.
|
12176
|
+
*/
|
12177
|
+
ExecutionRoleArn?: RoleArn;
|
12178
|
+
/**
|
12179
|
+
* Describes whether Amazon EMR Serverless job capabilities are enabled or disabled in the SageMaker Canvas application.
|
12180
|
+
*/
|
12181
|
+
Status?: FeatureStatus;
|
12182
|
+
}
|
12149
12183
|
export interface EmrSettings {
|
12150
12184
|
/**
|
12151
12185
|
* An array of Amazon Resource Names (ARNs) of the IAM roles that the execution role of SageMaker can assume for performing operations or tasks related to Amazon EMR clusters or Amazon EMR Serverless applications. These roles define the permissions and access policies required when performing Amazon EMR-related operations, such as listing, connecting to, or terminating Amazon EMR clusters or Amazon EMR Serverless applications. They are typically used in cross-account access scenarios, where the Amazon EMR resources (clusters or serverless applications) are located in a different Amazon Web Services account than the SageMaker domain.
|
@@ -18213,7 +18247,7 @@ declare namespace SageMaker {
|
|
18213
18247
|
S3Uri: S3Uri;
|
18214
18248
|
}
|
18215
18249
|
export type MinimumInstanceMetadataServiceVersion = string;
|
18216
|
-
export type MlTools = "DataWrangler"|"FeatureStore"|"EmrClusters"|"AutoMl"|"Experiments"|"Training"|"ModelEvaluation"|"Pipelines"|"Models"|"JumpStart"|"InferenceRecommender"|"Endpoints"|"Projects"|string;
|
18250
|
+
export type MlTools = "DataWrangler"|"FeatureStore"|"EmrClusters"|"AutoMl"|"Experiments"|"Training"|"ModelEvaluation"|"Pipelines"|"Models"|"JumpStart"|"InferenceRecommender"|"Endpoints"|"Projects"|"InferenceOptimization"|string;
|
18217
18251
|
export type MlflowVersion = string;
|
18218
18252
|
export interface Model {
|
18219
18253
|
/**
|
@@ -20881,7 +20915,7 @@ declare namespace SageMaker {
|
|
20881
20915
|
/**
|
20882
20916
|
* The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.
|
20883
20917
|
*/
|
20884
|
-
LocalPath
|
20918
|
+
LocalPath?: ProcessingLocalPath;
|
20885
20919
|
/**
|
20886
20920
|
* Whether to upload the results of the processing job continuously or after the job completes.
|
20887
20921
|
*/
|
@@ -20956,7 +20990,7 @@ declare namespace SageMaker {
|
|
20956
20990
|
*/
|
20957
20991
|
RoutingConfig?: ProductionVariantRoutingConfig;
|
20958
20992
|
/**
|
20959
|
-
* Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions.
|
20993
|
+
* Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions. The AMI version names, and their configurations, are the following: al2-ami-sagemaker-inference-gpu-2 Accelerator: GPU NVIDIA driver version: 535.54.03 CUDA driver version: 12.2 Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*, ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
|
20960
20994
|
*/
|
20961
20995
|
InferenceAmiVersion?: ProductionVariantInferenceAmiVersion;
|
20962
20996
|
}
|