aws-sdk 2.1409.0 → 2.1410.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +5 -1
- package/README.md +1 -1
- package/apis/batch-2016-08-10.min.json +58 -45
- package/apis/sagemaker-2017-07-24.min.json +566 -561
- package/clients/batch.d.ts +23 -11
- package/clients/sagemaker.d.ts +18 -11
- package/dist/aws-sdk-core-react-native.js +1 -1
- package/dist/aws-sdk-react-native.js +3 -3
- package/dist/aws-sdk.js +3 -3
- package/dist/aws-sdk.min.js +2 -2
- package/lib/core.js +1 -1
- package/package.json +1 -1
package/clients/batch.d.ts
CHANGED
@@ -12,19 +12,19 @@ declare class Batch extends Service {
|
|
12
12
|
constructor(options?: Batch.Types.ClientConfiguration)
|
13
13
|
config: Config & Batch.Types.ClientConfiguration;
|
14
14
|
/**
|
15
|
-
* Cancels a job in an Batch job queue. Jobs that are in the SUBMITTED or PENDING are canceled. A job inRUNNABLE remains in RUNNABLE until it reaches the head of the job queue. Then the job status is updated to FAILED. Jobs that progressed to the STARTING or RUNNING state aren't canceled. However, the API operation still succeeds, even if no job is canceled. These jobs must be terminated with the TerminateJob operation.
|
15
|
+
* Cancels a job in an Batch job queue. Jobs that are in the SUBMITTED or PENDING are canceled. A job inRUNNABLE remains in RUNNABLE until it reaches the head of the job queue. Then the job status is updated to FAILED. A PENDING job is canceled after all dependency jobs are completed. Therefore, it may take longer than expected to cancel a job in PENDING status. When you try to cancel an array parent job in PENDING, Batch attempts to cancel all child jobs. The array parent job is canceled when all child jobs are completed. Jobs that progressed to the STARTING or RUNNING state aren't canceled. However, the API operation still succeeds, even if no job is canceled. These jobs must be terminated with the TerminateJob operation.
|
16
16
|
*/
|
17
17
|
cancelJob(params: Batch.Types.CancelJobRequest, callback?: (err: AWSError, data: Batch.Types.CancelJobResponse) => void): Request<Batch.Types.CancelJobResponse, AWSError>;
|
18
18
|
/**
|
19
|
-
* Cancels a job in an Batch job queue. Jobs that are in the SUBMITTED or PENDING are canceled. A job inRUNNABLE remains in RUNNABLE until it reaches the head of the job queue. Then the job status is updated to FAILED. Jobs that progressed to the STARTING or RUNNING state aren't canceled. However, the API operation still succeeds, even if no job is canceled. These jobs must be terminated with the TerminateJob operation.
|
19
|
+
* Cancels a job in an Batch job queue. Jobs that are in the SUBMITTED or PENDING are canceled. A job inRUNNABLE remains in RUNNABLE until it reaches the head of the job queue. Then the job status is updated to FAILED. A PENDING job is canceled after all dependency jobs are completed. Therefore, it may take longer than expected to cancel a job in PENDING status. When you try to cancel an array parent job in PENDING, Batch attempts to cancel all child jobs. The array parent job is canceled when all child jobs are completed. Jobs that progressed to the STARTING or RUNNING state aren't canceled. However, the API operation still succeeds, even if no job is canceled. These jobs must be terminated with the TerminateJob operation.
|
20
20
|
*/
|
21
21
|
cancelJob(callback?: (err: AWSError, data: Batch.Types.CancelJobResponse) => void): Request<Batch.Types.CancelJobResponse, AWSError>;
|
22
22
|
/**
|
23
|
-
* Creates an Batch compute environment. You can create MANAGED or UNMANAGED compute environments. MANAGED compute environments can use Amazon EC2 or Fargate resources. UNMANAGED compute environments can only use EC2 resources. In a managed compute environment, Batch manages the capacity and instance types of the compute resources within the environment. This is based on the compute resource specification that you define or the launch template that you specify when you create the compute environment. Either, you can choose to use EC2 On-Demand Instances and EC2 Spot Instances. Or, you can use Fargate and Fargate Spot capacity in your managed compute environment. You can optionally set a maximum price so that Spot Instances only launch when the Spot Instance price is less than a specified percentage of the On-Demand price. Multi-node parallel jobs aren't supported on Spot Instances. In an unmanaged compute environment, you can manage your own EC2 compute resources and have flexibility with how you configure your compute resources. For example, you can use custom AMIs. However, you must verify that each of your AMIs meet the Amazon ECS container instance AMI specification. For more information, see container instance AMIs in the Amazon Elastic Container Service Developer Guide. After you created your unmanaged compute environment, you can use the DescribeComputeEnvironments operation to find the Amazon ECS cluster that's associated with it. Then, launch your container instances into that Amazon ECS cluster. For more information, see Launching an Amazon ECS container instance in the Amazon Elastic Container Service Developer Guide. To create a compute environment that uses EKS resources, the caller must have permissions to call eks:DescribeCluster. Batch doesn't automatically upgrade the AMIs in a compute environment after it's created. For example, it also doesn't update the AMIs in your compute environment when a newer version of the Amazon ECS optimized AMI is available. You're responsible for the management of the guest operating system. This includes any updates and security patches. You're also responsible for any additional application software or utilities that you install on the compute resources. There are two ways to use a new AMI for your Batch jobs. The original method is to complete these steps: Create a new compute environment with the new AMI. Add the compute environment to an existing job queue. Remove the earlier compute environment from your job queue. Delete the earlier compute environment. In April 2022, Batch added enhanced support for updating compute environments. For more information, see Updating compute environments. To use the enhanced updating of compute environments to update AMIs, follow these rules: Either don't set the service role (serviceRole) parameter or set it to the AWSBatchServiceRole service-linked role. Set the allocation strategy (allocationStrategy) parameter to BEST_FIT_PROGRESSIVE or SPOT_CAPACITY_OPTIMIZED. Set the update to latest image version (updateToLatestImageVersion) parameter to true. Don't specify an AMI ID in imageId, imageIdOverride (in ec2Configuration ), or in the launch template (launchTemplate). In that case, Batch selects the latest Amazon ECS optimized AMI that's supported by Batch at the time the infrastructure update is initiated. Alternatively, you can specify the AMI ID in the imageId or imageIdOverride parameters, or the launch template identified by the LaunchTemplate properties. Changing any of these properties starts an infrastructure update. If the AMI ID is specified in the launch template, it can't be replaced by specifying an AMI ID in either the imageId or imageIdOverride parameters. It can only be replaced by specifying a different launch template, or if the launch template version is set to $Default or $Latest, by setting either a new default version for the launch template (if $Default) or by adding a new version to the launch template (if $Latest). If these rules are followed, any update that starts an infrastructure update causes the AMI ID to be re-selected. If the version setting in the launch template (launchTemplate) is set to $Latest or $Default, the latest or default version of the launch template is evaluated up at the time of the infrastructure update, even if the launchTemplate wasn't updated.
|
23
|
+
* Creates an Batch compute environment. You can create MANAGED or UNMANAGED compute environments. MANAGED compute environments can use Amazon EC2 or Fargate resources. UNMANAGED compute environments can only use EC2 resources. In a managed compute environment, Batch manages the capacity and instance types of the compute resources within the environment. This is based on the compute resource specification that you define or the launch template that you specify when you create the compute environment. Either, you can choose to use EC2 On-Demand Instances and EC2 Spot Instances. Or, you can use Fargate and Fargate Spot capacity in your managed compute environment. You can optionally set a maximum price so that Spot Instances only launch when the Spot Instance price is less than a specified percentage of the On-Demand price. Multi-node parallel jobs aren't supported on Spot Instances. In an unmanaged compute environment, you can manage your own EC2 compute resources and have flexibility with how you configure your compute resources. For example, you can use custom AMIs. However, you must verify that each of your AMIs meet the Amazon ECS container instance AMI specification. For more information, see container instance AMIs in the Amazon Elastic Container Service Developer Guide. After you created your unmanaged compute environment, you can use the DescribeComputeEnvironments operation to find the Amazon ECS cluster that's associated with it. Then, launch your container instances into that Amazon ECS cluster. For more information, see Launching an Amazon ECS container instance in the Amazon Elastic Container Service Developer Guide. To create a compute environment that uses EKS resources, the caller must have permissions to call eks:DescribeCluster. Batch doesn't automatically upgrade the AMIs in a compute environment after it's created. For example, it also doesn't update the AMIs in your compute environment when a newer version of the Amazon ECS optimized AMI is available. You're responsible for the management of the guest operating system. This includes any updates and security patches. You're also responsible for any additional application software or utilities that you install on the compute resources. There are two ways to use a new AMI for your Batch jobs. The original method is to complete these steps: Create a new compute environment with the new AMI. Add the compute environment to an existing job queue. Remove the earlier compute environment from your job queue. Delete the earlier compute environment. In April 2022, Batch added enhanced support for updating compute environments. For more information, see Updating compute environments. To use the enhanced updating of compute environments to update AMIs, follow these rules: Either don't set the service role (serviceRole) parameter or set it to the AWSBatchServiceRole service-linked role. Set the allocation strategy (allocationStrategy) parameter to BEST_FIT_PROGRESSIVE or SPOT_CAPACITY_OPTIMIZED. Set the update to latest image version (updateToLatestImageVersion) parameter to true. The updateToLatestImageVersion parameter is used when you update a compute environment. This parameter is ignored when you create a compute environment. Don't specify an AMI ID in imageId, imageIdOverride (in ec2Configuration ), or in the launch template (launchTemplate). In that case, Batch selects the latest Amazon ECS optimized AMI that's supported by Batch at the time the infrastructure update is initiated. Alternatively, you can specify the AMI ID in the imageId or imageIdOverride parameters, or the launch template identified by the LaunchTemplate properties. Changing any of these properties starts an infrastructure update. If the AMI ID is specified in the launch template, it can't be replaced by specifying an AMI ID in either the imageId or imageIdOverride parameters. It can only be replaced by specifying a different launch template, or if the launch template version is set to $Default or $Latest, by setting either a new default version for the launch template (if $Default) or by adding a new version to the launch template (if $Latest). If these rules are followed, any update that starts an infrastructure update causes the AMI ID to be re-selected. If the version setting in the launch template (launchTemplate) is set to $Latest or $Default, the latest or default version of the launch template is evaluated up at the time of the infrastructure update, even if the launchTemplate wasn't updated.
|
24
24
|
*/
|
25
25
|
createComputeEnvironment(params: Batch.Types.CreateComputeEnvironmentRequest, callback?: (err: AWSError, data: Batch.Types.CreateComputeEnvironmentResponse) => void): Request<Batch.Types.CreateComputeEnvironmentResponse, AWSError>;
|
26
26
|
/**
|
27
|
-
* Creates an Batch compute environment. You can create MANAGED or UNMANAGED compute environments. MANAGED compute environments can use Amazon EC2 or Fargate resources. UNMANAGED compute environments can only use EC2 resources. In a managed compute environment, Batch manages the capacity and instance types of the compute resources within the environment. This is based on the compute resource specification that you define or the launch template that you specify when you create the compute environment. Either, you can choose to use EC2 On-Demand Instances and EC2 Spot Instances. Or, you can use Fargate and Fargate Spot capacity in your managed compute environment. You can optionally set a maximum price so that Spot Instances only launch when the Spot Instance price is less than a specified percentage of the On-Demand price. Multi-node parallel jobs aren't supported on Spot Instances. In an unmanaged compute environment, you can manage your own EC2 compute resources and have flexibility with how you configure your compute resources. For example, you can use custom AMIs. However, you must verify that each of your AMIs meet the Amazon ECS container instance AMI specification. For more information, see container instance AMIs in the Amazon Elastic Container Service Developer Guide. After you created your unmanaged compute environment, you can use the DescribeComputeEnvironments operation to find the Amazon ECS cluster that's associated with it. Then, launch your container instances into that Amazon ECS cluster. For more information, see Launching an Amazon ECS container instance in the Amazon Elastic Container Service Developer Guide. To create a compute environment that uses EKS resources, the caller must have permissions to call eks:DescribeCluster. Batch doesn't automatically upgrade the AMIs in a compute environment after it's created. For example, it also doesn't update the AMIs in your compute environment when a newer version of the Amazon ECS optimized AMI is available. You're responsible for the management of the guest operating system. This includes any updates and security patches. You're also responsible for any additional application software or utilities that you install on the compute resources. There are two ways to use a new AMI for your Batch jobs. The original method is to complete these steps: Create a new compute environment with the new AMI. Add the compute environment to an existing job queue. Remove the earlier compute environment from your job queue. Delete the earlier compute environment. In April 2022, Batch added enhanced support for updating compute environments. For more information, see Updating compute environments. To use the enhanced updating of compute environments to update AMIs, follow these rules: Either don't set the service role (serviceRole) parameter or set it to the AWSBatchServiceRole service-linked role. Set the allocation strategy (allocationStrategy) parameter to BEST_FIT_PROGRESSIVE or SPOT_CAPACITY_OPTIMIZED. Set the update to latest image version (updateToLatestImageVersion) parameter to true. Don't specify an AMI ID in imageId, imageIdOverride (in ec2Configuration ), or in the launch template (launchTemplate). In that case, Batch selects the latest Amazon ECS optimized AMI that's supported by Batch at the time the infrastructure update is initiated. Alternatively, you can specify the AMI ID in the imageId or imageIdOverride parameters, or the launch template identified by the LaunchTemplate properties. Changing any of these properties starts an infrastructure update. If the AMI ID is specified in the launch template, it can't be replaced by specifying an AMI ID in either the imageId or imageIdOverride parameters. It can only be replaced by specifying a different launch template, or if the launch template version is set to $Default or $Latest, by setting either a new default version for the launch template (if $Default) or by adding a new version to the launch template (if $Latest). If these rules are followed, any update that starts an infrastructure update causes the AMI ID to be re-selected. If the version setting in the launch template (launchTemplate) is set to $Latest or $Default, the latest or default version of the launch template is evaluated up at the time of the infrastructure update, even if the launchTemplate wasn't updated.
|
27
|
+
* Creates an Batch compute environment. You can create MANAGED or UNMANAGED compute environments. MANAGED compute environments can use Amazon EC2 or Fargate resources. UNMANAGED compute environments can only use EC2 resources. In a managed compute environment, Batch manages the capacity and instance types of the compute resources within the environment. This is based on the compute resource specification that you define or the launch template that you specify when you create the compute environment. Either, you can choose to use EC2 On-Demand Instances and EC2 Spot Instances. Or, you can use Fargate and Fargate Spot capacity in your managed compute environment. You can optionally set a maximum price so that Spot Instances only launch when the Spot Instance price is less than a specified percentage of the On-Demand price. Multi-node parallel jobs aren't supported on Spot Instances. In an unmanaged compute environment, you can manage your own EC2 compute resources and have flexibility with how you configure your compute resources. For example, you can use custom AMIs. However, you must verify that each of your AMIs meet the Amazon ECS container instance AMI specification. For more information, see container instance AMIs in the Amazon Elastic Container Service Developer Guide. After you created your unmanaged compute environment, you can use the DescribeComputeEnvironments operation to find the Amazon ECS cluster that's associated with it. Then, launch your container instances into that Amazon ECS cluster. For more information, see Launching an Amazon ECS container instance in the Amazon Elastic Container Service Developer Guide. To create a compute environment that uses EKS resources, the caller must have permissions to call eks:DescribeCluster. Batch doesn't automatically upgrade the AMIs in a compute environment after it's created. For example, it also doesn't update the AMIs in your compute environment when a newer version of the Amazon ECS optimized AMI is available. You're responsible for the management of the guest operating system. This includes any updates and security patches. You're also responsible for any additional application software or utilities that you install on the compute resources. There are two ways to use a new AMI for your Batch jobs. The original method is to complete these steps: Create a new compute environment with the new AMI. Add the compute environment to an existing job queue. Remove the earlier compute environment from your job queue. Delete the earlier compute environment. In April 2022, Batch added enhanced support for updating compute environments. For more information, see Updating compute environments. To use the enhanced updating of compute environments to update AMIs, follow these rules: Either don't set the service role (serviceRole) parameter or set it to the AWSBatchServiceRole service-linked role. Set the allocation strategy (allocationStrategy) parameter to BEST_FIT_PROGRESSIVE or SPOT_CAPACITY_OPTIMIZED. Set the update to latest image version (updateToLatestImageVersion) parameter to true. The updateToLatestImageVersion parameter is used when you update a compute environment. This parameter is ignored when you create a compute environment. Don't specify an AMI ID in imageId, imageIdOverride (in ec2Configuration ), or in the launch template (launchTemplate). In that case, Batch selects the latest Amazon ECS optimized AMI that's supported by Batch at the time the infrastructure update is initiated. Alternatively, you can specify the AMI ID in the imageId or imageIdOverride parameters, or the launch template identified by the LaunchTemplate properties. Changing any of these properties starts an infrastructure update. If the AMI ID is specified in the launch template, it can't be replaced by specifying an AMI ID in either the imageId or imageIdOverride parameters. It can only be replaced by specifying a different launch template, or if the launch template version is set to $Default or $Latest, by setting either a new default version for the launch template (if $Default) or by adding a new version to the launch template (if $Latest). If these rules are followed, any update that starts an infrastructure update causes the AMI ID to be re-selected. If the version setting in the launch template (launchTemplate) is set to $Latest or $Default, the latest or default version of the launch template is evaluated up at the time of the infrastructure update, even if the launchTemplate wasn't updated.
|
28
28
|
*/
|
29
29
|
createComputeEnvironment(callback?: (err: AWSError, data: Batch.Types.CreateComputeEnvironmentResponse) => void): Request<Batch.Types.CreateComputeEnvironmentResponse, AWSError>;
|
30
30
|
/**
|
@@ -386,15 +386,15 @@ declare namespace Batch {
|
|
386
386
|
*/
|
387
387
|
allocationStrategy?: CRAllocationStrategy;
|
388
388
|
/**
|
389
|
-
* The minimum number of
|
389
|
+
* The minimum number of vCPUs that a compute environment should maintain (even if the compute environment is DISABLED). This parameter isn't applicable to jobs that are running on Fargate resources. Don't specify it.
|
390
390
|
*/
|
391
391
|
minvCpus?: Integer;
|
392
392
|
/**
|
393
|
-
* The maximum number of
|
393
|
+
* The maximum number of vCPUs that a compute environment can support. With both BEST_FIT_PROGRESSIVE and SPOT_CAPACITY_OPTIMIZED allocation strategies using On-Demand or Spot Instances, and the BEST_FIT strategy using Spot Instances, Batch might need to exceed maxvCpus to meet your capacity requirements. In this event, Batch never exceeds maxvCpus by more than a single instance. For example, no more than a single instance from among those specified in your compute environment is allocated.
|
394
394
|
*/
|
395
395
|
maxvCpus: Integer;
|
396
396
|
/**
|
397
|
-
* The desired number of
|
397
|
+
* The desired number of vCPUS in the compute environment. Batch modifies this value between the minimum and maximum values based on job queue demand. This parameter isn't applicable to jobs that are running on Fargate resources. Don't specify it.
|
398
398
|
*/
|
399
399
|
desiredvCpus?: Integer;
|
400
400
|
/**
|
@@ -448,7 +448,7 @@ declare namespace Batch {
|
|
448
448
|
}
|
449
449
|
export interface ComputeResourceUpdate {
|
450
450
|
/**
|
451
|
-
* The minimum number of
|
451
|
+
* The minimum number of vCPUs that an environment should maintain (even if the compute environment is DISABLED). This parameter isn't applicable to jobs that are running on Fargate resources. Don't specify it.
|
452
452
|
*/
|
453
453
|
minvCpus?: Integer;
|
454
454
|
/**
|
@@ -456,7 +456,7 @@ declare namespace Batch {
|
|
456
456
|
*/
|
457
457
|
maxvCpus?: Integer;
|
458
458
|
/**
|
459
|
-
* The desired number of
|
459
|
+
* The desired number of vCPUS in the compute environment. Batch modifies this value between the minimum and maximum values based on job queue demand. This parameter isn't applicable to jobs that are running on Fargate resources. Don't specify it. Batch doesn't support changing the desired number of vCPUs of an existing compute environment. Don't specify this parameter for compute environments using Amazon EKS clusters. When you update the desiredvCpus setting, the value must be between the minvCpus and maxvCpus values. Additionally, the updated desiredvCpus value must be greater than or equal to the current desiredvCpus value. For more information, see Troubleshooting Batch in the Batch User Guide.
|
460
460
|
*/
|
461
461
|
desiredvCpus?: Integer;
|
462
462
|
/**
|
@@ -625,6 +625,7 @@ declare namespace Batch {
|
|
625
625
|
* The amount of ephemeral storage allocated for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on Fargate.
|
626
626
|
*/
|
627
627
|
ephemeralStorage?: EphemeralStorage;
|
628
|
+
runtimePlatform?: RuntimePlatform;
|
628
629
|
}
|
629
630
|
export interface ContainerOverrides {
|
630
631
|
/**
|
@@ -636,7 +637,7 @@ declare namespace Batch {
|
|
636
637
|
*/
|
637
638
|
memory?: Integer;
|
638
639
|
/**
|
639
|
-
* The command to send to the container that overrides the default command from the Docker image or the job definition.
|
640
|
+
* The command to send to the container that overrides the default command from the Docker image or the job definition. This parameter can't contain an empty string.
|
640
641
|
*/
|
641
642
|
command?: StringList;
|
642
643
|
/**
|
@@ -737,6 +738,7 @@ declare namespace Batch {
|
|
737
738
|
* The amount of ephemeral storage to allocate for the task. This parameter is used to expand the total amount of ephemeral storage available, beyond the default amount, for tasks hosted on Fargate.
|
738
739
|
*/
|
739
740
|
ephemeralStorage?: EphemeralStorage;
|
741
|
+
runtimePlatform?: RuntimePlatform;
|
740
742
|
}
|
741
743
|
export interface ContainerSummary {
|
742
744
|
/**
|
@@ -2107,6 +2109,16 @@ declare namespace Batch {
|
|
2107
2109
|
*/
|
2108
2110
|
evaluateOnExit?: EvaluateOnExitList;
|
2109
2111
|
}
|
2112
|
+
export interface RuntimePlatform {
|
2113
|
+
/**
|
2114
|
+
* The operating system for the compute environment. Valid values are: LINUX (default), WINDOWS_SERVER_2019_CORE, WINDOWS_SERVER_2019_FULL, WINDOWS_SERVER_2022_CORE, and WINDOWS_SERVER_2022_FULL. The following parameters can’t be set for Windows containers: linuxParameters, privileged, user, ulimits, readonlyRootFilesystem, and efsVolumeConfiguration. The Batch Scheduler checks before registering a task definition with Fargate. If the job requires a Windows container and the first compute environment is LINUX, the compute environment is skipped and the next is checked until a Windows-based compute environment is found. Fargate Spot is not supported for Windows-based containers on Fargate. A job queue will be blocked if a Fargate Windows job is submitted to a job queue with only Fargate Spot compute environments. However, you can attach both FARGATE and FARGATE_SPOT compute environments to the same job queue.
|
2115
|
+
*/
|
2116
|
+
operatingSystemFamily?: String;
|
2117
|
+
/**
|
2118
|
+
* The vCPU architecture. The default value is X86_64. Valid values are X86_64 and ARM64. This parameter must be set to X86_64 for Windows containers.
|
2119
|
+
*/
|
2120
|
+
cpuArchitecture?: String;
|
2121
|
+
}
|
2110
2122
|
export interface SchedulingPolicyDetail {
|
2111
2123
|
/**
|
2112
2124
|
* The name of the scheduling policy.
|
@@ -2167,7 +2179,7 @@ declare namespace Batch {
|
|
2167
2179
|
*/
|
2168
2180
|
jobQueue: String;
|
2169
2181
|
/**
|
2170
|
-
* The share identifier for the job.
|
2182
|
+
* The share identifier for the job. Don't specify this parameter if the job queue doesn't have a scheduling policy. If the job queue has a scheduling policy, then this parameter must be specified. This string is limited to 255 alphanumeric characters, and can be followed by an asterisk (*).
|
2171
2183
|
*/
|
2172
2184
|
shareIdentifier?: String;
|
2173
2185
|
/**
|
package/clients/sagemaker.d.ts
CHANGED
@@ -3353,7 +3353,7 @@ declare namespace SageMaker {
|
|
3353
3353
|
*/
|
3354
3354
|
TabularJobConfig?: TabularJobConfig;
|
3355
3355
|
/**
|
3356
|
-
* Settings used to configure an AutoML job V2 for a time-series forecasting problem type.
|
3356
|
+
* Settings used to configure an AutoML job V2 for a time-series forecasting problem type. The TimeSeriesForecastingJobConfig problem type is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.
|
3357
3357
|
*/
|
3358
3358
|
TimeSeriesForecastingJobConfig?: TimeSeriesForecastingJobConfig;
|
3359
3359
|
}
|
@@ -10882,7 +10882,7 @@ declare namespace SageMaker {
|
|
10882
10882
|
/**
|
10883
10883
|
* The instance types to use for the load test.
|
10884
10884
|
*/
|
10885
|
-
InstanceType
|
10885
|
+
InstanceType?: ProductionVariantInstanceType;
|
10886
10886
|
/**
|
10887
10887
|
* The inference specification name in the model package version.
|
10888
10888
|
*/
|
@@ -10891,6 +10891,7 @@ declare namespace SageMaker {
|
|
10891
10891
|
* The parameter you want to benchmark against.
|
10892
10892
|
*/
|
10893
10893
|
EnvironmentParameterRanges?: EnvironmentParameterRanges;
|
10894
|
+
ServerlessConfig?: ProductionVariantServerlessConfig;
|
10894
10895
|
}
|
10895
10896
|
export type EndpointInputConfigurations = EndpointInputConfiguration[];
|
10896
10897
|
export interface EndpointMetadata {
|
@@ -10925,11 +10926,12 @@ declare namespace SageMaker {
|
|
10925
10926
|
/**
|
10926
10927
|
* The instance type recommended by Amazon SageMaker Inference Recommender.
|
10927
10928
|
*/
|
10928
|
-
InstanceType
|
10929
|
+
InstanceType?: ProductionVariantInstanceType;
|
10929
10930
|
/**
|
10930
10931
|
* The number of instances recommended to launch initially.
|
10931
10932
|
*/
|
10932
|
-
InitialInstanceCount
|
10933
|
+
InitialInstanceCount?: InitialInstanceCount;
|
10934
|
+
ServerlessConfig?: ProductionVariantServerlessConfig;
|
10933
10935
|
}
|
10934
10936
|
export interface EndpointPerformance {
|
10935
10937
|
/**
|
@@ -12560,6 +12562,7 @@ declare namespace SageMaker {
|
|
12560
12562
|
SupportedResponseMIMETypes: ResponseMIMETypes;
|
12561
12563
|
}
|
12562
12564
|
export type InferenceSpecificationName = string;
|
12565
|
+
export type InitialInstanceCount = number;
|
12563
12566
|
export type InitialNumberOfUsers = number;
|
12564
12567
|
export type InitialTaskCount = number;
|
12565
12568
|
export interface InputConfig {
|
@@ -17103,6 +17106,7 @@ declare namespace SageMaker {
|
|
17103
17106
|
*/
|
17104
17107
|
CrossAccountModelRegisterRoleArn?: RoleArn;
|
17105
17108
|
}
|
17109
|
+
export type ModelSetupTime = number;
|
17106
17110
|
export type ModelSortKey = "Name"|"CreationTime"|string;
|
17107
17111
|
export interface ModelStepMetadata {
|
17108
17112
|
/**
|
@@ -18724,7 +18728,7 @@ declare namespace SageMaker {
|
|
18724
18728
|
*/
|
18725
18729
|
MaxConcurrency: ServerlessMaxConcurrency;
|
18726
18730
|
/**
|
18727
|
-
* The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency.
|
18731
|
+
* The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency. This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs.
|
18728
18732
|
*/
|
18729
18733
|
ProvisionedConcurrency?: ServerlessProvisionedConcurrency;
|
18730
18734
|
}
|
@@ -19251,6 +19255,10 @@ declare namespace SageMaker {
|
|
19251
19255
|
* Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.
|
19252
19256
|
*/
|
19253
19257
|
DataInputConfig?: RecommendationJobDataInputConfig;
|
19258
|
+
/**
|
19259
|
+
* The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.
|
19260
|
+
*/
|
19261
|
+
SupportedEndpointType?: RecommendationJobSupportedEndpointType;
|
19254
19262
|
}
|
19255
19263
|
export type RecommendationJobDataInputConfig = string;
|
19256
19264
|
export type RecommendationJobDescription = string;
|
@@ -19357,6 +19365,7 @@ declare namespace SageMaker {
|
|
19357
19365
|
ModelLatencyThresholds?: ModelLatencyThresholds;
|
19358
19366
|
}
|
19359
19367
|
export type RecommendationJobSupportedContentTypes = String[];
|
19368
|
+
export type RecommendationJobSupportedEndpointType = "RealTime"|"Serverless"|string;
|
19360
19369
|
export type RecommendationJobSupportedInstanceTypes = String[];
|
19361
19370
|
export type RecommendationJobType = "Default"|"Advanced"|string;
|
19362
19371
|
export interface RecommendationJobVpcConfig {
|
@@ -19398,6 +19407,10 @@ declare namespace SageMaker {
|
|
19398
19407
|
* The expected memory utilization at maximum invocations per minute for the instance. NaN indicates that the value is not available.
|
19399
19408
|
*/
|
19400
19409
|
MemoryUtilization?: UtilizationMetric;
|
19410
|
+
/**
|
19411
|
+
* The time it takes to launch new compute resources for a serverless endpoint. The time can vary depending on the model size, how long it takes to download the model, and the start-up time of the container. NaN indicates that the value is not available.
|
19412
|
+
*/
|
19413
|
+
ModelSetupTime?: ModelSetupTime;
|
19401
19414
|
}
|
19402
19415
|
export type RecommendationStatus = "IN_PROGRESS"|"COMPLETED"|"FAILED"|"NOT_APPLICABLE"|string;
|
19403
19416
|
export type RecommendationStepType = "BENCHMARK"|string;
|
@@ -19618,9 +19631,6 @@ declare namespace SageMaker {
|
|
19618
19631
|
}
|
19619
19632
|
export type RoleArn = string;
|
19620
19633
|
export interface RollingUpdatePolicy {
|
19621
|
-
/**
|
19622
|
-
* Batch size for each rolling step to provision capacity and turn on traffic on the new endpoint fleet, and terminate capacity on the old endpoint fleet. Value must be between 5% to 50% of the variant's total instance count.
|
19623
|
-
*/
|
19624
19634
|
MaximumBatchSize: CapacitySize;
|
19625
19635
|
/**
|
19626
19636
|
* The length of the baking period, during which SageMaker monitors alarms for each batch on the new fleet.
|
@@ -19630,9 +19640,6 @@ declare namespace SageMaker {
|
|
19630
19640
|
* The time limit for the total deployment. Exceeding this limit causes a timeout.
|
19631
19641
|
*/
|
19632
19642
|
MaximumExecutionTimeoutInSeconds?: MaximumExecutionTimeoutInSeconds;
|
19633
|
-
/**
|
19634
|
-
* Batch size for rollback to the old endpoint fleet. Each rolling step to provision capacity and turn on traffic on the old endpoint fleet, and terminate capacity on the new endpoint fleet. If this field is absent, the default value will be set to 100% of total capacity which means to bring up the whole capacity of the old fleet at once during rollback.
|
19635
|
-
*/
|
19636
19643
|
RollbackMaximumBatchSize?: CapacitySize;
|
19637
19644
|
}
|
19638
19645
|
export type RootAccess = "Enabled"|"Disabled"|string;
|