aws-sdk 2.1385.0 → 2.1387.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +18 -1
- package/README.md +1 -1
- package/apis/chime-sdk-voice-2022-08-03.min.json +2 -1
- package/apis/glue-2017-03-31.min.json +510 -509
- package/apis/iotfleetwise-2021-06-17.min.json +86 -43
- package/apis/iotwireless-2020-11-22.min.json +137 -120
- package/apis/location-2020-11-19.min.json +23 -16
- package/apis/personalize-2018-05-22.min.json +32 -13
- package/apis/securityhub-2018-10-26.examples.json +140 -3
- package/apis/securityhub-2018-10-26.min.json +465 -158
- package/apis/securitylake-2018-05-10.min.json +457 -447
- package/apis/securitylake-2018-05-10.paginators.json +7 -7
- package/apis/wafv2-2019-07-29.min.json +168 -159
- package/clients/chimesdkvoice.d.ts +5 -0
- package/clients/connect.d.ts +1 -1
- package/clients/glue.d.ts +29 -24
- package/clients/groundstation.d.ts +2 -2
- package/clients/iotfleetwise.d.ts +98 -13
- package/clients/iotwireless.d.ts +24 -5
- package/clients/location.d.ts +24 -8
- package/clients/memorydb.d.ts +2 -2
- package/clients/personalize.d.ts +34 -17
- package/clients/polly.d.ts +2 -2
- package/clients/sagemaker.d.ts +1 -1
- package/clients/securityhub.d.ts +539 -1
- package/clients/securitylake.d.ts +560 -541
- package/clients/wafv2.d.ts +16 -6
- package/dist/aws-sdk-core-react-native.js +1 -1
- package/dist/aws-sdk-react-native.js +11 -11
- package/dist/aws-sdk.js +58 -32
- package/dist/aws-sdk.min.js +30 -30
- package/lib/core.js +1 -1
- package/package.json +1 -1
package/clients/iotwireless.d.ts
CHANGED
@@ -1302,6 +1302,10 @@ declare namespace IoTWireless {
|
|
1302
1302
|
Description?: Description;
|
1303
1303
|
Tags?: TagList;
|
1304
1304
|
ClientRequestToken?: ClientRequestToken;
|
1305
|
+
/**
|
1306
|
+
* Multicast Group resources to add to the network analyzer configruation. Provide the MulticastGroupId of the resource to add in the input array.
|
1307
|
+
*/
|
1308
|
+
MulticastGroups?: NetworkAnalyzerMulticastGroupList;
|
1305
1309
|
}
|
1306
1310
|
export interface CreateNetworkAnalyzerConfigurationResponse {
|
1307
1311
|
/**
|
@@ -2004,6 +2008,10 @@ declare namespace IoTWireless {
|
|
2004
2008
|
*/
|
2005
2009
|
Arn?: NetworkAnalyzerConfigurationArn;
|
2006
2010
|
Name?: NetworkAnalyzerConfigurationName;
|
2011
|
+
/**
|
2012
|
+
* List of multicast group resources that have been added to the network analyzer configuration.
|
2013
|
+
*/
|
2014
|
+
MulticastGroups?: NetworkAnalyzerMulticastGroupList;
|
2007
2015
|
}
|
2008
2016
|
export interface GetPartnerAccountRequest {
|
2009
2017
|
/**
|
@@ -2335,7 +2343,7 @@ declare namespace IoTWireless {
|
|
2335
2343
|
*/
|
2336
2344
|
WirelessDeviceId?: WirelessDeviceId;
|
2337
2345
|
/**
|
2338
|
-
* The date and time when the most recent uplink was received.
|
2346
|
+
* The date and time when the most recent uplink was received. This value is only valid for 3 months.
|
2339
2347
|
*/
|
2340
2348
|
LastUplinkReceivedAt?: ISODateTimeString;
|
2341
2349
|
/**
|
@@ -2427,7 +2435,7 @@ declare namespace IoTWireless {
|
|
2427
2435
|
*/
|
2428
2436
|
WirelessGatewayId?: WirelessGatewayId;
|
2429
2437
|
/**
|
2430
|
-
* The date and time when the most recent uplink was received.
|
2438
|
+
* The date and time when the most recent uplink was received. This value is only valid for 3 months.
|
2431
2439
|
*/
|
2432
2440
|
LastUplinkReceivedAt?: ISODateTimeString;
|
2433
2441
|
/**
|
@@ -2475,7 +2483,7 @@ declare namespace IoTWireless {
|
|
2475
2483
|
*/
|
2476
2484
|
WirelessGatewayTaskDefinitionId?: WirelessGatewayTaskDefinitionId;
|
2477
2485
|
/**
|
2478
|
-
* The date and time when the most recent uplink was received.
|
2486
|
+
* The date and time when the most recent uplink was received. This value is only valid for 3 months.
|
2479
2487
|
*/
|
2480
2488
|
LastUplinkReceivedAt?: ISODateTimeString;
|
2481
2489
|
/**
|
@@ -3520,6 +3528,7 @@ declare namespace IoTWireless {
|
|
3520
3528
|
export type MinGwDiversity = number;
|
3521
3529
|
export type Model = string;
|
3522
3530
|
export type MulticastDeviceStatus = string;
|
3531
|
+
export type MulticastFrameInfo = "ENABLED"|"DISABLED"|string;
|
3523
3532
|
export interface MulticastGroup {
|
3524
3533
|
Id?: MulticastGroupId;
|
3525
3534
|
Arn?: MulticastGroupArn;
|
@@ -3551,6 +3560,7 @@ declare namespace IoTWireless {
|
|
3551
3560
|
Arn?: NetworkAnalyzerConfigurationArn;
|
3552
3561
|
Name?: NetworkAnalyzerConfigurationName;
|
3553
3562
|
}
|
3563
|
+
export type NetworkAnalyzerMulticastGroupList = MulticastGroupId[];
|
3554
3564
|
export type NetworkId = number;
|
3555
3565
|
export type NextToken = string;
|
3556
3566
|
export type NumberOfDevicesInGroup = number;
|
@@ -4243,6 +4253,7 @@ declare namespace IoTWireless {
|
|
4243
4253
|
export interface TraceContent {
|
4244
4254
|
WirelessDeviceFrameInfo?: WirelessDeviceFrameInfo;
|
4245
4255
|
LogLevel?: LogLevel;
|
4256
|
+
MulticastFrameInfo?: MulticastFrameInfo;
|
4246
4257
|
}
|
4247
4258
|
export type TransmissionInterval = number;
|
4248
4259
|
export type TransmitMode = number;
|
@@ -4382,6 +4393,14 @@ declare namespace IoTWireless {
|
|
4382
4393
|
*/
|
4383
4394
|
WirelessGatewaysToRemove?: WirelessGatewayList;
|
4384
4395
|
Description?: Description;
|
4396
|
+
/**
|
4397
|
+
* Multicast group resources to add to the network analyzer configuration. Provide the MulticastGroupId of the resource to add in the input array.
|
4398
|
+
*/
|
4399
|
+
MulticastGroupsToAdd?: NetworkAnalyzerMulticastGroupList;
|
4400
|
+
/**
|
4401
|
+
* Multicast group resources to remove from the network analyzer configuration. Provide the MulticastGroupId of the resource to remove in the input array.
|
4402
|
+
*/
|
4403
|
+
MulticastGroupsToRemove?: NetworkAnalyzerMulticastGroupList;
|
4385
4404
|
}
|
4386
4405
|
export interface UpdateNetworkAnalyzerConfigurationResponse {
|
4387
4406
|
}
|
@@ -4733,7 +4752,7 @@ declare namespace IoTWireless {
|
|
4733
4752
|
*/
|
4734
4753
|
DestinationName?: DestinationName;
|
4735
4754
|
/**
|
4736
|
-
* The date and time when the most recent uplink was received.
|
4755
|
+
* The date and time when the most recent uplink was received. Theis value is only valid for 3 months.
|
4737
4756
|
*/
|
4738
4757
|
LastUplinkReceivedAt?: ISODateTimeString;
|
4739
4758
|
/**
|
@@ -4793,7 +4812,7 @@ declare namespace IoTWireless {
|
|
4793
4812
|
*/
|
4794
4813
|
LoRaWAN?: LoRaWANGateway;
|
4795
4814
|
/**
|
4796
|
-
* The date and time when the most recent uplink was received.
|
4815
|
+
* The date and time when the most recent uplink was received. This value is only valid for 3 months.
|
4797
4816
|
*/
|
4798
4817
|
LastUplinkReceivedAt?: ISODateTimeString;
|
4799
4818
|
}
|
package/clients/location.d.ts
CHANGED
@@ -937,6 +937,8 @@ declare namespace Location {
|
|
937
937
|
Radius: Double;
|
938
938
|
}
|
939
939
|
export type CountryCode = string;
|
940
|
+
export type CountryCode3 = string;
|
941
|
+
export type CountryCode3OrEmpty = string;
|
940
942
|
export type CountryCodeList = CountryCode[];
|
941
943
|
export interface CreateGeofenceCollectionRequest {
|
942
944
|
/**
|
@@ -1092,7 +1094,7 @@ declare namespace Location {
|
|
1092
1094
|
/**
|
1093
1095
|
* The Amazon Resource Name (ARN) for the place index resource. Used to specify a resource across Amazon Web Services. Format example: arn:aws:geo:region:account-id:place-index/ExamplePlaceIndex
|
1094
1096
|
*/
|
1095
|
-
IndexArn:
|
1097
|
+
IndexArn: GeoArn;
|
1096
1098
|
/**
|
1097
1099
|
* The name for the place index resource.
|
1098
1100
|
*/
|
@@ -1124,7 +1126,7 @@ declare namespace Location {
|
|
1124
1126
|
/**
|
1125
1127
|
* The Amazon Resource Name (ARN) for the route calculator resource. Use the ARN when you specify a resource across all Amazon Web Services. Format example: arn:aws:geo:region:account-id:route-calculator/ExampleCalculator
|
1126
1128
|
*/
|
1127
|
-
CalculatorArn:
|
1129
|
+
CalculatorArn: GeoArn;
|
1128
1130
|
/**
|
1129
1131
|
* The name of the route calculator resource. For example, ExampleRouteCalculator.
|
1130
1132
|
*/
|
@@ -1387,7 +1389,7 @@ declare namespace Location {
|
|
1387
1389
|
/**
|
1388
1390
|
* The Amazon Resource Name (ARN) for the place index resource. Used to specify a resource across Amazon Web Services. Format example: arn:aws:geo:region:account-id:place-index/ExamplePlaceIndex
|
1389
1391
|
*/
|
1390
|
-
IndexArn:
|
1392
|
+
IndexArn: GeoArn;
|
1391
1393
|
/**
|
1392
1394
|
* The name of the place index resource being described.
|
1393
1395
|
*/
|
@@ -1415,7 +1417,7 @@ declare namespace Location {
|
|
1415
1417
|
/**
|
1416
1418
|
* The Amazon Resource Name (ARN) for the Route calculator resource. Use the ARN when you specify a resource across Amazon Web Services. Format example: arn:aws:geo:region:account-id:route-calculator/ExampleCalculator
|
1417
1419
|
*/
|
1418
|
-
CalculatorArn:
|
1420
|
+
CalculatorArn: GeoArn;
|
1419
1421
|
/**
|
1420
1422
|
* The name of the route calculator resource being described.
|
1421
1423
|
*/
|
@@ -1675,7 +1677,7 @@ declare namespace Location {
|
|
1675
1677
|
}
|
1676
1678
|
export interface GetMapGlyphsRequest {
|
1677
1679
|
/**
|
1678
|
-
* A comma-separated list of fonts to load glyphs from in order of preference. For example, Noto Sans Regular, Arial Unicode. Valid fonts stacks for Esri styles: VectorEsriDarkGrayCanvas – Ubuntu Medium Italic | Ubuntu Medium | Ubuntu Italic | Ubuntu Regular | Ubuntu Bold VectorEsriLightGrayCanvas – Ubuntu Italic | Ubuntu Regular | Ubuntu Light | Ubuntu Bold VectorEsriTopographic – Noto Sans Italic | Noto Sans Regular | Noto Sans Bold | Noto Serif Regular | Roboto Condensed Light Italic VectorEsriStreets – Arial Regular | Arial Italic | Arial Bold VectorEsriNavigation – Arial Regular | Arial Italic | Arial Bold Valid font stacks for HERE Technologies styles: VectorHereContrast – Fira GO Regular | Fira GO Bold VectorHereExplore, VectorHereExploreTruck, HybridHereExploreSatellite – Fira GO Italic | Fira GO Map | Fira GO Map Bold | Noto Sans CJK JP Bold | Noto Sans CJK JP Light | Noto Sans CJK JP Regular Valid font stacks for GrabMaps styles: VectorGrabStandardLight, VectorGrabStandardDark – Noto Sans Regular | Noto Sans Medium | Noto Sans Bold Valid font stacks for Open Data styles: VectorOpenDataStandardLight, VectorOpenDataStandardDark, VectorOpenDataVisualizationLight, VectorOpenDataVisualizationDark – Amazon Ember Regular,Noto Sans Regular | Amazon Ember Bold,Noto Sans Bold | Amazon Ember Medium,Noto Sans Medium | Amazon Ember Regular Italic,Noto Sans Italic | Amazon Ember Condensed RC Regular,Noto Sans Regular | Amazon Ember Condensed RC Bold,Noto Sans Bold The fonts used by the Open Data map styles are combined fonts that use Amazon Ember for most glyphs but Noto Sans for glyphs unsupported by Amazon Ember.
|
1680
|
+
* A comma-separated list of fonts to load glyphs from in order of preference. For example, Noto Sans Regular, Arial Unicode. Valid fonts stacks for Esri styles: VectorEsriDarkGrayCanvas – Ubuntu Medium Italic | Ubuntu Medium | Ubuntu Italic | Ubuntu Regular | Ubuntu Bold VectorEsriLightGrayCanvas – Ubuntu Italic | Ubuntu Regular | Ubuntu Light | Ubuntu Bold VectorEsriTopographic – Noto Sans Italic | Noto Sans Regular | Noto Sans Bold | Noto Serif Regular | Roboto Condensed Light Italic VectorEsriStreets – Arial Regular | Arial Italic | Arial Bold VectorEsriNavigation – Arial Regular | Arial Italic | Arial Bold Valid font stacks for HERE Technologies styles: VectorHereContrast – Fira GO Regular | Fira GO Bold VectorHereExplore, VectorHereExploreTruck, HybridHereExploreSatellite – Fira GO Italic | Fira GO Map | Fira GO Map Bold | Noto Sans CJK JP Bold | Noto Sans CJK JP Light | Noto Sans CJK JP Regular Valid font stacks for GrabMaps styles: VectorGrabStandardLight, VectorGrabStandardDark – Noto Sans Regular | Noto Sans Medium | Noto Sans Bold Valid font stacks for Open Data styles: VectorOpenDataStandardLight, VectorOpenDataStandardDark, VectorOpenDataVisualizationLight, VectorOpenDataVisualizationDark – Amazon Ember Regular,Noto Sans Regular | Amazon Ember Bold,Noto Sans Bold | Amazon Ember Medium,Noto Sans Medium | Amazon Ember Regular Italic,Noto Sans Italic | Amazon Ember Condensed RC Regular,Noto Sans Regular | Amazon Ember Condensed RC Bold,Noto Sans Bold | Amazon Ember Regular,Noto Sans Regular,Noto Sans Arabic Regular | Amazon Ember Condensed RC Bold,Noto Sans Bold,Noto Sans Arabic Condensed Bold | Amazon Ember Bold,Noto Sans Bold,Noto Sans Arabic Bold | Amazon Ember Regular Italic,Noto Sans Italic,Noto Sans Arabic Regular | Amazon Ember Condensed RC Regular,Noto Sans Regular,Noto Sans Arabic Condensed Regular | Amazon Ember Medium,Noto Sans Medium,Noto Sans Arabic Medium The fonts used by the Open Data map styles are combined fonts that use Amazon Ember for most glyphs but Noto Sans for glyphs unsupported by Amazon Ember.
|
1679
1681
|
*/
|
1680
1682
|
FontStack: String;
|
1681
1683
|
/**
|
@@ -2285,10 +2287,20 @@ declare namespace Location {
|
|
2285
2287
|
export type ListTrackersResponseEntryList = ListTrackersResponseEntry[];
|
2286
2288
|
export interface MapConfiguration {
|
2287
2289
|
/**
|
2288
|
-
* Specifies the
|
2290
|
+
* Specifies the political view for the style. Leave unset to not use a political view, or, for styles that support specific political views, you can choose a view, such as IND for the Indian view. Default is unset. Not all map resources or styles support political view styles. See Political views for more information.
|
2291
|
+
*/
|
2292
|
+
PoliticalView?: CountryCode3;
|
2293
|
+
/**
|
2294
|
+
* Specifies the map style selected from an available data provider. Valid Esri map styles: VectorEsriDarkGrayCanvas – The Esri Dark Gray Canvas map style. A vector basemap with a dark gray, neutral background with minimal colors, labels, and features that's designed to draw attention to your thematic content. RasterEsriImagery – The Esri Imagery map style. A raster basemap that provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. VectorEsriLightGrayCanvas – The Esri Light Gray Canvas map style, which provides a detailed vector basemap with a light gray, neutral background style with minimal colors, labels, and features that's designed to draw attention to your thematic content. VectorEsriTopographic – The Esri Light map style, which provides a detailed vector basemap with a classic Esri map style. VectorEsriStreets – The Esri Street Map style, which provides a detailed vector basemap for the world symbolized with a classic Esri street map style. The vector tile layer is similar in content and style to the World Street Map raster map. VectorEsriNavigation – The Esri Navigation map style, which provides a detailed basemap for the world symbolized with a custom navigation map style that's designed for use during the day in mobile devices. Valid HERE Technologies map styles: VectorHereContrast – The HERE Contrast (Berlin) map style is a high contrast detailed base map of the world that blends 3D and 2D rendering. The VectorHereContrast style has been renamed from VectorHereBerlin. VectorHereBerlin has been deprecated, but will continue to work in applications that use it. VectorHereExplore – A default HERE map style containing a neutral, global map and its features including roads, buildings, landmarks, and water features. It also now includes a fully designed map of Japan. VectorHereExploreTruck – A global map containing truck restrictions and attributes (e.g. width / height / HAZMAT) symbolized with highlighted segments and icons on top of HERE Explore to support use cases within transport and logistics. RasterHereExploreSatellite – A global map containing high resolution satellite imagery. HybridHereExploreSatellite – A global map displaying the road network, street names, and city labels over satellite imagery. This style will automatically retrieve both raster and vector tiles, and your charges will be based on total tiles retrieved. Hybrid styles use both vector and raster tiles when rendering the map that you see. This means that more tiles are retrieved than when using either vector or raster tiles alone. Your charges will include all tiles retrieved. Valid GrabMaps map styles: VectorGrabStandardLight – The Grab Standard Light map style provides a basemap with detailed land use coloring, area names, roads, landmarks, and points of interest covering Southeast Asia. VectorGrabStandardDark – The Grab Standard Dark map style provides a dark variation of the standard basemap covering Southeast Asia. Grab provides maps only for countries in Southeast Asia, and is only available in the Asia Pacific (Singapore) Region (ap-southeast-1). For more information, see GrabMaps countries and area covered. Valid Open Data map styles: VectorOpenDataStandardLight – The Open Data Standard Light map style provides a detailed basemap for the world suitable for website and mobile application use. The map includes highways major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. VectorOpenDataStandardDark – Open Data Standard Dark is a dark-themed map style that provides a detailed basemap for the world suitable for website and mobile application use. The map includes highways major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. VectorOpenDataVisualizationLight – The Open Data Visualization Light map style is a light-themed style with muted colors and fewer features that aids in understanding overlaid data. VectorOpenDataVisualizationDark – The Open Data Visualization Dark map style is a dark-themed style with muted colors and fewer features that aids in understanding overlaid data.
|
2289
2295
|
*/
|
2290
2296
|
Style: MapStyle;
|
2291
2297
|
}
|
2298
|
+
export interface MapConfigurationUpdate {
|
2299
|
+
/**
|
2300
|
+
* Specifies the political view for the style. Set to an empty string to not use a political view, or, for styles that support specific political views, you can choose a view, such as IND for the Indian view. Not all map resources or styles support political view styles. See Political views for more information.
|
2301
|
+
*/
|
2302
|
+
PoliticalView?: CountryCode3OrEmpty;
|
2303
|
+
}
|
2292
2304
|
export type MapStyle = string;
|
2293
2305
|
export interface Place {
|
2294
2306
|
/**
|
@@ -2842,6 +2854,10 @@ declare namespace Location {
|
|
2842
2854
|
UpdateTime: Timestamp;
|
2843
2855
|
}
|
2844
2856
|
export interface UpdateMapRequest {
|
2857
|
+
/**
|
2858
|
+
* Updates the parts of the map configuration that can be updated, including the political view.
|
2859
|
+
*/
|
2860
|
+
ConfigurationUpdate?: MapConfigurationUpdate;
|
2845
2861
|
/**
|
2846
2862
|
* Updates the description for the map resource.
|
2847
2863
|
*/
|
@@ -2891,7 +2907,7 @@ declare namespace Location {
|
|
2891
2907
|
/**
|
2892
2908
|
* The Amazon Resource Name (ARN) of the upated place index resource. Used to specify a resource across Amazon Web Services. Format example: arn:aws:geo:region:account-id:place- index/ExamplePlaceIndex
|
2893
2909
|
*/
|
2894
|
-
IndexArn:
|
2910
|
+
IndexArn: GeoArn;
|
2895
2911
|
/**
|
2896
2912
|
* The name of the updated place index resource.
|
2897
2913
|
*/
|
@@ -2919,7 +2935,7 @@ declare namespace Location {
|
|
2919
2935
|
/**
|
2920
2936
|
* The Amazon Resource Name (ARN) of the updated route calculator resource. Used to specify a resource across AWS. Format example: arn:aws:geo:region:account-id:route- calculator/ExampleCalculator
|
2921
2937
|
*/
|
2922
|
-
CalculatorArn:
|
2938
|
+
CalculatorArn: GeoArn;
|
2923
2939
|
/**
|
2924
2940
|
* The name of the updated route calculator resource.
|
2925
2941
|
*/
|
package/clients/memorydb.d.ts
CHANGED
@@ -389,7 +389,7 @@ declare namespace MemoryDB {
|
|
389
389
|
*/
|
390
390
|
Passwords?: PasswordListInput;
|
391
391
|
}
|
392
|
-
export type AuthenticationType = "password"|"no-password"|string;
|
392
|
+
export type AuthenticationType = "password"|"no-password"|"iam"|string;
|
393
393
|
export interface AvailabilityZone {
|
394
394
|
/**
|
395
395
|
* The name of the Availability Zone.
|
@@ -1358,7 +1358,7 @@ declare namespace MemoryDB {
|
|
1358
1358
|
export type FilterName = string;
|
1359
1359
|
export type FilterValue = string;
|
1360
1360
|
export type FilterValueList = FilterValue[];
|
1361
|
-
export type InputAuthenticationType = "password"|string;
|
1361
|
+
export type InputAuthenticationType = "password"|"iam"|string;
|
1362
1362
|
export type Integer = number;
|
1363
1363
|
export type IntegerOptional = number;
|
1364
1364
|
export type KeyList = String[];
|
package/clients/personalize.d.ts
CHANGED
@@ -28,11 +28,11 @@ declare class Personalize extends Service {
|
|
28
28
|
*/
|
29
29
|
createBatchSegmentJob(callback?: (err: AWSError, data: Personalize.Types.CreateBatchSegmentJobResponse) => void): Request<Personalize.Types.CreateBatchSegmentJobResponse, AWSError>;
|
30
30
|
/**
|
31
|
-
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
31
|
+
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
32
32
|
*/
|
33
33
|
createCampaign(params: Personalize.Types.CreateCampaignRequest, callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
|
34
34
|
/**
|
35
|
-
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
35
|
+
* Creates a campaign that deploys a solution version. When a client calls the GetRecommendations and GetPersonalizedRanking APIs, a campaign is specified in the request. Minimum Provisioned TPS and Auto-Scaling A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary. A transaction is a single GetRecommendations or GetPersonalizedRanking call. Transactions per second (TPS) is the throughput and unit of billing for Amazon Personalize. The minimum provisioned TPS (minProvisionedTPS) specifies the baseline throughput provisioned by Amazon Personalize, and thus, the minimum billing charge. If your TPS increases beyond minProvisionedTPS, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minProvisionedTPS. There's a short time delay while the capacity is increased that might cause loss of transactions. The actual TPS used is calculated as the average requests/second within a 5-minute window. You pay for maximum of either the minimum provisioned TPS or the actual TPS. We recommend starting with a low minProvisionedTPS, track your usage using Amazon CloudWatch metrics, and then increase the minProvisionedTPS as necessary. Status A campaign can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the campaign status, call DescribeCampaign. Wait until the status of the campaign is ACTIVE before asking the campaign for recommendations. Related APIs ListCampaigns DescribeCampaign UpdateCampaign DeleteCampaign
|
36
36
|
*/
|
37
37
|
createCampaign(callback?: (err: AWSError, data: Personalize.Types.CreateCampaignResponse) => void): Request<Personalize.Types.CreateCampaignResponse, AWSError>;
|
38
38
|
/**
|
@@ -92,11 +92,11 @@ declare class Personalize extends Service {
|
|
92
92
|
*/
|
93
93
|
createMetricAttribution(callback?: (err: AWSError, data: Personalize.Types.CreateMetricAttributionResponse) => void): Request<Personalize.Types.CreateMetricAttributionResponse, AWSError>;
|
94
94
|
/**
|
95
|
-
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
95
|
+
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second A high minRecommendationRequestsPerSecond will increase your bill. We recommend starting with 1 for minRecommendationRequestsPerSecond (the default). Track your usage using Amazon CloudWatch metrics, and increase the minRecommendationRequestsPerSecond as necessary. When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
96
96
|
*/
|
97
97
|
createRecommender(params: Personalize.Types.CreateRecommenderRequest, callback?: (err: AWSError, data: Personalize.Types.CreateRecommenderResponse) => void): Request<Personalize.Types.CreateRecommenderResponse, AWSError>;
|
98
98
|
/**
|
99
|
-
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
99
|
+
* Creates a recommender with the recipe (a Domain dataset group use case) you specify. You create recommenders for a Domain dataset group and specify the recommender's Amazon Resource Name (ARN) when you make a GetRecommendations request. Minimum recommendation requests per second A high minRecommendationRequestsPerSecond will increase your bill. We recommend starting with 1 for minRecommendationRequestsPerSecond (the default). Track your usage using Amazon CloudWatch metrics, and increase the minRecommendationRequestsPerSecond as necessary. When you create a recommender, you can configure the recommender's minimum recommendation requests per second. The minimum recommendation requests per second (minRecommendationRequestsPerSecond) specifies the baseline recommendation request throughput provisioned by Amazon Personalize. The default minRecommendationRequestsPerSecond is 1. A recommendation request is a single GetRecommendations operation. Request throughput is measured in requests per second and Amazon Personalize uses your requests per second to derive your requests per hour and the price of your recommender usage. If your requests per second increases beyond minRecommendationRequestsPerSecond, Amazon Personalize auto-scales the provisioned capacity up and down, but never below minRecommendationRequestsPerSecond. There's a short time delay while the capacity is increased that might cause loss of requests. Your bill is the greater of either the minimum requests per hour (based on minRecommendationRequestsPerSecond) or the actual number of requests. The actual request throughput used is calculated as the average requests/second within a one-hour window. We recommend starting with the default minRecommendationRequestsPerSecond, track your usage using Amazon CloudWatch metrics, and then increase the minRecommendationRequestsPerSecond as necessary. Status A recommender can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED STOP PENDING > STOP IN_PROGRESS > INACTIVE > START PENDING > START IN_PROGRESS > ACTIVE DELETE PENDING > DELETE IN_PROGRESS To get the recommender status, call DescribeRecommender. Wait until the status of the recommender is ACTIVE before asking the recommender for recommendations. Related APIs ListRecommenders DescribeRecommender UpdateRecommender DeleteRecommender
|
100
100
|
*/
|
101
101
|
createRecommender(callback?: (err: AWSError, data: Personalize.Types.CreateRecommenderResponse) => void): Request<Personalize.Types.CreateRecommenderResponse, AWSError>;
|
102
102
|
/**
|
@@ -108,11 +108,11 @@ declare class Personalize extends Service {
|
|
108
108
|
*/
|
109
109
|
createSchema(callback?: (err: AWSError, data: Personalize.Types.CreateSchemaResponse) => void): Request<Personalize.Types.CreateSchemaResponse, AWSError>;
|
110
110
|
/**
|
111
|
-
* Creates the configuration for training a model. A trained model is known as a solution. After the configuration is created, you train the model (create a solution) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize.
|
111
|
+
* Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. Wait until the status shows as ACTIVE before calling CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
112
112
|
*/
|
113
113
|
createSolution(params: Personalize.Types.CreateSolutionRequest, callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
114
114
|
/**
|
115
|
-
* Creates the configuration for training a model. A trained model is known as a solution. After the configuration is created, you train the model (create a solution) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize.
|
115
|
+
* Creates the configuration for training a model. A trained model is known as a solution version. After the configuration is created, you train the model (create a solution version) by calling the CreateSolutionVersion operation. Every time you call CreateSolutionVersion, a new version of the solution is created. After creating a solution version, you check its accuracy by calling GetSolutionMetrics. When you are satisfied with the version, you deploy it using CreateCampaign. The campaign provides recommendations to a client through the GetRecommendations API. To train a model, Amazon Personalize requires training data and a recipe. The training data comes from the dataset group that you provide in the request. A recipe specifies the training algorithm and a feature transformation. You can specify one of the predefined recipes provided by Amazon Personalize. Amazon Personalize doesn't support configuring the hpoObjective for solution hyperparameter optimization at this time. Status A solution can be in one of the following states: CREATE PENDING > CREATE IN_PROGRESS > ACTIVE -or- CREATE FAILED DELETE PENDING > DELETE IN_PROGRESS To get the status of the solution, call DescribeSolution. Wait until the status shows as ACTIVE before calling CreateSolutionVersion. Related APIs ListSolutions CreateSolutionVersion DescribeSolution DeleteSolution ListSolutionVersions DescribeSolutionVersion
|
116
116
|
*/
|
117
117
|
createSolution(callback?: (err: AWSError, data: Personalize.Types.CreateSolutionResponse) => void): Request<Personalize.Types.CreateSolutionResponse, AWSError>;
|
118
118
|
/**
|
@@ -532,11 +532,11 @@ declare class Personalize extends Service {
|
|
532
532
|
*/
|
533
533
|
updateMetricAttribution(callback?: (err: AWSError, data: Personalize.Types.UpdateMetricAttributionResponse) => void): Request<Personalize.Types.UpdateMetricAttributionResponse, AWSError>;
|
534
534
|
/**
|
535
|
-
* Updates the recommender to modify the recommender configuration.
|
535
|
+
* Updates the recommender to modify the recommender configuration. If you update the recommender to modify the columns used in training, Amazon Personalize automatically starts a full retraining of the models backing your recommender. While the update completes, you can still get recommendations from the recommender. The recommender uses the previous configuration until the update completes. To track the status of this update, use the latestRecommenderUpdate returned in the DescribeRecommender operation.
|
536
536
|
*/
|
537
537
|
updateRecommender(params: Personalize.Types.UpdateRecommenderRequest, callback?: (err: AWSError, data: Personalize.Types.UpdateRecommenderResponse) => void): Request<Personalize.Types.UpdateRecommenderResponse, AWSError>;
|
538
538
|
/**
|
539
|
-
* Updates the recommender to modify the recommender configuration.
|
539
|
+
* Updates the recommender to modify the recommender configuration. If you update the recommender to modify the columns used in training, Amazon Personalize automatically starts a full retraining of the models backing your recommender. While the update completes, you can still get recommendations from the recommender. The recommender uses the previous configuration until the update completes. To track the status of this update, use the latestRecommenderUpdate returned in the DescribeRecommender operation.
|
540
540
|
*/
|
541
541
|
updateRecommender(callback?: (err: AWSError, data: Personalize.Types.UpdateRecommenderResponse) => void): Request<Personalize.Types.UpdateRecommenderResponse, AWSError>;
|
542
542
|
}
|
@@ -738,7 +738,7 @@ declare namespace Personalize {
|
|
738
738
|
*/
|
739
739
|
solutionVersionArn?: Arn;
|
740
740
|
/**
|
741
|
-
* The number of predicted users generated by the batch segment job for each line of input data.
|
741
|
+
* The number of predicted users generated by the batch segment job for each line of input data. The maximum number of users per segment is 5 million.
|
742
742
|
*/
|
743
743
|
numResults?: NumBatchResults;
|
744
744
|
/**
|
@@ -818,7 +818,7 @@ declare namespace Personalize {
|
|
818
818
|
*/
|
819
819
|
solutionVersionArn?: Arn;
|
820
820
|
/**
|
821
|
-
* Specifies the requested minimum provisioned transactions (recommendations) per second.
|
821
|
+
* Specifies the requested minimum provisioned transactions (recommendations) per second. A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary.
|
822
822
|
*/
|
823
823
|
minProvisionedTPS?: TransactionsPerSecond;
|
824
824
|
/**
|
@@ -916,6 +916,8 @@ declare namespace Personalize {
|
|
916
916
|
export type CategoricalHyperParameterRanges = CategoricalHyperParameterRange[];
|
917
917
|
export type CategoricalValue = string;
|
918
918
|
export type CategoricalValues = CategoricalValue[];
|
919
|
+
export type ColumnName = string;
|
920
|
+
export type ColumnNamesList = ColumnName[];
|
919
921
|
export interface ContinuousHyperParameterRange {
|
920
922
|
/**
|
921
923
|
* The name of the hyperparameter.
|
@@ -991,7 +993,7 @@ declare namespace Personalize {
|
|
991
993
|
*/
|
992
994
|
filterArn?: Arn;
|
993
995
|
/**
|
994
|
-
* The number of predicted users generated by the batch segment job for each line of input data.
|
996
|
+
* The number of predicted users generated by the batch segment job for each line of input data. The maximum number of users per segment is 5 million.
|
995
997
|
*/
|
996
998
|
numResults?: NumBatchResults;
|
997
999
|
/**
|
@@ -1027,7 +1029,7 @@ declare namespace Personalize {
|
|
1027
1029
|
*/
|
1028
1030
|
solutionVersionArn: Arn;
|
1029
1031
|
/**
|
1030
|
-
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
|
1032
|
+
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support. A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary.
|
1031
1033
|
*/
|
1032
1034
|
minProvisionedTPS?: TransactionsPerSecond;
|
1033
1035
|
/**
|
@@ -1303,7 +1305,7 @@ declare namespace Personalize {
|
|
1303
1305
|
*/
|
1304
1306
|
performHPO?: Boolean;
|
1305
1307
|
/**
|
1306
|
-
* Whether to perform automated machine learning (AutoML). The default is false. For this case, you must specify recipeArn. When set to true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.
|
1308
|
+
* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. Whether to perform automated machine learning (AutoML). The default is false. For this case, you must specify recipeArn. When set to true, Amazon Personalize analyzes your training data and selects the optimal USER_PERSONALIZATION recipe and hyperparameters. In this case, you must omit recipeArn. Amazon Personalize determines the optimal recipe by running tests with different values for the hyperparameters. AutoML lengthens the training process as compared to selecting a specific recipe.
|
1307
1309
|
*/
|
1308
1310
|
performAutoML?: PerformAutoML;
|
1309
1311
|
/**
|
@@ -2079,6 +2081,7 @@ declare namespace Personalize {
|
|
2079
2081
|
export type EventTrackers = EventTrackerSummary[];
|
2080
2082
|
export type EventType = string;
|
2081
2083
|
export type EventValueThreshold = string;
|
2084
|
+
export type ExcludedDatasetColumns = {[key: string]: ColumnNamesList};
|
2082
2085
|
export type FailureReason = string;
|
2083
2086
|
export interface FeatureTransformation {
|
2084
2087
|
/**
|
@@ -2885,9 +2888,13 @@ declare namespace Personalize {
|
|
2885
2888
|
*/
|
2886
2889
|
itemExplorationConfig?: HyperParameters;
|
2887
2890
|
/**
|
2888
|
-
* Specifies the requested minimum provisioned recommendation requests per second that Amazon Personalize will support.
|
2891
|
+
* Specifies the requested minimum provisioned recommendation requests per second that Amazon Personalize will support. A high minRecommendationRequestsPerSecond will increase your bill. We recommend starting with 1 for minRecommendationRequestsPerSecond (the default). Track your usage using Amazon CloudWatch metrics, and increase the minRecommendationRequestsPerSecond as necessary.
|
2889
2892
|
*/
|
2890
2893
|
minRecommendationRequestsPerSecond?: TransactionsPerSecond;
|
2894
|
+
/**
|
2895
|
+
* Specifies the training data configuration to use when creating a domain recommender.
|
2896
|
+
*/
|
2897
|
+
trainingDataConfig?: TrainingDataConfig;
|
2891
2898
|
}
|
2892
2899
|
export interface RecommenderSummary {
|
2893
2900
|
/**
|
@@ -2974,7 +2981,7 @@ declare namespace Personalize {
|
|
2974
2981
|
*/
|
2975
2982
|
performHPO?: PerformHPO;
|
2976
2983
|
/**
|
2977
|
-
* When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (recipeArn must not be specified). When false (the default), Amazon Personalize uses recipeArn for training.
|
2984
|
+
* We don't recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (recipeArn must not be specified). When false (the default), Amazon Personalize uses recipeArn for training.
|
2978
2985
|
*/
|
2979
2986
|
performAutoML?: PerformAutoML;
|
2980
2987
|
/**
|
@@ -3039,6 +3046,10 @@ declare namespace Personalize {
|
|
3039
3046
|
* Describes the additional objective for the solution, such as maximizing streaming minutes or increasing revenue. For more information see Optimizing a solution.
|
3040
3047
|
*/
|
3041
3048
|
optimizationObjective?: OptimizationObjective;
|
3049
|
+
/**
|
3050
|
+
* Specifies the training data configuration to use when creating a custom solution version (trained model).
|
3051
|
+
*/
|
3052
|
+
trainingDataConfig?: TrainingDataConfig;
|
3042
3053
|
}
|
3043
3054
|
export interface SolutionSummary {
|
3044
3055
|
/**
|
@@ -3205,7 +3216,7 @@ declare namespace Personalize {
|
|
3205
3216
|
*/
|
3206
3217
|
resourceArn: Arn;
|
3207
3218
|
/**
|
3208
|
-
* Tags to apply to the resource. For more information see Tagging Personalize
|
3219
|
+
* Tags to apply to the resource. For more information see Tagging Amazon Personalize recources.
|
3209
3220
|
*/
|
3210
3221
|
tags: Tags;
|
3211
3222
|
}
|
@@ -3214,6 +3225,12 @@ declare namespace Personalize {
|
|
3214
3225
|
export type TagValue = string;
|
3215
3226
|
export type Tags = Tag[];
|
3216
3227
|
export type TrackingId = string;
|
3228
|
+
export interface TrainingDataConfig {
|
3229
|
+
/**
|
3230
|
+
* Specifies the columns to exclude from training. Each key is a dataset type, and each value is a list of columns. Exclude columns to control what data Amazon Personalize uses to generate recommendations. For example, you might have a column that you want to use only to filter recommendations. You can exclude this column from training and Amazon Personalize considers it only when filtering.
|
3231
|
+
*/
|
3232
|
+
excludedDatasetColumns?: ExcludedDatasetColumns;
|
3233
|
+
}
|
3217
3234
|
export type TrainingHours = number;
|
3218
3235
|
export type TrainingInputMode = string;
|
3219
3236
|
export type TrainingMode = "FULL"|"UPDATE"|string;
|
@@ -3247,7 +3264,7 @@ declare namespace Personalize {
|
|
3247
3264
|
*/
|
3248
3265
|
solutionVersionArn?: Arn;
|
3249
3266
|
/**
|
3250
|
-
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support.
|
3267
|
+
* Specifies the requested minimum provisioned transactions (recommendations) per second that Amazon Personalize will support. A high minProvisionedTPS will increase your bill. We recommend starting with 1 for minProvisionedTPS (the default). Track your usage using Amazon CloudWatch metrics, and increase the minProvisionedTPS as necessary.
|
3251
3268
|
*/
|
3252
3269
|
minProvisionedTPS?: TransactionsPerSecond;
|
3253
3270
|
/**
|
package/clients/polly.d.ts
CHANGED
@@ -162,7 +162,7 @@ declare namespace Polly {
|
|
162
162
|
SynthesisTask?: SynthesisTask;
|
163
163
|
}
|
164
164
|
export type IncludeAdditionalLanguageCodes = boolean;
|
165
|
-
export type LanguageCode = "arb"|"cmn-CN"|"cy-GB"|"da-DK"|"de-DE"|"en-AU"|"en-GB"|"en-GB-WLS"|"en-IN"|"en-US"|"es-ES"|"es-MX"|"es-US"|"fr-CA"|"fr-FR"|"is-IS"|"it-IT"|"ja-JP"|"hi-IN"|"ko-KR"|"nb-NO"|"nl-NL"|"pl-PL"|"pt-BR"|"pt-PT"|"ro-RO"|"ru-RU"|"sv-SE"|"tr-TR"|"en-NZ"|"en-ZA"|"ca-ES"|"de-AT"|"yue-CN"|"ar-AE"|"fi-FI"|string;
|
165
|
+
export type LanguageCode = "arb"|"cmn-CN"|"cy-GB"|"da-DK"|"de-DE"|"en-AU"|"en-GB"|"en-GB-WLS"|"en-IN"|"en-US"|"es-ES"|"es-MX"|"es-US"|"fr-CA"|"fr-FR"|"is-IS"|"it-IT"|"ja-JP"|"hi-IN"|"ko-KR"|"nb-NO"|"nl-NL"|"pl-PL"|"pt-BR"|"pt-PT"|"ro-RO"|"ru-RU"|"sv-SE"|"tr-TR"|"en-NZ"|"en-ZA"|"ca-ES"|"de-AT"|"yue-CN"|"ar-AE"|"fi-FI"|"en-IE"|string;
|
166
166
|
export type LanguageCodeList = LanguageCode[];
|
167
167
|
export type LanguageName = string;
|
168
168
|
export type LastModified = Date;
|
@@ -488,7 +488,7 @@ declare namespace Polly {
|
|
488
488
|
*/
|
489
489
|
SupportedEngines?: EngineList;
|
490
490
|
}
|
491
|
-
export type VoiceId = "Aditi"|"Amy"|"Astrid"|"Bianca"|"Brian"|"Camila"|"Carla"|"Carmen"|"Celine"|"Chantal"|"Conchita"|"Cristiano"|"Dora"|"Emma"|"Enrique"|"Ewa"|"Filiz"|"Gabrielle"|"Geraint"|"Giorgio"|"Gwyneth"|"Hans"|"Ines"|"Ivy"|"Jacek"|"Jan"|"Joanna"|"Joey"|"Justin"|"Karl"|"Kendra"|"Kevin"|"Kimberly"|"Lea"|"Liv"|"Lotte"|"Lucia"|"Lupe"|"Mads"|"Maja"|"Marlene"|"Mathieu"|"Matthew"|"Maxim"|"Mia"|"Miguel"|"Mizuki"|"Naja"|"Nicole"|"Olivia"|"Penelope"|"Raveena"|"Ricardo"|"Ruben"|"Russell"|"Salli"|"Seoyeon"|"Takumi"|"Tatyana"|"Vicki"|"Vitoria"|"Zeina"|"Zhiyu"|"Aria"|"Ayanda"|"Arlet"|"Hannah"|"Arthur"|"Daniel"|"Liam"|"Pedro"|"Kajal"|"Hiujin"|"Laura"|"Elin"|"Ida"|"Suvi"|"Ola"|"Hala"|"Andres"|"Sergio"|"Remi"|"Adriano"|"Thiago"|"Ruth"|"Stephen"|"Kazuha"|"Tomoko"|string;
|
491
|
+
export type VoiceId = "Aditi"|"Amy"|"Astrid"|"Bianca"|"Brian"|"Camila"|"Carla"|"Carmen"|"Celine"|"Chantal"|"Conchita"|"Cristiano"|"Dora"|"Emma"|"Enrique"|"Ewa"|"Filiz"|"Gabrielle"|"Geraint"|"Giorgio"|"Gwyneth"|"Hans"|"Ines"|"Ivy"|"Jacek"|"Jan"|"Joanna"|"Joey"|"Justin"|"Karl"|"Kendra"|"Kevin"|"Kimberly"|"Lea"|"Liv"|"Lotte"|"Lucia"|"Lupe"|"Mads"|"Maja"|"Marlene"|"Mathieu"|"Matthew"|"Maxim"|"Mia"|"Miguel"|"Mizuki"|"Naja"|"Nicole"|"Olivia"|"Penelope"|"Raveena"|"Ricardo"|"Ruben"|"Russell"|"Salli"|"Seoyeon"|"Takumi"|"Tatyana"|"Vicki"|"Vitoria"|"Zeina"|"Zhiyu"|"Aria"|"Ayanda"|"Arlet"|"Hannah"|"Arthur"|"Daniel"|"Liam"|"Pedro"|"Kajal"|"Hiujin"|"Laura"|"Elin"|"Ida"|"Suvi"|"Ola"|"Hala"|"Andres"|"Sergio"|"Remi"|"Adriano"|"Thiago"|"Ruth"|"Stephen"|"Kazuha"|"Tomoko"|"Niamh"|"Sofie"|string;
|
492
492
|
export type VoiceList = Voice[];
|
493
493
|
export type VoiceName = string;
|
494
494
|
/**
|
package/clients/sagemaker.d.ts
CHANGED
@@ -12539,7 +12539,7 @@ declare namespace SageMaker {
|
|
12539
12539
|
*/
|
12540
12540
|
MinimumInstanceMetadataServiceVersion: MinimumInstanceMetadataServiceVersion;
|
12541
12541
|
}
|
12542
|
-
export type InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.8xlarge"|"ml.m5d.12xlarge"|"ml.m5d.16xlarge"|"ml.m5d.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.16xlarge"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|string;
|
12542
|
+
export type InstanceType = "ml.t2.medium"|"ml.t2.large"|"ml.t2.xlarge"|"ml.t2.2xlarge"|"ml.t3.medium"|"ml.t3.large"|"ml.t3.xlarge"|"ml.t3.2xlarge"|"ml.m4.xlarge"|"ml.m4.2xlarge"|"ml.m4.4xlarge"|"ml.m4.10xlarge"|"ml.m4.16xlarge"|"ml.m5.xlarge"|"ml.m5.2xlarge"|"ml.m5.4xlarge"|"ml.m5.12xlarge"|"ml.m5.24xlarge"|"ml.m5d.large"|"ml.m5d.xlarge"|"ml.m5d.2xlarge"|"ml.m5d.4xlarge"|"ml.m5d.8xlarge"|"ml.m5d.12xlarge"|"ml.m5d.16xlarge"|"ml.m5d.24xlarge"|"ml.c4.xlarge"|"ml.c4.2xlarge"|"ml.c4.4xlarge"|"ml.c4.8xlarge"|"ml.c5.xlarge"|"ml.c5.2xlarge"|"ml.c5.4xlarge"|"ml.c5.9xlarge"|"ml.c5.18xlarge"|"ml.c5d.xlarge"|"ml.c5d.2xlarge"|"ml.c5d.4xlarge"|"ml.c5d.9xlarge"|"ml.c5d.18xlarge"|"ml.p2.xlarge"|"ml.p2.8xlarge"|"ml.p2.16xlarge"|"ml.p3.2xlarge"|"ml.p3.8xlarge"|"ml.p3.16xlarge"|"ml.p3dn.24xlarge"|"ml.g4dn.xlarge"|"ml.g4dn.2xlarge"|"ml.g4dn.4xlarge"|"ml.g4dn.8xlarge"|"ml.g4dn.12xlarge"|"ml.g4dn.16xlarge"|"ml.r5.large"|"ml.r5.xlarge"|"ml.r5.2xlarge"|"ml.r5.4xlarge"|"ml.r5.8xlarge"|"ml.r5.12xlarge"|"ml.r5.16xlarge"|"ml.r5.24xlarge"|"ml.g5.xlarge"|"ml.g5.2xlarge"|"ml.g5.4xlarge"|"ml.g5.8xlarge"|"ml.g5.16xlarge"|"ml.g5.12xlarge"|"ml.g5.24xlarge"|"ml.g5.48xlarge"|"ml.inf1.xlarge"|"ml.inf1.2xlarge"|"ml.inf1.6xlarge"|"ml.inf1.24xlarge"|"ml.p4d.24xlarge"|"ml.p4de.24xlarge"|string;
|
12543
12543
|
export type Integer = number;
|
12544
12544
|
export interface IntegerParameterRange {
|
12545
12545
|
/**
|