avl-tree-typed 1.49.4 → 1.49.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. package/dist/data-structures/base/iterable-base.d.ts +1 -1
  2. package/dist/data-structures/binary-tree/binary-tree.d.ts +1 -13
  3. package/dist/data-structures/binary-tree/binary-tree.js +19 -49
  4. package/dist/data-structures/binary-tree/tree-multimap.d.ts +0 -16
  5. package/dist/data-structures/binary-tree/tree-multimap.js +1 -43
  6. package/dist/data-structures/graph/abstract-graph.d.ts +1 -1
  7. package/dist/data-structures/graph/abstract-graph.js +3 -2
  8. package/dist/data-structures/hash/hash-map.d.ts +1 -1
  9. package/dist/data-structures/hash/hash-map.js +2 -2
  10. package/dist/data-structures/heap/heap.js +2 -3
  11. package/dist/data-structures/linked-list/singly-linked-list.d.ts +2 -2
  12. package/dist/data-structures/matrix/index.d.ts +0 -2
  13. package/dist/data-structures/matrix/index.js +0 -2
  14. package/dist/data-structures/matrix/matrix.d.ts +128 -10
  15. package/dist/data-structures/matrix/matrix.js +400 -15
  16. package/dist/data-structures/queue/deque.d.ts +2 -2
  17. package/dist/data-structures/queue/deque.js +5 -7
  18. package/dist/data-structures/queue/queue.d.ts +1 -1
  19. package/dist/types/data-structures/base/base.d.ts +1 -1
  20. package/dist/types/data-structures/heap/heap.d.ts +1 -1
  21. package/dist/types/data-structures/priority-queue/priority-queue.d.ts +1 -1
  22. package/dist/utils/utils.d.ts +1 -0
  23. package/dist/utils/utils.js +6 -1
  24. package/package.json +2 -2
  25. package/src/data-structures/base/index.ts +1 -1
  26. package/src/data-structures/base/iterable-base.ts +7 -10
  27. package/src/data-structures/binary-tree/avl-tree.ts +15 -8
  28. package/src/data-structures/binary-tree/binary-tree.ts +57 -74
  29. package/src/data-structures/binary-tree/bst.ts +16 -13
  30. package/src/data-structures/binary-tree/rb-tree.ts +16 -10
  31. package/src/data-structures/binary-tree/tree-multimap.ts +11 -48
  32. package/src/data-structures/graph/abstract-graph.ts +13 -11
  33. package/src/data-structures/graph/directed-graph.ts +1 -3
  34. package/src/data-structures/graph/map-graph.ts +6 -1
  35. package/src/data-structures/graph/undirected-graph.ts +3 -6
  36. package/src/data-structures/hash/hash-map.ts +18 -16
  37. package/src/data-structures/heap/heap.ts +7 -10
  38. package/src/data-structures/heap/max-heap.ts +2 -1
  39. package/src/data-structures/heap/min-heap.ts +2 -1
  40. package/src/data-structures/linked-list/singly-linked-list.ts +2 -3
  41. package/src/data-structures/matrix/index.ts +0 -2
  42. package/src/data-structures/matrix/matrix.ts +442 -13
  43. package/src/data-structures/priority-queue/min-priority-queue.ts +11 -10
  44. package/src/data-structures/queue/deque.ts +18 -39
  45. package/src/data-structures/queue/queue.ts +1 -1
  46. package/src/interfaces/binary-tree.ts +7 -2
  47. package/src/types/common.ts +4 -4
  48. package/src/types/data-structures/base/base.ts +14 -3
  49. package/src/types/data-structures/base/index.ts +1 -1
  50. package/src/types/data-structures/graph/abstract-graph.ts +4 -2
  51. package/src/types/data-structures/hash/hash-map.ts +3 -3
  52. package/src/types/data-structures/heap/heap.ts +2 -2
  53. package/src/types/data-structures/priority-queue/priority-queue.ts +2 -2
  54. package/src/utils/utils.ts +7 -1
  55. package/dist/data-structures/matrix/matrix2d.d.ts +0 -107
  56. package/dist/data-structures/matrix/matrix2d.js +0 -199
  57. package/dist/data-structures/matrix/vector2d.d.ts +0 -200
  58. package/dist/data-structures/matrix/vector2d.js +0 -290
  59. package/src/data-structures/matrix/matrix2d.ts +0 -211
  60. package/src/data-structures/matrix/vector2d.ts +0 -315
@@ -1,6 +1,4 @@
1
1
  "use strict";
2
- Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.MatrixNTI2D = void 0;
4
2
  /**
5
3
  * data-structure-typed
6
4
  *
@@ -8,21 +6,408 @@ exports.MatrixNTI2D = void 0;
8
6
  * @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
9
7
  * @license MIT License
10
8
  */
11
- // todo need to be improved
12
- class MatrixNTI2D {
9
+ Object.defineProperty(exports, "__esModule", { value: true });
10
+ exports.Matrix = void 0;
11
+ class Matrix {
13
12
  /**
14
- * The constructor creates a matrix with the specified number of rows and columns, and initializes all elements to a
15
- * given initial value or 0 if not provided.
16
- * @param options - An object containing the following properties:
13
+ * The constructor function initializes a matrix object with the provided data and options, or with
14
+ * default values if no options are provided.
15
+ * @param {number[][]} data - A 2D array of numbers representing the data for the matrix.
16
+ * @param [options] - The `options` parameter is an optional object that can contain the following
17
+ * properties:
17
18
  */
18
- constructor(options) {
19
- const { row, col, initialVal } = options;
20
- this._matrix = new Array(row).fill(undefined).map(() => new Array(col).fill(initialVal || 0));
19
+ constructor(data, options) {
20
+ var _a, _b, _c;
21
+ this._rows = 0;
22
+ this._cols = 0;
23
+ if (options) {
24
+ const { rows, cols, addFn, subtractFn, multiplyFn } = options;
25
+ if (typeof rows === 'number' && rows > 0)
26
+ this._rows = rows;
27
+ else
28
+ this._rows = data.length;
29
+ if (typeof cols === 'number' && cols > 0)
30
+ this._cols = cols;
31
+ else
32
+ this._cols = ((_a = data[0]) === null || _a === void 0 ? void 0 : _a.length) || 0;
33
+ if (addFn)
34
+ this._addFn = addFn;
35
+ if (subtractFn)
36
+ this._subtractFn = subtractFn;
37
+ if (multiplyFn)
38
+ this._multiplyFn = multiplyFn;
39
+ }
40
+ else {
41
+ this._rows = data.length;
42
+ this._cols = (_c = (_b = data[0]) === null || _b === void 0 ? void 0 : _b.length) !== null && _c !== void 0 ? _c : 0;
43
+ }
44
+ if (data.length > 0) {
45
+ this._data = data;
46
+ }
47
+ else {
48
+ this._data = [];
49
+ for (let i = 0; i < this.rows; i++) {
50
+ this._data[i] = new Array(this.cols).fill(0);
51
+ }
52
+ }
53
+ }
54
+ get rows() {
55
+ return this._rows;
56
+ }
57
+ get cols() {
58
+ return this._cols;
59
+ }
60
+ get data() {
61
+ return this._data;
62
+ }
63
+ get addFn() {
64
+ return this._addFn;
65
+ }
66
+ get subtractFn() {
67
+ return this._subtractFn;
21
68
  }
22
- /* The `toArray` method returns the matrix as a two-dimensional array. It converts the internal representation of the
23
- matrix, which is an array of arrays, into a format that is more commonly used in JavaScript. */
24
- toArray() {
25
- return this._matrix;
69
+ get multiplyFn() {
70
+ return this._multiplyFn;
71
+ }
72
+ /**
73
+ * The `get` function returns the value at the specified row and column index if it is a valid index.
74
+ * @param {number} row - The `row` parameter represents the row index of the element you want to
75
+ * retrieve from the data array.
76
+ * @param {number} col - The parameter "col" represents the column number of the element you want to
77
+ * retrieve from the data array.
78
+ * @returns The `get` function returns a number if the provided row and column indices are valid.
79
+ * Otherwise, it returns `undefined`.
80
+ */
81
+ get(row, col) {
82
+ if (this.isValidIndex(row, col)) {
83
+ return this.data[row][col];
84
+ }
85
+ }
86
+ /**
87
+ * The set function updates the value at a specified row and column in a two-dimensional array.
88
+ * @param {number} row - The "row" parameter represents the row index of the element in a
89
+ * two-dimensional array or matrix. It specifies the row where the value will be set.
90
+ * @param {number} col - The "col" parameter represents the column index of the element in a
91
+ * two-dimensional array.
92
+ * @param {number} value - The value parameter represents the number that you want to set at the
93
+ * specified row and column in the data array.
94
+ * @returns a boolean value. It returns true if the index (row, col) is valid and the value is
95
+ * successfully set in the data array. It returns false if the index is invalid and the value is not
96
+ * set.
97
+ */
98
+ set(row, col, value) {
99
+ if (this.isValidIndex(row, col)) {
100
+ this.data[row][col] = value;
101
+ return true;
102
+ }
103
+ return false;
104
+ }
105
+ /**
106
+ * The function checks if the dimensions of the given matrix match the dimensions of the current
107
+ * matrix.
108
+ * @param {Matrix} matrix - The parameter `matrix` is of type `Matrix`.
109
+ * @returns a boolean value.
110
+ */
111
+ isMatchForCalculate(matrix) {
112
+ return this.rows === matrix.rows && this.cols === matrix.cols;
113
+ }
114
+ /**
115
+ * The `add` function adds two matrices together, returning a new matrix with the result.
116
+ * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class.
117
+ * @returns The `add` method returns a new `Matrix` object that represents the result of adding the
118
+ * current matrix with the provided `matrix` parameter.
119
+ */
120
+ add(matrix) {
121
+ if (!this.isMatchForCalculate(matrix)) {
122
+ throw new Error('Matrix dimensions must match for addition.');
123
+ }
124
+ const resultData = [];
125
+ for (let i = 0; i < this.rows; i++) {
126
+ resultData[i] = [];
127
+ for (let j = 0; j < this.cols; j++) {
128
+ const a = this.get(i, j), b = matrix.get(i, j);
129
+ if (a !== undefined && b !== undefined) {
130
+ const added = this._addFn(a, b);
131
+ if (added) {
132
+ resultData[i][j] = added;
133
+ }
134
+ }
135
+ }
136
+ }
137
+ return new Matrix(resultData, {
138
+ rows: this.rows,
139
+ cols: this.cols,
140
+ addFn: this.addFn,
141
+ subtractFn: this.subtractFn,
142
+ multiplyFn: this.multiplyFn
143
+ });
144
+ }
145
+ /**
146
+ * The `subtract` function performs element-wise subtraction between two matrices and returns a new
147
+ * matrix with the result.
148
+ * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class. It
149
+ * represents the matrix that you want to subtract from the current matrix.
150
+ * @returns a new Matrix object with the result of the subtraction operation.
151
+ */
152
+ subtract(matrix) {
153
+ if (!this.isMatchForCalculate(matrix)) {
154
+ throw new Error('Matrix dimensions must match for subtraction.');
155
+ }
156
+ const resultData = [];
157
+ for (let i = 0; i < this.rows; i++) {
158
+ resultData[i] = [];
159
+ for (let j = 0; j < this.cols; j++) {
160
+ const a = this.get(i, j), b = matrix.get(i, j);
161
+ if (a !== undefined && b !== undefined) {
162
+ const subtracted = this._subtractFn(a, b);
163
+ if (subtracted) {
164
+ resultData[i][j] = subtracted;
165
+ }
166
+ }
167
+ }
168
+ }
169
+ return new Matrix(resultData, {
170
+ rows: this.rows,
171
+ cols: this.cols,
172
+ addFn: this.addFn,
173
+ subtractFn: this.subtractFn,
174
+ multiplyFn: this.multiplyFn
175
+ });
176
+ }
177
+ /**
178
+ * The `multiply` function performs matrix multiplication between two matrices and returns the result
179
+ * as a new matrix.
180
+ * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class.
181
+ * @returns a new Matrix object.
182
+ */
183
+ multiply(matrix) {
184
+ if (this.cols !== matrix.rows) {
185
+ throw new Error('Matrix dimensions must be compatible for multiplication (A.cols = B.rows).');
186
+ }
187
+ const resultData = [];
188
+ for (let i = 0; i < this.rows; i++) {
189
+ resultData[i] = [];
190
+ for (let j = 0; j < matrix.cols; j++) {
191
+ let sum;
192
+ for (let k = 0; k < this.cols; k++) {
193
+ const a = this.get(i, k), b = matrix.get(k, j);
194
+ if (a !== undefined && b !== undefined) {
195
+ const multiplied = this.multiplyFn(a, b);
196
+ if (multiplied !== undefined) {
197
+ sum = this.addFn(sum, multiplied);
198
+ }
199
+ }
200
+ }
201
+ if (sum !== undefined)
202
+ resultData[i][j] = sum;
203
+ }
204
+ }
205
+ return new Matrix(resultData, {
206
+ rows: this.rows,
207
+ cols: matrix.cols,
208
+ addFn: this.addFn,
209
+ subtractFn: this.subtractFn,
210
+ multiplyFn: this.multiplyFn
211
+ });
212
+ }
213
+ /**
214
+ * The transpose function takes a matrix and returns a new matrix that is the transpose of the
215
+ * original matrix.
216
+ * @returns The transpose() function returns a new Matrix object with the transposed data.
217
+ */
218
+ transpose() {
219
+ if (this.data.some(row => row.length !== this.rows)) {
220
+ throw new Error('Matrix must be rectangular for transposition.');
221
+ }
222
+ const resultData = [];
223
+ for (let j = 0; j < this.cols; j++) {
224
+ resultData[j] = [];
225
+ for (let i = 0; i < this.rows; i++) {
226
+ const trans = this.get(i, j);
227
+ if (trans !== undefined)
228
+ resultData[j][i] = trans;
229
+ }
230
+ }
231
+ return new Matrix(resultData, {
232
+ rows: this.cols,
233
+ cols: this.rows,
234
+ addFn: this.addFn,
235
+ subtractFn: this.subtractFn,
236
+ multiplyFn: this.multiplyFn
237
+ });
238
+ }
239
+ /**
240
+ * The `inverse` function calculates the inverse of a square matrix using Gaussian elimination.
241
+ * @returns a Matrix object, which represents the inverse of the original matrix.
242
+ */
243
+ inverse() {
244
+ var _a;
245
+ // Check if the matrix is square
246
+ if (this.rows !== this.cols) {
247
+ throw new Error('Matrix must be square for inversion.');
248
+ }
249
+ // Create an augmented matrix [this | I]
250
+ const augmentedMatrixData = [];
251
+ for (let i = 0; i < this.rows; i++) {
252
+ augmentedMatrixData[i] = this.data[i].slice(); // Copy the original matrix
253
+ for (let j = 0; j < this.cols; j++) {
254
+ augmentedMatrixData[i][this.cols + j] = i === j ? 1 : 0; // Append the identity matrix
255
+ }
256
+ }
257
+ const augmentedMatrix = new Matrix(augmentedMatrixData, {
258
+ rows: this.rows,
259
+ cols: this.cols * 2,
260
+ addFn: this.addFn,
261
+ subtractFn: this.subtractFn,
262
+ multiplyFn: this.multiplyFn
263
+ });
264
+ // Apply Gaussian elimination to transform the left half into the identity matrix
265
+ for (let i = 0; i < this.rows; i++) {
266
+ // Find pivot
267
+ let pivotRow = i;
268
+ while (pivotRow < this.rows && augmentedMatrix.get(pivotRow, i) === 0) {
269
+ pivotRow++;
270
+ }
271
+ if (pivotRow === this.rows) {
272
+ // Matrix is singular, and its inverse does not exist
273
+ throw new Error('Matrix is singular, and its inverse does not exist.');
274
+ }
275
+ // Swap rows to make the pivot the current row
276
+ augmentedMatrix._swapRows(i, pivotRow);
277
+ // Scale the pivot row to make the pivot element 1
278
+ const pivotElement = (_a = augmentedMatrix.get(i, i)) !== null && _a !== void 0 ? _a : 1;
279
+ if (pivotElement === 0) {
280
+ // Handle division by zero
281
+ throw new Error('Matrix is singular, and its inverse does not exist (division by zero).');
282
+ }
283
+ augmentedMatrix._scaleRow(i, 1 / pivotElement);
284
+ // Eliminate other rows to make elements in the current column zero
285
+ for (let j = 0; j < this.rows; j++) {
286
+ if (j !== i) {
287
+ let factor = augmentedMatrix.get(j, i);
288
+ if (factor === undefined)
289
+ factor = 0;
290
+ augmentedMatrix._addScaledRow(j, i, -factor);
291
+ }
292
+ }
293
+ }
294
+ // Extract the right half of the augmented matrix as the inverse
295
+ const inverseData = [];
296
+ for (let i = 0; i < this.rows; i++) {
297
+ inverseData[i] = augmentedMatrix.data[i].slice(this.cols);
298
+ }
299
+ return new Matrix(inverseData, {
300
+ rows: this.rows,
301
+ cols: this.cols,
302
+ addFn: this.addFn,
303
+ subtractFn: this.subtractFn,
304
+ multiplyFn: this.multiplyFn
305
+ });
306
+ }
307
+ /**
308
+ * The dot function calculates the dot product of two matrices and returns a new matrix.
309
+ * @param {Matrix} matrix - The `matrix` parameter is an instance of the `Matrix` class.
310
+ * @returns a new Matrix object.
311
+ */
312
+ dot(matrix) {
313
+ if (this.cols !== matrix.rows) {
314
+ throw new Error('Number of columns in the first matrix must be equal to the number of rows in the second matrix for dot product.');
315
+ }
316
+ const resultData = [];
317
+ for (let i = 0; i < this.rows; i++) {
318
+ resultData[i] = [];
319
+ for (let j = 0; j < matrix.cols; j++) {
320
+ let sum;
321
+ for (let k = 0; k < this.cols; k++) {
322
+ const a = this.get(i, k), b = matrix.get(k, j);
323
+ if (a !== undefined && b !== undefined) {
324
+ const multiplied = this.multiplyFn(a, b);
325
+ if (multiplied !== undefined) {
326
+ sum = this.addFn(sum, multiplied);
327
+ }
328
+ }
329
+ }
330
+ if (sum !== undefined)
331
+ resultData[i][j] = sum;
332
+ }
333
+ }
334
+ return new Matrix(resultData, {
335
+ rows: this.rows,
336
+ cols: matrix.cols,
337
+ addFn: this.addFn,
338
+ subtractFn: this.subtractFn,
339
+ multiplyFn: this.multiplyFn
340
+ });
341
+ }
342
+ _addFn(a, b) {
343
+ if (a === undefined)
344
+ return b;
345
+ return a + b;
346
+ }
347
+ _subtractFn(a, b) {
348
+ return a - b;
349
+ }
350
+ _multiplyFn(a, b) {
351
+ return a * b;
352
+ }
353
+ /**
354
+ * The function checks if a given row and column index is valid within a specified range.
355
+ * @param {number} row - The `row` parameter represents the row index of a two-dimensional array or
356
+ * matrix. It is a number that indicates the specific row in the matrix.
357
+ * @param {number} col - The "col" parameter represents the column index in a two-dimensional array
358
+ * or grid. It is used to check if the given column index is valid within the bounds of the grid.
359
+ * @returns A boolean value is being returned.
360
+ */
361
+ isValidIndex(row, col) {
362
+ return row >= 0 && row < this.rows && col >= 0 && col < this.cols;
363
+ }
364
+ /**
365
+ * The function `_swapRows` swaps the positions of two rows in an array.
366
+ * @param {number} row1 - The `row1` parameter is the index of the first row that you want to swap.
367
+ * @param {number} row2 - The `row2` parameter is the index of the second row that you want to swap
368
+ * with the first row.
369
+ */
370
+ _swapRows(row1, row2) {
371
+ const temp = this.data[row1];
372
+ this.data[row1] = this.data[row2];
373
+ this.data[row2] = temp;
374
+ }
375
+ /**
376
+ * The function scales a specific row in a matrix by a given scalar value.
377
+ * @param {number} row - The `row` parameter represents the index of the row in the matrix that you
378
+ * want to scale. It is a number that indicates the position of the row within the matrix.
379
+ * @param {number} scalar - The scalar parameter is a number that is used to multiply each element in
380
+ * a specific row of a matrix.
381
+ */
382
+ _scaleRow(row, scalar) {
383
+ for (let j = 0; j < this.cols; j++) {
384
+ let multiplied = this.multiplyFn(this.data[row][j], scalar);
385
+ if (multiplied === undefined)
386
+ multiplied = 0;
387
+ this.data[row][j] = multiplied;
388
+ }
389
+ }
390
+ /**
391
+ * The function `_addScaledRow` multiplies a row in a matrix by a scalar value and adds it to another
392
+ * row.
393
+ * @param {number} targetRow - The targetRow parameter represents the index of the row in which the
394
+ * scaled values will be added.
395
+ * @param {number} sourceRow - The sourceRow parameter represents the index of the row from which the
396
+ * values will be scaled and added to the targetRow.
397
+ * @param {number} scalar - The scalar parameter is a number that is used to scale the values in the
398
+ * source row before adding them to the target row.
399
+ */
400
+ _addScaledRow(targetRow, sourceRow, scalar) {
401
+ for (let j = 0; j < this.cols; j++) {
402
+ let multiplied = this.multiplyFn(this.data[sourceRow][j], scalar);
403
+ if (multiplied === undefined)
404
+ multiplied = 0;
405
+ const scaledValue = multiplied;
406
+ let added = this.addFn(this.data[targetRow][j], scaledValue);
407
+ if (added === undefined)
408
+ added = 0;
409
+ this.data[targetRow][j] = added;
410
+ }
26
411
  }
27
412
  }
28
- exports.MatrixNTI2D = MatrixNTI2D;
413
+ exports.Matrix = Matrix;
@@ -5,8 +5,8 @@
5
5
  * @copyright Copyright (c) 2022 Tyler Zeng <zrwusa@gmail.com>
6
6
  * @license MIT License
7
7
  */
8
- import type { ElementCallback, IterableWithSizeOrLength } from "../../types";
9
- import { IterableElementBase } from "../base";
8
+ import type { ElementCallback, IterableWithSizeOrLength } from '../../types';
9
+ import { IterableElementBase } from '../base';
10
10
  /**
11
11
  * 1. Operations at Both Ends: Supports adding and removing elements at both the front and back of the queue. This allows it to be used as a stack (last in, first out) and a queue (first in, first out).
12
12
  * 2. Efficient Random Access: Being based on an array, it offers fast random access capability, allowing constant time access to any element.
@@ -20,7 +20,7 @@ class Deque extends base_1.IterableElementBase {
20
20
  * @param bucketSize - The `bucketSize` parameter is the maximum number of elements that can be
21
21
  * stored in each bucket. It determines the size of each bucket in the data structure.
22
22
  */
23
- constructor(elements = [], bucketSize = (1 << 12)) {
23
+ constructor(elements = [], bucketSize = 1 << 12) {
24
24
  super();
25
25
  this._bucketFirst = 0;
26
26
  this._firstInBucket = 0;
@@ -49,7 +49,7 @@ class Deque extends base_1.IterableElementBase {
49
49
  }
50
50
  const needBucketNum = (0, utils_1.calcMinUnitsRequired)(_size, this._bucketSize);
51
51
  this._bucketFirst = this._bucketLast = (this._bucketCount >> 1) - (needBucketNum >> 1);
52
- this._firstInBucket = this._lastInBucket = (this._bucketSize - _size % this._bucketSize) >> 1;
52
+ this._firstInBucket = this._lastInBucket = (this._bucketSize - (_size % this._bucketSize)) >> 1;
53
53
  for (const element of elements) {
54
54
  this.push(element);
55
55
  }
@@ -101,8 +101,7 @@ class Deque extends base_1.IterableElementBase {
101
101
  this._bucketLast = 0;
102
102
  this._lastInBucket = 0;
103
103
  }
104
- if (this._bucketLast === this._bucketFirst &&
105
- this._lastInBucket === this._firstInBucket)
104
+ if (this._bucketLast === this._bucketFirst && this._lastInBucket === this._firstInBucket)
106
105
  this._reallocate();
107
106
  }
108
107
  this._size += 1;
@@ -168,8 +167,7 @@ class Deque extends base_1.IterableElementBase {
168
167
  this._bucketFirst = this._bucketCount - 1;
169
168
  this._firstInBucket = this._bucketSize - 1;
170
169
  }
171
- if (this._bucketFirst === this._bucketLast &&
172
- this._firstInBucket === this._lastInBucket)
170
+ if (this._bucketFirst === this._bucketLast && this._firstInBucket === this._lastInBucket)
173
171
  this._reallocate();
174
172
  }
175
173
  this._size += 1;
@@ -768,7 +766,7 @@ class Deque extends base_1.IterableElementBase {
768
766
  if (bucketIndex >= this._bucketCount) {
769
767
  bucketIndex -= this._bucketCount;
770
768
  }
771
- indexInBucket = (overallIndex + 1) % this._bucketSize - 1;
769
+ indexInBucket = ((overallIndex + 1) % this._bucketSize) - 1;
772
770
  if (indexInBucket < 0) {
773
771
  indexInBucket = this._bucketSize - 1;
774
772
  }
@@ -4,7 +4,7 @@
4
4
  * @class
5
5
  */
6
6
  import type { ElementCallback } from '../../types';
7
- import { IterableElementBase } from "../base";
7
+ import { IterableElementBase } from '../base';
8
8
  import { SinglyLinkedList } from '../linked-list';
9
9
  /**
10
10
  * 1. First In, First Out (FIFO): The core feature of a queue is its first in, first out nature. The element added to the queue first will be the one to be removed first.
@@ -1,4 +1,4 @@
1
- import { IterableElementBase, IterableEntryBase } from "../../../data-structures";
1
+ import { IterableElementBase, IterableEntryBase } from '../../../data-structures';
2
2
  export type EntryCallback<K, V, R> = (value: V, key: K, index: number, container: IterableEntryBase<K, V>) => R;
3
3
  export type ElementCallback<V, R> = (element: V, index: number, container: IterableElementBase<V>) => R;
4
4
  export type ReduceEntryCallback<K, V, R> = (accumulator: R, value: V, key: K, index: number, container: IterableEntryBase<K, V>) => R;
@@ -1,4 +1,4 @@
1
- import { Comparator } from "../../common";
1
+ import { Comparator } from '../../common';
2
2
  export type HeapOptions<T> = {
3
3
  comparator: Comparator<T>;
4
4
  };
@@ -1,2 +1,2 @@
1
- import { HeapOptions } from "../heap";
1
+ import { HeapOptions } from '../heap';
2
2
  export type PriorityQueueOptions<T> = HeapOptions<T> & {};
@@ -22,3 +22,4 @@ export declare const rangeCheck: (index: number, min: number, max: number, messa
22
22
  export declare const throwRangeError: (message?: string) => void;
23
23
  export declare const isWeakKey: (input: unknown) => input is object;
24
24
  export declare const calcMinUnitsRequired: (totalQuantity: number, unitSize: number) => number;
25
+ export declare const roundFixed: (num: number, digit?: number) => number;
@@ -9,7 +9,7 @@ var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, ge
9
9
  });
10
10
  };
11
11
  Object.defineProperty(exports, "__esModule", { value: true });
12
- exports.calcMinUnitsRequired = exports.isWeakKey = exports.throwRangeError = exports.rangeCheck = exports.getMSB = exports.trampolineAsync = exports.trampoline = exports.toThunk = exports.isThunk = exports.THUNK_SYMBOL = exports.arrayRemove = exports.uuidV4 = void 0;
12
+ exports.roundFixed = exports.calcMinUnitsRequired = exports.isWeakKey = exports.throwRangeError = exports.rangeCheck = exports.getMSB = exports.trampolineAsync = exports.trampoline = exports.toThunk = exports.isThunk = exports.THUNK_SYMBOL = exports.arrayRemove = exports.uuidV4 = void 0;
13
13
  const uuidV4 = function () {
14
14
  return 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'.replace(/[x]/g, function (c) {
15
15
  const r = (Math.random() * 16) | 0, v = c == 'x' ? r : (r & 0x3) | 0x8;
@@ -87,3 +87,8 @@ const isWeakKey = (input) => {
87
87
  exports.isWeakKey = isWeakKey;
88
88
  const calcMinUnitsRequired = (totalQuantity, unitSize) => Math.floor((totalQuantity + unitSize - 1) / unitSize);
89
89
  exports.calcMinUnitsRequired = calcMinUnitsRequired;
90
+ const roundFixed = (num, digit = 10) => {
91
+ const multiplier = Math.pow(10, digit);
92
+ return Math.round(num * multiplier) / multiplier;
93
+ };
94
+ exports.roundFixed = roundFixed;
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "avl-tree-typed",
3
- "version": "1.49.4",
3
+ "version": "1.49.5",
4
4
  "description": "AVLTree(Adelson-Velsky and Landis Tree). Javascript & Typescript Data Structure.",
5
5
  "main": "dist/index.js",
6
6
  "scripts": {
@@ -163,6 +163,6 @@
163
163
  "typescript": "^4.9.5"
164
164
  },
165
165
  "dependencies": {
166
- "data-structure-typed": "^1.49.4"
166
+ "data-structure-typed": "^1.49.5"
167
167
  }
168
168
  }
@@ -1 +1 @@
1
- export * from './iterable-base';
1
+ export * from './iterable-base';
@@ -1,7 +1,6 @@
1
- import { ElementCallback, EntryCallback, ReduceElementCallback, ReduceEntryCallback } from "../../types";
1
+ import { ElementCallback, EntryCallback, ReduceElementCallback, ReduceEntryCallback } from '../../types';
2
2
 
3
3
  export abstract class IterableEntryBase<K = any, V = any> {
4
-
5
4
  /**
6
5
  * Time Complexity: O(n)
7
6
  * Space Complexity: O(1)
@@ -147,7 +146,7 @@ export abstract class IterableEntryBase<K = any, V = any> {
147
146
  let index = 0;
148
147
  for (const item of this) {
149
148
  const [key, value] = item;
150
- callbackfn.call(thisArg, value, key, index++, this)
149
+ callbackfn.call(thisArg, value, key, index++, this);
151
150
  }
152
151
  }
153
152
 
@@ -176,7 +175,7 @@ export abstract class IterableEntryBase<K = any, V = any> {
176
175
  let index = 0;
177
176
  for (const item of this) {
178
177
  const [key, value] = item;
179
- accumulator = callbackfn(accumulator, value, key, index++, this)
178
+ accumulator = callbackfn(accumulator, value, key, index++, this);
180
179
  }
181
180
  return accumulator;
182
181
  }
@@ -193,14 +192,13 @@ export abstract class IterableEntryBase<K = any, V = any> {
193
192
  * Space Complexity: O(n)
194
193
  */
195
194
  print(): void {
196
- console.log([...this])
195
+ console.log([...this]);
197
196
  }
198
197
 
199
198
  protected abstract _getIterator(...args: any[]): IterableIterator<[K, V]>;
200
199
  }
201
200
 
202
201
  export abstract class IterableElementBase<V> {
203
-
204
202
  /**
205
203
  * Time Complexity: O(n)
206
204
  * Space Complexity: O(1)
@@ -310,7 +308,7 @@ export abstract class IterableElementBase<V> {
310
308
  forEach(callbackfn: ElementCallback<V, void>, thisArg?: any): void {
311
309
  let index = 0;
312
310
  for (const item of this) {
313
- callbackfn.call(thisArg, item as V, index++, this)
311
+ callbackfn.call(thisArg, item as V, index++, this);
314
312
  }
315
313
  }
316
314
 
@@ -335,18 +333,17 @@ export abstract class IterableElementBase<V> {
335
333
  let accumulator = initialValue;
336
334
  let index = 0;
337
335
  for (const item of this) {
338
- accumulator = callbackfn(accumulator, item as V, index++, this)
336
+ accumulator = callbackfn(accumulator, item as V, index++, this);
339
337
  }
340
338
  return accumulator;
341
339
  }
342
340
 
343
-
344
341
  /**
345
342
  * Time Complexity: O(n)
346
343
  * Space Complexity: O(n)
347
344
  */
348
345
  print(): void {
349
- console.log([...this])
346
+ console.log([...this]);
350
347
  }
351
348
 
352
349
  protected abstract _getIterator(...args: any[]): IterableIterator<V>;