aiden-shared-calculations-unified 1.0.80 → 1.0.82

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -7,68 +7,46 @@
7
7
  * This provides a crowd-wide P&L status for each instrument.
8
8
  *
9
9
  * --- FIX ---
10
- * This version is modified to only store user *IDs* in the arrays,
11
- * not the full user P&L objects, to prevent exceeding the
12
- * 1 MiB Firestore document size limit.
10
+ * This version is modified to *only* store counts. The
11
+ * `users_in_profit` and `users_in_loss` arrays are removed
12
+ * to prevent exceeding the 1 MiB Firestore document size limit.
13
13
  */
14
14
  const { loadInstrumentMappings } = require('../../utils/sector_mapping_provider');
15
15
 
16
16
  class AssetPnlStatus {
17
17
  constructor() {
18
- // We will store { [instrumentId]: { in_profit: Map(), in_loss: Map() } }
19
- // The maps will store <userId, pnl> but only the keys (userIds) will be saved.
18
+ // We will store { [instrumentId]: { in_profit_count: 0, in_loss_count: 0 } }
19
+ // We no longer store the user maps, just the counts.
20
20
  this.assets = new Map();
21
21
  this.mappings = null;
22
+ this.seenUsers = new Map(); // Map<instrumentId, Set<userId>>
22
23
  }
23
24
 
24
25
  /**
25
26
  * Defines the output schema for this calculation.
26
27
  * --- MODIFIED ---
27
- * The `users_in_profit` and `users_in_loss` schemas are changed
28
- * from `items: userSchema` to `items: { "type": "string" }`.
28
+ * Removed the `users_in_profit` and `users_in_loss` arrays.
29
29
  * @returns {object} JSON Schema object
30
30
  */
31
31
  static getSchema() {
32
- /*
33
- // The userSchema is no longer needed in the output
34
- const userSchema = {
35
- "type": "object",
36
- "properties": {
37
- "userId": { "type": "string" },
38
- "pnl": { "type": "number" }
39
- },
40
- "required": ["userId", "pnl"]
41
- };
42
- */
43
-
44
32
  const tickerSchema = {
45
33
  "type": "object",
46
34
  "description": "P&L status for a specific asset.",
47
35
  "properties": {
48
36
  "in_profit_count": {
49
37
  "type": "number",
50
- "description": "Count of users currently in profit on this asset."
38
+ "description": "Count of unique users currently in profit on this asset."
51
39
  },
52
40
  "in_loss_count": {
53
41
  "type": "number",
54
- "description": "Count of users currently in loss on this asset."
42
+ "description": "Count of unique users currently in loss on this asset."
55
43
  },
56
44
  "profit_ratio": {
57
45
  "type": "number",
58
46
  "description": "Percentage of users in profit (In Profit / Total)."
59
- },
60
- "users_in_profit": {
61
- "type": "array",
62
- "description": "List of user IDs in profit.",
63
- "items": { "type": "string" } // <-- MODIFIED
64
- },
65
- "users_in_loss": {
66
- "type": "array",
67
- "description": "List of user IDs in loss.",
68
- "items": { "type": "string" } // <-- MODIFIED
69
47
  }
70
48
  },
71
- "required": ["in_profit_count", "in_loss_count", "profit_ratio", "users_in_profit", "users_in_loss"]
49
+ "required": ["in_profit_count", "in_loss_count", "profit_ratio"]
72
50
  };
73
51
 
74
52
  return {
@@ -104,8 +82,8 @@ class AssetPnlStatus {
104
82
  _initAsset(instrumentId) {
105
83
  if (!this.assets.has(instrumentId)) {
106
84
  this.assets.set(instrumentId, {
107
- in_profit: new Map(), // Map<userId, pnl>
108
- in_loss: new Map() // Map<userId, pnl>
85
+ in_profit: new Set(),
86
+ in_loss: new Set()
109
87
  });
110
88
  }
111
89
  }
@@ -124,18 +102,20 @@ class AssetPnlStatus {
124
102
  const asset = this.assets.get(instrumentId);
125
103
  const pnl = pos.NetProfit || 0;
126
104
 
105
+ // Only count one user once per asset
127
106
  if (pnl > 0) {
128
- asset.in_profit.set(userId, pnl);
107
+ asset.in_profit.add(userId);
108
+ asset.in_loss.delete(userId); // Ensure user isn't in both
129
109
  } else if (pnl < 0) {
130
- asset.in_loss.set(userId, pnl);
110
+ asset.in_loss.add(userId);
111
+ asset.in_profit.delete(userId); // Ensure user isn't in both
131
112
  }
132
113
  }
133
114
  }
134
115
 
135
116
  /**
136
117
  * --- MODIFIED ---
137
- * This now saves an array of strings (user IDs) instead of
138
- * an array of {userId, pnl} objects to save space.
118
+ * This now saves only counts.
139
119
  */
140
120
  async getResult() {
141
121
  if (!this.mappings) {
@@ -154,10 +134,8 @@ class AssetPnlStatus {
154
134
  result[ticker] = {
155
135
  in_profit_count: profitCount,
156
136
  in_loss_count: lossCount,
157
- profit_ratio: (profitCount / total) * 100,
158
- // Convert Maps to arrays of *keys* (user IDs)
159
- users_in_profit: Array.from(data.in_profit.keys()), // <-- MODIFIED
160
- users_in_loss: Array.from(data.in_loss.keys()) // <-- MODIFIED
137
+ profit_ratio: (profitCount / total) * 100
138
+ // Removed the user arrays
161
139
  };
162
140
  }
163
141
  }
@@ -167,6 +145,7 @@ class AssetPnlStatus {
167
145
  reset() {
168
146
  this.assets.clear();
169
147
  this.mappings = null;
148
+ this.seenUsers.clear();
170
149
  }
171
150
  }
172
151
 
@@ -0,0 +1,372 @@
1
+ /**
2
+ * @fileoverview Calculation (Pass 1 - Meta) for historical price metrics.
3
+ *
4
+ * This metric answers: "What is the Volatility, Sharpe Ratio, and Max Drawdown
5
+ * for all instruments over 7, 30, 90, and 365-day periods?"
6
+ *
7
+ * It also aggregates these metrics as an average for each sector.
8
+ */
9
+
10
+ const RANGES = [7, 30, 90, 365];
11
+ const TRADING_DAYS_PER_YEAR = 252;
12
+ const MAX_LOOKBACK_DAYS = 5; // For finding a non-holiday/weekend price
13
+
14
+ class CorePriceMetrics {
15
+
16
+ // #region --- Static Metadata & Schema ---
17
+
18
+ /**
19
+ * Statically defines all metadata for the manifest builder.
20
+ */
21
+ static getMetadata() {
22
+ return {
23
+ type: 'meta',
24
+ rootDataDependencies: [], // Relies on price data, not root data
25
+ isHistorical: true, // Needs up to 365d of price history
26
+ userType: 'n/a',
27
+ category: 'core_metrics' // Fits with other price/metric calcs
28
+ };
29
+ }
30
+
31
+ /**
32
+ * This is a Pass 1 calculation and has no dependencies on other calculations.
33
+ */
34
+ static getDependencies() {
35
+ return [];
36
+ }
37
+
38
+ /**
39
+ * Defines the output schema for this calculation.
40
+ */
41
+ static getSchema() {
42
+ // This is the sub-schema for a single instrument's metrics
43
+ const instrumentMetricsSchema = {
44
+ "type": "object",
45
+ "properties": {
46
+ "stdev_7d": { "type": ["number", "null"], "description": "7-day standard deviation of daily returns" },
47
+ "volatility_annualized_7d": { "type": ["number", "null"], "description": "7-day annualized volatility" },
48
+ "sharpe_ratio_7d": { "type": ["number", "null"], "description": "7-day annualized Sharpe ratio (rf=0)" },
49
+ "max_drawdown_7d": { "type": ["number", "null"], "description": "7-day max peak-to-trough drawdown" },
50
+
51
+ "stdev_30d": { "type": ["number", "null"], "description": "30-day standard deviation of daily returns" },
52
+ "volatility_annualized_30d": { "type": ["number", "null"], "description": "30-day annualized volatility" },
53
+ "sharpe_ratio_30d": { "type": ["number", "null"], "description": "30-day annualized Sharpe ratio (rf=0)" },
54
+ "max_drawdown_30d": { "type": ["number", "null"], "description": "30-day max peak-to-trough drawdown" },
55
+
56
+ "stdev_90d": { "type": ["number", "null"], "description": "90-day standard deviation of daily returns" },
57
+ "volatility_annualized_90d": { "type": ["number", "null"], "description": "90-day annualized volatility" },
58
+ "sharpe_ratio_90d": { "type": ["number", "null"], "description": "90-day annualized Sharpe ratio (rf=0)" },
59
+ "max_drawdown_90d": { "type": ["number", "null"], "description": "90-day max peak-to-trough drawdown" },
60
+
61
+ "stdev_365d": { "type": ["number", "null"], "description": "365-day standard deviation of daily returns" },
62
+ "volatility_annualized_365d": { "type": ["number", "null"], "description": "365-day annualized volatility" },
63
+ "sharpe_ratio_365d": { "type": ["number", "null"], "description": "365-day annualized Sharpe ratio (rf=0)" },
64
+ "max_drawdown_365d": { "type": ["number", "null"], "description": "365-day max peak-to-trough drawdown" }
65
+ },
66
+ "additionalProperties": false
67
+ };
68
+
69
+ // This is the sub-schema for a single sector's *averages*
70
+ const sectorMetricsSchema = {
71
+ "type": "object",
72
+ "properties": {
73
+ "average_stdev_7d": { "type": ["number", "null"], "description": "Average 7-day standard deviation for the sector" },
74
+ "average_volatility_annualized_7d": { "type": ["number", "null"], "description": "Average 7-day annualized volatility for the sector" },
75
+ "average_sharpe_ratio_7d": { "type": ["number", "null"], "description": "Average 7-day annualized Sharpe ratio for the sector" },
76
+ "average_max_drawdown_7d": { "type": ["number", "null"], "description": "Average 7-day max drawdown for the sector" },
77
+
78
+ "average_stdev_30d": { "type": ["number", "null"], "description": "Average 30-day standard deviation for the sector" },
79
+ "average_volatility_annualized_30d": { "type": ["number", "null"], "description": "Average 30-day annualized volatility for the sector" },
80
+ "average_sharpe_ratio_30d": { "type": ["number", "null"], "description": "Average 30-day annualized Sharpe ratio for the sector" },
81
+ "average_max_drawdown_30d": { "type": ["number", "null"], "description": "Average 30-day max drawdown for the sector" },
82
+
83
+ "average_stdev_90d": { "type": ["number", "null"], "description": "Average 90-day standard deviation for the sector" },
84
+ "average_volatility_annualized_90d": { "type": ["number", "null"], "description": "Average 90-day annualized volatility for the sector" },
85
+ "average_sharpe_ratio_90d": { "type": ["number", "null"], "description": "Average 90-day annualized Sharpe ratio for the sector" },
86
+ "average_max_drawdown_90d": { "type": ["number", "null"], "description": "Average 90-day max drawdown for the sector" },
87
+
88
+ "average_stdev_365d": { "type": ["number", "null"], "description": "Average 365-day standard deviation for the sector" },
89
+ "average_volatility_annualized_365d": { "type": ["number", "null"], "description": "Average 365-day annualized volatility for the sector" },
90
+ "average_sharpe_ratio_365d": { "type": ["number", "null"], "description": "Average 365-day annualized Sharpe ratio for the sector" },
91
+ "average_max_drawdown_365d": { "type": ["number", "null"], "description": "Average 365-day max drawdown for the sector" }
92
+ },
93
+ "additionalProperties": false
94
+ };
95
+
96
+ // This is the final, top-level schema
97
+ return {
98
+ "type": "object",
99
+ "description": "Calculates risk/return metrics (StdDev, Sharpe, Vol, Drawdown) for instruments and sectors.",
100
+ "properties": {
101
+ "by_instrument": {
102
+ "type": "object",
103
+ "description": "Metrics per instrument, keyed by Ticker.",
104
+ "patternProperties": { "^[A-Z\\.]+$": instrumentMetricsSchema }, // Match tickers like 'NVDA' or 'BRK.B'
105
+ "additionalProperties": instrumentMetricsSchema
106
+ },
107
+ "by_sector": {
108
+ "type": "object",
109
+ "description": "Average metrics per sector, keyed by Sector Name.",
110
+ "patternProperties": { "^[a-zA-Z0-9_ ]+$": sectorMetricsSchema }, // Match sector names
111
+ "additionalProperties": sectorMetricsSchema
112
+ }
113
+ },
114
+ "required": ["by_instrument", "by_sector"]
115
+ };
116
+ }
117
+
118
+ // #endregion --- Static Metadata & Schema ---
119
+
120
+
121
+ // #region --- Main Process ---
122
+
123
+ /**
124
+ * This is a 'meta' calculation. It runs once.
125
+ * @param {string} dateStr - The date string 'YYYY-MM-DD'.
126
+ * @param {object} dependencies - The shared dependencies (e.g., logger, calculationUtils).
127
+ * @param {object} config - The computation system configuration.
128
+ * @returns {Promise<object>} The calculation result.
129
+ */
130
+ async process(dateStr, dependencies, config) {
131
+ const { logger, calculationUtils } = dependencies;
132
+
133
+ const priceMap = await calculationUtils.loadAllPriceData();
134
+ const mappings = await calculationUtils.loadInstrumentMappings();
135
+
136
+ if (!priceMap || !mappings || !mappings.instrumentToTicker || !mappings.instrumentToSector) {
137
+ logger.log('ERROR', '[core-price-metrics] Failed to load priceMap or mappings.');
138
+ return { by_instrument: {}, by_sector: {} };
139
+ }
140
+
141
+ const { instrumentToTicker, instrumentToSector } = mappings;
142
+ const by_instrument = {};
143
+
144
+ // 1. Calculate Per-Instrument Metrics
145
+ for (const instrumentId in priceMap) {
146
+ const ticker = instrumentToTicker[instrumentId];
147
+ if (!ticker) continue;
148
+
149
+ const priceHistoryObj = priceMap[instrumentId];
150
+ const instrumentMetrics = {};
151
+
152
+ // Null-out all metrics by default to ensure consistent schema
153
+ for (const range of RANGES) {
154
+ instrumentMetrics[`stdev_${range}d`] = null;
155
+ instrumentMetrics[`volatility_annualized_${range}d`] = null;
156
+ instrumentMetrics[`sharpe_ratio_${range}d`] = null;
157
+ instrumentMetrics[`max_drawdown_${range}d`] = null;
158
+ }
159
+
160
+ for (const range of RANGES) {
161
+ // Get the price slice for the range (e.g., last 30 days)
162
+ // We need range + 1 prices to calculate `range` number of returns
163
+ const priceArray = this._getHistoricalPriceArray(priceHistoryObj, dateStr, range + 1);
164
+
165
+ if (priceArray.length < 2) {
166
+ continue; // Not enough data for this range
167
+ }
168
+
169
+ // Calculate drawdown on prices
170
+ instrumentMetrics[`max_drawdown_${range}d`] = this._calculateMaxDrawdown(priceArray);
171
+
172
+ // Calculate returns and return-based metrics
173
+ const dailyReturns = this._calculateDailyReturns(priceArray);
174
+ if (dailyReturns.length < 2) {
175
+ continue; // Not enough returns to calculate stddev
176
+ }
177
+
178
+ const meanReturn = this._calculateMean(dailyReturns);
179
+ const stdDev = this._calculateStdDev(dailyReturns, meanReturn);
180
+
181
+ instrumentMetrics[`stdev_${range}d`] = stdDev;
182
+
183
+ if (stdDev > 0) {
184
+ instrumentMetrics[`sharpe_ratio_${range}d`] = (meanReturn / stdDev) * Math.sqrt(TRADING_DAYS_PER_YEAR);
185
+ instrumentMetrics[`volatility_annualized_${range}d`] = stdDev * Math.sqrt(TRADING_DAYS_PER_YEAR);
186
+ } else {
187
+ instrumentMetrics[`sharpe_ratio_${range}d`] = 0;
188
+ instrumentMetrics[`volatility_annualized_${range}d`] = 0;
189
+ }
190
+ }
191
+
192
+ by_instrument[ticker] = instrumentMetrics;
193
+ }
194
+
195
+ // 2. Calculate Sector Aggregates
196
+ const by_sector = this._aggregateMetricsBySector(by_instrument, instrumentToTicker, instrumentToSector);
197
+
198
+ return {
199
+ by_instrument,
200
+ by_sector,
201
+ };
202
+ }
203
+
204
+ // #endregion --- Main Process ---
205
+
206
+
207
+ // #region --- Aggregation Helpers ---
208
+
209
+ _aggregateMetricsBySector(by_instrument, instrumentToTicker, instrumentToSector) {
210
+ const sectorAggregates = {}; // { [sector]: { metrics: { [metricName]: sum }, counts: { [metricName]: count } } }
211
+ const tickerToInstrument = Object.fromEntries(Object.entries(instrumentToTicker).map(([id, ticker]) => [ticker, id]));
212
+
213
+ for (const ticker in by_instrument) {
214
+ const instrumentId = tickerToInstrument[ticker];
215
+ const sector = instrumentToSector[instrumentId] || "Unknown";
216
+ const metrics = by_instrument[ticker];
217
+
218
+ if (!sectorAggregates[sector]) {
219
+ sectorAggregates[sector] = { metrics: {}, counts: {} };
220
+ }
221
+
222
+ for (const metricName in metrics) {
223
+ const value = metrics[metricName];
224
+ // Check for valid, non-null, finite numbers
225
+ if (value !== null && typeof value === 'number' && isFinite(value)) {
226
+ if (!sectorAggregates[sector].metrics[metricName]) {
227
+ sectorAggregates[sector].metrics[metricName] = 0;
228
+ sectorAggregates[sector].counts[metricName] = 0;
229
+ }
230
+ sectorAggregates[sector].metrics[metricName] += value;
231
+ sectorAggregates[sector].counts[metricName]++;
232
+ }
233
+ }
234
+ }
235
+
236
+ // Finalize averages
237
+ const by_sector = {};
238
+ for (const sector in sectorAggregates) {
239
+ by_sector[sector] = {};
240
+ const agg = sectorAggregates[sector];
241
+
242
+ // Get all unique metric names from this sector's aggregation
243
+ const allMetricNames = Object.keys(agg.metrics);
244
+
245
+ for (const metricName of allMetricNames) {
246
+ const count = agg.counts[metricName];
247
+ if (count > 0) {
248
+ by_sector[sector][`average_${metricName}`] = agg.metrics[metricName] / count;
249
+ } else {
250
+ by_sector[sector][`average_${metricName}`] = null; // Ensure null if no valid data
251
+ }
252
+ }
253
+ }
254
+ return by_sector;
255
+ }
256
+
257
+ // #endregion --- Aggregation Helpers ---
258
+
259
+
260
+ // #region --- Math & Price Helpers ---
261
+
262
+ /**
263
+ * Re-implementation of the logic from price_data_provider.js's private helper.
264
+ * Finds the most recent available price on or before a given date.
265
+ */
266
+ _findPriceOnOrBefore(priceHistory, dateStr) {
267
+ if (!priceHistory) return null;
268
+
269
+ let checkDate = new Date(dateStr + 'T00:00:00Z');
270
+
271
+ for (let i = 0; i < MAX_LOOKBACK_DAYS; i++) {
272
+ const checkDateStr = checkDate.toISOString().slice(0, 10);
273
+ const price = priceHistory[checkDateStr];
274
+
275
+ if (price !== undefined && price !== null && price > 0) {
276
+ return price; // Found it
277
+ }
278
+ // If not found, look back one more day
279
+ checkDate.setUTCDate(checkDate.getUTCDate() - 1);
280
+ }
281
+ return null;
282
+ }
283
+
284
+ /**
285
+ * Gets a gap-filled array of prices for a historical range.
286
+ * @param {object} priceHistoryObj - The map of { "YYYY-MM-DD": price }
287
+ * @param {string} endDateStr - The end date of the period (e.g., today).
288
+ * @param {number} numDays - The number of calendar days to fetch prices for.
289
+ * @returns {number[]} A sorted array of prices, oldest to newest.
290
+ */
291
+ _getHistoricalPriceArray(priceHistoryObj, endDateStr, numDays) {
292
+ const prices = [];
293
+ let currentDate = new Date(endDateStr + 'T00:00:00Z');
294
+ let lastPrice = null;
295
+
296
+ for (let i = 0; i < numDays; i++) {
297
+ const targetDateStr = currentDate.toISOString().slice(0, 10);
298
+ let price = this._findPriceOnOrBefore(priceHistoryObj, targetDateStr);
299
+
300
+ // If price is null (e.g., new instrument), try to use the last known price
301
+ if (price === null) {
302
+ price = lastPrice;
303
+ } else {
304
+ lastPrice = price; // Update last known price
305
+ }
306
+
307
+ if (price !== null) {
308
+ prices.push(price);
309
+ }
310
+
311
+ // Go back one calendar day for the next data point
312
+ currentDate.setUTCDate(currentDate.getUTCDate() - 1);
313
+ }
314
+
315
+ // We built the array from newest to oldest, so reverse it.
316
+ // And filter out any initial nulls if lastPrice was null at the start
317
+ return prices.reverse().filter(p => p !== null);
318
+ }
319
+
320
+
321
+ _calculateMean(arr) {
322
+ if (!arr || arr.length === 0) return 0;
323
+ const sum = arr.reduce((acc, val) => acc + val, 0);
324
+ return sum / arr.length;
325
+ }
326
+
327
+ _calculateStdDev(arr, mean) {
328
+ if (!arr || arr.length < 2) return 0;
329
+ const avg = mean === undefined ? this._calculateMean(arr) : mean;
330
+ // Use N-1 for sample standard deviation
331
+ const variance = arr.reduce((acc, val) => acc + (val - avg) ** 2, 0) / (arr.length - 1);
332
+ return Math.sqrt(variance);
333
+ }
334
+
335
+ _calculateDailyReturns(prices) {
336
+ const returns = [];
337
+ for (let i = 1; i < prices.length; i++) {
338
+ const prevPrice = prices[i - 1];
339
+ const currPrice = prices[i];
340
+ if (prevPrice !== 0 && prevPrice !== null && currPrice !== null) {
341
+ returns.push((currPrice - prevPrice) / prevPrice);
342
+ } else {
343
+ returns.push(0);
344
+ }
345
+ }
346
+ return returns;
347
+ }
348
+
349
+ _calculateMaxDrawdown(prices) {
350
+ if (!prices || prices.length < 2) return 0;
351
+ let maxDrawdown = 0;
352
+ let peak = -Infinity;
353
+
354
+ for (const price of prices) {
355
+ if (price > peak) {
356
+ peak = price;
357
+ }
358
+ if (peak > 0) { // Only calculate drawdown if peak is positive
359
+ const drawdown = (price - peak) / peak;
360
+ if (drawdown < maxDrawdown) {
361
+ maxDrawdown = drawdown;
362
+ }
363
+ }
364
+ }
365
+ // Ensure result is a finite number, default to 0
366
+ return isFinite(maxDrawdown) ? maxDrawdown : 0;
367
+ }
368
+
369
+ // #endregion --- Math & Price Helpers ---
370
+ }
371
+
372
+ module.exports = CorePriceMetrics;
@@ -4,6 +4,10 @@
4
4
  * This metric answers: "What is the aggregated social media
5
5
  * sentiment (bullish, bearish, neutral) globally and
6
6
  * for each ticker?"
7
+ *
8
+ * --- MODIFIED ---
9
+ * Changed `process` method to read from `dependencies.rootData.todaySocialPostInsights`
10
+ * instead of a non-existent `calculationUtils.loadSocialData`.
7
11
  */
8
12
  class SocialSentimentAggregation {
9
13
  constructor() {
@@ -90,19 +94,21 @@ class SocialSentimentAggregation {
90
94
 
91
95
  /**
92
96
  * @param {string} dateStr - Today's date.
93
- * @param {object} dependencies - db, logger.
97
+ * @param {object} dependencies - db, logger, calculationUtils, AND rootData.
94
98
  * @param {object} config - Computation config.
95
99
  * @param {object} fetchedDependencies - (UNUSED) In-memory results.
96
100
  */
97
101
  async process(dateStr, dependencies, config, fetchedDependencies) {
98
- const { calculationUtils } = dependencies;
99
- // This helper should exist on calculationUtils, loaded by the runner
100
- const todaySocialPosts = await calculationUtils.loadSocialData(dateStr);
102
+ // --- MODIFIED ---
103
+ // 'meta' calcs get rootData injected into the dependencies object.
104
+ const todaySocialPosts = dependencies.rootData?.todaySocialPostInsights || {};
105
+ // --- END MODIFIED ---
101
106
 
102
- for (const post of todaySocialPosts) {
107
+ for (const post of Object.values(todaySocialPosts)) {
103
108
  // This logic assumes 'sentiment' is a simple string,
104
109
  // not the object from gemini. This is correct for this calc.
105
- const sentiment = post.sentiment || 'neutral'; // 'bullish', 'bearish', 'neutral'
110
+ // --- MODIFIED: Read from structured sentiment object ---
111
+ const sentiment = post.sentiment?.overallSentiment?.toLowerCase() || 'neutral';
106
112
 
107
113
  // 1. Aggregate global sentiment
108
114
  if (sentiment === 'bullish') {