ai-experiments 0.1.0 → 2.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,216 @@
1
+ /**
2
+ * Cartesian product utilities for parameter exploration
3
+ */
4
+ /**
5
+ * Generate cartesian product of parameter sets
6
+ *
7
+ * Takes an object where each key maps to an array of possible values,
8
+ * and returns all possible combinations as an array of objects.
9
+ *
10
+ * @example
11
+ * ```ts
12
+ * import { cartesian } from 'ai-experiments'
13
+ *
14
+ * const combinations = cartesian({
15
+ * model: ['sonnet', 'opus', 'gpt-4o'],
16
+ * temperature: [0.3, 0.7, 1.0],
17
+ * maxTokens: [100, 500, 1000],
18
+ * })
19
+ *
20
+ * // Returns 27 combinations (3 * 3 * 3):
21
+ * // [
22
+ * // { model: 'sonnet', temperature: 0.3, maxTokens: 100 },
23
+ * // { model: 'sonnet', temperature: 0.3, maxTokens: 500 },
24
+ * // { model: 'sonnet', temperature: 0.3, maxTokens: 1000 },
25
+ * // { model: 'sonnet', temperature: 0.7, maxTokens: 100 },
26
+ * // ...
27
+ * // ]
28
+ *
29
+ * // Use with experiments:
30
+ * const variants = combinations.map((config, i) => ({
31
+ * id: `variant-${i}`,
32
+ * name: `${config.model} T=${config.temperature} max=${config.maxTokens}`,
33
+ * config,
34
+ * }))
35
+ * ```
36
+ */
37
+ export function cartesian(params) {
38
+ const keys = Object.keys(params);
39
+ const values = keys.map((k) => params[k]);
40
+ // Handle empty input
41
+ if (keys.length === 0) {
42
+ return [];
43
+ }
44
+ // Handle single parameter
45
+ if (keys.length === 1) {
46
+ const key = keys[0];
47
+ return values[0].map((val) => ({ [key]: val }));
48
+ }
49
+ // Generate all combinations using recursive helper
50
+ const combinations = cartesianProduct(values);
51
+ // Map back to objects
52
+ return combinations.map((combo) => {
53
+ const obj = {};
54
+ keys.forEach((key, i) => {
55
+ obj[key] = combo[i];
56
+ });
57
+ return obj;
58
+ });
59
+ }
60
+ /**
61
+ * Recursive cartesian product implementation
62
+ */
63
+ function cartesianProduct(arrays) {
64
+ if (arrays.length === 0)
65
+ return [[]];
66
+ const [first, ...rest] = arrays;
67
+ // Base case: single array
68
+ if (rest.length === 0) {
69
+ return first.map((x) => [x]);
70
+ }
71
+ // Recursive case
72
+ const restProduct = cartesianProduct(rest);
73
+ const result = [];
74
+ for (const x of first) {
75
+ for (const restCombo of restProduct) {
76
+ result.push([x, ...restCombo]);
77
+ }
78
+ }
79
+ return result;
80
+ }
81
+ /**
82
+ * Generate a grid of parameter combinations with filtering
83
+ *
84
+ * Similar to cartesian(), but allows filtering out invalid combinations.
85
+ *
86
+ * @example
87
+ * ```ts
88
+ * import { cartesianFilter } from 'ai-experiments'
89
+ *
90
+ * const combinations = cartesianFilter(
91
+ * {
92
+ * model: ['sonnet', 'opus'],
93
+ * temperature: [0.3, 0.7, 1.0],
94
+ * maxTokens: [100, 500],
95
+ * },
96
+ * // Filter out combinations where opus uses high temperature
97
+ * (combo) => !(combo.model === 'opus' && combo.temperature > 0.7)
98
+ * )
99
+ * ```
100
+ */
101
+ export function cartesianFilter(params, filter) {
102
+ const allCombinations = cartesian(params);
103
+ return allCombinations.filter(filter);
104
+ }
105
+ /**
106
+ * Generate a random sample from the cartesian product
107
+ *
108
+ * Useful when the full cartesian product is too large to test all combinations.
109
+ *
110
+ * @example
111
+ * ```ts
112
+ * import { cartesianSample } from 'ai-experiments'
113
+ *
114
+ * // Full product would be 1000 combinations (10 * 10 * 10)
115
+ * // Sample just 20 random combinations
116
+ * const sample = cartesianSample(
117
+ * {
118
+ * param1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
119
+ * param2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
120
+ * param3: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
121
+ * },
122
+ * 20
123
+ * )
124
+ * ```
125
+ */
126
+ export function cartesianSample(params, sampleSize, options = {}) {
127
+ const { unique = true } = options;
128
+ // Generate all combinations first
129
+ const allCombinations = cartesian(params);
130
+ // If sample size is larger than available combinations, return all
131
+ if (sampleSize >= allCombinations.length) {
132
+ return allCombinations;
133
+ }
134
+ // Shuffle and take first n items
135
+ const shuffled = [...allCombinations];
136
+ // Simple Fisher-Yates shuffle
137
+ for (let i = shuffled.length - 1; i > 0; i--) {
138
+ const j = Math.floor(Math.random() * (i + 1));
139
+ [shuffled[i], shuffled[j]] = [shuffled[j], shuffled[i]];
140
+ }
141
+ return shuffled.slice(0, sampleSize);
142
+ }
143
+ /**
144
+ * Count the total number of combinations without generating them
145
+ *
146
+ * Useful for checking if cartesian product is feasible before generating.
147
+ *
148
+ * @example
149
+ * ```ts
150
+ * import { cartesianCount } from 'ai-experiments'
151
+ *
152
+ * const count = cartesianCount({
153
+ * model: ['sonnet', 'opus', 'gpt-4o'],
154
+ * temperature: [0.3, 0.5, 0.7, 0.9],
155
+ * maxTokens: [100, 500, 1000, 2000],
156
+ * })
157
+ * // Returns 48 (3 * 4 * 4)
158
+ *
159
+ * if (count > 100) {
160
+ * console.log('Too many combinations, use cartesianSample instead')
161
+ * }
162
+ * ```
163
+ */
164
+ export function cartesianCount(params) {
165
+ const keys = Object.keys(params);
166
+ if (keys.length === 0)
167
+ return 0;
168
+ return keys.reduce((total, key) => {
169
+ const arr = params[key];
170
+ return total * (arr?.length ?? 0);
171
+ }, 1);
172
+ }
173
+ /**
174
+ * Generate cartesian product with labels for each dimension
175
+ *
176
+ * Returns combinations with additional metadata about which dimension each value came from.
177
+ *
178
+ * @example
179
+ * ```ts
180
+ * import { cartesianWithLabels } from 'ai-experiments'
181
+ *
182
+ * const labeled = cartesianWithLabels({
183
+ * model: ['sonnet', 'opus'],
184
+ * temperature: [0.3, 0.7],
185
+ * })
186
+ * // [
187
+ * // { values: { model: 'sonnet', temperature: 0.3 }, labels: { model: 0, temperature: 0 } },
188
+ * // { values: { model: 'sonnet', temperature: 0.7 }, labels: { model: 0, temperature: 1 } },
189
+ * // { values: { model: 'opus', temperature: 0.3 }, labels: { model: 1, temperature: 0 } },
190
+ * // { values: { model: 'opus', temperature: 0.7 }, labels: { model: 1, temperature: 1 } },
191
+ * // ]
192
+ * ```
193
+ */
194
+ export function cartesianWithLabels(params) {
195
+ const keys = Object.keys(params);
196
+ const values = keys.map((k) => params[k]);
197
+ if (keys.length === 0) {
198
+ return [];
199
+ }
200
+ const combinations = cartesianProduct(values);
201
+ return combinations.map((combo) => {
202
+ const valuesObj = {};
203
+ const labelsObj = {};
204
+ keys.forEach((key, i) => {
205
+ const value = combo[i];
206
+ valuesObj[key] = value;
207
+ const arr = params[key];
208
+ labelsObj[key] = arr ? arr.indexOf(value) : -1;
209
+ });
210
+ return {
211
+ values: valuesObj,
212
+ labels: labelsObj,
213
+ };
214
+ });
215
+ }
216
+ //# sourceMappingURL=cartesian.js.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"cartesian.js","sourceRoot":"","sources":["../src/cartesian.ts"],"names":[],"mappings":"AAAA;;GAEG;AAIH;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GAgCG;AACH,MAAM,UAAU,SAAS,CAA4B,MAAS;IAC5D,MAAM,IAAI,GAAG,MAAM,CAAC,IAAI,CAAC,MAAM,CAAgB,CAAA;IAC/C,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;IAEzC,qBAAqB;IACrB,IAAI,IAAI,CAAC,MAAM,KAAK,CAAC,EAAE,CAAC;QACtB,OAAO,EAAwB,CAAA;IACjC,CAAC;IAED,0BAA0B;IAC1B,IAAI,IAAI,CAAC,MAAM,KAAK,CAAC,EAAE,CAAC;QACtB,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAE,CAAA;QACpB,OAAO,MAAM,CAAC,CAAC,CAAE,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,EAAE,CAAC,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAuC,CAAA,CAAC,CAAA;IACtF,CAAC;IAED,mDAAmD;IACnD,MAAM,YAAY,GAAG,gBAAgB,CAAC,MAAM,CAAC,CAAA;IAE7C,sBAAsB;IACtB,OAAO,YAAY,CAAC,GAAG,CAAC,CAAC,KAAK,EAAE,EAAE;QAChC,MAAM,GAAG,GAAG,EAAsC,CAAA;QAClD,IAAI,CAAC,OAAO,CAAC,CAAC,GAAG,EAAE,CAAC,EAAE,EAAE;YACtB,GAAG,CAAC,GAAG,CAAC,GAAG,KAAK,CAAC,CAAC,CAA0B,CAAA;QAC9C,CAAC,CAAC,CAAA;QACF,OAAO,GAAG,CAAA;IACZ,CAAC,CAAC,CAAA;AACJ,CAAC;AAED;;GAEG;AACH,SAAS,gBAAgB,CAAI,MAAa;IACxC,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC;QAAE,OAAO,CAAC,EAAE,CAAC,CAAA;IAEpC,MAAM,CAAC,KAAK,EAAE,GAAG,IAAI,CAAC,GAAG,MAAM,CAAA;IAE/B,0BAA0B;IAC1B,IAAI,IAAI,CAAC,MAAM,KAAK,CAAC,EAAE,CAAC;QACtB,OAAO,KAAM,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;IAC/B,CAAC;IAED,iBAAiB;IACjB,MAAM,WAAW,GAAG,gBAAgB,CAAC,IAAI,CAAC,CAAA;IAC1C,MAAM,MAAM,GAAU,EAAE,CAAA;IAExB,KAAK,MAAM,CAAC,IAAI,KAAM,EAAE,CAAC;QACvB,KAAK,MAAM,SAAS,IAAI,WAAW,EAAE,CAAC;YACpC,MAAM,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,GAAG,SAAS,CAAC,CAAC,CAAA;QAChC,CAAC;IACH,CAAC;IAED,OAAO,MAAM,CAAA;AACf,CAAC;AAED;;;;;;;;;;;;;;;;;;;GAmBG;AACH,MAAM,UAAU,eAAe,CAC7B,MAAS,EACT,MAA4D;IAE5D,MAAM,eAAe,GAAG,SAAS,CAAC,MAAM,CAAC,CAAA;IACzC,OAAO,eAAe,CAAC,MAAM,CAAC,MAAM,CAAC,CAAA;AACvC,CAAC;AAED;;;;;;;;;;;;;;;;;;;;GAoBG;AACH,MAAM,UAAU,eAAe,CAC7B,MAAS,EACT,UAAkB,EAClB,UAKI,EAAE;IAEN,MAAM,EAAE,MAAM,GAAG,IAAI,EAAE,GAAG,OAAO,CAAA;IAEjC,kCAAkC;IAClC,MAAM,eAAe,GAAG,SAAS,CAAC,MAAM,CAAC,CAAA;IAEzC,mEAAmE;IACnE,IAAI,UAAU,IAAI,eAAe,CAAC,MAAM,EAAE,CAAC;QACzC,OAAO,eAAe,CAAA;IACxB,CAAC;IAED,iCAAiC;IACjC,MAAM,QAAQ,GAAG,CAAC,GAAG,eAAe,CAAC,CAAA;IAErC,8BAA8B;IAC9B,KAAK,IAAI,CAAC,GAAG,QAAQ,CAAC,MAAM,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC7C,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,IAAI,CAAC,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAC5C;QAAA,CAAC,QAAQ,CAAC,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,QAAQ,CAAC,CAAC,CAAE,EAAE,QAAQ,CAAC,CAAC,CAAE,CAAC,CAAA;IAC5D,CAAC;IAED,OAAO,QAAQ,CAAC,KAAK,CAAC,CAAC,EAAE,UAAU,CAAC,CAAA;AACtC,CAAC;AAED;;;;;;;;;;;;;;;;;;;;GAoBG;AACH,MAAM,UAAU,cAAc,CAA4B,MAAS;IACjE,MAAM,IAAI,GAAG,MAAM,CAAC,IAAI,CAAC,MAAM,CAAgB,CAAA;IAE/C,IAAI,IAAI,CAAC,MAAM,KAAK,CAAC;QAAE,OAAO,CAAC,CAAA;IAE/B,OAAO,IAAI,CAAC,MAAM,CAAC,CAAC,KAAK,EAAE,GAAG,EAAE,EAAE;QAChC,MAAM,GAAG,GAAG,MAAM,CAAC,GAAG,CAAC,CAAA;QACvB,OAAO,KAAK,GAAG,CAAC,GAAG,EAAE,MAAM,IAAI,CAAC,CAAC,CAAA;IACnC,CAAC,EAAE,CAAC,CAAC,CAAA;AACP,CAAC;AAED;;;;;;;;;;;;;;;;;;;;GAoBG;AACH,MAAM,UAAU,mBAAmB,CACjC,MAAS;IAKT,MAAM,IAAI,GAAG,MAAM,CAAC,IAAI,CAAC,MAAM,CAAgB,CAAA;IAC/C,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC,CAAA;IAEzC,IAAI,IAAI,CAAC,MAAM,KAAK,CAAC,EAAE,CAAC;QACtB,OAAO,EAAE,CAAA;IACX,CAAC;IAED,MAAM,YAAY,GAAG,gBAAgB,CAAC,MAAM,CAAC,CAAA;IAE7C,OAAO,YAAY,CAAC,GAAG,CAAC,CAAC,KAAK,EAAE,EAAE;QAChC,MAAM,SAAS,GAAG,EAAsC,CAAA;QACxD,MAAM,SAAS,GAAG,EAAgC,CAAA;QAElD,IAAI,CAAC,OAAO,CAAC,CAAC,GAAG,EAAE,CAAC,EAAE,EAAE;YACtB,MAAM,KAAK,GAAG,KAAK,CAAC,CAAC,CAA0B,CAAA;YAC/C,SAAS,CAAC,GAAG,CAAC,GAAG,KAAK,CAAA;YACtB,MAAM,GAAG,GAAG,MAAM,CAAC,GAAG,CAAC,CAAA;YACvB,SAAS,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,OAAO,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAA;QAChD,CAAC,CAAC,CAAA;QAEF,OAAO;YACL,MAAM,EAAE,SAAS;YACjB,MAAM,EAAE,SAAS;SAClB,CAAA;IACH,CAAC,CAAC,CAAA;AACJ,CAAC"}
@@ -0,0 +1,152 @@
1
+ /**
2
+ * Decision making utilities
3
+ */
4
+ import type { DecideOptions, DecisionResult } from './types.js';
5
+ /**
6
+ * Make a decision by evaluating and scoring multiple options
7
+ *
8
+ * Scores each option and returns the best one (highest score).
9
+ *
10
+ * @example
11
+ * ```ts
12
+ * import { decide } from 'ai-experiments'
13
+ *
14
+ * // Simple decision with sync scoring
15
+ * const result = await decide({
16
+ * options: ['apple', 'banana', 'orange'],
17
+ * score: (fruit) => {
18
+ * const prices = { apple: 1.5, banana: 0.5, orange: 2.0 }
19
+ * return 1 / prices[fruit] // Lower price = higher score
20
+ * },
21
+ * })
22
+ * console.log(result.selected) // 'banana'
23
+ *
24
+ * // Decision with async scoring (AI-based)
25
+ * const result = await decide({
26
+ * options: [
27
+ * { prompt: 'Summarize in one sentence' },
28
+ * { prompt: 'Provide a detailed summary' },
29
+ * { prompt: 'Extract key points only' },
30
+ * ],
31
+ * score: async (option) => {
32
+ * const result = await ai.generate(option)
33
+ * return evaluateQuality(result)
34
+ * },
35
+ * context: 'Choosing best summarization approach',
36
+ * })
37
+ *
38
+ * // Get all options sorted by score
39
+ * const result = await decide({
40
+ * options: ['fast', 'accurate', 'balanced'],
41
+ * score: (approach) => evaluateApproach(approach),
42
+ * returnAll: true,
43
+ * })
44
+ * console.log(result.allOptions)
45
+ * // [
46
+ * // { option: 'balanced', score: 0.9 },
47
+ * // { option: 'accurate', score: 0.85 },
48
+ * // { option: 'fast', score: 0.7 },
49
+ * // ]
50
+ * ```
51
+ */
52
+ export declare function decide<T>(options: DecideOptions<T>): Promise<DecisionResult<T>>;
53
+ /**
54
+ * Weighted random selection from options
55
+ *
56
+ * Each option has a weight, and selection probability is proportional to weight.
57
+ *
58
+ * @example
59
+ * ```ts
60
+ * import { decideWeighted } from 'ai-experiments'
61
+ *
62
+ * const result = decideWeighted([
63
+ * { value: 'A', weight: 0.7 }, // 70% chance
64
+ * { value: 'B', weight: 0.2 }, // 20% chance
65
+ * { value: 'C', weight: 0.1 }, // 10% chance
66
+ * ])
67
+ *
68
+ * console.log(result) // Most likely 'A', but could be B or C
69
+ * ```
70
+ */
71
+ export declare function decideWeighted<T>(options: Array<{
72
+ value: T;
73
+ weight: number;
74
+ }>): T;
75
+ /**
76
+ * Epsilon-greedy decision strategy
77
+ *
78
+ * With probability epsilon, select a random option (exploration).
79
+ * Otherwise, select the best option by score (exploitation).
80
+ *
81
+ * @example
82
+ * ```ts
83
+ * import { decideEpsilonGreedy } from 'ai-experiments'
84
+ *
85
+ * const result = await decideEpsilonGreedy({
86
+ * options: ['model-a', 'model-b', 'model-c'],
87
+ * score: async (model) => await evaluateModel(model),
88
+ * epsilon: 0.1, // 10% exploration, 90% exploitation
89
+ * })
90
+ * ```
91
+ */
92
+ export declare function decideEpsilonGreedy<T>(options: DecideOptions<T> & {
93
+ epsilon: number;
94
+ }): Promise<DecisionResult<T>>;
95
+ /**
96
+ * Thompson sampling decision strategy
97
+ *
98
+ * Bayesian approach to balancing exploration and exploitation.
99
+ * Each option has a Beta distribution representing our belief about its true score.
100
+ *
101
+ * @example
102
+ * ```ts
103
+ * import { decideThompsonSampling } from 'ai-experiments'
104
+ *
105
+ * // Track successes and failures for each option
106
+ * const priors = {
107
+ * 'variant-a': { alpha: 10, beta: 5 }, // 10 successes, 5 failures
108
+ * 'variant-b': { alpha: 8, beta: 3 }, // 8 successes, 3 failures
109
+ * 'variant-c': { alpha: 2, beta: 2 }, // 2 successes, 2 failures (uncertain)
110
+ * }
111
+ *
112
+ * const result = decideThompsonSampling(['variant-a', 'variant-b', 'variant-c'], priors)
113
+ * // More likely to select 'variant-b' (higher rate) but will sometimes explore 'variant-c'
114
+ * ```
115
+ */
116
+ export declare function decideThompsonSampling<T extends string>(options: T[], priors: Record<T, {
117
+ alpha: number;
118
+ beta: number;
119
+ }>): T;
120
+ /**
121
+ * Upper Confidence Bound (UCB) decision strategy
122
+ *
123
+ * Select the option with the highest upper confidence bound.
124
+ * Balances exploration and exploitation using confidence intervals.
125
+ *
126
+ * @example
127
+ * ```ts
128
+ * import { decideUCB } from 'ai-experiments'
129
+ *
130
+ * const stats = {
131
+ * 'variant-a': { mean: 0.85, count: 100 },
132
+ * 'variant-b': { mean: 0.82, count: 50 }, // Less data, higher uncertainty
133
+ * 'variant-c': { mean: 0.78, count: 10 }, // Very uncertain
134
+ * }
135
+ *
136
+ * const result = decideUCB(['variant-a', 'variant-b', 'variant-c'], stats, {
137
+ * explorationFactor: 2.0,
138
+ * totalCount: 160,
139
+ * })
140
+ * // Might select variant-c to explore more, despite lower mean
141
+ * ```
142
+ */
143
+ export declare function decideUCB<T extends string>(options: T[], stats: Record<T, {
144
+ mean: number;
145
+ count: number;
146
+ }>, config: {
147
+ /** Exploration factor (typically 1-2) */
148
+ explorationFactor: number;
149
+ /** Total number of trials across all options */
150
+ totalCount: number;
151
+ }): T;
152
+ //# sourceMappingURL=decide.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"decide.d.ts","sourceRoot":"","sources":["../src/decide.ts"],"names":[],"mappings":"AAAA;;GAEG;AAEH,OAAO,KAAK,EAAE,aAAa,EAAE,cAAc,EAAE,MAAM,YAAY,CAAA;AAG/D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GA8CG;AACH,wBAAsB,MAAM,CAAC,CAAC,EAC5B,OAAO,EAAE,aAAa,CAAC,CAAC,CAAC,GACxB,OAAO,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,CA2C5B;AAED;;;;;;;;;;;;;;;;;GAiBG;AACH,wBAAgB,cAAc,CAAC,CAAC,EAC9B,OAAO,EAAE,KAAK,CAAC;IAAE,KAAK,EAAE,CAAC,CAAC;IAAC,MAAM,EAAE,MAAM,CAAA;CAAE,CAAC,GAC3C,CAAC,CA0BH;AAED;;;;;;;;;;;;;;;;GAgBG;AACH,wBAAsB,mBAAmB,CAAC,CAAC,EACzC,OAAO,EAAE,aAAa,CAAC,CAAC,CAAC,GAAG;IAAE,OAAO,EAAE,MAAM,CAAA;CAAE,GAC9C,OAAO,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,CA6C5B;AAED;;;;;;;;;;;;;;;;;;;;GAoBG;AACH,wBAAgB,sBAAsB,CAAC,CAAC,SAAS,MAAM,EACrD,OAAO,EAAE,CAAC,EAAE,EACZ,MAAM,EAAE,MAAM,CAAC,CAAC,EAAE;IAAE,KAAK,EAAE,MAAM,CAAC;IAAC,IAAI,EAAE,MAAM,CAAA;CAAE,CAAC,GACjD,CAAC,CA+BH;AAuDD;;;;;;;;;;;;;;;;;;;;;;GAsBG;AACH,wBAAgB,SAAS,CAAC,CAAC,SAAS,MAAM,EACxC,OAAO,EAAE,CAAC,EAAE,EACZ,KAAK,EAAE,MAAM,CAAC,CAAC,EAAE;IAAE,IAAI,EAAE,MAAM,CAAC;IAAC,KAAK,EAAE,MAAM,CAAA;CAAE,CAAC,EACjD,MAAM,EAAE;IACN,yCAAyC;IACzC,iBAAiB,EAAE,MAAM,CAAA;IACzB,gDAAgD;IAChD,UAAU,EAAE,MAAM,CAAA;CACnB,GACA,CAAC,CAwCH"}