aws-sdk 2.1671.0 → 2.1673.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -1
- package/apis/connect-2017-08-08.min.json +30 -6
- package/apis/ec2-2016-11-15.min.json +1291 -1208
- package/apis/medialive-2017-10-14.min.json +104 -80
- package/apis/sagemaker-2017-07-24.min.json +1005 -979
- package/clients/cognitoidentityserviceprovider.d.ts +31 -31
- package/clients/computeoptimizer.d.ts +2 -2
- package/clients/connect.d.ts +57 -30
- package/clients/ec2.d.ts +104 -12
- package/clients/eks.d.ts +1 -1
- package/clients/medialive.d.ts +6 -0
- package/clients/sagemaker.d.ts +42 -8
- package/clients/ssm.d.ts +16 -16
- package/dist/aws-sdk-core-react-native.js +1 -1
- package/dist/aws-sdk-react-native.js +5 -5
- package/dist/aws-sdk.js +1324 -1217
- package/dist/aws-sdk.min.js +82 -82
- package/lib/core.js +1 -1
- package/package.json +1 -1
package/clients/sagemaker.d.ts
CHANGED
@@ -85,19 +85,19 @@ declare class SageMaker extends Service {
|
|
85
85
|
*/
|
86
86
|
createArtifact(callback?: (err: AWSError, data: SageMaker.Types.CreateArtifactResponse) => void): Request<SageMaker.Types.CreateArtifactResponse, AWSError>;
|
87
87
|
/**
|
88
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
88
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
89
89
|
*/
|
90
90
|
createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
|
91
91
|
/**
|
92
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
92
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. We recommend using the new versions CreateAutoMLJobV2 and DescribeAutoMLJobV2, which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. You can find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob.
|
93
93
|
*/
|
94
94
|
createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
|
95
95
|
/**
|
96
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
96
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
97
97
|
*/
|
98
98
|
createAutoMLJobV2(params: SageMaker.Types.CreateAutoMLJobV2Request, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
|
99
99
|
/**
|
100
|
-
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
100
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. An AutoML job in SageMaker is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment. For more information about AutoML jobs, see https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html in the SageMaker developer guide. AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation. CreateAutoMLJobV2 and DescribeAutoMLJobV2 are new versions of CreateAutoMLJob and DescribeAutoMLJob which offer backward compatibility. CreateAutoMLJobV2 can manage tabular problem types identical to those of its previous version CreateAutoMLJob, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning). Find guidelines about how to migrate a CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. You can find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2.
|
101
101
|
*/
|
102
102
|
createAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
|
103
103
|
/**
|
@@ -3480,6 +3480,12 @@ declare namespace SageMaker {
|
|
3480
3480
|
SampleWeightAttributeName?: SampleWeightAttributeName;
|
3481
3481
|
}
|
3482
3482
|
export type AutoMLChannelType = "training"|"validation"|string;
|
3483
|
+
export interface AutoMLComputeConfig {
|
3484
|
+
/**
|
3485
|
+
* The configuration for using EMR Serverless to run the AutoML job V2. To allow your AutoML job V2 to automatically initiate a remote job on EMR Serverless when additional compute resources are needed to process large datasets, you need to provide an EmrServerlessComputeConfig object, which includes an ExecutionRoleARN attribute, to the AutoMLComputeConfig of the AutoML job V2 input request. By seamlessly transitioning to EMR Serverless when required, the AutoML job can handle datasets that would otherwise exceed the initially provisioned resources, without any manual intervention from you. EMR Serverless is available for the tabular and time series problem types. We recommend setting up this option for tabular datasets larger than 5 GB and time series datasets larger than 30 GB.
|
3486
|
+
*/
|
3487
|
+
EmrServerlessComputeConfig?: EmrServerlessComputeConfig;
|
3488
|
+
}
|
3483
3489
|
export interface AutoMLContainerDefinition {
|
3484
3490
|
/**
|
3485
3491
|
* The Amazon Elastic Container Registry (Amazon ECR) path of the container. For more information, see ContainerDefinition.
|
@@ -3643,7 +3649,7 @@ declare namespace SageMaker {
|
|
3643
3649
|
*/
|
3644
3650
|
KmsKeyId?: KmsKeyId;
|
3645
3651
|
/**
|
3646
|
-
* The Amazon S3 output path. Must be
|
3652
|
+
* The Amazon S3 output path. Must be 512 characters or less.
|
3647
3653
|
*/
|
3648
3654
|
S3OutputPath: S3Uri;
|
3649
3655
|
}
|
@@ -4001,6 +4007,10 @@ declare namespace SageMaker {
|
|
4001
4007
|
* The generative AI settings for the SageMaker Canvas application.
|
4002
4008
|
*/
|
4003
4009
|
GenerativeAiSettings?: GenerativeAiSettings;
|
4010
|
+
/**
|
4011
|
+
* The settings for running Amazon EMR Serverless data processing jobs in SageMaker Canvas.
|
4012
|
+
*/
|
4013
|
+
EmrServerlessSettings?: EmrServerlessSettings;
|
4004
4014
|
}
|
4005
4015
|
export interface CapacitySize {
|
4006
4016
|
/**
|
@@ -5083,6 +5093,10 @@ declare namespace SageMaker {
|
|
5083
5093
|
* This structure specifies how to split the data into train and validation datasets. The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob, the validation dataset must be less than 2 GB in size. This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
|
5084
5094
|
*/
|
5085
5095
|
DataSplitConfig?: AutoMLDataSplitConfig;
|
5096
|
+
/**
|
5097
|
+
* Specifies the compute configuration for the AutoML job V2.
|
5098
|
+
*/
|
5099
|
+
AutoMLComputeConfig?: AutoMLComputeConfig;
|
5086
5100
|
}
|
5087
5101
|
export interface CreateAutoMLJobV2Response {
|
5088
5102
|
/**
|
@@ -8360,6 +8374,10 @@ declare namespace SageMaker {
|
|
8360
8374
|
* Returns the security configuration for traffic encryption or Amazon VPC settings.
|
8361
8375
|
*/
|
8362
8376
|
SecurityConfig?: AutoMLSecurityConfig;
|
8377
|
+
/**
|
8378
|
+
* The compute configuration used for the AutoML job V2.
|
8379
|
+
*/
|
8380
|
+
AutoMLComputeConfig?: AutoMLComputeConfig;
|
8363
8381
|
}
|
8364
8382
|
export interface DescribeClusterNodeRequest {
|
8365
8383
|
/**
|
@@ -12146,6 +12164,22 @@ declare namespace SageMaker {
|
|
12146
12164
|
export type EdgeVersion = string;
|
12147
12165
|
export type Edges = Edge[];
|
12148
12166
|
export type EfsUid = string;
|
12167
|
+
export interface EmrServerlessComputeConfig {
|
12168
|
+
/**
|
12169
|
+
* The ARN of the IAM role granting the AutoML job V2 the necessary permissions access policies to list, connect to, or manage EMR Serverless jobs. For detailed information about the required permissions of this role, see "How to configure AutoML to initiate a remote job on EMR Serverless for large datasets" in Create a regression or classification job for tabular data using the AutoML API or Create an AutoML job for time-series forecasting using the API.
|
12170
|
+
*/
|
12171
|
+
ExecutionRoleARN: RoleArn;
|
12172
|
+
}
|
12173
|
+
export interface EmrServerlessSettings {
|
12174
|
+
/**
|
12175
|
+
* The Amazon Resource Name (ARN) of the Amazon Web Services IAM role that is assumed for running Amazon EMR Serverless jobs in SageMaker Canvas. This role should have the necessary permissions to read and write data attached and a trust relationship with EMR Serverless.
|
12176
|
+
*/
|
12177
|
+
ExecutionRoleArn?: RoleArn;
|
12178
|
+
/**
|
12179
|
+
* Describes whether Amazon EMR Serverless job capabilities are enabled or disabled in the SageMaker Canvas application.
|
12180
|
+
*/
|
12181
|
+
Status?: FeatureStatus;
|
12182
|
+
}
|
12149
12183
|
export interface EmrSettings {
|
12150
12184
|
/**
|
12151
12185
|
* An array of Amazon Resource Names (ARNs) of the IAM roles that the execution role of SageMaker can assume for performing operations or tasks related to Amazon EMR clusters or Amazon EMR Serverless applications. These roles define the permissions and access policies required when performing Amazon EMR-related operations, such as listing, connecting to, or terminating Amazon EMR clusters or Amazon EMR Serverless applications. They are typically used in cross-account access scenarios, where the Amazon EMR resources (clusters or serverless applications) are located in a different Amazon Web Services account than the SageMaker domain.
|
@@ -18213,7 +18247,7 @@ declare namespace SageMaker {
|
|
18213
18247
|
S3Uri: S3Uri;
|
18214
18248
|
}
|
18215
18249
|
export type MinimumInstanceMetadataServiceVersion = string;
|
18216
|
-
export type MlTools = "DataWrangler"|"FeatureStore"|"EmrClusters"|"AutoMl"|"Experiments"|"Training"|"ModelEvaluation"|"Pipelines"|"Models"|"JumpStart"|"InferenceRecommender"|"Endpoints"|"Projects"|string;
|
18250
|
+
export type MlTools = "DataWrangler"|"FeatureStore"|"EmrClusters"|"AutoMl"|"Experiments"|"Training"|"ModelEvaluation"|"Pipelines"|"Models"|"JumpStart"|"InferenceRecommender"|"Endpoints"|"Projects"|"InferenceOptimization"|string;
|
18217
18251
|
export type MlflowVersion = string;
|
18218
18252
|
export interface Model {
|
18219
18253
|
/**
|
@@ -20881,7 +20915,7 @@ declare namespace SageMaker {
|
|
20881
20915
|
/**
|
20882
20916
|
* The local path of a directory where you want Amazon SageMaker to upload its contents to Amazon S3. LocalPath is an absolute path to a directory containing output files. This directory will be created by the platform and exist when your container's entrypoint is invoked.
|
20883
20917
|
*/
|
20884
|
-
LocalPath
|
20918
|
+
LocalPath?: ProcessingLocalPath;
|
20885
20919
|
/**
|
20886
20920
|
* Whether to upload the results of the processing job continuously or after the job completes.
|
20887
20921
|
*/
|
@@ -20956,7 +20990,7 @@ declare namespace SageMaker {
|
|
20956
20990
|
*/
|
20957
20991
|
RoutingConfig?: ProductionVariantRoutingConfig;
|
20958
20992
|
/**
|
20959
|
-
* Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions.
|
20993
|
+
* Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions. The AMI version names, and their configurations, are the following: al2-ami-sagemaker-inference-gpu-2 Accelerator: GPU NVIDIA driver version: 535.54.03 CUDA driver version: 12.2 Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*, ml.p3.*, ml.p4d.*, ml.p4de.*, ml.p5.*
|
20960
20994
|
*/
|
20961
20995
|
InferenceAmiVersion?: ProductionVariantInferenceAmiVersion;
|
20962
20996
|
}
|
package/clients/ssm.d.ts
CHANGED
@@ -341,11 +341,11 @@ declare class SSM extends Service {
|
|
341
341
|
*/
|
342
342
|
describeInstanceAssociationsStatus(callback?: (err: AWSError, data: SSM.Types.DescribeInstanceAssociationsStatusResult) => void): Request<SSM.Types.DescribeInstanceAssociationsStatusResult, AWSError>;
|
343
343
|
/**
|
344
|
-
* Provides information about one or more of your managed nodes, including the operating system platform, SSM Agent version, association status, and IP address. This operation does not return information for nodes that are either Stopped or Terminated. If you specify one or more node IDs, the operation returns information for those managed nodes. If you don't specify node IDs, it returns information for all your managed nodes. If you specify a node ID that isn't valid or a node that you don't own, you receive an error. The IamRole field returned for this API operation is the
|
344
|
+
* Provides information about one or more of your managed nodes, including the operating system platform, SSM Agent version, association status, and IP address. This operation does not return information for nodes that are either Stopped or Terminated. If you specify one or more node IDs, the operation returns information for those managed nodes. If you don't specify node IDs, it returns information for all your managed nodes. If you specify a node ID that isn't valid or a node that you don't own, you receive an error. The IamRole field returned for this API operation is the role assigned to an Amazon EC2 instance configured with a Systems Manager Quick Setup host management configuration or the role assigned to an on-premises managed node.
|
345
345
|
*/
|
346
346
|
describeInstanceInformation(params: SSM.Types.DescribeInstanceInformationRequest, callback?: (err: AWSError, data: SSM.Types.DescribeInstanceInformationResult) => void): Request<SSM.Types.DescribeInstanceInformationResult, AWSError>;
|
347
347
|
/**
|
348
|
-
* Provides information about one or more of your managed nodes, including the operating system platform, SSM Agent version, association status, and IP address. This operation does not return information for nodes that are either Stopped or Terminated. If you specify one or more node IDs, the operation returns information for those managed nodes. If you don't specify node IDs, it returns information for all your managed nodes. If you specify a node ID that isn't valid or a node that you don't own, you receive an error. The IamRole field returned for this API operation is the
|
348
|
+
* Provides information about one or more of your managed nodes, including the operating system platform, SSM Agent version, association status, and IP address. This operation does not return information for nodes that are either Stopped or Terminated. If you specify one or more node IDs, the operation returns information for those managed nodes. If you don't specify node IDs, it returns information for all your managed nodes. If you specify a node ID that isn't valid or a node that you don't own, you receive an error. The IamRole field returned for this API operation is the role assigned to an Amazon EC2 instance configured with a Systems Manager Quick Setup host management configuration or the role assigned to an on-premises managed node.
|
349
349
|
*/
|
350
350
|
describeInstanceInformation(callback?: (err: AWSError, data: SSM.Types.DescribeInstanceInformationResult) => void): Request<SSM.Types.DescribeInstanceInformationResult, AWSError>;
|
351
351
|
/**
|
@@ -493,11 +493,11 @@ declare class SSM extends Service {
|
|
493
493
|
*/
|
494
494
|
describePatchGroups(callback?: (err: AWSError, data: SSM.Types.DescribePatchGroupsResult) => void): Request<SSM.Types.DescribePatchGroupsResult, AWSError>;
|
495
495
|
/**
|
496
|
-
* Lists the properties of available patches organized by product, product family, classification, severity, and other properties of available patches. You can use the reported properties in the filters you specify in requests for operations such as CreatePatchBaseline, UpdatePatchBaseline, DescribeAvailablePatches, and DescribePatchBaselines. The following section lists the properties that can be used in filters for each major operating system type: AMAZON_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY AMAZON_LINUX_2 Valid properties: PRODUCT | CLASSIFICATION | SEVERITY CENTOS Valid properties: PRODUCT | CLASSIFICATION | SEVERITY DEBIAN Valid properties: PRODUCT | PRIORITY MACOS Valid properties: PRODUCT | CLASSIFICATION ORACLE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY REDHAT_ENTERPRISE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY SUSE Valid properties: PRODUCT | CLASSIFICATION | SEVERITY UBUNTU Valid properties: PRODUCT | PRIORITY WINDOWS Valid properties: PRODUCT | PRODUCT_FAMILY | CLASSIFICATION | MSRC_SEVERITY
|
496
|
+
* Lists the properties of available patches organized by product, product family, classification, severity, and other properties of available patches. You can use the reported properties in the filters you specify in requests for operations such as CreatePatchBaseline, UpdatePatchBaseline, DescribeAvailablePatches, and DescribePatchBaselines. The following section lists the properties that can be used in filters for each major operating system type: AMAZON_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY AMAZON_LINUX_2 Valid properties: PRODUCT | CLASSIFICATION | SEVERITY AMAZON_LINUX_2023 Valid properties: PRODUCT | CLASSIFICATION | SEVERITY CENTOS Valid properties: PRODUCT | CLASSIFICATION | SEVERITY DEBIAN Valid properties: PRODUCT | PRIORITY MACOS Valid properties: PRODUCT | CLASSIFICATION ORACLE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY REDHAT_ENTERPRISE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY SUSE Valid properties: PRODUCT | CLASSIFICATION | SEVERITY UBUNTU Valid properties: PRODUCT | PRIORITY WINDOWS Valid properties: PRODUCT | PRODUCT_FAMILY | CLASSIFICATION | MSRC_SEVERITY
|
497
497
|
*/
|
498
498
|
describePatchProperties(params: SSM.Types.DescribePatchPropertiesRequest, callback?: (err: AWSError, data: SSM.Types.DescribePatchPropertiesResult) => void): Request<SSM.Types.DescribePatchPropertiesResult, AWSError>;
|
499
499
|
/**
|
500
|
-
* Lists the properties of available patches organized by product, product family, classification, severity, and other properties of available patches. You can use the reported properties in the filters you specify in requests for operations such as CreatePatchBaseline, UpdatePatchBaseline, DescribeAvailablePatches, and DescribePatchBaselines. The following section lists the properties that can be used in filters for each major operating system type: AMAZON_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY AMAZON_LINUX_2 Valid properties: PRODUCT | CLASSIFICATION | SEVERITY CENTOS Valid properties: PRODUCT | CLASSIFICATION | SEVERITY DEBIAN Valid properties: PRODUCT | PRIORITY MACOS Valid properties: PRODUCT | CLASSIFICATION ORACLE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY REDHAT_ENTERPRISE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY SUSE Valid properties: PRODUCT | CLASSIFICATION | SEVERITY UBUNTU Valid properties: PRODUCT | PRIORITY WINDOWS Valid properties: PRODUCT | PRODUCT_FAMILY | CLASSIFICATION | MSRC_SEVERITY
|
500
|
+
* Lists the properties of available patches organized by product, product family, classification, severity, and other properties of available patches. You can use the reported properties in the filters you specify in requests for operations such as CreatePatchBaseline, UpdatePatchBaseline, DescribeAvailablePatches, and DescribePatchBaselines. The following section lists the properties that can be used in filters for each major operating system type: AMAZON_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY AMAZON_LINUX_2 Valid properties: PRODUCT | CLASSIFICATION | SEVERITY AMAZON_LINUX_2023 Valid properties: PRODUCT | CLASSIFICATION | SEVERITY CENTOS Valid properties: PRODUCT | CLASSIFICATION | SEVERITY DEBIAN Valid properties: PRODUCT | PRIORITY MACOS Valid properties: PRODUCT | CLASSIFICATION ORACLE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY REDHAT_ENTERPRISE_LINUX Valid properties: PRODUCT | CLASSIFICATION | SEVERITY SUSE Valid properties: PRODUCT | CLASSIFICATION | SEVERITY UBUNTU Valid properties: PRODUCT | PRIORITY WINDOWS Valid properties: PRODUCT | PRODUCT_FAMILY | CLASSIFICATION | MSRC_SEVERITY
|
501
501
|
*/
|
502
502
|
describePatchProperties(callback?: (err: AWSError, data: SSM.Types.DescribePatchPropertiesResult) => void): Request<SSM.Types.DescribePatchPropertiesResult, AWSError>;
|
503
503
|
/**
|
@@ -533,11 +533,11 @@ declare class SSM extends Service {
|
|
533
533
|
*/
|
534
534
|
getCalendarState(callback?: (err: AWSError, data: SSM.Types.GetCalendarStateResponse) => void): Request<SSM.Types.GetCalendarStateResponse, AWSError>;
|
535
535
|
/**
|
536
|
-
* Returns detailed information about command execution for an invocation or plugin. GetCommandInvocation only gives the execution status of a plugin in a document. To get the command execution status on a specific managed node, use ListCommandInvocations. To get the command execution status across managed nodes, use ListCommands.
|
536
|
+
* Returns detailed information about command execution for an invocation or plugin. The Run Command API follows an eventual consistency model, due to the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your resources might not be immediately visible to all subsequent commands you run. You should keep this in mind when you carry out an API command that immediately follows a previous API command. GetCommandInvocation only gives the execution status of a plugin in a document. To get the command execution status on a specific managed node, use ListCommandInvocations. To get the command execution status across managed nodes, use ListCommands.
|
537
537
|
*/
|
538
538
|
getCommandInvocation(params: SSM.Types.GetCommandInvocationRequest, callback?: (err: AWSError, data: SSM.Types.GetCommandInvocationResult) => void): Request<SSM.Types.GetCommandInvocationResult, AWSError>;
|
539
539
|
/**
|
540
|
-
* Returns detailed information about command execution for an invocation or plugin. GetCommandInvocation only gives the execution status of a plugin in a document. To get the command execution status on a specific managed node, use ListCommandInvocations. To get the command execution status across managed nodes, use ListCommands.
|
540
|
+
* Returns detailed information about command execution for an invocation or plugin. The Run Command API follows an eventual consistency model, due to the distributed nature of the system supporting the API. This means that the result of an API command you run that affects your resources might not be immediately visible to all subsequent commands you run. You should keep this in mind when you carry out an API command that immediately follows a previous API command. GetCommandInvocation only gives the execution status of a plugin in a document. To get the command execution status on a specific managed node, use ListCommandInvocations. To get the command execution status across managed nodes, use ListCommands.
|
541
541
|
*/
|
542
542
|
getCommandInvocation(callback?: (err: AWSError, data: SSM.Types.GetCommandInvocationResult) => void): Request<SSM.Types.GetCommandInvocationResult, AWSError>;
|
543
543
|
/**
|
@@ -2964,7 +2964,7 @@ declare namespace SSM {
|
|
2964
2964
|
*/
|
2965
2965
|
RejectedPatches?: PatchIdList;
|
2966
2966
|
/**
|
2967
|
-
* The action for Patch Manager to take on patches included in the RejectedPackages list.
|
2967
|
+
* The action for Patch Manager to take on patches included in the RejectedPackages list. ALLOW_AS_DEPENDENCY Linux and macOS: A package in the rejected patches list is installed only if it is a dependency of another package. It is considered compliant with the patch baseline, and its status is reported as INSTALLED_OTHER. This is the default action if no option is specified. Windows Server: Windows Server doesn't support the concept of package dependencies. If a package in the rejected patches list and already installed on the node, its status is reported as INSTALLED_OTHER. Any package not already installed on the node is skipped. This is the default action if no option is specified. BLOCK All OSs: Packages in the rejected patches list, and packages that include them as dependencies, aren't installed by Patch Manager under any circumstances. If a package was installed before it was added to the rejected patches list, or is installed outside of Patch Manager afterward, it's considered noncompliant with the patch baseline and its status is reported as INSTALLED_REJECTED.
|
2968
2968
|
*/
|
2969
2969
|
RejectedPatchesAction?: PatchAction;
|
2970
2970
|
/**
|
@@ -5223,7 +5223,7 @@ declare namespace SSM {
|
|
5223
5223
|
*/
|
5224
5224
|
TaskArn?: MaintenanceWindowTaskArn;
|
5225
5225
|
/**
|
5226
|
-
* The Amazon Resource Name (ARN) of the
|
5226
|
+
* The Amazon Resource Name (ARN) of the IAM service role for Amazon Web Services Systems Manager to assume when running a maintenance window task. If you do not specify a service role ARN, Systems Manager uses a service-linked role in your account. If no appropriate service-linked role for Systems Manager exists in your account, it is created when you run RegisterTaskWithMaintenanceWindow. However, for an improved security posture, we strongly recommend creating a custom policy and custom service role for running your maintenance window tasks. The policy can be crafted to provide only the permissions needed for your particular maintenance window tasks. For more information, see Setting up maintenance windows in the in the Amazon Web Services Systems Manager User Guide.
|
5227
5227
|
*/
|
5228
5228
|
ServiceRoleArn?: ServiceRole;
|
5229
5229
|
/**
|
@@ -5736,7 +5736,7 @@ declare namespace SSM {
|
|
5736
5736
|
*/
|
5737
5737
|
ActivationId?: ActivationId;
|
5738
5738
|
/**
|
5739
|
-
* The
|
5739
|
+
* The role assigned to an Amazon EC2 instance configured with a Systems Manager Quick Setup host management configuration or the role assigned to an on-premises managed node. This call doesn't return the IAM role for unmanaged Amazon EC2 instances (instances not configured for Systems Manager). To retrieve the role for an unmanaged instance, use the Amazon EC2 DescribeInstances operation. For information, see DescribeInstances in the Amazon EC2 API Reference or describe-instances in the Amazon Web Services CLI Command Reference.
|
5740
5740
|
*/
|
5741
5741
|
IamRole?: IamRole;
|
5742
5742
|
/**
|
@@ -7060,7 +7060,7 @@ declare namespace SSM {
|
|
7060
7060
|
*/
|
7061
7061
|
Parameters?: Parameters;
|
7062
7062
|
/**
|
7063
|
-
* The Amazon Resource Name (ARN) of the
|
7063
|
+
* The Amazon Resource Name (ARN) of the IAM service role for Amazon Web Services Systems Manager to assume when running a maintenance window task. If you do not specify a service role ARN, Systems Manager uses a service-linked role in your account. If no appropriate service-linked role for Systems Manager exists in your account, it is created when you run RegisterTaskWithMaintenanceWindow. However, for an improved security posture, we strongly recommend creating a custom policy and custom service role for running your maintenance window tasks. The policy can be crafted to provide only the permissions needed for your particular maintenance window tasks. For more information, see Setting up maintenance windows in the in the Amazon Web Services Systems Manager User Guide.
|
7064
7064
|
*/
|
7065
7065
|
ServiceRoleArn?: ServiceRole;
|
7066
7066
|
/**
|
@@ -7149,7 +7149,7 @@ declare namespace SSM {
|
|
7149
7149
|
*/
|
7150
7150
|
LoggingInfo?: LoggingInfo;
|
7151
7151
|
/**
|
7152
|
-
* The Amazon Resource Name (ARN) of the
|
7152
|
+
* The Amazon Resource Name (ARN) of the IAM service role for Amazon Web Services Systems Manager to assume when running a maintenance window task. If you do not specify a service role ARN, Systems Manager uses a service-linked role in your account. If no appropriate service-linked role for Systems Manager exists in your account, it is created when you run RegisterTaskWithMaintenanceWindow. However, for an improved security posture, we strongly recommend creating a custom policy and custom service role for running your maintenance window tasks. The policy can be crafted to provide only the permissions needed for your particular maintenance window tasks. For more information, see Setting up maintenance windows in the in the Amazon Web Services Systems Manager User Guide.
|
7153
7153
|
*/
|
7154
7154
|
ServiceRoleArn?: ServiceRole;
|
7155
7155
|
/**
|
@@ -8100,7 +8100,7 @@ declare namespace SSM {
|
|
8100
8100
|
*/
|
8101
8101
|
BaselineDescription?: BaselineDescription;
|
8102
8102
|
/**
|
8103
|
-
*
|
8103
|
+
* Indicates whether this is the default baseline. Amazon Web Services Systems Manager supports creating multiple default patch baselines. For example, you can create a default patch baseline for each operating system.
|
8104
8104
|
*/
|
8105
8105
|
DefaultBaseline?: DefaultBaseline;
|
8106
8106
|
}
|
@@ -8232,11 +8232,11 @@ declare namespace SSM {
|
|
8232
8232
|
*/
|
8233
8233
|
ComplianceLevel?: PatchComplianceLevel;
|
8234
8234
|
/**
|
8235
|
-
* The number of days after the release date of each patch matched by the rule that the patch is marked as approved in the patch baseline. For example, a value of 7 means that patches are approved seven days after they are released. Not supported
|
8235
|
+
* The number of days after the release date of each patch matched by the rule that the patch is marked as approved in the patch baseline. For example, a value of 7 means that patches are approved seven days after they are released. This parameter is marked as not required, but your request must include a value for either ApproveAfterDays or ApproveUntilDate. Not supported for Debian Server or Ubuntu Server.
|
8236
8236
|
*/
|
8237
8237
|
ApproveAfterDays?: ApproveAfterDays;
|
8238
8238
|
/**
|
8239
|
-
* The cutoff date for auto approval of released patches. Any patches released on or before this date are installed automatically.
|
8239
|
+
* The cutoff date for auto approval of released patches. Any patches released on or before this date are installed automatically. Enter dates in the format YYYY-MM-DD. For example, 2021-12-31. This parameter is marked as not required, but your request must include a value for either ApproveUntilDate or ApproveAfterDays. Not supported for Debian Server or Ubuntu Server.
|
8240
8240
|
*/
|
8241
8241
|
ApproveUntilDate?: PatchStringDateTime;
|
8242
8242
|
/**
|
@@ -10038,7 +10038,7 @@ declare namespace SSM {
|
|
10038
10038
|
*/
|
10039
10039
|
TaskArn?: MaintenanceWindowTaskArn;
|
10040
10040
|
/**
|
10041
|
-
* The Amazon Resource Name (ARN) of the
|
10041
|
+
* The Amazon Resource Name (ARN) of the IAM service role for Amazon Web Services Systems Manager to assume when running a maintenance window task. If you do not specify a service role ARN, Systems Manager uses a service-linked role in your account. If no appropriate service-linked role for Systems Manager exists in your account, it is created when you run RegisterTaskWithMaintenanceWindow. However, for an improved security posture, we strongly recommend creating a custom policy and custom service role for running your maintenance window tasks. The policy can be crafted to provide only the permissions needed for your particular maintenance window tasks. For more information, see Setting up maintenance windows in the in the Amazon Web Services Systems Manager User Guide.
|
10042
10042
|
*/
|
10043
10043
|
ServiceRoleArn?: ServiceRole;
|
10044
10044
|
/**
|
@@ -10216,7 +10216,7 @@ declare namespace SSM {
|
|
10216
10216
|
*/
|
10217
10217
|
RejectedPatches?: PatchIdList;
|
10218
10218
|
/**
|
10219
|
-
* The action for Patch Manager to take on patches included in the RejectedPackages list.
|
10219
|
+
* The action for Patch Manager to take on patches included in the RejectedPackages list. ALLOW_AS_DEPENDENCY Linux and macOS: A package in the rejected patches list is installed only if it is a dependency of another package. It is considered compliant with the patch baseline, and its status is reported as INSTALLED_OTHER. This is the default action if no option is specified. Windows Server: Windows Server doesn't support the concept of package dependencies. If a package in the rejected patches list and already installed on the node, its status is reported as INSTALLED_OTHER. Any package not already installed on the node is skipped. This is the default action if no option is specified. BLOCK All OSs: Packages in the rejected patches list, and packages that include them as dependencies, aren't installed by Patch Manager under any circumstances. If a package was installed before it was added to the rejected patches list, or is installed outside of Patch Manager afterward, it's considered noncompliant with the patch baseline and its status is reported as INSTALLED_REJECTED.
|
10220
10220
|
*/
|
10221
10221
|
RejectedPatchesAction?: PatchAction;
|
10222
10222
|
/**
|