aws-sdk 2.1643.0 → 2.1644.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -292,6 +292,14 @@ declare class SageMaker extends Service {
292
292
  * Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. You can select your workforce from one of three providers: A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required. One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas. The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information. You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling. The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data. The output can be used as the manifest file for another labeling job or as training data for your machine learning models. You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in ManifestS3Uri have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active (InProgress) streaming labeling job in real time. To learn how to create a static labeling job, see Create a Labeling Job (API) in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see Create a Streaming Labeling Job.
293
293
  */
294
294
  createLabelingJob(callback?: (err: AWSError, data: SageMaker.Types.CreateLabelingJobResponse) => void): Request<SageMaker.Types.CreateLabelingJobResponse, AWSError>;
295
+ /**
296
+ * Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store. For more information, see Create an MLflow Tracking Server.
297
+ */
298
+ createMlflowTrackingServer(params: SageMaker.Types.CreateMlflowTrackingServerRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateMlflowTrackingServerResponse) => void): Request<SageMaker.Types.CreateMlflowTrackingServerResponse, AWSError>;
299
+ /**
300
+ * Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store. For more information, see Create an MLflow Tracking Server.
301
+ */
302
+ createMlflowTrackingServer(callback?: (err: AWSError, data: SageMaker.Types.CreateMlflowTrackingServerResponse) => void): Request<SageMaker.Types.CreateMlflowTrackingServerResponse, AWSError>;
295
303
  /**
296
304
  * Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions. Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job. To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location. In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.
297
305
  */
@@ -396,6 +404,14 @@ declare class SageMaker extends Service {
396
404
  * Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System volume. This operation can only be called when the authentication mode equals IAM. The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app. You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see Connect to Amazon SageMaker Studio Through an Interface VPC Endpoint . The URL that you get from a call to CreatePresignedDomainUrl has a default timeout of 5 minutes. You can configure this value using ExpiresInSeconds. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.
397
405
  */
398
406
  createPresignedDomainUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedDomainUrlResponse) => void): Request<SageMaker.Types.CreatePresignedDomainUrlResponse, AWSError>;
407
+ /**
408
+ * Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server. For more information, see Launch the MLflow UI using a presigned URL.
409
+ */
410
+ createPresignedMlflowTrackingServerUrl(params: SageMaker.Types.CreatePresignedMlflowTrackingServerUrlRequest, callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedMlflowTrackingServerUrlResponse) => void): Request<SageMaker.Types.CreatePresignedMlflowTrackingServerUrlResponse, AWSError>;
411
+ /**
412
+ * Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server. For more information, see Launch the MLflow UI using a presigned URL.
413
+ */
414
+ createPresignedMlflowTrackingServerUrl(callback?: (err: AWSError, data: SageMaker.Types.CreatePresignedMlflowTrackingServerUrlResponse) => void): Request<SageMaker.Types.CreatePresignedMlflowTrackingServerUrlResponse, AWSError>;
399
415
  /**
400
416
  * Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the SageMaker console, when you choose Open next to a notebook instance, SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page. The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance. You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address. The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.
401
417
  */
@@ -716,6 +732,14 @@ declare class SageMaker extends Service {
716
732
  * Deletes an inference experiment. This operation does not delete your endpoint, variants, or any underlying resources. This operation only deletes the metadata of your experiment.
717
733
  */
718
734
  deleteInferenceExperiment(callback?: (err: AWSError, data: SageMaker.Types.DeleteInferenceExperimentResponse) => void): Request<SageMaker.Types.DeleteInferenceExperimentResponse, AWSError>;
735
+ /**
736
+ * Deletes an MLflow Tracking Server. For more information, see Clean up MLflow resources.
737
+ */
738
+ deleteMlflowTrackingServer(params: SageMaker.Types.DeleteMlflowTrackingServerRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteMlflowTrackingServerResponse) => void): Request<SageMaker.Types.DeleteMlflowTrackingServerResponse, AWSError>;
739
+ /**
740
+ * Deletes an MLflow Tracking Server. For more information, see Clean up MLflow resources.
741
+ */
742
+ deleteMlflowTrackingServer(callback?: (err: AWSError, data: SageMaker.Types.DeleteMlflowTrackingServerResponse) => void): Request<SageMaker.Types.DeleteMlflowTrackingServerResponse, AWSError>;
719
743
  /**
720
744
  * Deletes a model. The DeleteModel API deletes only the model entry that was created in SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.
721
745
  */
@@ -869,11 +893,11 @@ declare class SageMaker extends Service {
869
893
  */
870
894
  deleteUserProfile(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
871
895
  /**
872
- * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
896
+ * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will receive a ResourceInUse error.
873
897
  */
874
898
  deleteWorkforce(params: SageMaker.Types.DeleteWorkforceRequest, callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
875
899
  /**
876
- * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.
900
+ * Use this operation to delete a workforce. If you want to create a new workforce in an Amazon Web Services Region where a workforce already exists, use this operation to delete the existing workforce and then use CreateWorkforce to create a new workforce. If a private workforce contains one or more work teams, you must use the DeleteWorkteam operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will receive a ResourceInUse error.
877
901
  */
878
902
  deleteWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DeleteWorkforceResponse) => void): Request<SageMaker.Types.DeleteWorkforceResponse, AWSError>;
879
903
  /**
@@ -1172,6 +1196,14 @@ declare class SageMaker extends Service {
1172
1196
  * Provides a list of properties for the requested lineage group. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide.
1173
1197
  */
1174
1198
  describeLineageGroup(callback?: (err: AWSError, data: SageMaker.Types.DescribeLineageGroupResponse) => void): Request<SageMaker.Types.DescribeLineageGroupResponse, AWSError>;
1199
+ /**
1200
+ * Returns information about an MLflow Tracking Server.
1201
+ */
1202
+ describeMlflowTrackingServer(params: SageMaker.Types.DescribeMlflowTrackingServerRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeMlflowTrackingServerResponse) => void): Request<SageMaker.Types.DescribeMlflowTrackingServerResponse, AWSError>;
1203
+ /**
1204
+ * Returns information about an MLflow Tracking Server.
1205
+ */
1206
+ describeMlflowTrackingServer(callback?: (err: AWSError, data: SageMaker.Types.DescribeMlflowTrackingServerResponse) => void): Request<SageMaker.Types.DescribeMlflowTrackingServerResponse, AWSError>;
1175
1207
  /**
1176
1208
  * Describes a model that you created using the CreateModel API.
1177
1209
  */
@@ -1373,11 +1405,11 @@ declare class SageMaker extends Service {
1373
1405
  */
1374
1406
  describeWorkforce(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkforceResponse) => void): Request<SageMaker.Types.DescribeWorkforceResponse, AWSError>;
1375
1407
  /**
1376
- * Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
1408
+ * Gets information about a specific work team. You can see information such as the creation date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
1377
1409
  */
1378
1410
  describeWorkteam(params: SageMaker.Types.DescribeWorkteamRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
1379
1411
  /**
1380
- * Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
1412
+ * Gets information about a specific work team. You can see information such as the creation date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).
1381
1413
  */
1382
1414
  describeWorkteam(callback?: (err: AWSError, data: SageMaker.Types.DescribeWorkteamResponse) => void): Request<SageMaker.Types.DescribeWorkteamResponse, AWSError>;
1383
1415
  /**
@@ -1772,6 +1804,14 @@ declare class SageMaker extends Service {
1772
1804
  * A list of lineage groups shared with your Amazon Web Services account. For more information, see Cross-Account Lineage Tracking in the Amazon SageMaker Developer Guide.
1773
1805
  */
1774
1806
  listLineageGroups(callback?: (err: AWSError, data: SageMaker.Types.ListLineageGroupsResponse) => void): Request<SageMaker.Types.ListLineageGroupsResponse, AWSError>;
1807
+ /**
1808
+ * Lists all MLflow Tracking Servers.
1809
+ */
1810
+ listMlflowTrackingServers(params: SageMaker.Types.ListMlflowTrackingServersRequest, callback?: (err: AWSError, data: SageMaker.Types.ListMlflowTrackingServersResponse) => void): Request<SageMaker.Types.ListMlflowTrackingServersResponse, AWSError>;
1811
+ /**
1812
+ * Lists all MLflow Tracking Servers.
1813
+ */
1814
+ listMlflowTrackingServers(callback?: (err: AWSError, data: SageMaker.Types.ListMlflowTrackingServersResponse) => void): Request<SageMaker.Types.ListMlflowTrackingServersResponse, AWSError>;
1775
1815
  /**
1776
1816
  * Lists model bias jobs definitions that satisfy various filters.
1777
1817
  */
@@ -2140,6 +2180,14 @@ declare class SageMaker extends Service {
2140
2180
  * Starts an inference experiment.
2141
2181
  */
2142
2182
  startInferenceExperiment(callback?: (err: AWSError, data: SageMaker.Types.StartInferenceExperimentResponse) => void): Request<SageMaker.Types.StartInferenceExperimentResponse, AWSError>;
2183
+ /**
2184
+ * Programmatically start an MLflow Tracking Server.
2185
+ */
2186
+ startMlflowTrackingServer(params: SageMaker.Types.StartMlflowTrackingServerRequest, callback?: (err: AWSError, data: SageMaker.Types.StartMlflowTrackingServerResponse) => void): Request<SageMaker.Types.StartMlflowTrackingServerResponse, AWSError>;
2187
+ /**
2188
+ * Programmatically start an MLflow Tracking Server.
2189
+ */
2190
+ startMlflowTrackingServer(callback?: (err: AWSError, data: SageMaker.Types.StartMlflowTrackingServerResponse) => void): Request<SageMaker.Types.StartMlflowTrackingServerResponse, AWSError>;
2143
2191
  /**
2144
2192
  * Starts a previously stopped monitoring schedule. By default, when you successfully create a new schedule, the status of a monitoring schedule is scheduled.
2145
2193
  */
@@ -2228,6 +2276,14 @@ declare class SageMaker extends Service {
2228
2276
  * Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.
2229
2277
  */
2230
2278
  stopLabelingJob(callback?: (err: AWSError, data: {}) => void): Request<{}, AWSError>;
2279
+ /**
2280
+ * Programmatically stop an MLflow Tracking Server.
2281
+ */
2282
+ stopMlflowTrackingServer(params: SageMaker.Types.StopMlflowTrackingServerRequest, callback?: (err: AWSError, data: SageMaker.Types.StopMlflowTrackingServerResponse) => void): Request<SageMaker.Types.StopMlflowTrackingServerResponse, AWSError>;
2283
+ /**
2284
+ * Programmatically stop an MLflow Tracking Server.
2285
+ */
2286
+ stopMlflowTrackingServer(callback?: (err: AWSError, data: SageMaker.Types.StopMlflowTrackingServerResponse) => void): Request<SageMaker.Types.StopMlflowTrackingServerResponse, AWSError>;
2231
2287
  /**
2232
2288
  * Stops a previously started monitoring schedule.
2233
2289
  */
@@ -2444,6 +2500,14 @@ declare class SageMaker extends Service {
2444
2500
  * Updates an inference experiment that you created. The status of the inference experiment has to be either Created, Running. For more information on the status of an inference experiment, see DescribeInferenceExperiment.
2445
2501
  */
2446
2502
  updateInferenceExperiment(callback?: (err: AWSError, data: SageMaker.Types.UpdateInferenceExperimentResponse) => void): Request<SageMaker.Types.UpdateInferenceExperimentResponse, AWSError>;
2503
+ /**
2504
+ * Updates properties of an existing MLflow Tracking Server.
2505
+ */
2506
+ updateMlflowTrackingServer(params: SageMaker.Types.UpdateMlflowTrackingServerRequest, callback?: (err: AWSError, data: SageMaker.Types.UpdateMlflowTrackingServerResponse) => void): Request<SageMaker.Types.UpdateMlflowTrackingServerResponse, AWSError>;
2507
+ /**
2508
+ * Updates properties of an existing MLflow Tracking Server.
2509
+ */
2510
+ updateMlflowTrackingServer(callback?: (err: AWSError, data: SageMaker.Types.UpdateMlflowTrackingServerResponse) => void): Request<SageMaker.Types.UpdateMlflowTrackingServerResponse, AWSError>;
2447
2511
  /**
2448
2512
  * Update an Amazon SageMaker Model Card. You cannot update both model card content and model card status in a single call.
2449
2513
  */
@@ -4163,6 +4227,13 @@ declare namespace SageMaker {
4163
4227
  export type ClusterArn = string;
4164
4228
  export type ClusterAvailabilityZone = string;
4165
4229
  export type ClusterAvailabilityZoneId = string;
4230
+ export interface ClusterEbsVolumeConfig {
4231
+ /**
4232
+ * The size in gigabytes (GB) of the additional EBS volume to be attached to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each instance within the SageMaker HyperPod cluster instance group and mounted to /opt/sagemaker.
4233
+ */
4234
+ VolumeSizeInGB: ClusterEbsVolumeSizeInGB;
4235
+ }
4236
+ export type ClusterEbsVolumeSizeInGB = number;
4166
4237
  export type ClusterInstanceCount = number;
4167
4238
  export interface ClusterInstanceGroupDetails {
4168
4239
  /**
@@ -4193,6 +4264,10 @@ declare namespace SageMaker {
4193
4264
  * The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
4194
4265
  */
4195
4266
  ThreadsPerCore?: ClusterThreadsPerCore;
4267
+ /**
4268
+ * The additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
4269
+ */
4270
+ InstanceStorageConfigs?: ClusterInstanceStorageConfigs;
4196
4271
  }
4197
4272
  export type ClusterInstanceGroupDetailsList = ClusterInstanceGroupDetails[];
4198
4273
  export type ClusterInstanceGroupName = string;
@@ -4221,6 +4296,10 @@ declare namespace SageMaker {
4221
4296
  * Specifies the value for Threads per core. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For instance types that doesn't support multithreading, specify 1. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
4222
4297
  */
4223
4298
  ThreadsPerCore?: ClusterThreadsPerCore;
4299
+ /**
4300
+ * Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
4301
+ */
4302
+ InstanceStorageConfigs?: ClusterInstanceStorageConfigs;
4224
4303
  }
4225
4304
  export type ClusterInstanceGroupSpecifications = ClusterInstanceGroupSpecification[];
4226
4305
  export interface ClusterInstancePlacement {
@@ -4244,6 +4323,13 @@ declare namespace SageMaker {
4244
4323
  */
4245
4324
  Message?: String;
4246
4325
  }
4326
+ export interface ClusterInstanceStorageConfig {
4327
+ /**
4328
+ * Defines the configuration for attaching additional Amazon Elastic Block Store (EBS) volumes to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each instance within the SageMaker HyperPod cluster instance group and mounted to /opt/sagemaker.
4329
+ */
4330
+ EbsVolumeConfig?: ClusterEbsVolumeConfig;
4331
+ }
4332
+ export type ClusterInstanceStorageConfigs = ClusterInstanceStorageConfig[];
4247
4333
  export type ClusterInstanceType = "ml.p4d.24xlarge"|"ml.p4de.24xlarge"|"ml.p5.48xlarge"|"ml.trn1.32xlarge"|"ml.trn1n.32xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.12xlarge"|"ml.g5.16xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.c5.large"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.12xlarge"|"ml.c5.18xlarge"|"ml.c5.24xlarge"|"ml.c5n.large"|"ml.c5n.2xlarge"|"ml.c5n.4xlarge"|"ml.c5n.9xlarge"|"ml.c5n.18xlarge"|"ml.m5.large"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.8xlarge"|"ml.m5.12xlarge"|"ml.m5.16xlarge"|"ml.m5.24xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|string;
4248
4334
  export interface ClusterLifeCycleConfig {
4249
4335
  /**
@@ -4287,6 +4373,10 @@ declare namespace SageMaker {
4287
4373
  * The number of threads per CPU core you specified under CreateCluster.
4288
4374
  */
4289
4375
  ThreadsPerCore?: ClusterThreadsPerCore;
4376
+ /**
4377
+ * The configurations of additional storage specified to the instance group where the instance (node) is launched.
4378
+ */
4379
+ InstanceStorageConfigs?: ClusterInstanceStorageConfigs;
4290
4380
  /**
4291
4381
  * The private primary IP address of the SageMaker HyperPod cluster node.
4292
4382
  */
@@ -5739,6 +5829,46 @@ declare namespace SageMaker {
5739
5829
  */
5740
5830
  LabelingJobArn: LabelingJobArn;
5741
5831
  }
5832
+ export interface CreateMlflowTrackingServerRequest {
5833
+ /**
5834
+ * A unique string identifying the tracking server name. This string is part of the tracking server ARN.
5835
+ */
5836
+ TrackingServerName: TrackingServerName;
5837
+ /**
5838
+ * The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact store.
5839
+ */
5840
+ ArtifactStoreUri: S3Uri;
5841
+ /**
5842
+ * The size of the tracking server you want to create. You can choose between "Small", "Medium", and "Large". The default MLflow Tracking Server configuration size is "Small". You can choose a size depending on the projected use of the tracking server such as the volume of data logged, number of users, and frequency of use. We recommend using a small tracking server for teams of up to 25 users, a medium tracking server for teams of up to 50 users, and a large tracking server for teams of up to 100 users.
5843
+ */
5844
+ TrackingServerSize?: TrackingServerSize;
5845
+ /**
5846
+ * The version of MLflow that the tracking server uses. To see which MLflow versions are available to use, see How it works.
5847
+ */
5848
+ MlflowVersion?: MlflowVersion;
5849
+ /**
5850
+ * The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to access the artifact store in Amazon S3. The role should have AmazonS3FullAccess permissions. For more information on IAM permissions for tracking server creation, see Set up IAM permissions for MLflow.
5851
+ */
5852
+ RoleArn: RoleArn;
5853
+ /**
5854
+ * Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to True. To disable automatic model registration, set this value to False. If not specified, AutomaticModelRegistration defaults to False.
5855
+ */
5856
+ AutomaticModelRegistration?: Boolean;
5857
+ /**
5858
+ * The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.
5859
+ */
5860
+ WeeklyMaintenanceWindowStart?: WeeklyMaintenanceWindowStart;
5861
+ /**
5862
+ * Tags consisting of key-value pairs used to manage metadata for the tracking server.
5863
+ */
5864
+ Tags?: TagList;
5865
+ }
5866
+ export interface CreateMlflowTrackingServerResponse {
5867
+ /**
5868
+ * The ARN of the tracking server.
5869
+ */
5870
+ TrackingServerArn?: TrackingServerArn;
5871
+ }
5742
5872
  export interface CreateModelBiasJobDefinitionRequest {
5743
5873
  /**
5744
5874
  * The name of the bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
@@ -6249,6 +6379,26 @@ declare namespace SageMaker {
6249
6379
  */
6250
6380
  AuthorizedUrl?: PresignedDomainUrl;
6251
6381
  }
6382
+ export interface CreatePresignedMlflowTrackingServerUrlRequest {
6383
+ /**
6384
+ * The name of the tracking server to connect to your MLflow UI.
6385
+ */
6386
+ TrackingServerName: TrackingServerName;
6387
+ /**
6388
+ * The duration in seconds that your presigned URL is valid. The presigned URL can be used only once.
6389
+ */
6390
+ ExpiresInSeconds?: ExpiresInSeconds;
6391
+ /**
6392
+ * The duration in seconds that your MLflow UI session is valid.
6393
+ */
6394
+ SessionExpirationDurationInSeconds?: SessionExpirationDurationInSeconds;
6395
+ }
6396
+ export interface CreatePresignedMlflowTrackingServerUrlResponse {
6397
+ /**
6398
+ * A presigned URL with an authorization token.
6399
+ */
6400
+ AuthorizedUrl?: TrackingServerUrl;
6401
+ }
6252
6402
  export interface CreatePresignedNotebookInstanceUrlInput {
6253
6403
  /**
6254
6404
  * The name of the notebook instance.
@@ -7321,6 +7471,18 @@ declare namespace SageMaker {
7321
7471
  */
7322
7472
  InferenceExperimentArn: InferenceExperimentArn;
7323
7473
  }
7474
+ export interface DeleteMlflowTrackingServerRequest {
7475
+ /**
7476
+ * The name of the the tracking server to delete.
7477
+ */
7478
+ TrackingServerName: TrackingServerName;
7479
+ }
7480
+ export interface DeleteMlflowTrackingServerResponse {
7481
+ /**
7482
+ * A TrackingServerArn object, the ARN of the tracking server that is deleted if successfully found.
7483
+ */
7484
+ TrackingServerArn?: TrackingServerArn;
7485
+ }
7324
7486
  export interface DeleteModelBiasJobDefinitionRequest {
7325
7487
  /**
7326
7488
  * The name of the model bias job definition to delete.
@@ -9580,6 +9742,68 @@ declare namespace SageMaker {
9580
9742
  LastModifiedTime?: Timestamp;
9581
9743
  LastModifiedBy?: UserContext;
9582
9744
  }
9745
+ export interface DescribeMlflowTrackingServerRequest {
9746
+ /**
9747
+ * The name of the MLflow Tracking Server to describe.
9748
+ */
9749
+ TrackingServerName: TrackingServerName;
9750
+ }
9751
+ export interface DescribeMlflowTrackingServerResponse {
9752
+ /**
9753
+ * The ARN of the described tracking server.
9754
+ */
9755
+ TrackingServerArn?: TrackingServerArn;
9756
+ /**
9757
+ * The name of the described tracking server.
9758
+ */
9759
+ TrackingServerName?: TrackingServerName;
9760
+ /**
9761
+ * The S3 URI of the general purpose bucket used as the MLflow Tracking Server artifact store.
9762
+ */
9763
+ ArtifactStoreUri?: S3Uri;
9764
+ /**
9765
+ * The size of the described tracking server.
9766
+ */
9767
+ TrackingServerSize?: TrackingServerSize;
9768
+ /**
9769
+ * The MLflow version used for the described tracking server.
9770
+ */
9771
+ MlflowVersion?: MlflowVersion;
9772
+ /**
9773
+ * The Amazon Resource Name (ARN) for an IAM role in your account that the described MLflow Tracking Server uses to access the artifact store in Amazon S3.
9774
+ */
9775
+ RoleArn?: RoleArn;
9776
+ /**
9777
+ * The current creation status of the described MLflow Tracking Server.
9778
+ */
9779
+ TrackingServerStatus?: TrackingServerStatus;
9780
+ /**
9781
+ * Whether the described MLflow Tracking Server is currently active.
9782
+ */
9783
+ IsActive?: IsTrackingServerActive;
9784
+ /**
9785
+ * The URL to connect to the MLflow user interface for the described tracking server.
9786
+ */
9787
+ TrackingServerUrl?: TrackingServerUrl;
9788
+ /**
9789
+ * The day and time of the week when weekly maintenance occurs on the described tracking server.
9790
+ */
9791
+ WeeklyMaintenanceWindowStart?: WeeklyMaintenanceWindowStart;
9792
+ /**
9793
+ * Whether automatic registration of new MLflow models to the SageMaker Model Registry is enabled.
9794
+ */
9795
+ AutomaticModelRegistration?: Boolean;
9796
+ /**
9797
+ * The timestamp of when the described MLflow Tracking Server was created.
9798
+ */
9799
+ CreationTime?: Timestamp;
9800
+ CreatedBy?: UserContext;
9801
+ /**
9802
+ * The timestamp of when the described MLflow Tracking Server was last modified.
9803
+ */
9804
+ LastModifiedTime?: Timestamp;
9805
+ LastModifiedBy?: UserContext;
9806
+ }
9583
9807
  export interface DescribeModelBiasJobDefinitionRequest {
9584
9808
  /**
9585
9809
  * The name of the model bias job definition. The name must be unique within an Amazon Web Services Region in the Amazon Web Services account.
@@ -13804,6 +14028,7 @@ declare namespace SageMaker {
13804
14028
  export type InvocationsMaxRetries = number;
13805
14029
  export type InvocationsTimeoutInSeconds = number;
13806
14030
  export type IotRoleAlias = string;
14031
+ export type IsTrackingServerActive = "Active"|"Inactive"|string;
13807
14032
  export type ItemIdentifierAttributeName = string;
13808
14033
  export type JobDurationInSeconds = number;
13809
14034
  export type JobReferenceCode = string;
@@ -15925,6 +16150,50 @@ declare namespace SageMaker {
15925
16150
  NextToken?: NextToken;
15926
16151
  }
15927
16152
  export type ListMaxResults = number;
16153
+ export interface ListMlflowTrackingServersRequest {
16154
+ /**
16155
+ * Use the CreatedAfter filter to only list tracking servers created after a specific date and time. Listed tracking servers are shown with a date and time such as "2024-03-16T01:46:56+00:00". The CreatedAfter parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.
16156
+ */
16157
+ CreatedAfter?: Timestamp;
16158
+ /**
16159
+ * Use the CreatedBefore filter to only list tracking servers created before a specific date and time. Listed tracking servers are shown with a date and time such as "2024-03-16T01:46:56+00:00". The CreatedBefore parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see EpochConverter.
16160
+ */
16161
+ CreatedBefore?: Timestamp;
16162
+ /**
16163
+ * Filter for tracking servers with a specified creation status.
16164
+ */
16165
+ TrackingServerStatus?: TrackingServerStatus;
16166
+ /**
16167
+ * Filter for tracking servers using the specified MLflow version.
16168
+ */
16169
+ MlflowVersion?: MlflowVersion;
16170
+ /**
16171
+ * Filter for trackings servers sorting by name, creation time, or creation status.
16172
+ */
16173
+ SortBy?: SortTrackingServerBy;
16174
+ /**
16175
+ * Change the order of the listed tracking servers. By default, tracking servers are listed in Descending order by creation time. To change the list order, you can specify SortOrder to be Ascending.
16176
+ */
16177
+ SortOrder?: SortOrder;
16178
+ /**
16179
+ * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
16180
+ */
16181
+ NextToken?: NextToken;
16182
+ /**
16183
+ * The maximum number of tracking servers to list.
16184
+ */
16185
+ MaxResults?: MaxResults;
16186
+ }
16187
+ export interface ListMlflowTrackingServersResponse {
16188
+ /**
16189
+ * A list of tracking servers according to chosen filters.
16190
+ */
16191
+ TrackingServerSummaries?: TrackingServerSummaryList;
16192
+ /**
16193
+ * If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
16194
+ */
16195
+ NextToken?: NextToken;
16196
+ }
15928
16197
  export interface ListModelBiasJobDefinitionsRequest {
15929
16198
  /**
15930
16199
  * Name of the endpoint to monitor for model bias.
@@ -17580,6 +17849,7 @@ declare namespace SageMaker {
17580
17849
  S3Uri: S3Uri;
17581
17850
  }
17582
17851
  export type MinimumInstanceMetadataServiceVersion = string;
17852
+ export type MlflowVersion = string;
17583
17853
  export interface Model {
17584
17854
  /**
17585
17855
  * The name of the model.
@@ -21641,6 +21911,7 @@ declare namespace SageMaker {
21641
21911
  export type SortOrder = "Ascending"|"Descending"|string;
21642
21912
  export type SortPipelineExecutionsBy = "CreationTime"|"PipelineExecutionArn"|string;
21643
21913
  export type SortPipelinesBy = "Name"|"CreationTime"|string;
21914
+ export type SortTrackingServerBy = "Name"|"CreationTime"|"Status"|string;
21644
21915
  export type SortTrialComponentsBy = "Name"|"CreationTime"|string;
21645
21916
  export type SortTrialsBy = "Name"|"CreationTime"|string;
21646
21917
  export interface SourceAlgorithm {
@@ -21817,6 +22088,18 @@ declare namespace SageMaker {
21817
22088
  */
21818
22089
  InferenceExperimentArn: InferenceExperimentArn;
21819
22090
  }
22091
+ export interface StartMlflowTrackingServerRequest {
22092
+ /**
22093
+ * The name of the tracking server to start.
22094
+ */
22095
+ TrackingServerName: TrackingServerName;
22096
+ }
22097
+ export interface StartMlflowTrackingServerResponse {
22098
+ /**
22099
+ * The ARN of the started tracking server.
22100
+ */
22101
+ TrackingServerArn?: TrackingServerArn;
22102
+ }
21820
22103
  export interface StartMonitoringScheduleRequest {
21821
22104
  /**
21822
22105
  * The name of the schedule to start.
@@ -21946,6 +22229,18 @@ declare namespace SageMaker {
21946
22229
  */
21947
22230
  LabelingJobName: LabelingJobName;
21948
22231
  }
22232
+ export interface StopMlflowTrackingServerRequest {
22233
+ /**
22234
+ * The name of the tracking server to stop.
22235
+ */
22236
+ TrackingServerName: TrackingServerName;
22237
+ }
22238
+ export interface StopMlflowTrackingServerResponse {
22239
+ /**
22240
+ * The ARN of the stopped tracking server.
22241
+ */
22242
+ TrackingServerArn?: TrackingServerArn;
22243
+ }
21949
22244
  export interface StopMonitoringScheduleRequest {
21950
22245
  /**
21951
22246
  * The name of the schedule to stop.
@@ -22345,6 +22640,42 @@ declare namespace SageMaker {
22345
22640
  }
22346
22641
  export type Timestamp = Date;
22347
22642
  export type TimestampAttributeName = string;
22643
+ export type TrackingServerArn = string;
22644
+ export type TrackingServerName = string;
22645
+ export type TrackingServerSize = "Small"|"Medium"|"Large"|string;
22646
+ export type TrackingServerStatus = "Creating"|"Created"|"CreateFailed"|"Updating"|"Updated"|"UpdateFailed"|"Deleting"|"DeleteFailed"|"Stopping"|"Stopped"|"StopFailed"|"Starting"|"Started"|"StartFailed"|"MaintenanceInProgress"|"MaintenanceComplete"|"MaintenanceFailed"|string;
22647
+ export interface TrackingServerSummary {
22648
+ /**
22649
+ * The ARN of a listed tracking server.
22650
+ */
22651
+ TrackingServerArn?: TrackingServerArn;
22652
+ /**
22653
+ * The name of a listed tracking server.
22654
+ */
22655
+ TrackingServerName?: TrackingServerName;
22656
+ /**
22657
+ * The creation time of a listed tracking server.
22658
+ */
22659
+ CreationTime?: Timestamp;
22660
+ /**
22661
+ * The last modified time of a listed tracking server.
22662
+ */
22663
+ LastModifiedTime?: Timestamp;
22664
+ /**
22665
+ * The creation status of a listed tracking server.
22666
+ */
22667
+ TrackingServerStatus?: TrackingServerStatus;
22668
+ /**
22669
+ * The activity status of a listed tracking server.
22670
+ */
22671
+ IsActive?: IsTrackingServerActive;
22672
+ /**
22673
+ * The MLflow version used for a listed tracking server.
22674
+ */
22675
+ MlflowVersion?: MlflowVersion;
22676
+ }
22677
+ export type TrackingServerSummaryList = TrackingServerSummary[];
22678
+ export type TrackingServerUrl = string;
22348
22679
  export type TrafficDurationInSeconds = number;
22349
22680
  export interface TrafficPattern {
22350
22681
  /**
@@ -23782,6 +24113,34 @@ declare namespace SageMaker {
23782
24113
  */
23783
24114
  InferenceExperimentArn: InferenceExperimentArn;
23784
24115
  }
24116
+ export interface UpdateMlflowTrackingServerRequest {
24117
+ /**
24118
+ * The name of the MLflow Tracking Server to update.
24119
+ */
24120
+ TrackingServerName: TrackingServerName;
24121
+ /**
24122
+ * The new S3 URI for the general purpose bucket to use as the artifact store for the MLflow Tracking Server.
24123
+ */
24124
+ ArtifactStoreUri?: S3Uri;
24125
+ /**
24126
+ * The new size for the MLflow Tracking Server.
24127
+ */
24128
+ TrackingServerSize?: TrackingServerSize;
24129
+ /**
24130
+ * Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to True. To disable automatic model registration, set this value to False. If not specified, AutomaticModelRegistration defaults to False
24131
+ */
24132
+ AutomaticModelRegistration?: Boolean;
24133
+ /**
24134
+ * The new weekly maintenance window start day and time to update. The maintenance window day and time should be in Coordinated Universal Time (UTC) 24-hour standard time. For example: TUE:03:30.
24135
+ */
24136
+ WeeklyMaintenanceWindowStart?: WeeklyMaintenanceWindowStart;
24137
+ }
24138
+ export interface UpdateMlflowTrackingServerResponse {
24139
+ /**
24140
+ * The ARN of the updated MLflow Tracking Server.
24141
+ */
24142
+ TrackingServerArn?: TrackingServerArn;
24143
+ }
23785
24144
  export interface UpdateModelCardRequest {
23786
24145
  /**
23787
24146
  * The name or Amazon Resource Name (ARN) of the model card to update.
@@ -24437,6 +24796,7 @@ declare namespace SageMaker {
24437
24796
  */
24438
24797
  ReusedByJob?: TrainingJobName;
24439
24798
  }
24799
+ export type WeeklyMaintenanceWindowStart = string;
24440
24800
  export interface WorkerAccessConfiguration {
24441
24801
  /**
24442
24802
  * Defines any Amazon S3 resource constraints.
@@ -83,7 +83,7 @@ return /******/ (function(modules) { // webpackBootstrap
83
83
  /**
84
84
  * @constant
85
85
  */
86
- VERSION: '2.1643.0',
86
+ VERSION: '2.1644.0',
87
87
 
88
88
  /**
89
89
  * @api private