aws-sdk 2.1656.0 → 2.1657.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -396,6 +396,14 @@ declare class SageMaker extends Service {
396
396
  * Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance. Each lifecycle configuration script has a limit of 16384 characters. The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin. View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook]. Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
397
397
  */
398
398
  createNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.CreateNotebookInstanceLifecycleConfigOutput, AWSError>;
399
+ /**
400
+ * Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify. For more information about how to use this action, and about the supported optimization techniques, see Optimize model inference with Amazon SageMaker.
401
+ */
402
+ createOptimizationJob(params: SageMaker.Types.CreateOptimizationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateOptimizationJobResponse) => void): Request<SageMaker.Types.CreateOptimizationJobResponse, AWSError>;
403
+ /**
404
+ * Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify. For more information about how to use this action, and about the supported optimization techniques, see Optimize model inference with Amazon SageMaker.
405
+ */
406
+ createOptimizationJob(callback?: (err: AWSError, data: SageMaker.Types.CreateOptimizationJobResponse) => void): Request<SageMaker.Types.CreateOptimizationJobResponse, AWSError>;
399
407
  /**
400
408
  * Creates a pipeline using a JSON pipeline definition.
401
409
  */
@@ -844,6 +852,14 @@ declare class SageMaker extends Service {
844
852
  * Deletes a notebook instance lifecycle configuration.
845
853
  */
846
854
  deleteNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
855
+ /**
856
+ * Deletes an optimization job.
857
+ */
858
+ deleteOptimizationJob(params: SageMaker.Types.DeleteOptimizationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
859
+ /**
860
+ * Deletes an optimization job.
861
+ */
862
+ deleteOptimizationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
847
863
  /**
848
864
  * Deletes a pipeline if there are no running instances of the pipeline. To delete a pipeline, you must stop all running instances of the pipeline using the StopPipelineExecution API. When you delete a pipeline, all instances of the pipeline are deleted.
849
865
  */
@@ -1308,6 +1324,14 @@ declare class SageMaker extends Service {
1308
1324
  * Returns a description of a notebook instance lifecycle configuration. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
1309
1325
  */
1310
1326
  describeNotebookInstanceLifecycleConfig(callback?: (err: AWSError, data: SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput) => void): Request<SageMaker.Types.DescribeNotebookInstanceLifecycleConfigOutput, AWSError>;
1327
+ /**
1328
+ * Provides the properties of the specified optimization job.
1329
+ */
1330
+ describeOptimizationJob(params: SageMaker.Types.DescribeOptimizationJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeOptimizationJobResponse) => void): Request<SageMaker.Types.DescribeOptimizationJobResponse, AWSError>;
1331
+ /**
1332
+ * Provides the properties of the specified optimization job.
1333
+ */
1334
+ describeOptimizationJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeOptimizationJobResponse) => void): Request<SageMaker.Types.DescribeOptimizationJobResponse, AWSError>;
1311
1335
  /**
1312
1336
  * Describes the details of a pipeline.
1313
1337
  */
@@ -1956,6 +1980,14 @@ declare class SageMaker extends Service {
1956
1980
  * Returns a list of the SageMaker notebook instances in the requester's account in an Amazon Web Services Region.
1957
1981
  */
1958
1982
  listNotebookInstances(callback?: (err: AWSError, data: SageMaker.Types.ListNotebookInstancesOutput) => void): Request<SageMaker.Types.ListNotebookInstancesOutput, AWSError>;
1983
+ /**
1984
+ * Lists the optimization jobs in your account and their properties.
1985
+ */
1986
+ listOptimizationJobs(params: SageMaker.Types.ListOptimizationJobsRequest, callback?: (err: AWSError, data: SageMaker.Types.ListOptimizationJobsResponse) => void): Request<SageMaker.Types.ListOptimizationJobsResponse, AWSError>;
1987
+ /**
1988
+ * Lists the optimization jobs in your account and their properties.
1989
+ */
1990
+ listOptimizationJobs(callback?: (err: AWSError, data: SageMaker.Types.ListOptimizationJobsResponse) => void): Request<SageMaker.Types.ListOptimizationJobsResponse, AWSError>;
1959
1991
  /**
1960
1992
  * Gets a list of PipeLineExecutionStep objects.
1961
1993
  */
@@ -2316,6 +2348,14 @@ declare class SageMaker extends Service {
2316
2348
  * Terminates the ML compute instance. Before terminating the instance, SageMaker disconnects the ML storage volume from it. SageMaker preserves the ML storage volume. SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance. To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.
2317
2349
  */
2318
2350
  stopNotebookInstance(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2351
+ /**
2352
+ * Ends a running inference optimization job.
2353
+ */
2354
+ stopOptimizationJob(params: SageMaker.Types.StopOptimizationJobRequest, callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2355
+ /**
2356
+ * Ends a running inference optimization job.
2357
+ */
2358
+ stopOptimizationJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2319
2359
  /**
2320
2360
  * Stops a pipeline execution. Callback Step A pipeline execution won't stop while a callback step is running. When you call StopPipelineExecution on a pipeline execution with a running callback step, SageMaker Pipelines sends an additional Amazon SQS message to the specified SQS queue. The body of the SQS message contains a "Status" field which is set to "Stopping". You should add logic to your Amazon SQS message consumer to take any needed action (for example, resource cleanup) upon receipt of the message followed by a call to SendPipelineExecutionStepSuccess or SendPipelineExecutionStepFailure. Only when SageMaker Pipelines receives one of these calls will it stop the pipeline execution. Lambda Step A pipeline execution can't be stopped while a lambda step is running because the Lambda function invoked by the lambda step can't be stopped. If you attempt to stop the execution while the Lambda function is running, the pipeline waits for the Lambda function to finish or until the timeout is hit, whichever occurs first, and then stops. If the Lambda function finishes, the pipeline execution status is Stopped. If the timeout is hit the pipeline execution status is Failed.
2321
2361
  */
@@ -2880,6 +2920,15 @@ declare namespace SageMaker {
2880
2920
  SupportedResponseMIMETypes?: ResponseMIMETypes;
2881
2921
  }
2882
2922
  export type AdditionalInferenceSpecifications = AdditionalInferenceSpecificationDefinition[];
2923
+ export type AdditionalModelChannelName = string;
2924
+ export interface AdditionalModelDataSource {
2925
+ /**
2926
+ * A custom name for this AdditionalModelDataSource object.
2927
+ */
2928
+ ChannelName: AdditionalModelChannelName;
2929
+ S3DataSource: S3ModelDataSource;
2930
+ }
2931
+ export type AdditionalModelDataSources = AdditionalModelDataSource[];
2883
2932
  export interface AdditionalS3DataSource {
2884
2933
  /**
2885
2934
  * The data type of the additional data source that you specify for use in inference or training.
@@ -3024,6 +3073,16 @@ declare namespace SageMaker {
3024
3073
  */
3025
3074
  ValidationProfiles: AlgorithmValidationProfiles;
3026
3075
  }
3076
+ export interface AmazonQSettings {
3077
+ /**
3078
+ * Whether Amazon Q has been enabled within the domain.
3079
+ */
3080
+ Status?: FeatureStatus;
3081
+ /**
3082
+ * The ARN of the Amazon Q profile used within the domain.
3083
+ */
3084
+ QProfileArn?: QProfileArn;
3085
+ }
3027
3086
  export interface AnnotationConsolidationConfig {
3028
3087
  /**
3029
3088
  * The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking 3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection 3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
@@ -4655,6 +4714,10 @@ declare namespace SageMaker {
4655
4714
  * Specifies the location of ML model data to deploy. Currently you cannot use ModelDataSource in conjunction with SageMaker batch transform, SageMaker serverless endpoints, SageMaker multi-model endpoints, and SageMaker Marketplace.
4656
4715
  */
4657
4716
  ModelDataSource?: ModelDataSource;
4717
+ /**
4718
+ * Data sources that are available to your model in addition to the one that you specify for ModelDataSource when you use the CreateModel action.
4719
+ */
4720
+ AdditionalModelDataSources?: AdditionalModelDataSources;
4658
4721
  /**
4659
4722
  * The environment variables to set in the Docker container. The maximum length of each key and value in the Environment map is 1024 bytes. The maximum length of all keys and values in the map, combined, is 32 KB. If you pass multiple containers to a CreateModel request, then the maximum length of all of their maps, combined, is also 32 KB.
4660
4723
  */
@@ -6351,6 +6414,51 @@ declare namespace SageMaker {
6351
6414
  */
6352
6415
  NotebookInstanceArn?: NotebookInstanceArn;
6353
6416
  }
6417
+ export interface CreateOptimizationJobRequest {
6418
+ /**
6419
+ * A custom name for the new optimization job.
6420
+ */
6421
+ OptimizationJobName: EntityName;
6422
+ /**
6423
+ * The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model optimization, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
6424
+ */
6425
+ RoleArn: RoleArn;
6426
+ /**
6427
+ * The location of the source model to optimize with an optimization job.
6428
+ */
6429
+ ModelSource: OptimizationJobModelSource;
6430
+ /**
6431
+ * The type of instance that hosts the optimized model that you create with the optimization job.
6432
+ */
6433
+ DeploymentInstanceType: OptimizationJobDeploymentInstanceType;
6434
+ /**
6435
+ * The environment variables to set in the model container.
6436
+ */
6437
+ OptimizationEnvironment?: OptimizationJobEnvironmentVariables;
6438
+ /**
6439
+ * Settings for each of the optimization techniques that the job applies.
6440
+ */
6441
+ OptimizationConfigs: OptimizationConfigs;
6442
+ /**
6443
+ * Details for where to store the optimized model that you create with the optimization job.
6444
+ */
6445
+ OutputConfig: OptimizationJobOutputConfig;
6446
+ StoppingCondition: StoppingCondition;
6447
+ /**
6448
+ * A list of key-value pairs associated with the optimization job. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
6449
+ */
6450
+ Tags?: TagList;
6451
+ /**
6452
+ * A VPC in Amazon VPC that your optimized model has access to.
6453
+ */
6454
+ VpcConfig?: OptimizationVpcConfig;
6455
+ }
6456
+ export interface CreateOptimizationJobResponse {
6457
+ /**
6458
+ * The Amazon Resource Name (ARN) of the optimization job.
6459
+ */
6460
+ OptimizationJobArn: OptimizationJobArn;
6461
+ }
6354
6462
  export interface CreatePipelineRequest {
6355
6463
  /**
6356
6464
  * The name of the pipeline.
@@ -7611,6 +7719,12 @@ declare namespace SageMaker {
7611
7719
  */
7612
7720
  NotebookInstanceLifecycleConfigName: NotebookInstanceLifecycleConfigName;
7613
7721
  }
7722
+ export interface DeleteOptimizationJobRequest {
7723
+ /**
7724
+ * The name that you assigned to the optimization job.
7725
+ */
7726
+ OptimizationJobName: EntityName;
7727
+ }
7614
7728
  export interface DeletePipelineRequest {
7615
7729
  /**
7616
7730
  * The name of the pipeline to delete.
@@ -10473,6 +10587,79 @@ declare namespace SageMaker {
10473
10587
  */
10474
10588
  InstanceMetadataServiceConfiguration?: InstanceMetadataServiceConfiguration;
10475
10589
  }
10590
+ export interface DescribeOptimizationJobRequest {
10591
+ /**
10592
+ * The name that you assigned to the optimization job.
10593
+ */
10594
+ OptimizationJobName: EntityName;
10595
+ }
10596
+ export interface DescribeOptimizationJobResponse {
10597
+ /**
10598
+ * The Amazon Resource Name (ARN) of the optimization job.
10599
+ */
10600
+ OptimizationJobArn: OptimizationJobArn;
10601
+ /**
10602
+ * The current status of the optimization job.
10603
+ */
10604
+ OptimizationJobStatus: OptimizationJobStatus;
10605
+ /**
10606
+ * The time when the optimization job started.
10607
+ */
10608
+ OptimizationStartTime?: Timestamp;
10609
+ /**
10610
+ * The time when the optimization job finished processing.
10611
+ */
10612
+ OptimizationEndTime?: Timestamp;
10613
+ /**
10614
+ * The time when you created the optimization job.
10615
+ */
10616
+ CreationTime: CreationTime;
10617
+ /**
10618
+ * The time when the optimization job was last updated.
10619
+ */
10620
+ LastModifiedTime: LastModifiedTime;
10621
+ /**
10622
+ * If the optimization job status is FAILED, the reason for the failure.
10623
+ */
10624
+ FailureReason?: FailureReason;
10625
+ /**
10626
+ * The name that you assigned to the optimization job.
10627
+ */
10628
+ OptimizationJobName: EntityName;
10629
+ /**
10630
+ * The location of the source model to optimize with an optimization job.
10631
+ */
10632
+ ModelSource: OptimizationJobModelSource;
10633
+ /**
10634
+ * The environment variables to set in the model container.
10635
+ */
10636
+ OptimizationEnvironment?: OptimizationJobEnvironmentVariables;
10637
+ /**
10638
+ * The type of instance that hosts the optimized model that you create with the optimization job.
10639
+ */
10640
+ DeploymentInstanceType: OptimizationJobDeploymentInstanceType;
10641
+ /**
10642
+ * Settings for each of the optimization techniques that the job applies.
10643
+ */
10644
+ OptimizationConfigs: OptimizationConfigs;
10645
+ /**
10646
+ * Details for where to store the optimized model that you create with the optimization job.
10647
+ */
10648
+ OutputConfig: OptimizationJobOutputConfig;
10649
+ /**
10650
+ * Output values produced by an optimization job.
10651
+ */
10652
+ OptimizationOutput?: OptimizationOutput;
10653
+ /**
10654
+ * The ARN of the IAM role that you assigned to the optimization job.
10655
+ */
10656
+ RoleArn: RoleArn;
10657
+ StoppingCondition: StoppingCondition;
10658
+ /**
10659
+ * A VPC in Amazon VPC that your optimized model has access to.
10660
+ */
10661
+ VpcConfig?: OptimizationVpcConfig;
10662
+ }
10476
10663
  export interface DescribePipelineDefinitionForExecutionRequest {
10477
10664
  /**
10478
10665
  * The Amazon Resource Name (ARN) of the pipeline execution.
@@ -11575,6 +11762,10 @@ declare namespace SageMaker {
11575
11762
  * A collection of settings that configure the domain's Docker interaction.
11576
11763
  */
11577
11764
  DockerSettings?: DockerSettings;
11765
+ /**
11766
+ * A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
11767
+ */
11768
+ AmazonQSettings?: AmazonQSettings;
11578
11769
  }
11579
11770
  export interface DomainSettingsForUpdate {
11580
11771
  /**
@@ -11593,6 +11784,10 @@ declare namespace SageMaker {
11593
11784
  * A collection of settings that configure the domain's Docker interaction.
11594
11785
  */
11595
11786
  DockerSettings?: DockerSettings;
11787
+ /**
11788
+ * A collection of settings that configure the Amazon Q experience within the domain.
11789
+ */
11790
+ AmazonQSettings?: AmazonQSettings;
11596
11791
  }
11597
11792
  export type DomainStatus = "Deleting"|"Failed"|"InService"|"Pending"|"Updating"|"Update_Failed"|"Delete_Failed"|string;
11598
11793
  export type Double = number;
@@ -17042,6 +17237,63 @@ declare namespace SageMaker {
17042
17237
  */
17043
17238
  NotebookInstances?: NotebookInstanceSummaryList;
17044
17239
  }
17240
+ export interface ListOptimizationJobsRequest {
17241
+ /**
17242
+ * A token that you use to get the next set of results following a truncated response. If the response to the previous request was truncated, that response provides the value for this token.
17243
+ */
17244
+ NextToken?: NextToken;
17245
+ /**
17246
+ * The maximum number of optimization jobs to return in the response. The default is 50.
17247
+ */
17248
+ MaxResults?: MaxResults;
17249
+ /**
17250
+ * Filters the results to only those optimization jobs that were created after the specified time.
17251
+ */
17252
+ CreationTimeAfter?: CreationTime;
17253
+ /**
17254
+ * Filters the results to only those optimization jobs that were created before the specified time.
17255
+ */
17256
+ CreationTimeBefore?: CreationTime;
17257
+ /**
17258
+ * Filters the results to only those optimization jobs that were updated after the specified time.
17259
+ */
17260
+ LastModifiedTimeAfter?: LastModifiedTime;
17261
+ /**
17262
+ * Filters the results to only those optimization jobs that were updated before the specified time.
17263
+ */
17264
+ LastModifiedTimeBefore?: LastModifiedTime;
17265
+ /**
17266
+ * Filters the results to only those optimization jobs that apply the specified optimization techniques. You can specify either Quantization or Compilation.
17267
+ */
17268
+ OptimizationContains?: NameContains;
17269
+ /**
17270
+ * Filters the results to only those optimization jobs with a name that contains the specified string.
17271
+ */
17272
+ NameContains?: NameContains;
17273
+ /**
17274
+ * Filters the results to only those optimization jobs with the specified status.
17275
+ */
17276
+ StatusEquals?: OptimizationJobStatus;
17277
+ /**
17278
+ * The field by which to sort the optimization jobs in the response. The default is CreationTime
17279
+ */
17280
+ SortBy?: ListOptimizationJobsSortBy;
17281
+ /**
17282
+ * The sort order for results. The default is Ascending
17283
+ */
17284
+ SortOrder?: SortOrder;
17285
+ }
17286
+ export interface ListOptimizationJobsResponse {
17287
+ /**
17288
+ * A list of optimization jobs and their properties that matches any of the filters you specified in the request.
17289
+ */
17290
+ OptimizationJobSummaries: OptimizationJobSummaries;
17291
+ /**
17292
+ * The token to use in a subsequent request to get the next set of results following a truncated response.
17293
+ */
17294
+ NextToken?: NextToken;
17295
+ }
17296
+ export type ListOptimizationJobsSortBy = "Name"|"CreationTime"|"Status"|string;
17045
17297
  export interface ListPipelineExecutionStepsRequest {
17046
17298
  /**
17047
17299
  * The Amazon Resource Name (ARN) of the pipeline execution.
@@ -18204,6 +18456,16 @@ declare namespace SageMaker {
18204
18456
  */
18205
18457
  InvocationsMaxRetries?: InvocationsMaxRetries;
18206
18458
  }
18459
+ export interface ModelCompilationConfig {
18460
+ /**
18461
+ * The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to run the optimization.
18462
+ */
18463
+ Image?: OptimizationContainerImage;
18464
+ /**
18465
+ * Environment variables that override the default ones in the model container.
18466
+ */
18467
+ OverrideEnvironment?: OptimizationJobEnvironmentVariables;
18468
+ }
18207
18469
  export type ModelCompressionType = "None"|"Gzip"|string;
18208
18470
  export interface ModelConfiguration {
18209
18471
  /**
@@ -18893,6 +19155,16 @@ declare namespace SageMaker {
18893
19155
  */
18894
19156
  GroundTruthS3Input: MonitoringGroundTruthS3Input;
18895
19157
  }
19158
+ export interface ModelQuantizationConfig {
19159
+ /**
19160
+ * The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to run the optimization.
19161
+ */
19162
+ Image?: OptimizationContainerImage;
19163
+ /**
19164
+ * Environment variables that override the default ones in the model container.
19165
+ */
19166
+ OverrideEnvironment?: OptimizationJobEnvironmentVariables;
19167
+ }
18896
19168
  export interface ModelRegisterSettings {
18897
19169
  /**
18898
19170
  * Describes whether the integration to the model registry is enabled or disabled in the Canvas application.
@@ -19707,6 +19979,116 @@ declare namespace SageMaker {
19707
19979
  }
19708
19980
  export type OnlineStoreTotalSizeBytes = number;
19709
19981
  export type Operator = "Equals"|"NotEquals"|"GreaterThan"|"GreaterThanOrEqualTo"|"LessThan"|"LessThanOrEqualTo"|"Contains"|"Exists"|"NotExists"|"In"|string;
19982
+ export interface OptimizationConfig {
19983
+ /**
19984
+ * Settings for the model quantization technique that's applied by a model optimization job.
19985
+ */
19986
+ ModelQuantizationConfig?: ModelQuantizationConfig;
19987
+ /**
19988
+ * Settings for the model compilation technique that's applied by a model optimization job.
19989
+ */
19990
+ ModelCompilationConfig?: ModelCompilationConfig;
19991
+ }
19992
+ export type OptimizationConfigs = OptimizationConfig[];
19993
+ export type OptimizationContainerImage = string;
19994
+ export type OptimizationJobArn = string;
19995
+ export type OptimizationJobDeploymentInstanceType = "ml.p4d.24xlarge"|"ml.p4de.24xlarge"|"ml.p5.48xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.g6.xlarge"|"ml.g6.2xlarge"|"ml.g6.4xlarge"|"ml.g6.8xlarge"|"ml.g6.12xlarge"|"ml.g6.16xlarge"|"ml.g6.24xlarge"|"ml.g6.48xlarge"|"ml.inf2.xlarge"|"ml.inf2.8xlarge"|"ml.inf2.24xlarge"|"ml.inf2.48xlarge"|"ml.trn1.2xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|string;
19996
+ export type OptimizationJobEnvironmentVariables = {[key: string]: String256};
19997
+ export interface OptimizationJobModelSource {
19998
+ /**
19999
+ * The Amazon S3 location of a source model to optimize with an optimization job.
20000
+ */
20001
+ S3?: OptimizationJobModelSourceS3;
20002
+ }
20003
+ export interface OptimizationJobModelSourceS3 {
20004
+ /**
20005
+ * An Amazon S3 URI that locates a source model to optimize with an optimization job.
20006
+ */
20007
+ S3Uri?: S3Uri;
20008
+ /**
20009
+ * The access configuration settings for the source ML model for an optimization job, where you can accept the model end-user license agreement (EULA).
20010
+ */
20011
+ ModelAccessConfig?: OptimizationModelAccessConfig;
20012
+ }
20013
+ export interface OptimizationJobOutputConfig {
20014
+ /**
20015
+ * The Amazon Resource Name (ARN) of a key in Amazon Web Services KMS. SageMaker uses they key to encrypt the artifacts of the optimized model when SageMaker uploads the model to Amazon S3.
20016
+ */
20017
+ KmsKeyId?: KmsKeyId;
20018
+ /**
20019
+ * The Amazon S3 URI for where to store the optimized model that you create with an optimization job.
20020
+ */
20021
+ S3OutputLocation: S3Uri;
20022
+ }
20023
+ export type OptimizationJobStatus = "INPROGRESS"|"COMPLETED"|"FAILED"|"STARTING"|"STOPPING"|"STOPPED"|string;
20024
+ export type OptimizationJobSummaries = OptimizationJobSummary[];
20025
+ export interface OptimizationJobSummary {
20026
+ /**
20027
+ * The name that you assigned to the optimization job.
20028
+ */
20029
+ OptimizationJobName: EntityName;
20030
+ /**
20031
+ * The Amazon Resource Name (ARN) of the optimization job.
20032
+ */
20033
+ OptimizationJobArn: OptimizationJobArn;
20034
+ /**
20035
+ * The time when you created the optimization job.
20036
+ */
20037
+ CreationTime: CreationTime;
20038
+ /**
20039
+ * The current status of the optimization job.
20040
+ */
20041
+ OptimizationJobStatus: OptimizationJobStatus;
20042
+ /**
20043
+ * The time when the optimization job started.
20044
+ */
20045
+ OptimizationStartTime?: Timestamp;
20046
+ /**
20047
+ * The time when the optimization job finished processing.
20048
+ */
20049
+ OptimizationEndTime?: Timestamp;
20050
+ /**
20051
+ * The time when the optimization job was last updated.
20052
+ */
20053
+ LastModifiedTime?: LastModifiedTime;
20054
+ /**
20055
+ * The type of instance that hosts the optimized model that you create with the optimization job.
20056
+ */
20057
+ DeploymentInstanceType: OptimizationJobDeploymentInstanceType;
20058
+ /**
20059
+ * The optimization techniques that are applied by the optimization job.
20060
+ */
20061
+ OptimizationTypes: OptimizationTypes;
20062
+ }
20063
+ export type OptimizationModelAcceptEula = boolean;
20064
+ export interface OptimizationModelAccessConfig {
20065
+ /**
20066
+ * Specifies agreement to the model end-user license agreement (EULA). The AcceptEula value must be explicitly defined as True in order to accept the EULA that this model requires. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
20067
+ */
20068
+ AcceptEula: OptimizationModelAcceptEula;
20069
+ }
20070
+ export interface OptimizationOutput {
20071
+ /**
20072
+ * The image that SageMaker recommends that you use to host the optimized model that you created with an optimization job.
20073
+ */
20074
+ RecommendedInferenceImage?: OptimizationContainerImage;
20075
+ }
20076
+ export type OptimizationType = string;
20077
+ export type OptimizationTypes = OptimizationType[];
20078
+ export interface OptimizationVpcConfig {
20079
+ /**
20080
+ * The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the Subnets field.
20081
+ */
20082
+ SecurityGroupIds: OptimizationVpcSecurityGroupIds;
20083
+ /**
20084
+ * The ID of the subnets in the VPC to which you want to connect your optimized model.
20085
+ */
20086
+ Subnets: OptimizationVpcSubnets;
20087
+ }
20088
+ export type OptimizationVpcSecurityGroupId = string;
20089
+ export type OptimizationVpcSecurityGroupIds = OptimizationVpcSecurityGroupId[];
20090
+ export type OptimizationVpcSubnetId = string;
20091
+ export type OptimizationVpcSubnets = OptimizationVpcSubnetId[];
19710
20092
  export type OptionalDouble = number;
19711
20093
  export type OptionalInteger = number;
19712
20094
  export type OptionalVolumeSizeInGB = number;
@@ -20904,6 +21286,7 @@ declare namespace SageMaker {
20904
21286
  */
20905
21287
  ModelPackageGroupArn: ModelPackageGroupArn;
20906
21288
  }
21289
+ export type QProfileArn = string;
20907
21290
  export interface QualityCheckStepMetadata {
20908
21291
  /**
20909
21292
  * The type of the Quality check step.
@@ -22356,6 +22739,12 @@ declare namespace SageMaker {
22356
22739
  */
22357
22740
  NotebookInstanceName: NotebookInstanceName;
22358
22741
  }
22742
+ export interface StopOptimizationJobRequest {
22743
+ /**
22744
+ * The name that you assigned to the optimization job.
22745
+ */
22746
+ OptimizationJobName: EntityName;
22747
+ }
22359
22748
  export interface StopPipelineExecutionRequest {
22360
22749
  /**
22361
22750
  * The Amazon Resource Name (ARN) of the pipeline execution.
@@ -83,7 +83,7 @@ return /******/ (function(modules) { // webpackBootstrap
83
83
  /**
84
84
  * @constant
85
85
  */
86
- VERSION: '2.1656.0',
86
+ VERSION: '2.1657.0',
87
87
 
88
88
  /**
89
89
  * @api private