aws-sdk 2.1399.0 → 2.1401.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +16 -1
- package/README.md +1 -1
- package/apis/appflow-2020-08-23.min.json +19 -0
- package/apis/cloudformation-2010-05-15.min.json +73 -71
- package/apis/ec2-2016-11-15.examples.json +17 -382
- package/apis/ec2-2016-11-15.min.json +1400 -1370
- package/apis/glue-2017-03-31.min.json +4 -2
- package/apis/pricing-2017-10-15.examples.json +0 -63
- package/apis/pricing-2017-10-15.waiters2.json +5 -0
- package/apis/redshift-2012-12-01.min.json +232 -125
- package/apis/redshift-2012-12-01.paginators.json +6 -0
- package/apis/route53domains-2014-05-15.min.json +9 -9
- package/apis/sagemaker-2017-07-24.min.json +926 -866
- package/clients/appflow.d.ts +32 -0
- package/clients/cloudformation.d.ts +10 -1
- package/clients/configservice.d.ts +1 -1
- package/clients/ec2.d.ts +53 -24
- package/clients/ecs.d.ts +4 -4
- package/clients/glue.d.ts +8 -0
- package/clients/pricing.d.ts +2 -2
- package/clients/pricing.js +1 -0
- package/clients/redshift.d.ts +189 -11
- package/clients/route53domains.d.ts +11 -10
- package/clients/sagemaker.d.ts +107 -36
- package/dist/aws-sdk-core-react-native.js +1 -1
- package/dist/aws-sdk-react-native.js +1545 -1538
- package/dist/aws-sdk.js +2012 -1859
- package/dist/aws-sdk.min.js +81 -81
- package/lib/core.js +1 -1
- package/package.json +1 -1
package/clients/sagemaker.d.ts
CHANGED
@@ -85,19 +85,19 @@ declare class SageMaker extends Service {
|
|
85
85
|
*/
|
86
86
|
createArtifact(callback?: (err: AWSError, data: SageMaker.Types.CreateArtifactResponse) => void): Request<SageMaker.Types.CreateArtifactResponse, AWSError>;
|
87
87
|
/**
|
88
|
-
* Creates an Autopilot job. Find the best-performing model after you run an
|
88
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. Find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob. CreateAutoMLJob only accepts tabular input data. We recommend using CreateAutoMLJobV2 for all problem types. CreateAutoMLJobV2 can process the same tabular data as its previous version CreateAutoMLJob, as well as non-tabular data for problem types such as image or text classification. Find guidelines about how to migrate CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.
|
89
89
|
*/
|
90
90
|
createAutoMLJob(params: SageMaker.Types.CreateAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
|
91
91
|
/**
|
92
|
-
* Creates an Autopilot job. Find the best-performing model after you run an
|
92
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job. Find the best-performing model after you run an AutoML job by calling DescribeAutoMLJobV2 (recommended) or DescribeAutoMLJob. CreateAutoMLJob only accepts tabular input data. We recommend using CreateAutoMLJobV2 for all problem types. CreateAutoMLJobV2 can process the same tabular data as its previous version CreateAutoMLJob, as well as non-tabular data for problem types such as image or text classification. Find guidelines about how to migrate CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2.
|
93
93
|
*/
|
94
94
|
createAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobResponse) => void): Request<SageMaker.Types.CreateAutoMLJobResponse, AWSError>;
|
95
95
|
/**
|
96
|
-
* Creates an
|
96
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. We recommend using CreateAutoMLJobV2 for all problem types. CreateAutoMLJobV2 can process the same tabular data as its previous version CreateAutoMLJob, as well as non-tabular data for problem types such as image or text classification. Find guidelines about how to migrate CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. Find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2. Calling DescribeAutoMLJob on a AutoML job V2 results in an error.
|
97
97
|
*/
|
98
98
|
createAutoMLJobV2(params: SageMaker.Types.CreateAutoMLJobV2Request, callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
|
99
99
|
/**
|
100
|
-
* Creates an
|
100
|
+
* Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2. We recommend using CreateAutoMLJobV2 for all problem types. CreateAutoMLJobV2 can process the same tabular data as its previous version CreateAutoMLJob, as well as non-tabular data for problem types such as image or text classification. Find guidelines about how to migrate CreateAutoMLJob to CreateAutoMLJobV2 in Migrate a CreateAutoMLJob to CreateAutoMLJobV2. For the list of available problem types supported by CreateAutoMLJobV2, see AutoMLProblemTypeConfig. Find the best-performing model after you run an AutoML job V2 by calling DescribeAutoMLJobV2. Calling DescribeAutoMLJob on a AutoML job V2 results in an error.
|
101
101
|
*/
|
102
102
|
createAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.CreateAutoMLJobV2Response) => void): Request<SageMaker.Types.CreateAutoMLJobV2Response, AWSError>;
|
103
103
|
/**
|
@@ -885,19 +885,19 @@ declare class SageMaker extends Service {
|
|
885
885
|
*/
|
886
886
|
describeArtifact(callback?: (err: AWSError, data: SageMaker.Types.DescribeArtifactResponse) => void): Request<SageMaker.Types.DescribeArtifactResponse, AWSError>;
|
887
887
|
/**
|
888
|
-
* Returns information about an
|
888
|
+
* Returns information about an AutoML job created by calling CreateAutoMLJob.
|
889
889
|
*/
|
890
890
|
describeAutoMLJob(params: SageMaker.Types.DescribeAutoMLJobRequest, callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobResponse) => void): Request<SageMaker.Types.DescribeAutoMLJobResponse, AWSError>;
|
891
891
|
/**
|
892
|
-
* Returns information about an
|
892
|
+
* Returns information about an AutoML job created by calling CreateAutoMLJob.
|
893
893
|
*/
|
894
894
|
describeAutoMLJob(callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobResponse) => void): Request<SageMaker.Types.DescribeAutoMLJobResponse, AWSError>;
|
895
895
|
/**
|
896
|
-
* Returns information about an
|
896
|
+
* Returns information about an AutoML job V2 created by calling CreateAutoMLJobV2.
|
897
897
|
*/
|
898
898
|
describeAutoMLJobV2(params: SageMaker.Types.DescribeAutoMLJobV2Request, callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobV2Response) => void): Request<SageMaker.Types.DescribeAutoMLJobV2Response, AWSError>;
|
899
899
|
/**
|
900
|
-
* Returns information about an
|
900
|
+
* Returns information about an AutoML job V2 created by calling CreateAutoMLJobV2.
|
901
901
|
*/
|
902
902
|
describeAutoMLJobV2(callback?: (err: AWSError, data: SageMaker.Types.DescribeAutoMLJobV2Response) => void): Request<SageMaker.Types.DescribeAutoMLJobV2Response, AWSError>;
|
903
903
|
/**
|
@@ -3108,7 +3108,7 @@ declare namespace SageMaker {
|
|
3108
3108
|
*/
|
3109
3109
|
CandidateProperties?: CandidateProperties;
|
3110
3110
|
/**
|
3111
|
-
* The mapping of all supported processing unit (CPU, GPU, etc...) to inference container definitions for the candidate. This field is populated for the
|
3111
|
+
* The mapping of all supported processing unit (CPU, GPU, etc...) to inference container definitions for the candidate. This field is populated for the AutoML jobs V2 (for example, for jobs created by calling CreateAutoMLJobV2) related to image or text classification problem types only.
|
3112
3112
|
*/
|
3113
3113
|
InferenceContainerDefinitions?: AutoMLInferenceContainerDefinitions;
|
3114
3114
|
}
|
@@ -3211,25 +3211,25 @@ declare namespace SageMaker {
|
|
3211
3211
|
*/
|
3212
3212
|
ChannelType?: AutoMLChannelType;
|
3213
3213
|
/**
|
3214
|
-
* The content type of the data from the input source. The following are the allowed content types for different problems: ImageClassification: image/png, image/jpeg, or image/*. The default value is image/*. TextClassification: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
|
3214
|
+
* The content type of the data from the input source. The following are the allowed content types for different problems: For Tabular problem types: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present. For ImageClassification: image/png, image/jpeg, or image/*. The default value is image/*. For TextClassification: text/csv;header=present or x-application/vnd.amazon+parquet. The default value is text/csv;header=present.
|
3215
3215
|
*/
|
3216
3216
|
ContentType?: ContentType;
|
3217
3217
|
/**
|
3218
|
-
* The allowed compression types depend on the input format. We allow the compression type Gzip for S3Prefix inputs only. For all other inputs, the compression type should be None. If no compression type is provided, we default to None.
|
3218
|
+
* The allowed compression types depend on the input format and problem type. We allow the compression type Gzip for S3Prefix inputs on tabular data only. For all other inputs, the compression type should be None. If no compression type is provided, we default to None.
|
3219
3219
|
*/
|
3220
3220
|
CompressionType?: CompressionType;
|
3221
3221
|
/**
|
3222
|
-
* The data source for an AutoML channel.
|
3222
|
+
* The data source for an AutoML channel (Required).
|
3223
3223
|
*/
|
3224
3224
|
DataSource?: AutoMLDataSource;
|
3225
3225
|
}
|
3226
3226
|
export interface AutoMLJobCompletionCriteria {
|
3227
3227
|
/**
|
3228
|
-
* The maximum number of times a training job is allowed to run. For
|
3228
|
+
* The maximum number of times a training job is allowed to run. For job V2s (jobs created by calling CreateAutoMLJobV2), the supported value is 1.
|
3229
3229
|
*/
|
3230
3230
|
MaxCandidates?: MaxCandidates;
|
3231
3231
|
/**
|
3232
|
-
* The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action. For
|
3232
|
+
* The maximum time, in seconds, that each training job executed inside hyperparameter tuning is allowed to run as part of a hyperparameter tuning job. For more information, see the StoppingCondition used by the CreateHyperParameterTuningJob action. For job V2s (jobs created by calling CreateAutoMLJobV2), this field controls the runtime of the job candidate.
|
3233
3233
|
*/
|
3234
3234
|
MaxRuntimePerTrainingJobInSeconds?: MaxRuntimePerTrainingJobInSeconds;
|
3235
3235
|
/**
|
@@ -3263,7 +3263,7 @@ declare namespace SageMaker {
|
|
3263
3263
|
export type AutoMLJobName = string;
|
3264
3264
|
export interface AutoMLJobObjective {
|
3265
3265
|
/**
|
3266
|
-
* The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset. For the list of all available metrics supported by Autopilot, see Autopilot metrics. If you do not specify a metric explicitly, the default behavior is to automatically use:
|
3266
|
+
* The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset. For the list of all available metrics supported by Autopilot, see Autopilot metrics. If you do not specify a metric explicitly, the default behavior is to automatically use: For tabular problem types: Regression: MSE. Binary classification: F1. Multiclass classification: Accuracy. For image or text classification problem types: Accuracy
|
3267
3267
|
*/
|
3268
3268
|
MetricName: AutoMLMetricEnum;
|
3269
3269
|
}
|
@@ -3339,15 +3339,34 @@ declare namespace SageMaker {
|
|
3339
3339
|
export type AutoMLPartialFailureReasons = AutoMLPartialFailureReason[];
|
3340
3340
|
export interface AutoMLProblemTypeConfig {
|
3341
3341
|
/**
|
3342
|
-
* Settings used to configure an AutoML job
|
3342
|
+
* Settings used to configure an AutoML job V2 for the image classification problem type.
|
3343
3343
|
*/
|
3344
3344
|
ImageClassificationJobConfig?: ImageClassificationJobConfig;
|
3345
3345
|
/**
|
3346
|
-
* Settings used to configure an AutoML job
|
3346
|
+
* Settings used to configure an AutoML job V2 for the text classification problem type.
|
3347
3347
|
*/
|
3348
3348
|
TextClassificationJobConfig?: TextClassificationJobConfig;
|
3349
|
+
/**
|
3350
|
+
* Settings used to configure an AutoML job V2 for a tabular problem type (regression, classification).
|
3351
|
+
*/
|
3352
|
+
TabularJobConfig?: TabularJobConfig;
|
3353
|
+
}
|
3354
|
+
export type AutoMLProblemTypeConfigName = "ImageClassification"|"TextClassification"|"Tabular"|string;
|
3355
|
+
export interface AutoMLProblemTypeResolvedAttributes {
|
3356
|
+
/**
|
3357
|
+
* Defines the resolved attributes for the TABULAR problem type.
|
3358
|
+
*/
|
3359
|
+
TabularResolvedAttributes?: TabularResolvedAttributes;
|
3349
3360
|
}
|
3350
3361
|
export type AutoMLProcessingUnit = "CPU"|"GPU"|string;
|
3362
|
+
export interface AutoMLResolvedAttributes {
|
3363
|
+
AutoMLJobObjective?: AutoMLJobObjective;
|
3364
|
+
CompletionCriteria?: AutoMLJobCompletionCriteria;
|
3365
|
+
/**
|
3366
|
+
* Defines the resolved attributes specific to a problem type.
|
3367
|
+
*/
|
3368
|
+
AutoMLProblemTypeResolvedAttributes?: AutoMLProblemTypeResolvedAttributes;
|
3369
|
+
}
|
3351
3370
|
export interface AutoMLS3DataSource {
|
3352
3371
|
/**
|
3353
3372
|
* The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
|
@@ -3591,6 +3610,12 @@ declare namespace SageMaker {
|
|
3591
3610
|
ModelInsights?: ModelInsightsLocation;
|
3592
3611
|
}
|
3593
3612
|
export type CandidateDefinitionNotebookLocation = string;
|
3613
|
+
export interface CandidateGenerationConfig {
|
3614
|
+
/**
|
3615
|
+
* Stores the configuration information for the selection of algorithms used to train model candidates on tabular data. The list of available algorithms to choose from depends on the training mode set in TabularJobConfig.Mode . AlgorithmsConfig should not be set in AUTO training mode. When AlgorithmsConfig is provided, one AutoMLAlgorithms attribute must be set and one only. If the list of algorithms provided as values for AutoMLAlgorithms is empty, CandidateGenerationConfig uses the full set of algorithms for the given training mode. When AlgorithmsConfig is not provided, CandidateGenerationConfig uses the full set of algorithms for the given training mode. For the list of all algorithms per problem type and training mode, see AutoMLAlgorithmConfig. For more information on each algorithm, see the Algorithm support section in Autopilot developer guide.
|
3616
|
+
*/
|
3617
|
+
AlgorithmsConfig?: AutoMLAlgorithmsConfig;
|
3618
|
+
}
|
3594
3619
|
export type CandidateName = string;
|
3595
3620
|
export interface CandidateProperties {
|
3596
3621
|
/**
|
@@ -4357,7 +4382,7 @@ declare namespace SageMaker {
|
|
4357
4382
|
*/
|
4358
4383
|
ProblemType?: ProblemType;
|
4359
4384
|
/**
|
4360
|
-
*
|
4385
|
+
* Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
|
4361
4386
|
*/
|
4362
4387
|
AutoMLJobObjective?: AutoMLJobObjective;
|
4363
4388
|
/**
|
@@ -4393,7 +4418,7 @@ declare namespace SageMaker {
|
|
4393
4418
|
*/
|
4394
4419
|
AutoMLJobName: AutoMLJobName;
|
4395
4420
|
/**
|
4396
|
-
* An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type: ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile
|
4421
|
+
* An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to InputDataConfig supported by CreateAutoMLJob. The supported formats depend on the problem type: For Tabular problem types: S3Prefix, ManifestFile. For ImageClassification: S3Prefix, ManifestFile, AugmentedManifestFile. For TextClassification: S3Prefix.
|
4397
4422
|
*/
|
4398
4423
|
AutoMLJobInputDataConfig: AutoMLJobInputDataConfig;
|
4399
4424
|
/**
|
@@ -4401,7 +4426,7 @@ declare namespace SageMaker {
|
|
4401
4426
|
*/
|
4402
4427
|
OutputDataConfig: AutoMLOutputDataConfig;
|
4403
4428
|
/**
|
4404
|
-
* Defines the configuration settings of one of the supported problem types.
|
4429
|
+
* Defines the configuration settings of one of the supported problem types. For tabular problem types, you must either specify the type of supervised learning problem in AutoMLProblemTypeConfig (TabularJobConfig.ProblemType) and provide the AutoMLJobObjective, or none at all.
|
4405
4430
|
*/
|
4406
4431
|
AutoMLProblemTypeConfig: AutoMLProblemTypeConfig;
|
4407
4432
|
/**
|
@@ -4417,7 +4442,7 @@ declare namespace SageMaker {
|
|
4417
4442
|
*/
|
4418
4443
|
SecurityConfig?: AutoMLSecurityConfig;
|
4419
4444
|
/**
|
4420
|
-
* Specifies a metric to minimize or maximize as the objective of a job. For
|
4445
|
+
* Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective. For tabular problem types, you must either provide the AutoMLJobObjective and indicate the type of supervised learning problem in AutoMLProblemTypeConfig (TabularJobConfig.ProblemType), or none.
|
4421
4446
|
*/
|
4422
4447
|
AutoMLJobObjective?: AutoMLJobObjective;
|
4423
4448
|
/**
|
@@ -4425,7 +4450,7 @@ declare namespace SageMaker {
|
|
4425
4450
|
*/
|
4426
4451
|
ModelDeployConfig?: ModelDeployConfig;
|
4427
4452
|
/**
|
4428
|
-
* This structure specifies how to split the data into train and validation datasets.
|
4453
|
+
* This structure specifies how to split the data into train and validation datasets. The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob, the validation dataset must be less than 2 GB in size.
|
4429
4454
|
*/
|
4430
4455
|
DataSplitConfig?: AutoMLDataSplitConfig;
|
4431
4456
|
}
|
@@ -7207,7 +7232,7 @@ declare namespace SageMaker {
|
|
7207
7232
|
*/
|
7208
7233
|
AutoMLJobArtifacts?: AutoMLJobArtifacts;
|
7209
7234
|
/**
|
7210
|
-
* Contains ProblemType, AutoMLJobObjective, and CompletionCriteria. If you do not provide these values, they are
|
7235
|
+
* Contains ProblemType, AutoMLJobObjective, and CompletionCriteria. If you do not provide these values, they are inferred.
|
7211
7236
|
*/
|
7212
7237
|
ResolvedAttributes?: ResolvedAttributes;
|
7213
7238
|
/**
|
@@ -7221,17 +7246,17 @@ declare namespace SageMaker {
|
|
7221
7246
|
}
|
7222
7247
|
export interface DescribeAutoMLJobV2Request {
|
7223
7248
|
/**
|
7224
|
-
* Requests information about an AutoML V2
|
7249
|
+
* Requests information about an AutoML job V2 using its unique name.
|
7225
7250
|
*/
|
7226
7251
|
AutoMLJobName: AutoMLJobName;
|
7227
7252
|
}
|
7228
7253
|
export interface DescribeAutoMLJobV2Response {
|
7229
7254
|
/**
|
7230
|
-
* Returns the name of the AutoML V2
|
7255
|
+
* Returns the name of the AutoML job V2.
|
7231
7256
|
*/
|
7232
7257
|
AutoMLJobName: AutoMLJobName;
|
7233
7258
|
/**
|
7234
|
-
* Returns the Amazon Resource Name (ARN) of the AutoML V2
|
7259
|
+
* Returns the Amazon Resource Name (ARN) of the AutoML job V2.
|
7235
7260
|
*/
|
7236
7261
|
AutoMLJobArn: AutoMLJobArn;
|
7237
7262
|
/**
|
@@ -7251,15 +7276,15 @@ declare namespace SageMaker {
|
|
7251
7276
|
*/
|
7252
7277
|
AutoMLJobObjective?: AutoMLJobObjective;
|
7253
7278
|
/**
|
7254
|
-
* Returns the configuration settings of the problem type set for the AutoML V2
|
7279
|
+
* Returns the configuration settings of the problem type set for the AutoML job V2.
|
7255
7280
|
*/
|
7256
7281
|
AutoMLProblemTypeConfig?: AutoMLProblemTypeConfig;
|
7257
7282
|
/**
|
7258
|
-
* Returns the creation time of the AutoML V2
|
7283
|
+
* Returns the creation time of the AutoML job V2.
|
7259
7284
|
*/
|
7260
7285
|
CreationTime: Timestamp;
|
7261
7286
|
/**
|
7262
|
-
* Returns the end time of the AutoML V2
|
7287
|
+
* Returns the end time of the AutoML job V2.
|
7263
7288
|
*/
|
7264
7289
|
EndTime?: Timestamp;
|
7265
7290
|
/**
|
@@ -7267,11 +7292,11 @@ declare namespace SageMaker {
|
|
7267
7292
|
*/
|
7268
7293
|
LastModifiedTime: Timestamp;
|
7269
7294
|
/**
|
7270
|
-
* Returns the reason for the failure of the AutoML V2
|
7295
|
+
* Returns the reason for the failure of the AutoML job V2, when applicable.
|
7271
7296
|
*/
|
7272
7297
|
FailureReason?: AutoMLFailureReason;
|
7273
7298
|
/**
|
7274
|
-
* Returns a list of reasons for partial failures within an AutoML V2
|
7299
|
+
* Returns a list of reasons for partial failures within an AutoML job V2.
|
7275
7300
|
*/
|
7276
7301
|
PartialFailureReasons?: AutoMLPartialFailureReasons;
|
7277
7302
|
/**
|
@@ -7279,11 +7304,11 @@ declare namespace SageMaker {
|
|
7279
7304
|
*/
|
7280
7305
|
BestCandidate?: AutoMLCandidate;
|
7281
7306
|
/**
|
7282
|
-
* Returns the status of the AutoML V2
|
7307
|
+
* Returns the status of the AutoML job V2.
|
7283
7308
|
*/
|
7284
7309
|
AutoMLJobStatus: AutoMLJobStatus;
|
7285
7310
|
/**
|
7286
|
-
* Returns the secondary status of the AutoML V2
|
7311
|
+
* Returns the secondary status of the AutoML job V2.
|
7287
7312
|
*/
|
7288
7313
|
AutoMLJobSecondaryStatus: AutoMLJobSecondaryStatus;
|
7289
7314
|
/**
|
@@ -7302,6 +7327,15 @@ declare namespace SageMaker {
|
|
7302
7327
|
* Returns the security configuration for traffic encryption or Amazon VPC settings.
|
7303
7328
|
*/
|
7304
7329
|
SecurityConfig?: AutoMLSecurityConfig;
|
7330
|
+
AutoMLJobArtifacts?: AutoMLJobArtifacts;
|
7331
|
+
/**
|
7332
|
+
* Returns the resolved attributes used by the AutoML job V2.
|
7333
|
+
*/
|
7334
|
+
ResolvedAttributes?: AutoMLResolvedAttributes;
|
7335
|
+
/**
|
7336
|
+
* Returns the name of the problem type configuration set for the AutoML job V2.
|
7337
|
+
*/
|
7338
|
+
AutoMLProblemTypeConfigName?: AutoMLProblemTypeConfigName;
|
7305
7339
|
}
|
7306
7340
|
export interface DescribeCodeRepositoryInput {
|
7307
7341
|
/**
|
@@ -17806,7 +17840,7 @@ declare namespace SageMaker {
|
|
17806
17840
|
*/
|
17807
17841
|
S3OutputLocation: S3Uri;
|
17808
17842
|
/**
|
17809
|
-
* Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform.
|
17843
|
+
* Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform. Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.
|
17810
17844
|
*/
|
17811
17845
|
TargetDevice?: TargetDevice;
|
17812
17846
|
/**
|
@@ -20206,6 +20240,43 @@ declare namespace SageMaker {
|
|
20206
20240
|
}
|
20207
20241
|
export type TableFormat = "Glue"|"Iceberg"|string;
|
20208
20242
|
export type TableName = string;
|
20243
|
+
export interface TabularJobConfig {
|
20244
|
+
/**
|
20245
|
+
* The configuration information of how model candidates are generated.
|
20246
|
+
*/
|
20247
|
+
CandidateGenerationConfig?: CandidateGenerationConfig;
|
20248
|
+
CompletionCriteria?: AutoMLJobCompletionCriteria;
|
20249
|
+
/**
|
20250
|
+
* A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job V2. You can input FeatureAttributeNames (optional) in JSON format as shown below: { "FeatureAttributeNames":["col1", "col2", ...] }. You can also specify the data type of the feature (optional) in the format shown below: { "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } } These column keys may not include the target column. In ensembling mode, Autopilot only supports the following data types: numeric, categorical, text, and datetime. In HPO mode, Autopilot can support numeric, categorical, text, datetime, and sequence. If only FeatureDataTypes is provided, the column keys (col1, col2,..) should be a subset of the column names in the input data. If both FeatureDataTypes and FeatureAttributeNames are provided, then the column keys should be a subset of the column names provided in FeatureAttributeNames. The key name FeatureAttributeNames is fixed. The values listed in ["col1", "col2", ...] are case sensitive and should be a list of strings containing unique values that are a subset of the column names in the input data. The list of columns provided must not include the target column.
|
20251
|
+
*/
|
20252
|
+
FeatureSpecificationS3Uri?: S3Uri;
|
20253
|
+
/**
|
20254
|
+
* The method that Autopilot uses to train the data. You can either specify the mode manually or let Autopilot choose for you based on the dataset size by selecting AUTO. In AUTO mode, Autopilot chooses ENSEMBLING for datasets smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. The ENSEMBLING mode uses a multi-stack ensemble model to predict classification and regression tasks directly from your dataset. This machine learning mode combines several base models to produce an optimal predictive model. It then uses a stacking ensemble method to combine predictions from contributing members. A multi-stack ensemble model can provide better performance over a single model by combining the predictive capabilities of multiple models. See Autopilot algorithm support for a list of algorithms supported by ENSEMBLING mode. The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to train the best version of a model. HPO automatically selects an algorithm for the type of problem you want to solve. Then HPO finds the best hyperparameters according to your objective metric. See Autopilot algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING mode.
|
20255
|
+
*/
|
20256
|
+
Mode?: AutoMLMode;
|
20257
|
+
/**
|
20258
|
+
* Generates possible candidates without training the models. A model candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
|
20259
|
+
*/
|
20260
|
+
GenerateCandidateDefinitionsOnly?: GenerateCandidateDefinitionsOnly;
|
20261
|
+
/**
|
20262
|
+
* The type of supervised learning problem available for the model candidates of the AutoML job V2. For more information, see Amazon SageMaker Autopilot problem types.
|
20263
|
+
*/
|
20264
|
+
ProblemType?: ProblemType;
|
20265
|
+
/**
|
20266
|
+
* The name of the target variable in supervised learning, usually represented by 'y'.
|
20267
|
+
*/
|
20268
|
+
TargetAttributeName: TargetAttributeName;
|
20269
|
+
/**
|
20270
|
+
* If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation. Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded. Support for sample weights is available in Ensembling mode only.
|
20271
|
+
*/
|
20272
|
+
SampleWeightAttributeName?: SampleWeightAttributeName;
|
20273
|
+
}
|
20274
|
+
export interface TabularResolvedAttributes {
|
20275
|
+
/**
|
20276
|
+
* The type of supervised learning problem available for the model candidates of the AutoML job V2 (Binary Classification, Multiclass Classification, Regression). For more information, see Amazon SageMaker Autopilot problem types.
|
20277
|
+
*/
|
20278
|
+
ProblemType?: ProblemType;
|
20279
|
+
}
|
20209
20280
|
export interface Tag {
|
20210
20281
|
/**
|
20211
20282
|
* The tag key. Tag keys must be unique per resource.
|
@@ -20276,11 +20347,11 @@ declare namespace SageMaker {
|
|
20276
20347
|
*/
|
20277
20348
|
CompletionCriteria?: AutoMLJobCompletionCriteria;
|
20278
20349
|
/**
|
20279
|
-
* The name of the column used to provide the sentences to be classified. It should not be the same as the target column.
|
20350
|
+
* The name of the column used to provide the sentences to be classified. It should not be the same as the target column (Required).
|
20280
20351
|
*/
|
20281
20352
|
ContentColumn?: ContentColumn;
|
20282
20353
|
/**
|
20283
|
-
* The name of the column used to provide the class labels. It should not be same as the content column.
|
20354
|
+
* The name of the column used to provide the class labels. It should not be same as the content column (Required).
|
20284
20355
|
*/
|
20285
20356
|
TargetLabelColumn?: TargetLabelColumn;
|
20286
20357
|
}
|