aws-sdk 2.1386.0 → 2.1388.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +21 -1
- package/README.md +1 -1
- package/apis/chime-sdk-voice-2022-08-03.min.json +2 -1
- package/apis/config-2014-11-12.min.json +129 -112
- package/apis/frauddetector-2019-11-15.min.json +29 -12
- package/apis/glue-2017-03-31.min.json +510 -509
- package/apis/healthlake-2017-07-01.min.json +43 -17
- package/apis/iotfleetwise-2021-06-17.min.json +86 -43
- package/apis/location-2020-11-19.min.json +23 -16
- package/apis/m2-2021-04-28.min.json +90 -40
- package/apis/personalize-2018-05-22.min.json +32 -13
- package/apis/rds-2014-10-31.min.json +4 -2
- package/apis/securityhub-2018-10-26.examples.json +140 -3
- package/apis/securityhub-2018-10-26.min.json +465 -158
- package/apis/securitylake-2018-05-10.min.json +457 -447
- package/apis/securitylake-2018-05-10.paginators.json +7 -7
- package/apis/wafv2-2019-07-29.min.json +168 -159
- package/apis/workspaces-web-2020-07-08.min.json +360 -71
- package/apis/workspaces-web-2020-07-08.paginators.json +5 -0
- package/clients/chimesdkvoice.d.ts +5 -0
- package/clients/configservice.d.ts +34 -13
- package/clients/frauddetector.d.ts +18 -4
- package/clients/glue.d.ts +29 -24
- package/clients/groundstation.d.ts +2 -2
- package/clients/healthlake.d.ts +40 -10
- package/clients/iotfleetwise.d.ts +98 -13
- package/clients/location.d.ts +24 -8
- package/clients/m2.d.ts +81 -2
- package/clients/memorydb.d.ts +2 -2
- package/clients/personalize.d.ts +34 -17
- package/clients/polly.d.ts +2 -2
- package/clients/rds.d.ts +10 -2
- package/clients/securityhub.d.ts +539 -1
- package/clients/securitylake.d.ts +560 -541
- package/clients/servicecatalog.d.ts +8 -8
- package/clients/wafv2.d.ts +16 -6
- package/clients/workspacesweb.d.ts +254 -0
- package/dist/aws-sdk-core-react-native.js +1 -1
- package/dist/aws-sdk-react-native.js +17 -17
- package/dist/aws-sdk.js +191 -146
- package/dist/aws-sdk.min.js +63 -63
- package/lib/core.js +1 -1
- package/package.json +1 -1
package/clients/m2.d.ts
CHANGED
@@ -331,6 +331,10 @@ declare namespace M2 {
|
|
331
331
|
* The name of the application.
|
332
332
|
*/
|
333
333
|
name: EntityName;
|
334
|
+
/**
|
335
|
+
* The Amazon Resource Name (ARN) of the role associated with the application.
|
336
|
+
*/
|
337
|
+
roleArn?: Arn;
|
334
338
|
/**
|
335
339
|
* The status of the application.
|
336
340
|
*/
|
@@ -380,6 +384,9 @@ declare namespace M2 {
|
|
380
384
|
* The unique identifier of the application that hosts this batch job.
|
381
385
|
*/
|
382
386
|
applicationId: Identifier;
|
387
|
+
/**
|
388
|
+
* The unique identifier of this batch job.
|
389
|
+
*/
|
383
390
|
batchJobIdentifier?: BatchJobIdentifier;
|
384
391
|
/**
|
385
392
|
* The timestamp when this batch job execution ended.
|
@@ -402,7 +409,7 @@ declare namespace M2 {
|
|
402
409
|
*/
|
403
410
|
jobType?: BatchJobType;
|
404
411
|
/**
|
405
|
-
*
|
412
|
+
* The batch job return code from either the Blu Age or Micro Focus runtime engines. For more information, see Batch return codes in the IBM WebSphere Application Server documentation.
|
406
413
|
*/
|
407
414
|
returnCode?: String;
|
408
415
|
/**
|
@@ -468,6 +475,10 @@ declare namespace M2 {
|
|
468
475
|
* The unique identifier of the application.
|
469
476
|
*/
|
470
477
|
name: EntityName;
|
478
|
+
/**
|
479
|
+
* The Amazon Resource Name (ARN) of the role associated with the application.
|
480
|
+
*/
|
481
|
+
roleArn?: Arn;
|
471
482
|
/**
|
472
483
|
* A list of tags to apply to the application.
|
473
484
|
*/
|
@@ -708,6 +719,14 @@ declare namespace M2 {
|
|
708
719
|
* The generation data group of the data set.
|
709
720
|
*/
|
710
721
|
gdg?: GdgDetailAttributes;
|
722
|
+
/**
|
723
|
+
* The details of a PO type data set.
|
724
|
+
*/
|
725
|
+
po?: PoDetailAttributes;
|
726
|
+
/**
|
727
|
+
* The details of a PS type data set.
|
728
|
+
*/
|
729
|
+
ps?: PsDetailAttributes;
|
711
730
|
/**
|
712
731
|
* The details of a VSAM data set.
|
713
732
|
*/
|
@@ -718,6 +737,14 @@ declare namespace M2 {
|
|
718
737
|
* The generation data group of the data set.
|
719
738
|
*/
|
720
739
|
gdg?: GdgAttributes;
|
740
|
+
/**
|
741
|
+
* The details of a PO type data set.
|
742
|
+
*/
|
743
|
+
po?: PoAttributes;
|
744
|
+
/**
|
745
|
+
* The details of a PS type data set.
|
746
|
+
*/
|
747
|
+
ps?: PsAttributes;
|
721
748
|
/**
|
722
749
|
* The details of a VSAM data set.
|
723
750
|
*/
|
@@ -992,6 +1019,10 @@ declare namespace M2 {
|
|
992
1019
|
* The unique identifier of the application.
|
993
1020
|
*/
|
994
1021
|
name: EntityName;
|
1022
|
+
/**
|
1023
|
+
* The Amazon Resource Name (ARN) of the role associated with the application.
|
1024
|
+
*/
|
1025
|
+
roleArn?: Arn;
|
995
1026
|
/**
|
996
1027
|
* The status of the application.
|
997
1028
|
*/
|
@@ -1064,6 +1095,9 @@ declare namespace M2 {
|
|
1064
1095
|
* The identifier of the application.
|
1065
1096
|
*/
|
1066
1097
|
applicationId: Identifier;
|
1098
|
+
/**
|
1099
|
+
* The unique identifier of this batch job.
|
1100
|
+
*/
|
1067
1101
|
batchJobIdentifier?: BatchJobIdentifier;
|
1068
1102
|
/**
|
1069
1103
|
* The timestamp when the batch job execution ended.
|
@@ -1090,7 +1124,7 @@ declare namespace M2 {
|
|
1090
1124
|
*/
|
1091
1125
|
jobUser?: String100;
|
1092
1126
|
/**
|
1093
|
-
*
|
1127
|
+
* The batch job return code from either the Blu Age or Micro Focus runtime engines. For more information, see Batch return codes in the IBM WebSphere Application Server documentation.
|
1094
1128
|
*/
|
1095
1129
|
returnCode?: String;
|
1096
1130
|
/**
|
@@ -1617,6 +1651,30 @@ declare namespace M2 {
|
|
1617
1651
|
*/
|
1618
1652
|
schedule?: MaintenanceSchedule;
|
1619
1653
|
}
|
1654
|
+
export interface PoAttributes {
|
1655
|
+
/**
|
1656
|
+
* The character set encoding of the data set.
|
1657
|
+
*/
|
1658
|
+
encoding?: String;
|
1659
|
+
/**
|
1660
|
+
* The format of the data set records.
|
1661
|
+
*/
|
1662
|
+
format: String;
|
1663
|
+
/**
|
1664
|
+
* An array containing one or more filename extensions, allowing you to specify which files to be included as PDS member.
|
1665
|
+
*/
|
1666
|
+
memberFileExtensions: String20List;
|
1667
|
+
}
|
1668
|
+
export interface PoDetailAttributes {
|
1669
|
+
/**
|
1670
|
+
* The character set encoding of the data set.
|
1671
|
+
*/
|
1672
|
+
encoding: String;
|
1673
|
+
/**
|
1674
|
+
* The format of the data set records.
|
1675
|
+
*/
|
1676
|
+
format: String;
|
1677
|
+
}
|
1620
1678
|
export type PortList = Integer[];
|
1621
1679
|
export interface PrimaryKey {
|
1622
1680
|
/**
|
@@ -1632,6 +1690,26 @@ declare namespace M2 {
|
|
1632
1690
|
*/
|
1633
1691
|
offset: Integer;
|
1634
1692
|
}
|
1693
|
+
export interface PsAttributes {
|
1694
|
+
/**
|
1695
|
+
* The character set encoding of the data set.
|
1696
|
+
*/
|
1697
|
+
encoding?: String;
|
1698
|
+
/**
|
1699
|
+
* The format of the data set records.
|
1700
|
+
*/
|
1701
|
+
format: String;
|
1702
|
+
}
|
1703
|
+
export interface PsDetailAttributes {
|
1704
|
+
/**
|
1705
|
+
* The character set encoding of the data set.
|
1706
|
+
*/
|
1707
|
+
encoding: String;
|
1708
|
+
/**
|
1709
|
+
* The format of the data set records.
|
1710
|
+
*/
|
1711
|
+
format: String;
|
1712
|
+
}
|
1635
1713
|
export interface RecordLength {
|
1636
1714
|
/**
|
1637
1715
|
* The maximum record length. In case of fixed, both minimum and maximum are the same.
|
@@ -1710,6 +1788,7 @@ declare namespace M2 {
|
|
1710
1788
|
export type String20 = string;
|
1711
1789
|
export type String200 = string;
|
1712
1790
|
export type String2000 = string;
|
1791
|
+
export type String20List = String20[];
|
1713
1792
|
export type String50 = string;
|
1714
1793
|
export type String50List = String50[];
|
1715
1794
|
export type StringFree65000 = string;
|
package/clients/memorydb.d.ts
CHANGED
@@ -389,7 +389,7 @@ declare namespace MemoryDB {
|
|
389
389
|
*/
|
390
390
|
Passwords?: PasswordListInput;
|
391
391
|
}
|
392
|
-
export type AuthenticationType = "password"|"no-password"|string;
|
392
|
+
export type AuthenticationType = "password"|"no-password"|"iam"|string;
|
393
393
|
export interface AvailabilityZone {
|
394
394
|
/**
|
395
395
|
* The name of the Availability Zone.
|
@@ -1358,7 +1358,7 @@ declare namespace MemoryDB {
|
|
1358
1358
|
export type FilterName = string;
|
1359
1359
|
export type FilterValue = string;
|
1360
1360
|
export type FilterValueList = FilterValue[];
|
1361
|
-
export type InputAuthenticationType = "password"|string;
|
1361
|
+
export type InputAuthenticationType = "password"|"iam"|string;
|
1362
1362
|
export type Integer = number;
|
1363
1363
|
export type IntegerOptional = number;
|
1364
1364
|
export type KeyList = String[];
|
package/clients/personalize.d.ts
CHANGED
@@ -28,11 +28,11 @@ declare class Personalize extends Service {
|
|
28
28
|
*/
|
29
29
|
createBatchSegmentJob(callback?: (err: AWSError, data: Personalize.Types.CreateBatchSegmentJobResponse) => void): Request<Personalize.Types.CreateBatchSegmentJobResponse, AWSError>;
|
30
30
|
/**
|
31
|
-
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
31
|
+
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
32
32
|
*/
|
33
33
|
createCampaign(params: Personalize.Types.CreateCampaignRequest, callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
|
34
34
|
/**
|
35
|
-
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
35
|
+
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
36
36
|
*/
|
37
37
|
createCampaign(callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
|
38
38
|
/**
|
@@ -92,11 +92,11 @@ declare class Personalize extends Service {
|
|
92
92
|
*/
|
93
93
|
createMetricAttribution(callback?: (err: AWSError, data: Personalize.Types.CreateMetricAttributionResponse) => void): Request<Personalize.Types.CreateMetricAttributionResponse, AWSError>;
|
94
94
|
/**
|
95
|
-
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
95
|
+
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second A high minRecommendationRequestsPerSecond will increase your bill. We recommend starting with 1 for minRecommendationRequestsPerSecond (the default). Track your usage using Amazon CloudWatch metrics, and increase the minRecommendationRequestsPerSecond as necessary. When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
96
96
|
*/
|
97
97
|
createRecommender(params: Personalize.Types.CreateRecommenderRequest, callback?: (err: AWSError, data: Personalize.Types.CreateRecommenderResponse) => void): Request<Personalize.Types.CreateRecommenderResponse, AWSError>;
|
98
98
|
/**
|
99
|
-
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
99
|
+
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second A high minRecommendationRequestsPerSecond will increase your bill. We recommend starting with 1 for minRecommendationRequestsPerSecond (the default). Track your usage using Amazon CloudWatch metrics, and increase the minRecommendationRequestsPerSecond as necessary. When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
100
100
|
*/
|
101
101
|
createRecommender(callback?: (err: AWSError, data: Personalize.Types.CreateRecommenderResponse) => void): Request<Personalize.Types.CreateRecommenderResponse, AWSError>;
|
102
102
|
/**
|
@@ -108,11 +108,11 @@ declare class Personalize extends Service {
|
|
108
108
|
*/
|
109
109
|
createSchema(callback?: (err: AWSError, data: Personalize.Types.CreateSchemaResponse) => void): Request<Personalize.Types.CreateSchemaResponse, AWSError>;
|
110
110
|
/**
|
111
|
-
* Creates the configuration for training a model. A trained model is known as a solution. After the configuration is created, you train the model (create a solution) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize.
|
111
|
+
* Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. Wait until the status shows as ACTIVE before calling CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
112
112
|
*/
|
113
113
|
createSolution(params: Personalize.Types.CreateSolutionRequest, callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
114
114
|
/**
|
115
|
-
* Creates the configuration for training a model. A trained model is known as a solution. After the configuration is created, you train the model (create a solution) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize.
|
115
|
+
* Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. Wait until the status shows as ACTIVE before calling CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
116
116
|
*/
|
117
117
|
createSolution(callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
118
118
|
/**
|
@@ -532,11 +532,11 @@ declare class Personalize extends Service {
|
|
532
532
|
*/
|
533
533
|
updateMetricAttribution(callback?: (err: AWSError, data: Personalize.Types.UpdateMetricAttributionResponse) => void): Request<Personalize.Types.UpdateMetricAttributionResponse, AWSError>;
|
534
534
|
/**
|
535
|
-
* Updates the recommender to modify the recommender configuration.
|
535
|
+
* Updates the recommender to modify the recommender configuration. If you update the recommender to modify the columns used in training, Amazon Personalize automatically starts a full retraining of the models backing your recommender. While the update completes, you can still get recommendations from the recommender. The recommender uses the previous configuration until the update completes. To track the status of this update, use the latestRecommenderUpdate returned in the DescribeRecommender operation.
|
536
536
|
*/
|
537
537
|
updateRecommender(params: Personalize.Types.UpdateRecommenderRequest, callback?: (err: AWSError, data: Personalize.Types.UpdateRecommenderResponse) => void): Request<Personalize.Types.UpdateRecommenderResponse, AWSError>;
|
538
538
|
/**
|
539
|
-
* Updates the recommender to modify the recommender configuration.
|
539
|
+
* Updates the recommender to modify the recommender configuration. If you update the recommender to modify the columns used in training, Amazon Personalize automatically starts a full retraining of the models backing your recommender. While the update completes, you can still get recommendations from the recommender. The recommender uses the previous configuration until the update completes. To track the status of this update, use the latestRecommenderUpdate returned in the DescribeRecommender operation.
|
540
540
|
*/
|
541
541
|
updateRecommender(callback?: (err: AWSError, data: Personalize.Types.UpdateRecommenderResponse) => void): Request<Personalize.Types.UpdateRecommenderResponse, AWSError>;
|
542
542
|
}
|
@@ -738,7 +738,7 @@ declare namespace Personalize {
|
|
738
738
|
*/
|
739
739
|
solutionVersionArn?: Arn;
|
740
740
|
/**
|
741
|
-
* The number of predicted users generated by the batch segment job for each line of input data.
|
741
|
+
* The number of predicted users generated by the batch segment job for each line of input data. The maximum number of users per segment is 5 million.
|
742
742
|
*/
|
743
743
|
numResults?: NumBatchResults;
|
744
744
|
/**
|
@@ -818,7 +818,7 @@ declare namespace Personalize {
|
|
818
818
|
*/
|
819
819
|
solutionVersionArn?: Arn;
|
820
820
|
/**
|
821
|
-
* Specifies the requested minimum provisioned transactions (recommendations) per second.
|
821
|
+
* Specifies the requested minimum provisioned transactions (recommendations) per second. A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary.
|
822
822
|
*/
|
823
823
|
minProvisionedTPS?: TransactionsPerSecond;
|
824
824
|
/**
|
@@ -916,6 +916,8 @@ declare namespace Personalize {
|
|
916
916
|
export type CategoricalHyperParameterRanges = CategoricalHyperParameterRange[];
|
917
917
|
export type CategoricalValue = string;
|
918
918
|
export type CategoricalValues = CategoricalValue[];
|
919
|
+
export type ColumnName = string;
|
920
|
+
export type ColumnNamesList = ColumnName[];
|
919
921
|
export interface ContinuousHyperParameterRange {
|
920
922
|
/**
|
921
923
|
* The name of the hyperparameter.
|
@@ -991,7 +993,7 @@ declare namespace Personalize {
|
|
991
993
|
*/
|
992
994
|
filterArn?: Arn;
|
993
995
|
/**
|
994
|
-
* The number of predicted users generated by the batch segment job for each line of input data.
|
996
|
+
* The number of predicted users generated by the batch segment job for each line of input data. The maximum number of users per segment is 5 million.
|
995
997
|
*/
|
996
998
|
numResults?: NumBatchResults;
|
997
999
|
/**
|
@@ -1027,7 +1029,7 @@ declare namespace Personalize {
|
|
1027
1029
|
*/
|
1028
1030
|
solutionVersionArn: Arn;
|
1029
1031
|
/**
|
1030
|
-
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
|
1032
|
+
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support. A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary.
|
1031
1033
|
*/
|
1032
1034
|
minProvisionedTPS?: TransactionsPerSecond;
|
1033
1035
|
/**
|
@@ -1303,7 +1305,7 @@ declare namespace Personalize {
|
|
1303
1305
|
*/
|
1304
1306
|
performHPO?: Boolean;
|
1305
1307
|
/**
|
1306
|
-
* Whether to perform automated machine learning (AutoML). The default is false. For this case, you must specify recipeArn. When set to true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.
|
1308
|
+
* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. Whether to perform automated machine learning (AutoML). The default is false. For this case, you must specify recipeArn. When set to true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.
|
1307
1309
|
*/
|
1308
1310
|
performAutoML?: PerformAutoML;
|
1309
1311
|
/**
|
@@ -2079,6 +2081,7 @@ declare namespace Personalize {
|
|
2079
2081
|
export type EventTrackers = EventTrackerSummary[];
|
2080
2082
|
export type EventType = string;
|
2081
2083
|
export type EventValueThreshold = string;
|
2084
|
+
export type ExcludedDatasetColumns = {[key: string]: ColumnNamesList};
|
2082
2085
|
export type FailureReason = string;
|
2083
2086
|
export interface FeatureTransformation {
|
2084
2087
|
/**
|
@@ -2885,9 +2888,13 @@ declare namespace Personalize {
|
|
2885
2888
|
*/
|
2886
2889
|
itemExplorationConfig?: HyperParameters;
|
2887
2890
|
/**
|
2888
|
-
* Specifies the requested minimum provisioned recommendation requests per second that Amazon Personalize will support.
|
2891
|
+
* Specifies the requested minimum provisioned recommendation requests per second that Amazon Personalize will support. A high minRecommendationRequestsPerSecond will increase your bill. We recommend starting with 1 for minRecommendationRequestsPerSecond (the default). Track your usage using Amazon CloudWatch metrics, and increase the minRecommendationRequestsPerSecond as necessary.
|
2889
2892
|
*/
|
2890
2893
|
minRecommendationRequestsPerSecond?: TransactionsPerSecond;
|
2894
|
+
/**
|
2895
|
+
* Specifies the training data configuration to use when creating a domain recommender.
|
2896
|
+
*/
|
2897
|
+
trainingDataConfig?: TrainingDataConfig;
|
2891
2898
|
}
|
2892
2899
|
export interface RecommenderSummary {
|
2893
2900
|
/**
|
@@ -2974,7 +2981,7 @@ declare namespace Personalize {
|
|
2974
2981
|
*/
|
2975
2982
|
performHPO?: PerformHPO;
|
2976
2983
|
/**
|
2977
|
-
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (recipeArn must not be specified). When false (the default), Amazon Personalize uses recipeArn for training.
|
2984
|
+
* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (recipeArn must not be specified). When false (the default), Amazon Personalize uses recipeArn for training.
|
2978
2985
|
*/
|
2979
2986
|
performAutoML?: PerformAutoML;
|
2980
2987
|
/**
|
@@ -3039,6 +3046,10 @@ declare namespace Personalize {
|
|
3039
3046
|
* Describes the additional objective for the solution, such as maximizing streaming minutes or increasing revenue. For more information see Optimizing a solution.
|
3040
3047
|
*/
|
3041
3048
|
optimizationObjective?: OptimizationObjective;
|
3049
|
+
/**
|
3050
|
+
* Specifies the training data configuration to use when creating a custom solution version (trained model).
|
3051
|
+
*/
|
3052
|
+
trainingDataConfig?: TrainingDataConfig;
|
3042
3053
|
}
|
3043
3054
|
export interface SolutionSummary {
|
3044
3055
|
/**
|
@@ -3205,7 +3216,7 @@ declare namespace Personalize {
|
|
3205
3216
|
*/
|
3206
3217
|
resourceArn: Arn;
|
3207
3218
|
/**
|
3208
|
-
* Tags to apply to the resource. For more information see Tagging Personalize
|
3219
|
+
* Tags to apply to the resource. For more information see Tagging Amazon Personalize recources.
|
3209
3220
|
*/
|
3210
3221
|
tags: Tags;
|
3211
3222
|
}
|
@@ -3214,6 +3225,12 @@ declare namespace Personalize {
|
|
3214
3225
|
export type TagValue = string;
|
3215
3226
|
export type Tags = Tag[];
|
3216
3227
|
export type TrackingId = string;
|
3228
|
+
export interface TrainingDataConfig {
|
3229
|
+
/**
|
3230
|
+
* Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations. For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.
|
3231
|
+
*/
|
3232
|
+
excludedDatasetColumns?: ExcludedDatasetColumns;
|
3233
|
+
}
|
3217
3234
|
export type TrainingHours = number;
|
3218
3235
|
export type TrainingInputMode = string;
|
3219
3236
|
export type TrainingMode = "FULL"|"UPDATE"|string;
|
@@ -3247,7 +3264,7 @@ declare namespace Personalize {
|
|
3247
3264
|
*/
|
3248
3265
|
solutionVersionArn?: Arn;
|
3249
3266
|
/**
|
3250
|
-
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
|
3267
|
+
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support. A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary.
|
3251
3268
|
*/
|
3252
3269
|
minProvisionedTPS?: TransactionsPerSecond;
|
3253
3270
|
/**
|
package/clients/polly.d.ts
CHANGED
@@ -162,7 +162,7 @@ declare namespace Polly {
|
|
162
162
|
SynthesisTask?: SynthesisTask;
|
163
163
|
}
|
164
164
|
export type IncludeAdditionalLanguageCodes = boolean;
|
165
|
-
export type LanguageCode = "arb"|"cmn-CN"|"cy-GB"|"da-DK"|"de-DE"|"en-AU"|"en-GB"|"en-GB-WLS"|"en-IN"|"en-US"|"es-ES"|"es-MX"|"es-US"|"fr-CA"|"fr-FR"|"is-IS"|"it-IT"|"ja-JP"|"hi-IN"|"ko-KR"|"nb-NO"|"nl-NL"|"pl-PL"|"pt-BR"|"pt-PT"|"ro-RO"|"ru-RU"|"sv-SE"|"tr-TR"|"en-NZ"|"en-ZA"|"ca-ES"|"de-AT"|"yue-CN"|"ar-AE"|"fi-FI"|string;
|
165
|
+
export type LanguageCode = "arb"|"cmn-CN"|"cy-GB"|"da-DK"|"de-DE"|"en-AU"|"en-GB"|"en-GB-WLS"|"en-IN"|"en-US"|"es-ES"|"es-MX"|"es-US"|"fr-CA"|"fr-FR"|"is-IS"|"it-IT"|"ja-JP"|"hi-IN"|"ko-KR"|"nb-NO"|"nl-NL"|"pl-PL"|"pt-BR"|"pt-PT"|"ro-RO"|"ru-RU"|"sv-SE"|"tr-TR"|"en-NZ"|"en-ZA"|"ca-ES"|"de-AT"|"yue-CN"|"ar-AE"|"fi-FI"|"en-IE"|string;
|
166
166
|
export type LanguageCodeList = LanguageCode[];
|
167
167
|
export type LanguageName = string;
|
168
168
|
export type LastModified = Date;
|
@@ -488,7 +488,7 @@ declare namespace Polly {
|
|
488
488
|
*/
|
489
489
|
SupportedEngines?: EngineList;
|
490
490
|
}
|
491
|
-
export type VoiceId = "Aditi"|"Amy"|"Astrid"|"Bianca"|"Brian"|"Camila"|"Carla"|"Carmen"|"Celine"|"Chantal"|"Conchita"|"Cristiano"|"Dora"|"Emma"|"Enrique"|"Ewa"|"Filiz"|"Gabrielle"|"Geraint"|"Giorgio"|"Gwyneth"|"Hans"|"Ines"|"Ivy"|"Jacek"|"Jan"|"Joanna"|"Joey"|"Justin"|"Karl"|"Kendra"|"Kevin"|"Kimberly"|"Lea"|"Liv"|"Lotte"|"Lucia"|"Lupe"|"Mads"|"Maja"|"Marlene"|"Mathieu"|"Matthew"|"Maxim"|"Mia"|"Miguel"|"Mizuki"|"Naja"|"Nicole"|"Olivia"|"Penelope"|"Raveena"|"Ricardo"|"Ruben"|"Russell"|"Salli"|"Seoyeon"|"Takumi"|"Tatyana"|"Vicki"|"Vitoria"|"Zeina"|"Zhiyu"|"Aria"|"Ayanda"|"Arlet"|"Hannah"|"Arthur"|"Daniel"|"Liam"|"Pedro"|"Kajal"|"Hiujin"|"Laura"|"Elin"|"Ida"|"Suvi"|"Ola"|"Hala"|"Andres"|"Sergio"|"Remi"|"Adriano"|"Thiago"|"Ruth"|"Stephen"|"Kazuha"|"Tomoko"|string;
|
491
|
+
export type VoiceId = "Aditi"|"Amy"|"Astrid"|"Bianca"|"Brian"|"Camila"|"Carla"|"Carmen"|"Celine"|"Chantal"|"Conchita"|"Cristiano"|"Dora"|"Emma"|"Enrique"|"Ewa"|"Filiz"|"Gabrielle"|"Geraint"|"Giorgio"|"Gwyneth"|"Hans"|"Ines"|"Ivy"|"Jacek"|"Jan"|"Joanna"|"Joey"|"Justin"|"Karl"|"Kendra"|"Kevin"|"Kimberly"|"Lea"|"Liv"|"Lotte"|"Lucia"|"Lupe"|"Mads"|"Maja"|"Marlene"|"Mathieu"|"Matthew"|"Maxim"|"Mia"|"Miguel"|"Mizuki"|"Naja"|"Nicole"|"Olivia"|"Penelope"|"Raveena"|"Ricardo"|"Ruben"|"Russell"|"Salli"|"Seoyeon"|"Takumi"|"Tatyana"|"Vicki"|"Vitoria"|"Zeina"|"Zhiyu"|"Aria"|"Ayanda"|"Arlet"|"Hannah"|"Arthur"|"Daniel"|"Liam"|"Pedro"|"Kajal"|"Hiujin"|"Laura"|"Elin"|"Ida"|"Suvi"|"Ola"|"Hala"|"Andres"|"Sergio"|"Remi"|"Adriano"|"Thiago"|"Ruth"|"Stephen"|"Kazuha"|"Tomoko"|"Niamh"|"Sofie"|string;
|
492
492
|
export type VoiceList = Voice[];
|
493
493
|
export type VoiceName = string;
|
494
494
|
/**
|
package/clients/rds.d.ts
CHANGED
@@ -1959,7 +1959,7 @@ declare namespace RDS {
|
|
1959
1959
|
*/
|
1960
1960
|
AllocatedStorage?: IntegerOptional;
|
1961
1961
|
/**
|
1962
|
-
* Specifies the storage type to be associated with the DB cluster. This setting is required to create a Multi-AZ DB cluster. When specified for a Multi-AZ DB cluster, a value for the Iops parameter is required. Valid values: aurora, aurora-iopt1 (Aurora DB clusters); io1 (Multi-AZ DB clusters) Default: aurora (Aurora DB clusters); io1 (Multi-AZ DB clusters) Valid for: Aurora DB clusters and Multi-AZ DB clusters
|
1962
|
+
* Specifies the storage type to be associated with the DB cluster. This setting is required to create a Multi-AZ DB cluster. When specified for a Multi-AZ DB cluster, a value for the Iops parameter is required. Valid values: aurora, aurora-iopt1 (Aurora DB clusters); io1 (Multi-AZ DB clusters) Default: aurora (Aurora DB clusters); io1 (Multi-AZ DB clusters) Valid for: Aurora DB clusters and Multi-AZ DB clusters For more information on storage types for Aurora DB clusters, see Storage configurations for Amazon Aurora DB clusters. For more information on storage types for Multi-AZ DB clusters, see Settings for creating Multi-AZ DB clusters.
|
1963
1963
|
*/
|
1964
1964
|
StorageType?: String;
|
1965
1965
|
/**
|
@@ -6582,6 +6582,10 @@ declare namespace RDS {
|
|
6582
6582
|
* The Amazon Web Services KMS key identifier to encrypt a secret that is automatically generated and managed in Amazon Web Services Secrets Manager. This setting is valid only if both of the following conditions are met: The DB instance doesn't manage the master user password in Amazon Web Services Secrets Manager. If the DB instance already manages the master user password in Amazon Web Services Secrets Manager, you can't change the KMS key used to encrypt the secret. You are turning on ManageMasterUserPassword to manage the master user password in Amazon Web Services Secrets Manager. If you are turning on ManageMasterUserPassword and don't specify MasterUserSecretKmsKeyId, then the aws/secretsmanager KMS key is used to encrypt the secret. If the secret is in a different Amazon Web Services account, then you can't use the aws/secretsmanager KMS key to encrypt the secret, and you must use a customer managed KMS key. The Amazon Web Services KMS key identifier is the key ARN, key ID, alias ARN, or alias name for the KMS key. To use a KMS key in a different Amazon Web Services account, specify the key ARN or alias ARN. There is a default KMS key for your Amazon Web Services account. Your Amazon Web Services account has a different default KMS key for each Amazon Web Services Region.
|
6583
6583
|
*/
|
6584
6584
|
MasterUserSecretKmsKeyId?: String;
|
6585
|
+
/**
|
6586
|
+
* The target Oracle DB engine when you convert a non-CDB to a CDB. This intermediate step is necessary to upgrade an Oracle Database 19c non-CDB to an Oracle Database 21c CDB. Note the following requirements: Make sure that you specify oracle-ee-cdb or oracle-se2-cdb. Make sure that your DB engine runs Oracle Database 19c with an April 2021 or later RU. Note the following limitations: You can't convert a CDB to a non-CDB. You can't convert a replica database. You can't convert a non-CDB to a CDB and upgrade the engine version in the same command. You can't convert the existing custom parameter or option group when it has options or parameters that are permanent or persistent. In this situation, the DB instance reverts to the default option and parameter group. To avoid reverting to the default, specify a new parameter group with --db-parameter-group-name and a new option group with --option-group-name.
|
6587
|
+
*/
|
6588
|
+
Engine?: String;
|
6585
6589
|
}
|
6586
6590
|
export interface ModifyDBInstanceResult {
|
6587
6591
|
DBInstance?: DBInstance;
|
@@ -6707,7 +6711,7 @@ declare namespace RDS {
|
|
6707
6711
|
*/
|
6708
6712
|
DBSnapshotIdentifier: String;
|
6709
6713
|
/**
|
6710
|
-
* The engine version to upgrade the DB snapshot to. The following are the database engines and engine versions that are available when you upgrade a DB snapshot. MySQL 5.5.46 (supported for 5.1 DB snapshots) Oracle
|
6714
|
+
* The engine version to upgrade the DB snapshot to. The following are the database engines and engine versions that are available when you upgrade a DB snapshot. MySQL 5.5.46 (supported for 5.1 DB snapshots) Oracle 12.1.0.2.v8 (supported for 12.1.0.1 DB snapshots) 11.2.0.4.v12 (supported for 11.2.0.2 DB snapshots) 11.2.0.4.v11 (supported for 11.2.0.3 DB snapshots) PostgreSQL For the list of engine versions that are available for upgrading a DB snapshot, see Upgrading the PostgreSQL DB Engine for Amazon RDS.
|
6711
6715
|
*/
|
6712
6716
|
EngineVersion?: String;
|
6713
6717
|
/**
|
@@ -7435,6 +7439,10 @@ declare namespace RDS {
|
|
7435
7439
|
* The storage throughput of the DB instance.
|
7436
7440
|
*/
|
7437
7441
|
StorageThroughput?: IntegerOptional;
|
7442
|
+
/**
|
7443
|
+
* The database engine of the DB instance.
|
7444
|
+
*/
|
7445
|
+
Engine?: String;
|
7438
7446
|
}
|
7439
7447
|
export interface ProcessorFeature {
|
7440
7448
|
/**
|