aws-sdk 2.1630.0 → 2.1631.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1213,11 +1213,11 @@ declare class SageMaker extends Service {
1213
1213
  */
1214
1214
  describeModelExplainabilityJobDefinition(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelExplainabilityJobDefinitionResponse) => void): Request<SageMaker.Types.DescribeModelExplainabilityJobDefinitionResponse, AWSError>;
1215
1215
  /**
1216
- * Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace. To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
1216
+ * Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace. If you provided a KMS Key ID when you created your model package, you will see the KMS Decrypt API call in your CloudTrail logs when you use this API. To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
1217
1217
  */
1218
1218
  describeModelPackage(params: SageMaker.Types.DescribeModelPackageInput, callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
1219
1219
  /**
1220
- * Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace. To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
1220
+ * Returns a description of the specified model package, which is used to create SageMaker models or list them on Amazon Web Services Marketplace. If you provided a KMS Key ID when you created your model package, you will see the KMS Decrypt API call in your CloudTrail logs when you use this API. To create models in SageMaker, buyers can subscribe to model packages listed on Amazon Web Services Marketplace.
1221
1221
  */
1222
1222
  describeModelPackage(callback?: (err: AWSError, data: SageMaker.Types.DescribeModelPackageOutput) => void): Request<SageMaker.Types.DescribeModelPackageOutput, AWSError>;
1223
1223
  /**
@@ -3229,10 +3229,10 @@ declare namespace SageMaker {
3229
3229
  export type AttributeNames = AttributeName[];
3230
3230
  export type AuthMode = "SSO"|"IAM"|string;
3231
3231
  export type AutoGenerateEndpointName = boolean;
3232
- export type AutoMLAlgorithm = "xgboost"|"linear-learner"|"mlp"|"lightgbm"|"catboost"|"randomforest"|"extra-trees"|"nn-torch"|"fastai"|string;
3232
+ export type AutoMLAlgorithm = "xgboost"|"linear-learner"|"mlp"|"lightgbm"|"catboost"|"randomforest"|"extra-trees"|"nn-torch"|"fastai"|"cnn-qr"|"deepar"|"prophet"|"npts"|"arima"|"ets"|string;
3233
3233
  export interface AutoMLAlgorithmConfig {
3234
3234
  /**
3235
- * The selection of algorithms run on a dataset to train the model candidates of an Autopilot job. Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 algorithm. In ENSEMBLING mode: "catboost" "extra-trees" "fastai" "lightgbm" "linear-learner" "nn-torch" "randomforest" "xgboost" In HYPERPARAMETER_TUNING mode: "linear-learner" "mlp" "xgboost"
3235
+ * The selection of algorithms trained on your dataset to generate the model candidates for an Autopilot job. For the tabular problem type TabularJobConfig: Selected algorithms must belong to the list corresponding to the training mode set in AutoMLJobConfig.Mode (ENSEMBLING or HYPERPARAMETER_TUNING). Choose a minimum of 1 algorithm. In ENSEMBLING mode: "catboost" "extra-trees" "fastai" "lightgbm" "linear-learner" "nn-torch" "randomforest" "xgboost" In HYPERPARAMETER_TUNING mode: "linear-learner" "mlp" "xgboost" For the time-series forecasting problem type TimeSeriesForecastingJobConfig: Choose your algorithms from this list. "cnn-qr" "deepar" "prophet" "arima" "npts" "ets"
3236
3236
  */
3237
3237
  AutoMLAlgorithms: AutoMLAlgorithms;
3238
3238
  }
@@ -3291,7 +3291,7 @@ declare namespace SageMaker {
3291
3291
  */
3292
3292
  FeatureSpecificationS3Uri?: S3Uri;
3293
3293
  /**
3294
- * Stores the configuration information for the selection of algorithms used to train the model candidates. The list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode . AlgorithmsConfig should not be set in AUTO training mode. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, AutoMLCandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per training mode, see AutoMLAlgorithmConfig. For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
3294
+ * Stores the configuration information for the selection of algorithms trained on tabular data. The list of available algorithms to choose from depends on the training mode set in TabularJobConfig.Mode . AlgorithmsConfig should not be set if the training mode is set on AUTO. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig. For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
3295
3295
  */
3296
3296
  AlgorithmsConfig?: AutoMLAlgorithmsConfig;
3297
3297
  }
@@ -3808,7 +3808,7 @@ declare namespace SageMaker {
3808
3808
  export type CandidateDefinitionNotebookLocation = string;
3809
3809
  export interface CandidateGenerationConfig {
3810
3810
  /**
3811
- * Stores the configuration information for the selection of algorithms used to train model candidates on tabular data. The list of available algorithms to choose from depends on the training mode set in TabularJobConfig.Mode . AlgorithmsConfig should not be set in AUTO training mode. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig. For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
3811
+ * Your Autopilot job trains a default set of algorithms on your dataset. For tabular and time-series data, you can customize the algorithm list by selecting a subset of algorithms for your problem type. AlgorithmsConfig stores the customized selection of algorithms to train on your data. For the tabular problem type TabularJobConfig, the list of available algorithms to choose from depends on the training mode set in AutoMLJobConfig.Mode . AlgorithmsConfig should not be set when the training mode AutoMLJobConfig.Mode is set to AUTO. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per training mode, see AlgorithmConfig. For more information on each algorithm, see the Algorithm support section in the Autopilot developer guide. For the time-series forecasting problem type TimeSeriesForecastingJobConfig, choose your algorithms from the list provided in AlgorithmConfig. For more information on each algorithm, see the Algorithms support for time-series forecasting section in the Autopilot developer guide. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for time-series forecasting. When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for time-series forecasting.
3812
3812
  */
3813
3813
  AlgorithmsConfig?: AutoMLAlgorithmsConfig;
3814
3814
  }
@@ -5978,6 +5978,14 @@ declare namespace SageMaker {
5978
5978
  * The URI of the source for the model package. If you want to clone a model package, set it to the model package Amazon Resource Name (ARN). If you want to register a model, set it to the model ARN.
5979
5979
  */
5980
5980
  SourceUri?: ModelPackageSourceUri;
5981
+ /**
5982
+ * The KMS Key ID (KMSKeyId) used for encryption of model package information.
5983
+ */
5984
+ SecurityConfig?: ModelPackageSecurityConfig;
5985
+ /**
5986
+ * The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model card associated with the model package, see View the Details of a Model Version.
5987
+ */
5988
+ ModelCard?: ModelPackageModelCard;
5981
5989
  }
5982
5990
  export interface CreateModelPackageOutput {
5983
5991
  /**
@@ -9910,6 +9918,14 @@ declare namespace SageMaker {
9910
9918
  * The URI of the source for the model package.
9911
9919
  */
9912
9920
  SourceUri?: ModelPackageSourceUri;
9921
+ /**
9922
+ * The KMS Key ID (KMSKeyId) used for encryption of model package information.
9923
+ */
9924
+ SecurityConfig?: ModelPackageSecurityConfig;
9925
+ /**
9926
+ * The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model card associated with the model package, see View the Details of a Model Version.
9927
+ */
9928
+ ModelCard?: ModelPackageModelCard;
9913
9929
  }
9914
9930
  export interface DescribeModelQualityJobDefinitionRequest {
9915
9931
  /**
@@ -14282,7 +14298,7 @@ declare namespace SageMaker {
14282
14298
  */
14283
14299
  NextToken?: NextToken;
14284
14300
  /**
14285
- * This parameter defines the maximum number of results that can be returned in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
14301
+ * This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
14286
14302
  */
14287
14303
  MaxResults?: MaxResults;
14288
14304
  /**
@@ -14868,7 +14884,7 @@ declare namespace SageMaker {
14868
14884
  */
14869
14885
  NextToken?: NextToken;
14870
14886
  /**
14871
- * This parameter defines the maximum number of results that can be returned in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
14887
+ * This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
14872
14888
  */
14873
14889
  MaxResults?: MaxResults;
14874
14890
  }
@@ -16898,7 +16914,7 @@ declare namespace SageMaker {
16898
16914
  */
16899
16915
  NextToken?: NextToken;
16900
16916
  /**
16901
- * This parameter defines the maximum number of results that can be returned in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
16917
+ * This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
16902
16918
  */
16903
16919
  MaxResults?: MaxResults;
16904
16920
  /**
@@ -17304,7 +17320,7 @@ declare namespace SageMaker {
17304
17320
  */
17305
17321
  NextToken?: NextToken;
17306
17322
  /**
17307
- * This parameter defines the maximum number of results that can be returned in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
17323
+ * This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
17308
17324
  */
17309
17325
  MaxResults?: MaxResults;
17310
17326
  /**
@@ -18190,6 +18206,8 @@ declare namespace SageMaker {
18190
18206
  * The URI of the source for the model package.
18191
18207
  */
18192
18208
  SourceUri?: ModelPackageSourceUri;
18209
+ SecurityConfig?: ModelPackageSecurityConfig;
18210
+ ModelCard?: ModelPackageModelCard;
18193
18211
  /**
18194
18212
  * A list of the tags associated with the model package. For more information, see Tagging Amazon Web Services resources in the Amazon Web Services General Reference Guide.
18195
18213
  */
@@ -18314,6 +18332,22 @@ declare namespace SageMaker {
18314
18332
  ModelPackageGroupStatus: ModelPackageGroupStatus;
18315
18333
  }
18316
18334
  export type ModelPackageGroupSummaryList = ModelPackageGroupSummary[];
18335
+ export interface ModelPackageModelCard {
18336
+ /**
18337
+ * The content of the model card.
18338
+ */
18339
+ ModelCardContent?: ModelCardContent;
18340
+ /**
18341
+ * The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval. Draft: The model card is a work in progress. PendingReview: The model card is pending review. Approved: The model card is approved. Archived: The model card is archived. No more updates can be made to the model card content. If you try to update the model card content, you will receive the message Model Card is in Archived state.
18342
+ */
18343
+ ModelCardStatus?: ModelCardStatus;
18344
+ }
18345
+ export interface ModelPackageSecurityConfig {
18346
+ /**
18347
+ * The KMS Key ID (KMSKeyId) used for encryption of model package information.
18348
+ */
18349
+ KmsKeyId: KmsKeyId;
18350
+ }
18317
18351
  export type ModelPackageSortBy = "Name"|"CreationTime"|string;
18318
18352
  export type ModelPackageSourceUri = string;
18319
18353
  export type ModelPackageStatus = "Pending"|"InProgress"|"Completed"|"Failed"|"Deleting"|string;
@@ -22232,6 +22266,7 @@ declare namespace SageMaker {
22232
22266
  * The collection of holiday featurization attributes used to incorporate national holiday information into your forecasting model.
22233
22267
  */
22234
22268
  HolidayConfig?: HolidayConfig;
22269
+ CandidateGenerationConfig?: CandidateGenerationConfig;
22235
22270
  }
22236
22271
  export interface TimeSeriesForecastingSettings {
22237
22272
  /**
@@ -23745,6 +23780,10 @@ declare namespace SageMaker {
23745
23780
  * The URI of the source for the model package.
23746
23781
  */
23747
23782
  SourceUri?: ModelPackageSourceUri;
23783
+ /**
23784
+ * The model card associated with the model package. Since ModelPackageModelCard is tied to a model package, it is a specific usage of a model card and its schema is simplified compared to the schema of ModelCard. The ModelPackageModelCard schema does not include model_package_details, and model_overview is composed of the model_creator and model_artifact properties. For more information about the model card associated with the model package, see View the Details of a Model Version.
23785
+ */
23786
+ ModelCard?: ModelPackageModelCard;
23748
23787
  }
23749
23788
  export interface UpdateModelPackageOutput {
23750
23789
  /**
@@ -83,7 +83,7 @@ return /******/ (function(modules) { // webpackBootstrap
83
83
  /**
84
84
  * @constant
85
85
  */
86
- VERSION: '2.1630.0',
86
+ VERSION: '2.1631.0',
87
87
 
88
88
  /**
89
89
  * @api private