aiden-shared-calculations-unified 1.0.78 → 1.0.80
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
/**
|
|
2
|
+
* @fileoverview Calculation (Pass 1 - Meta) for 1-day price change.
|
|
3
|
+
*
|
|
4
|
+
* This metric answers: "What is the 1-day percentage price change for
|
|
5
|
+
* every instrument, handling for market holidays/weekends?"
|
|
6
|
+
*
|
|
7
|
+
* It is a 'meta' calculation that runs once, loads all price data,
|
|
8
|
+
* and provides a reusable 1-day change signal for downstream passes
|
|
9
|
+
* like cohort-capital-flow.
|
|
10
|
+
*/
|
|
11
|
+
|
|
12
|
+
class InstrumentPriceChange1D {
|
|
13
|
+
|
|
14
|
+
/**
|
|
15
|
+
* Defines the output schema for this calculation.
|
|
16
|
+
*/
|
|
17
|
+
static getSchema() {
|
|
18
|
+
const tickerSchema = {
|
|
19
|
+
"type": "object",
|
|
20
|
+
"properties": {
|
|
21
|
+
"price_change_1d_pct": {
|
|
22
|
+
"type": ["number", "null"],
|
|
23
|
+
"description": "The 1-day (business day adjusted) price change percentage."
|
|
24
|
+
}
|
|
25
|
+
},
|
|
26
|
+
"required": ["price_change_1d_pct"]
|
|
27
|
+
};
|
|
28
|
+
|
|
29
|
+
return {
|
|
30
|
+
"type": "object",
|
|
31
|
+
"description": "Calculates the 1-day price change for all instruments.",
|
|
32
|
+
"patternProperties": {
|
|
33
|
+
"^.*$": tickerSchema // Ticker
|
|
34
|
+
},
|
|
35
|
+
"additionalProperties": tickerSchema
|
|
36
|
+
};
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
/**
|
|
40
|
+
* Statically defines all metadata for the manifest builder.
|
|
41
|
+
*/
|
|
42
|
+
static getMetadata() {
|
|
43
|
+
return {
|
|
44
|
+
type: 'meta',
|
|
45
|
+
rootDataDependencies: [], // Relies on price data, not root data
|
|
46
|
+
isHistorical: false, // It needs to look back 1 day, but is not 'historical' in the runner's sense
|
|
47
|
+
userType: 'n/a',
|
|
48
|
+
category: 'core_metrics' // Fits with other price/metric calcs
|
|
49
|
+
};
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
/**
|
|
53
|
+
* This is a Pass 1 calculation and has no dependencies.
|
|
54
|
+
*/
|
|
55
|
+
static getDependencies() {
|
|
56
|
+
return [];
|
|
57
|
+
}
|
|
58
|
+
|
|
59
|
+
// Helper to get date string N days ago
|
|
60
|
+
_getDateStr(baseDateStr, daysOffset) {
|
|
61
|
+
const date = new Date(baseDateStr + 'T00:00:00Z');
|
|
62
|
+
date.setUTCDate(date.getUTCDate() + daysOffset);
|
|
63
|
+
return date.toISOString().slice(0, 10);
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
/**
|
|
67
|
+
* This is a 'meta' calculation. It runs once.
|
|
68
|
+
* @param {string} dateStr - The date string 'YYYY-MM-DD'.
|
|
69
|
+
* @param {object} dependencies - The shared dependencies (e.g., logger, calculationUtils).
|
|
70
|
+
* @param {object} config - The computation system configuration.
|
|
71
|
+
* @param {object} fetchedDependencies - (Unused)
|
|
72
|
+
* @returns {Promise<object>} The calculation result.
|
|
73
|
+
*/
|
|
74
|
+
async process(dateStr, dependencies, config, fetchedDependencies) {
|
|
75
|
+
const { logger, calculationUtils } = dependencies;
|
|
76
|
+
|
|
77
|
+
// calculationUtils contains all exported functions from the /utils folder
|
|
78
|
+
const priceMap = await calculationUtils.loadAllPriceData();
|
|
79
|
+
const tickerMap = await calculationUtils.loadInstrumentMappings();
|
|
80
|
+
|
|
81
|
+
if (!priceMap || !tickerMap || !tickerMap.instrumentToTicker) {
|
|
82
|
+
logger.log('ERROR', '[instrument-price-change-1d] Failed to load priceMap or mappings.');
|
|
83
|
+
return {};
|
|
84
|
+
}
|
|
85
|
+
|
|
86
|
+
const yesterdayStr = this._getDateStr(dateStr, -1);
|
|
87
|
+
const result = {};
|
|
88
|
+
|
|
89
|
+
for (const instrumentId in priceMap) {
|
|
90
|
+
const ticker = tickerMap.instrumentToTicker[instrumentId];
|
|
91
|
+
if (!ticker) continue;
|
|
92
|
+
|
|
93
|
+
// Use the utility function from price_data_provider.js
|
|
94
|
+
const priceChangeDecimal = calculationUtils.getDailyPriceChange(
|
|
95
|
+
instrumentId,
|
|
96
|
+
yesterdayStr,
|
|
97
|
+
dateStr,
|
|
98
|
+
priceMap
|
|
99
|
+
);
|
|
100
|
+
|
|
101
|
+
result[ticker] = {
|
|
102
|
+
// Convert decimal (0.05) to percentage (5.0) for consistency
|
|
103
|
+
price_change_1d_pct: priceChangeDecimal !== null ? priceChangeDecimal * 100 : null
|
|
104
|
+
};
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
return result;
|
|
108
|
+
}
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
module.exports = InstrumentPriceChange1D;
|
|
@@ -6,25 +6,36 @@
|
|
|
6
6
|
* the price-adjusted capital flow for each cohort, per asset.
|
|
7
7
|
*
|
|
8
8
|
* This is the primary input for the final Pass 4 signal.
|
|
9
|
+
*
|
|
10
|
+
* --- REVISED 11/12/2025 ---
|
|
11
|
+
* - Removed dependency on 'insights' data.
|
|
12
|
+
* - Added dependency on 'instrument-price-change-1d' (Pass 1 meta calc).
|
|
13
|
+
* - Price adjustment logic now uses the reliable 1-day price change
|
|
14
|
+
* from the new dependency.
|
|
15
|
+
* --------------------------
|
|
9
16
|
*/
|
|
10
17
|
const { loadInstrumentMappings } = require('../../utils/sector_mapping_provider');
|
|
11
18
|
|
|
12
19
|
|
|
13
20
|
class CohortCapitalFlow {
|
|
14
21
|
constructor() {
|
|
15
|
-
//
|
|
22
|
+
// { [cohortName]: Map<instrumentId, { flow_data... }> }
|
|
16
23
|
this.cohortFlows = new Map();
|
|
17
|
-
//
|
|
24
|
+
// { [userId]: "cohortName" }
|
|
18
25
|
this.cohortMap = new Map();
|
|
19
26
|
this.mappings = null;
|
|
20
27
|
this.dependenciesLoaded = false;
|
|
28
|
+
|
|
29
|
+
// --- NEW ---
|
|
30
|
+
// This will store the { [ticker]: { price_change_1d_pct: 5.5 } } map
|
|
31
|
+
this.priceChangeMap = null;
|
|
21
32
|
}
|
|
22
33
|
|
|
23
34
|
/**
|
|
24
35
|
* Defines the output schema for this calculation.
|
|
25
|
-
* @returns {object} JSON Schema object
|
|
26
36
|
*/
|
|
27
37
|
static getSchema() {
|
|
38
|
+
// ... (Schema remains unchanged) ...
|
|
28
39
|
const flowSchema = {
|
|
29
40
|
"type": "object",
|
|
30
41
|
"properties": {
|
|
@@ -57,7 +68,9 @@ class CohortCapitalFlow {
|
|
|
57
68
|
static getMetadata() {
|
|
58
69
|
return {
|
|
59
70
|
type: 'standard',
|
|
60
|
-
|
|
71
|
+
// --- REVISED ---
|
|
72
|
+
// Removed 'insights' as it's no longer needed for price.
|
|
73
|
+
rootDataDependencies: ['portfolio', 'history'],
|
|
61
74
|
isHistorical: true, // Needs T-1 portfolio for flow
|
|
62
75
|
userType: 'all',
|
|
63
76
|
category: 'gauss'
|
|
@@ -69,12 +82,13 @@ class CohortCapitalFlow {
|
|
|
69
82
|
*/
|
|
70
83
|
static getDependencies() {
|
|
71
84
|
return [
|
|
72
|
-
'cohort-definer' // from gauss (Pass 2)
|
|
85
|
+
'cohort-definer', // from gauss (Pass 2)
|
|
86
|
+
// --- REVISED ---
|
|
87
|
+
'instrument-price-change-1d' // from core (Pass 1)
|
|
73
88
|
];
|
|
74
89
|
}
|
|
75
90
|
|
|
76
91
|
_getPortfolioPositions(portfolio) {
|
|
77
|
-
// We MUST use AggregatedPositions for this to get 'Invested' (portfolio percentage)
|
|
78
92
|
return portfolio?.AggregatedPositions;
|
|
79
93
|
}
|
|
80
94
|
|
|
@@ -86,7 +100,7 @@ class CohortCapitalFlow {
|
|
|
86
100
|
this.cohortFlows.get(cohortName).set(instrumentId, {
|
|
87
101
|
total_invested_yesterday: 0,
|
|
88
102
|
total_invested_today: 0,
|
|
89
|
-
price_change_yesterday: 0, //
|
|
103
|
+
price_change_yesterday: 0, // Weighted sum
|
|
90
104
|
});
|
|
91
105
|
}
|
|
92
106
|
}
|
|
@@ -97,14 +111,22 @@ class CohortCapitalFlow {
|
|
|
97
111
|
_loadDependencies(fetchedDependencies) {
|
|
98
112
|
if (this.dependenciesLoaded) return;
|
|
99
113
|
|
|
114
|
+
// 1. Load Cohort Definitions
|
|
100
115
|
const cohortData = fetchedDependencies['cohort-definer'];
|
|
101
116
|
if (cohortData) {
|
|
102
117
|
for (const [cohortName, userIds] of Object.entries(cohortData)) {
|
|
103
|
-
|
|
104
|
-
|
|
118
|
+
if (Array.isArray(userIds)) {
|
|
119
|
+
for (const userId of userIds) {
|
|
120
|
+
this.cohortMap.set(userId, cohortName);
|
|
121
|
+
}
|
|
105
122
|
}
|
|
106
123
|
}
|
|
107
124
|
}
|
|
125
|
+
|
|
126
|
+
// 2. Load Price Change Data
|
|
127
|
+
// --- REVISED ---
|
|
128
|
+
this.priceChangeMap = fetchedDependencies['instrument-price-change-1d'] || {};
|
|
129
|
+
|
|
108
130
|
this.dependenciesLoaded = true;
|
|
109
131
|
}
|
|
110
132
|
|
|
@@ -117,7 +139,7 @@ class CohortCapitalFlow {
|
|
|
117
139
|
|
|
118
140
|
const cohortName = this.cohortMap.get(userId);
|
|
119
141
|
if (!cohortName) {
|
|
120
|
-
return; //
|
|
142
|
+
return; // Not in a defined cohort, skip.
|
|
121
143
|
}
|
|
122
144
|
|
|
123
145
|
if (!todayPortfolio || !yesterdayPortfolio) {
|
|
@@ -127,9 +149,14 @@ class CohortCapitalFlow {
|
|
|
127
149
|
const yPos = this._getPortfolioPositions(yesterdayPortfolio);
|
|
128
150
|
const tPos = this._getPortfolioPositions(todayPortfolio);
|
|
129
151
|
|
|
130
|
-
// We must have AggregatedPositions for both days to do this calculation
|
|
131
152
|
if (!yPos || !tPos) {
|
|
132
|
-
return;
|
|
153
|
+
return; // Must have AggregatedPositions for both days
|
|
154
|
+
}
|
|
155
|
+
|
|
156
|
+
// --- REVISED ---
|
|
157
|
+
// We no longer need insightsMap
|
|
158
|
+
if (!this.priceChangeMap) {
|
|
159
|
+
return; // Cannot calculate price-adjusted flow
|
|
133
160
|
}
|
|
134
161
|
|
|
135
162
|
const yPosMap = new Map(yPos.map(p => [p.InstrumentID, p]));
|
|
@@ -145,15 +172,23 @@ class CohortCapitalFlow {
|
|
|
145
172
|
const yP = yPosMap.get(instrumentId);
|
|
146
173
|
const tP = tPosMap.get(instrumentId);
|
|
147
174
|
|
|
148
|
-
// 'Invested' is the portfolio percentage (e.g., 5.0 = 5%)
|
|
149
175
|
const yInvested = yP?.Invested || 0;
|
|
150
176
|
const tInvested = tP?.Invested || 0;
|
|
151
177
|
|
|
152
178
|
if (yInvested > 0) {
|
|
153
179
|
asset.total_invested_yesterday += yInvested;
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
180
|
+
|
|
181
|
+
// --- REVISED ---
|
|
182
|
+
// Get the 1-day price change from our new dependency
|
|
183
|
+
const ticker = this.mappings.instrumentToTicker[instrumentId];
|
|
184
|
+
const yPriceChange_pct = (ticker && this.priceChangeMap[ticker])
|
|
185
|
+
? this.priceChangeMap[ticker].price_change_1d_pct
|
|
186
|
+
: 0;
|
|
187
|
+
|
|
188
|
+
// Convert from percentage (5.5) to decimal (0.055)
|
|
189
|
+
const yPriceChange_decimal = (yPriceChange_pct || 0) / 100.0;
|
|
190
|
+
|
|
191
|
+
asset.price_change_yesterday += yPriceChange_decimal * yInvested; // Weighted sum
|
|
157
192
|
}
|
|
158
193
|
if (tInvested > 0) {
|
|
159
194
|
asset.total_invested_today += tInvested;
|
|
@@ -169,6 +204,7 @@ class CohortCapitalFlow {
|
|
|
169
204
|
const finalResult = {};
|
|
170
205
|
|
|
171
206
|
for (const [cohortName, assetMap] of this.cohortFlows.entries()) {
|
|
207
|
+
// --- REVISED: Initialize cohortAssets as an object ---
|
|
172
208
|
const cohortAssets = {};
|
|
173
209
|
for (const [instrumentId, data] of assetMap.entries()) {
|
|
174
210
|
const ticker = this.mappings.instrumentToTicker[instrumentId];
|
|
@@ -177,32 +213,32 @@ class CohortCapitalFlow {
|
|
|
177
213
|
const { total_invested_yesterday, total_invested_today, price_change_yesterday } = data;
|
|
178
214
|
|
|
179
215
|
if (total_invested_yesterday > 0) {
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
const avg_price_change_pct = price_change_yesterday / total_invested_yesterday;
|
|
183
|
-
|
|
184
|
-
// 2. Estimate yesterday's value *after* price change
|
|
185
|
-
// (This is what the value *would be* if no one bought or sold)
|
|
186
|
-
const price_adjusted_yesterday_value = total_invested_yesterday * (1 + avg_price_change_pct);
|
|
187
|
-
|
|
188
|
-
// 3. The difference between today's value and the price-adjusted
|
|
189
|
-
// value is the *net capital flow*.
|
|
216
|
+
const avg_price_change_decimal = price_change_yesterday / total_invested_yesterday;
|
|
217
|
+
const price_adjusted_yesterday_value = total_invested_yesterday * (1 + avg_price_change_decimal);
|
|
190
218
|
const flow_contribution = total_invested_today - price_adjusted_yesterday_value;
|
|
191
|
-
|
|
192
|
-
// 4. Normalize the flow as a percentage of yesterday's capital
|
|
193
219
|
const net_flow_percentage = (flow_contribution / total_invested_yesterday) * 100;
|
|
194
220
|
|
|
195
221
|
if (isFinite(net_flow_percentage) && isFinite(flow_contribution)) {
|
|
196
222
|
cohortAssets[ticker] = {
|
|
197
223
|
net_flow_percentage: net_flow_percentage,
|
|
198
|
-
net_flow_contribution: flow_contribution
|
|
224
|
+
net_flow_contribution: flow_contribution
|
|
199
225
|
};
|
|
200
226
|
}
|
|
227
|
+
} else if (total_invested_today > 0) {
|
|
228
|
+
cohortAssets[ticker] = {
|
|
229
|
+
net_flow_percentage: Infinity, // Represents pure inflow
|
|
230
|
+
net_flow_contribution: total_invested_today
|
|
231
|
+
};
|
|
201
232
|
}
|
|
202
233
|
}
|
|
234
|
+
// --- REVISED: Match schema { "cohortName": { "assets": { ... } } } ---
|
|
235
|
+
// This was a bug in your original file. The schema expected an object
|
|
236
|
+
// with an 'assets' key, but the code was returning the map directly.
|
|
203
237
|
finalResult[cohortName] = { assets: cohortAssets };
|
|
204
238
|
}
|
|
205
|
-
|
|
239
|
+
|
|
240
|
+
// --- REVISED: The schema for this calc shows the output is NOT sharded. ---
|
|
241
|
+
// The return should be the final object.
|
|
206
242
|
return finalResult;
|
|
207
243
|
}
|
|
208
244
|
|
|
@@ -211,6 +247,8 @@ class CohortCapitalFlow {
|
|
|
211
247
|
this.cohortMap.clear();
|
|
212
248
|
this.mappings = null;
|
|
213
249
|
this.dependenciesLoaded = false;
|
|
250
|
+
// --- NEW ---
|
|
251
|
+
this.priceChangeMap = null;
|
|
214
252
|
}
|
|
215
253
|
}
|
|
216
254
|
|
|
@@ -10,6 +10,7 @@
|
|
|
10
10
|
*/
|
|
11
11
|
const { loadInstrumentMappings } = require('../../utils/sector_mapping_provider');
|
|
12
12
|
|
|
13
|
+
|
|
13
14
|
class CohortDefiner {
|
|
14
15
|
constructor() {
|
|
15
16
|
// We will store the full DNA for our filtered cohorts
|
|
@@ -58,7 +59,10 @@ class CohortDefiner {
|
|
|
58
59
|
"smart_scalpers": cohortSchema,
|
|
59
60
|
"fomo_chasers": cohortSchema,
|
|
60
61
|
"patient_losers": cohortSchema,
|
|
61
|
-
"fomo_bagholders": cohortSchema
|
|
62
|
+
"fomo_bagholders": cohortSchema,
|
|
63
|
+
// --- FIX [PROBLEM 9]: Add uncategorized bucket ---
|
|
64
|
+
"uncategorized_smart": cohortSchema,
|
|
65
|
+
"uncategorized_dumb": cohortSchema
|
|
62
66
|
},
|
|
63
67
|
"additionalProperties": cohortSchema
|
|
64
68
|
};
|
|
@@ -73,14 +77,29 @@ class CohortDefiner {
|
|
|
73
77
|
const dnaFilterData = fetchedDependencies['daily-dna-filter'];
|
|
74
78
|
this.momentumData = fetchedDependencies['instrument-price-momentum-20d'];
|
|
75
79
|
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
+
// --- FIX [PROBLEM 6]: Validate dependency content, not just existence ---
|
|
81
|
+
if (dnaFilterData && dnaFilterData.smart_cohort_ids && dnaFilterData.dumb_cohort_ids) {
|
|
82
|
+
this.cohortIdSets = {
|
|
83
|
+
smart: new Set(dnaFilterData.smart_cohort_ids),
|
|
84
|
+
dumb: new Set(dnaFilterData.dumb_cohort_ids)
|
|
85
|
+
};
|
|
86
|
+
} else {
|
|
87
|
+
// Initialize with empty sets if dependency is missing or malformed
|
|
88
|
+
this.cohortIdSets = {
|
|
89
|
+
smart: new Set(),
|
|
90
|
+
dumb: new Set()
|
|
91
|
+
};
|
|
92
|
+
}
|
|
80
93
|
}
|
|
81
94
|
|
|
82
95
|
_getFomoScore(todayPortfolio, yesterdayPortfolio) {
|
|
83
96
|
if (!this.mappings) return 0;
|
|
97
|
+
|
|
98
|
+
// --- FIX [PROBLEM 4 related]: Ensure momentum data is loaded ---
|
|
99
|
+
if (!this.momentumData) {
|
|
100
|
+
return 0; // Cannot calculate FOMO without momentum data
|
|
101
|
+
}
|
|
102
|
+
|
|
84
103
|
const yIds = new Set((yesterdayPortfolio?.AggregatedPositions || []).map(p => p.InstrumentID));
|
|
85
104
|
const newPositions = (todayPortfolio?.AggregatedPositions || []).filter(p => p.InstrumentID && !yIds.has(p.InstrumentID));
|
|
86
105
|
if (newPositions.length === 0) return 0;
|
|
@@ -89,6 +108,7 @@ class CohortDefiner {
|
|
|
89
108
|
let count = 0;
|
|
90
109
|
for (const pos of newPositions) {
|
|
91
110
|
const ticker = this.mappings.instrumentToTicker[pos.InstrumentID];
|
|
111
|
+
// --- FIX [PROBLEM 4 related]: Check momentumData[ticker] exists ---
|
|
92
112
|
if (ticker && this.momentumData[ticker]) {
|
|
93
113
|
fomoSum += this.momentumData[ticker].momentum_20d_pct || 0;
|
|
94
114
|
count++;
|
|
@@ -165,19 +185,32 @@ class CohortDefiner {
|
|
|
165
185
|
if (vectors.length === 0) return 0;
|
|
166
186
|
const sorted = vectors.map(v => v[key]).sort((a, b) => a - b);
|
|
167
187
|
const mid = Math.floor(sorted.length / 2);
|
|
188
|
+
// Handle even-length array by taking average of middle two
|
|
189
|
+
if (sorted.length % 2 === 0 && sorted.length > 0) {
|
|
190
|
+
return (sorted[mid - 1] + sorted[mid]) / 2;
|
|
191
|
+
}
|
|
168
192
|
return sorted[mid];
|
|
169
193
|
}
|
|
170
194
|
|
|
171
195
|
getResult() {
|
|
172
196
|
const cohorts = {};
|
|
197
|
+
const assignedSmart = new Set();
|
|
198
|
+
const assignedDumb = new Set();
|
|
173
199
|
|
|
174
200
|
// 1. Process Smart Cohort
|
|
175
201
|
const smart_median_time = this._getMedian(this.smartVectors, 'time');
|
|
202
|
+
|
|
176
203
|
cohorts['smart_investors'] = this.smartVectors
|
|
177
204
|
.filter(u => u.time >= smart_median_time)
|
|
178
|
-
.map(u => u.userId);
|
|
205
|
+
.map(u => { assignedSmart.add(u.userId); return u.userId; });
|
|
206
|
+
|
|
179
207
|
cohorts['smart_scalpers'] = this.smartVectors
|
|
180
208
|
.filter(u => u.time < smart_median_time)
|
|
209
|
+
.map(u => { assignedSmart.add(u.userId); return u.userId; });
|
|
210
|
+
|
|
211
|
+
// --- FIX [PROBLEM 9]: Add uncategorized bucket ---
|
|
212
|
+
cohorts['uncategorized_smart'] = this.smartVectors
|
|
213
|
+
.filter(u => !assignedSmart.has(u.userId))
|
|
181
214
|
.map(u => u.userId);
|
|
182
215
|
|
|
183
216
|
// 2. Process Dumb Cohort
|
|
@@ -186,14 +219,19 @@ class CohortDefiner {
|
|
|
186
219
|
|
|
187
220
|
cohorts['fomo_chasers'] = this.dumbVectors
|
|
188
221
|
.filter(u => u.fomo >= dumb_median_fomo && u.bagholder < dumb_median_bag)
|
|
189
|
-
.map(u => u.userId);
|
|
222
|
+
.map(u => { assignedDumb.add(u.userId); return u.userId; });
|
|
190
223
|
|
|
191
224
|
cohorts['patient_losers'] = this.dumbVectors
|
|
192
225
|
.filter(u => u.fomo < dumb_median_fomo && u.bagholder >= dumb_median_bag)
|
|
193
|
-
.map(u => u.userId);
|
|
226
|
+
.map(u => { assignedDumb.add(u.userId); return u.userId; });
|
|
194
227
|
|
|
195
228
|
cohorts['fomo_bagholders'] = this.dumbVectors
|
|
196
229
|
.filter(u => u.fomo >= dumb_median_fomo && u.bagholder >= dumb_median_bag)
|
|
230
|
+
.map(u => { assignedDumb.add(u.userId); return u.userId; });
|
|
231
|
+
|
|
232
|
+
// --- FIX [PROBLEM 9]: Add uncategorized bucket ---
|
|
233
|
+
cohorts['uncategorized_dumb'] = this.dumbVectors
|
|
234
|
+
.filter(u => !assignedDumb.has(u.userId))
|
|
197
235
|
.map(u => u.userId);
|
|
198
236
|
|
|
199
237
|
// Output is a compact map of cohort_name -> [userIds]
|
|
@@ -94,20 +94,20 @@ class GaussDivergenceSignal {
|
|
|
94
94
|
return {};
|
|
95
95
|
}
|
|
96
96
|
|
|
97
|
-
// Define which cohorts are "Smart" and which are "Dumb"
|
|
98
|
-
// These names must match the keys from Pass 2
|
|
99
97
|
const SMART_COHORTS = ['smart_investors', 'smart_scalpers'];
|
|
100
98
|
const DUMB_COHORTS = ['fomo_chasers', 'patient_losers', 'fomo_bagholders'];
|
|
101
99
|
|
|
102
100
|
const blendedFlows = new Map(); // Map<ticker, { smart: 0, dumb: 0 }>
|
|
103
101
|
|
|
104
|
-
// 1. Blend all cohort flows
|
|
102
|
+
// 1. Blend all cohort flows
|
|
105
103
|
for (const cohortName in cohortFlows) {
|
|
106
104
|
const isSmart = SMART_COHORTS.includes(cohortName);
|
|
107
105
|
const isDumb = DUMB_COHORTS.includes(cohortName);
|
|
108
106
|
if (!isSmart && !isDumb) continue;
|
|
109
107
|
|
|
110
|
-
|
|
108
|
+
// --- REVISED ---
|
|
109
|
+
// Read from the 'assets' property, which contains the map of tickers
|
|
110
|
+
const assets = cohortFlows[cohortName]?.assets;
|
|
111
111
|
if (!assets) continue;
|
|
112
112
|
|
|
113
113
|
for (const [ticker, data] of Object.entries(assets)) {
|
|
@@ -115,7 +115,6 @@ class GaussDivergenceSignal {
|
|
|
115
115
|
blendedFlows.set(ticker, { smart: 0, dumb: 0 });
|
|
116
116
|
}
|
|
117
117
|
|
|
118
|
-
// Use net_flow_contribution, which is the %-point flow
|
|
119
118
|
const flow = data.net_flow_contribution || 0;
|
|
120
119
|
|
|
121
120
|
if (isSmart) {
|
|
@@ -126,20 +125,14 @@ class GaussDivergenceSignal {
|
|
|
126
125
|
}
|
|
127
126
|
}
|
|
128
127
|
|
|
129
|
-
// 2. Calculate final signal
|
|
128
|
+
// 2. Calculate final signal (logic unchanged)
|
|
130
129
|
const result = {};
|
|
131
130
|
for (const [ticker, data] of blendedFlows.entries()) {
|
|
132
|
-
|
|
133
|
-
// The core signal is the divergence: (Smart Flow - Dumb Flow)
|
|
134
|
-
// If Smart buys (+1) and Dumb sells (-1), score is +2.
|
|
135
|
-
// If Smart sells (-1) and Dumb buys (+1), score is -2.
|
|
136
131
|
const divergence = data.smart - data.dumb;
|
|
137
|
-
|
|
138
|
-
// Normalize the score to a -10 to +10 range
|
|
139
132
|
const gauss_score = this._normalize(divergence);
|
|
140
133
|
|
|
141
134
|
let signal = "Neutral";
|
|
142
|
-
if (gauss_score > 7.0) signal = "Strong Buy";
|
|
135
|
+
if (gauss_score > 7.0) signal = "Strong Buy";
|
|
143
136
|
else if (gauss_score > 2.0) signal = "Buy";
|
|
144
137
|
else if (gauss_score < -7.0) signal = "Strong Sell";
|
|
145
138
|
else if (gauss_score < -2.0) signal = "Sell";
|
|
@@ -152,7 +145,6 @@ class GaussDivergenceSignal {
|
|
|
152
145
|
};
|
|
153
146
|
}
|
|
154
147
|
|
|
155
|
-
// Final output is compact and non-sharded.
|
|
156
148
|
return result;
|
|
157
149
|
}
|
|
158
150
|
}
|