agentic-qe 2.5.4 → 2.5.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. package/.claude/commands/aqe-costs.md +509 -0
  2. package/CHANGELOG.md +58 -0
  3. package/README.md +1 -1
  4. package/dist/agents/SONALifecycleManager.d.ts +226 -0
  5. package/dist/agents/SONALifecycleManager.d.ts.map +1 -0
  6. package/dist/agents/SONALifecycleManager.js +563 -0
  7. package/dist/agents/SONALifecycleManager.js.map +1 -0
  8. package/dist/agents/index.d.ts +2 -0
  9. package/dist/agents/index.d.ts.map +1 -1
  10. package/dist/agents/index.js +7 -1
  11. package/dist/agents/index.js.map +1 -1
  12. package/dist/core/memory/HNSWVectorMemory.js +1 -1
  13. package/dist/core/metrics/InferenceCostTracker.d.ts +293 -0
  14. package/dist/core/metrics/InferenceCostTracker.d.ts.map +1 -0
  15. package/dist/core/metrics/InferenceCostTracker.js +461 -0
  16. package/dist/core/metrics/InferenceCostTracker.js.map +1 -0
  17. package/dist/core/metrics/index.d.ts +1 -0
  18. package/dist/core/metrics/index.d.ts.map +1 -1
  19. package/dist/core/metrics/index.js +7 -1
  20. package/dist/core/metrics/index.js.map +1 -1
  21. package/dist/core/routing/AdaptiveModelRouter.d.ts +17 -0
  22. package/dist/core/routing/AdaptiveModelRouter.d.ts.map +1 -1
  23. package/dist/core/routing/AdaptiveModelRouter.js +117 -0
  24. package/dist/core/routing/AdaptiveModelRouter.js.map +1 -1
  25. package/dist/core/routing/ModelRules.d.ts +2 -0
  26. package/dist/core/routing/ModelRules.d.ts.map +1 -1
  27. package/dist/core/routing/ModelRules.js +82 -0
  28. package/dist/core/routing/ModelRules.js.map +1 -1
  29. package/dist/core/routing/types.d.ts +14 -1
  30. package/dist/core/routing/types.d.ts.map +1 -1
  31. package/dist/core/routing/types.js +7 -0
  32. package/dist/core/routing/types.js.map +1 -1
  33. package/dist/mcp/server-instructions.d.ts +1 -1
  34. package/dist/mcp/server-instructions.js +1 -1
  35. package/dist/mcp/services/AgentRegistry.d.ts +35 -0
  36. package/dist/mcp/services/AgentRegistry.d.ts.map +1 -1
  37. package/dist/mcp/services/AgentRegistry.js +126 -1
  38. package/dist/mcp/services/AgentRegistry.js.map +1 -1
  39. package/dist/mcp/tools/qe/accessibility/video-vision-analyzer.d.ts +8 -1
  40. package/dist/mcp/tools/qe/accessibility/video-vision-analyzer.d.ts.map +1 -1
  41. package/dist/mcp/tools/qe/accessibility/video-vision-analyzer.js +134 -46
  42. package/dist/mcp/tools/qe/accessibility/video-vision-analyzer.js.map +1 -1
  43. package/dist/telemetry/metrics/collectors/cost.d.ts.map +1 -1
  44. package/dist/telemetry/metrics/collectors/cost.js +6 -0
  45. package/dist/telemetry/metrics/collectors/cost.js.map +1 -1
  46. package/package.json +9 -2
@@ -0,0 +1,509 @@
1
+ ---
2
+ name: aqe-costs
3
+ description: Display inference cost analysis and savings from local vs cloud providers
4
+ ---
5
+
6
+ # AQE Inference Costs
7
+
8
+ Display comprehensive inference cost analysis showing local vs cloud inference costs and estimated savings.
9
+
10
+ ## Usage
11
+
12
+ ```bash
13
+ aqe costs [options]
14
+ # or
15
+ /aqe-costs [options]
16
+ ```
17
+
18
+ ## Options
19
+
20
+ | Option | Type | Default | Description |
21
+ |--------|------|---------|-------------|
22
+ | `--period` | string | `24h` | Time period: 1h, 24h, 7d, 30d, all |
23
+ | `--provider` | string | - | Filter by provider: ruvllm, anthropic, openrouter, openai |
24
+ | `--format` | string | `text` | Output format: text, json |
25
+ | `--detailed` | boolean | `false` | Show detailed per-request breakdown |
26
+ | `--reset` | boolean | `false` | Reset cost tracking data |
27
+
28
+ ## Examples
29
+
30
+ ### Basic Cost Report
31
+
32
+ ```bash
33
+ aqe costs
34
+ ```
35
+
36
+ Displays cost summary for the last 24 hours with savings analysis.
37
+
38
+ ### Weekly Cost Analysis
39
+
40
+ ```bash
41
+ aqe costs --period 7d
42
+ ```
43
+
44
+ Shows cost trends and savings over the past 7 days.
45
+
46
+ ### Provider-Specific Costs
47
+
48
+ ```bash
49
+ aqe costs --provider ruvllm
50
+ ```
51
+
52
+ Displays costs for local ruvllm inference only.
53
+
54
+ ### Detailed Breakdown
55
+
56
+ ```bash
57
+ aqe costs --detailed
58
+ ```
59
+
60
+ Shows per-request cost breakdown with agent and task attribution.
61
+
62
+ ### JSON Export for Dashboards
63
+
64
+ ```bash
65
+ aqe costs --format json > costs.json
66
+ ```
67
+
68
+ Exports cost data in JSON format for integration with monitoring dashboards.
69
+
70
+ ### Reset Cost Data
71
+
72
+ ```bash
73
+ aqe costs --reset
74
+ ```
75
+
76
+ Clears all tracked cost data (useful for testing or new billing periods).
77
+
78
+ ## Integration with Claude Code
79
+
80
+ ### Cost Monitoring Agent
81
+
82
+ ```javascript
83
+ // Use Claude Code's Task tool for cost monitoring
84
+ Task("Monitor inference costs", `
85
+ Analyze AQE inference costs and provide recommendations:
86
+ - Check cost trends over the past 24 hours
87
+ - Identify high-cost agents or tasks
88
+ - Calculate savings from local inference
89
+ - Recommend optimizations to reduce cloud costs
90
+
91
+ Store findings in memory: aqe/costs/analysis/{timestamp}
92
+ `, "qe-quality-gate")
93
+ ```
94
+
95
+ ### Automated Cost Reporting Workflow
96
+
97
+ ```javascript
98
+ // Daily cost report generation
99
+ [Single Message]:
100
+ Task("Generate cost report", "Create daily inference cost summary", "qe-quality-gate")
101
+ Task("Analyze cost trends", "Identify cost optimization opportunities", "qe-quality-gate")
102
+
103
+ TodoWrite({ todos: [
104
+ {content: "Fetch cost data from tracker", status: "in_progress", activeForm: "Fetching data"},
105
+ {content: "Calculate savings metrics", status: "in_progress", activeForm: "Calculating savings"},
106
+ {content: "Generate recommendations", status: "pending", activeForm: "Generating recommendations"},
107
+ {content: "Store report in memory", status: "pending", activeForm: "Storing report"}
108
+ ]})
109
+ ```
110
+
111
+ ## Expected Outputs
112
+
113
+ ### Text Format (Default)
114
+
115
+ ```
116
+ Inference Cost Report
117
+ ====================
118
+
119
+ Period: 2025-12-15T00:00:00Z to 2025-12-15T23:59:59Z
120
+
121
+ Overall Metrics:
122
+ Total Requests: 1,248
123
+ Total Tokens: 3,456,789
124
+ Total Cost: $5.2340
125
+ Requests/Hour: 52.0
126
+ Cost/Hour: $0.2181
127
+
128
+ Cost Savings Analysis:
129
+ Actual Cost: $5.2340
130
+ Cloud Baseline Cost: $18.7650
131
+ Total Savings: $13.5310 (72.1%)
132
+ Local Requests: 892 (71.5%)
133
+ Cloud Requests: 356 (28.5%)
134
+
135
+ By Provider:
136
+ 🏠 ruvllm:
137
+ Requests: 892
138
+ Tokens: 2,234,567
139
+ Cost: $0.0000
140
+ Avg Cost/Request: $0.000000
141
+ Top Model: meta-llama/llama-3.1-8b-instruct
142
+
143
+ ☁️ anthropic:
144
+ Requests: 245
145
+ Tokens: 891,234
146
+ Cost: $4.5678
147
+ Avg Cost/Request: $0.018644
148
+ Top Model: claude-sonnet-4-5-20250929
149
+
150
+ ☁️ openrouter:
151
+ Requests: 111
152
+ Tokens: 330,988
153
+ Cost: $0.6662
154
+ Avg Cost/Request: $0.006002
155
+ Top Model: meta-llama/llama-3.1-70b-instruct
156
+ ```
157
+
158
+ ### JSON Format
159
+
160
+ ```json
161
+ {
162
+ "timestamp": "2025-12-15T23:59:59Z",
163
+ "period": {
164
+ "start": "2025-12-15T00:00:00Z",
165
+ "end": "2025-12-15T23:59:59Z"
166
+ },
167
+ "overall": {
168
+ "totalRequests": 1248,
169
+ "totalTokens": 3456789,
170
+ "totalCost": 5.234,
171
+ "requestsPerHour": 52.0,
172
+ "costPerHour": 0.2181
173
+ },
174
+ "savings": {
175
+ "actualCost": 5.234,
176
+ "cloudBaselineCost": 18.765,
177
+ "totalSavings": 13.531,
178
+ "savingsPercentage": 72.1,
179
+ "localRequestPercentage": 71.5,
180
+ "cloudRequestPercentage": 28.5,
181
+ "localRequests": 892,
182
+ "cloudRequests": 356,
183
+ "totalRequests": 1248
184
+ },
185
+ "byProvider": {
186
+ "ruvllm": {
187
+ "provider": "ruvllm",
188
+ "providerType": "local",
189
+ "requestCount": 892,
190
+ "inputTokens": 1489711,
191
+ "outputTokens": 744856,
192
+ "totalTokens": 2234567,
193
+ "totalCost": 0,
194
+ "avgCostPerRequest": 0,
195
+ "topModel": "meta-llama/llama-3.1-8b-instruct",
196
+ "modelCounts": {
197
+ "meta-llama/llama-3.1-8b-instruct": 892
198
+ }
199
+ },
200
+ "anthropic": {
201
+ "provider": "anthropic",
202
+ "providerType": "cloud",
203
+ "requestCount": 245,
204
+ "inputTokens": 594156,
205
+ "outputTokens": 297078,
206
+ "totalTokens": 891234,
207
+ "totalCost": 4.5678,
208
+ "avgCostPerRequest": 0.018644,
209
+ "topModel": "claude-sonnet-4-5-20250929",
210
+ "modelCounts": {
211
+ "claude-sonnet-4-5-20250929": 187,
212
+ "claude-3-5-haiku-20241022": 58
213
+ }
214
+ },
215
+ "openrouter": {
216
+ "provider": "openrouter",
217
+ "providerType": "cloud",
218
+ "requestCount": 111,
219
+ "inputTokens": 220659,
220
+ "outputTokens": 110329,
221
+ "totalTokens": 330988,
222
+ "totalCost": 0.6662,
223
+ "avgCostPerRequest": 0.006002,
224
+ "topModel": "meta-llama/llama-3.1-70b-instruct",
225
+ "modelCounts": {
226
+ "meta-llama/llama-3.1-70b-instruct": 111
227
+ }
228
+ }
229
+ }
230
+ }
231
+ ```
232
+
233
+ ### Detailed Format
234
+
235
+ ```
236
+ Inference Cost Report (Detailed)
237
+ ================================
238
+
239
+ Period: 2025-12-15T00:00:00Z to 2025-12-15T23:59:59Z
240
+
241
+ Recent Requests (Last 20):
242
+
243
+ [2025-12-15T23:58:45Z] ruvllm/meta-llama/llama-3.1-8b-instruct
244
+ Agent: qe-test-generator
245
+ Tokens: 1,234 input / 567 output = 1,801 total
246
+ Cost: $0.0000
247
+
248
+ [2025-12-15T23:57:23Z] anthropic/claude-sonnet-4-5-20250929
249
+ Agent: qe-quality-gate
250
+ Task: quality-check-456
251
+ Tokens: 3,456 input / 1,789 output = 5,245 total
252
+ Cost: $0.0372
253
+
254
+ [2025-12-15T23:56:12Z] ruvllm/meta-llama/llama-3.1-8b-instruct
255
+ Agent: qe-test-executor
256
+ Task: test-run-789
257
+ Tokens: 876 input / 432 output = 1,308 total
258
+ Cost: $0.0000
259
+
260
+ ... (17 more)
261
+
262
+ Provider Summary:
263
+ 🏠 Local (ruvllm, onnx): 892 requests (71.5%)
264
+ ☁️ Cloud (anthropic, openrouter, openai): 356 requests (28.5%)
265
+
266
+ Cost Optimization Recommendations:
267
+ ✓ Excellent local inference usage (71.5%)
268
+ ✓ Saving $13.53 per day vs full cloud inference
269
+ 💡 Consider migrating more quality-gate checks to local inference
270
+ 💡 Estimated monthly savings: $405.93
271
+ ```
272
+
273
+ ## Memory Operations
274
+
275
+ ### Input Memory Keys
276
+
277
+ ```bash
278
+ # Retrieve stored cost data
279
+ npx claude-flow@alpha memory retrieve --key "aqe/costs/tracker-data"
280
+
281
+ # Retrieve previous cost reports
282
+ npx claude-flow@alpha memory retrieve --key "aqe/costs/reports/latest"
283
+ ```
284
+
285
+ ### Output Memory Keys
286
+
287
+ ```bash
288
+ # Store cost report
289
+ npx claude-flow@alpha memory store \
290
+ --key "aqe/costs/reports/${timestamp}" \
291
+ --value '{"totalCost": 5.234, "savings": 13.531}'
292
+
293
+ # Store cost optimization recommendations
294
+ npx claude-flow@alpha memory store \
295
+ --key "aqe/costs/recommendations" \
296
+ --value '[{"action": "migrate-to-local", "potentialSavings": 13.53}]'
297
+ ```
298
+
299
+ ## Cost Tracking API
300
+
301
+ ### Track Inference Request
302
+
303
+ ```typescript
304
+ import { getInferenceCostTracker } from 'agentic-qe/core/metrics';
305
+
306
+ const tracker = getInferenceCostTracker();
307
+
308
+ // Track local inference (free)
309
+ tracker.trackRequest({
310
+ provider: 'ruvllm',
311
+ model: 'meta-llama/llama-3.1-8b-instruct',
312
+ tokens: {
313
+ inputTokens: 1000,
314
+ outputTokens: 500,
315
+ totalTokens: 1500,
316
+ },
317
+ agentId: 'qe-test-generator',
318
+ taskId: 'task-123',
319
+ });
320
+
321
+ // Track cloud inference
322
+ tracker.trackRequest({
323
+ provider: 'anthropic',
324
+ model: 'claude-sonnet-4-5-20250929',
325
+ tokens: {
326
+ inputTokens: 2000,
327
+ outputTokens: 1000,
328
+ totalTokens: 3000,
329
+ },
330
+ agentId: 'qe-quality-gate',
331
+ });
332
+ ```
333
+
334
+ ### Get Cost Report
335
+
336
+ ```typescript
337
+ import { getInferenceCostTracker, formatCostReport } from 'agentic-qe/core/metrics';
338
+
339
+ const tracker = getInferenceCostTracker();
340
+
341
+ // Get report for last 24 hours
342
+ const report = tracker.getCostReport();
343
+
344
+ // Format as text
345
+ const textReport = formatCostReport(report);
346
+ console.log(textReport);
347
+
348
+ // Get savings
349
+ console.log(`Total savings: $${report.savings.totalSavings.toFixed(2)}`);
350
+ console.log(`Savings rate: ${report.savings.savingsPercentage.toFixed(1)}%`);
351
+ ```
352
+
353
+ ## Cost Optimization Strategies
354
+
355
+ ### 1. Maximize Local Inference
356
+
357
+ Route routine tasks to local inference:
358
+ - Test generation with predictable patterns
359
+ - Coverage analysis
360
+ - Simple quality checks
361
+
362
+ **Potential Savings:** Up to 90% cost reduction
363
+
364
+ ### 2. Use Cloud for Complex Tasks
365
+
366
+ Reserve cloud inference for:
367
+ - Security scanning requiring latest threat intelligence
368
+ - Complex quality gate decisions
369
+ - High-stakes production validations
370
+
371
+ **Balance:** Quality vs Cost
372
+
373
+ ### 3. Hybrid Approach
374
+
375
+ Implement fallback strategy:
376
+ ```javascript
377
+ // Try local first, fallback to cloud if needed
378
+ async function generateTests(spec) {
379
+ try {
380
+ return await localInference(spec);
381
+ } catch (err) {
382
+ return await cloudInference(spec);
383
+ }
384
+ }
385
+ ```
386
+
387
+ **Result:** Optimal cost-quality balance
388
+
389
+ ### 4. Monitor and Optimize
390
+
391
+ Regular cost reviews:
392
+ ```bash
393
+ # Weekly review
394
+ aqe costs --period 7d --detailed
395
+
396
+ # Identify high-cost agents
397
+ # Migrate eligible workloads to local
398
+ ```
399
+
400
+ **Target:** >70% local inference ratio
401
+
402
+ ## Performance Characteristics
403
+
404
+ - **Time Complexity**: O(n) where n = number of tracked requests
405
+ - **Target Time**: <100ms for report generation
406
+ - **Memory Usage**: ~1KB per request (with TTL pruning)
407
+ - **Storage**: In-memory with 24-hour TTL (default)
408
+ - **Persistence**: Optional export to memory store
409
+
410
+ ## Cost Estimation Models
411
+
412
+ ### Local Inference (ruvllm, ONNX)
413
+ - **Cost**: $0.00 per token
414
+ - **Note**: Infrastructure costs (compute, storage) not included
415
+
416
+ ### Cloud Inference
417
+
418
+ **Anthropic Claude Sonnet 4.5** (January 2025):
419
+ - Input: $3.00 per 1M tokens
420
+ - Output: $15.00 per 1M tokens
421
+ - Cache write: $3.75 per 1M tokens (25% premium)
422
+ - Cache read: $0.30 per 1M tokens (90% discount)
423
+
424
+ **OpenRouter** (99% savings vs Claude):
425
+ - Llama 3.1 8B: $0.03 input / $0.15 output per 1M tokens
426
+ - Llama 3.1 70B: $0.18 input / $0.90 output per 1M tokens
427
+
428
+ **OpenAI GPT-4 Turbo**:
429
+ - Input: $10.00 per 1M tokens
430
+ - Output: $30.00 per 1M tokens
431
+
432
+ ## Use Cases
433
+
434
+ ### Daily Cost Monitoring
435
+ ```bash
436
+ aqe costs
437
+ # Quick check of daily costs and savings
438
+ ```
439
+
440
+ ### Monthly Budget Review
441
+ ```bash
442
+ aqe costs --period 30d --format json > monthly-costs.json
443
+ # Export for finance review
444
+ ```
445
+
446
+ ### Cost Optimization Analysis
447
+ ```bash
448
+ aqe costs --detailed
449
+ # Identify high-cost agents and tasks for optimization
450
+ ```
451
+
452
+ ### CI/CD Cost Tracking
453
+ ```bash
454
+ aqe costs --period 1h --format json
455
+ # Track costs per CI/CD pipeline run
456
+ ```
457
+
458
+ ## Error Handling
459
+
460
+ ### No Data Available
461
+
462
+ ```bash
463
+ ⚠️ No inference requests tracked in the specified period.
464
+
465
+ Use 'aqe costs --period all' to see all-time data.
466
+ ```
467
+
468
+ **Solution:** Inference tracking may need to be enabled.
469
+
470
+ ### Invalid Period
471
+
472
+ ```bash
473
+ ❌ Error: Invalid period '5y'
474
+
475
+ Valid periods: 1h, 24h, 7d, 30d, all
476
+ ```
477
+
478
+ **Solution:** Use a supported time period.
479
+
480
+ ### Provider Not Found
481
+
482
+ ```bash
483
+ ⚠️ Warning: No requests found for provider 'unknown'
484
+
485
+ Available providers: ruvllm, anthropic, openrouter, openai, onnx
486
+ ```
487
+
488
+ **Solution:** Check provider name spelling.
489
+
490
+ ## Integration with Other Commands
491
+
492
+ - `/aqe-fleet-status` - View agent status with cost attribution
493
+ - `/aqe-execute` - Track execution costs
494
+ - `/aqe-generate` - Track generation costs
495
+ - `/aqe-report` - Include cost analysis in quality reports
496
+
497
+ ## Privacy and Security
498
+
499
+ - **No PII**: Cost data contains no prompt content or sensitive information
500
+ - **Aggregated Only**: Individual request details stored in memory only
501
+ - **TTL Protection**: Data automatically expires after retention period
502
+ - **Local Storage**: All data stored in local memory, not sent externally
503
+
504
+ ## See Also
505
+
506
+ - `/aqe-fleet-status` - Fleet health and status
507
+ - `/aqe-report` - Quality reports
508
+ - `/aqe-benchmark` - Performance benchmarking
509
+ - [Pricing Configuration](../../src/telemetry/metrics/collectors/pricing-config.ts)
package/CHANGELOG.md CHANGED
@@ -7,6 +7,64 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
7
7
 
8
8
  ## [Unreleased]
9
9
 
10
+ ## [2.5.5] - 2025-12-15
11
+
12
+ ### Added
13
+
14
+ #### SONA Lifecycle Integration (Issue #144)
15
+ Complete Sleep-Optimized Neural Architecture integration with Agent Registry for seamless memory coordination.
16
+
17
+ - **SONALifecycleManager** (`src/core/learning/SONALifecycleManager.ts`) - 717 lines
18
+ - Automatic lifecycle hooks: `onAgentSpawn`, `onTaskComplete`, `cleanupAgent`
19
+ - Real-time experience capture from agent task completions
20
+ - Memory consolidation triggers during agent cleanup
21
+ - Integration with AgentRegistry for fleet-wide coordination
22
+ - 56 unit tests + 16 integration tests (72 total tests)
23
+
24
+ - **Inference Cost Tracking** (`src/core/metrics/InferenceCostTracker.ts`) - 679 lines
25
+ - Track local vs cloud inference costs in real-time
26
+ - Support for multiple providers: ruvllm, anthropic, openrouter, openai, onnx
27
+ - Cost savings analysis comparing local inference to cloud baseline
28
+ - Multi-format reporting (text, JSON) with provider breakdown
29
+ - 30 unit tests with comprehensive coverage
30
+
31
+ - **AdaptiveModelRouter Local Routing**
32
+ - Local model preference for routine tasks via RuvLLM
33
+ - Intelligent routing: local for simple tasks, cloud for complex
34
+ - Fallback cascade: ruvllm → openrouter → anthropic
35
+ - Cost optimization targeting 70%+ local inference
36
+
37
+ ### Fixed
38
+
39
+ - **Video Vision Analyzer** - Fixed multimodal analysis pipeline
40
+ - Corrected frame extraction and analysis workflow
41
+ - Improved accessibility caption generation
42
+
43
+ - **MCP Handler Tests** (Issue #39) - 36 files, 647+ lines
44
+ - Fixed flaky tests in coordination handlers
45
+ - Stabilized workflow-create, workflow-execute, event-emit tests
46
+ - Improved test isolation and cleanup
47
+
48
+ ### Technical Details
49
+
50
+ **Database Schema**:
51
+ - `learning_experiences` - Agent task outcomes with rewards
52
+ - `q_values` - Reinforcement learning state-action values
53
+ - `events` - System events for pattern analysis
54
+ - `dream_cycles` - Nightly consolidation records
55
+ - `synthesized_patterns` - Cross-agent pattern extraction
56
+
57
+ **Verified Integration**:
58
+ - Real agent execution proof: Database entry ID 563
59
+ - Q-value updates from task orchestration
60
+ - Event emission for agent lifecycle tracking
61
+
62
+ ### Testing
63
+
64
+ - 102 new tests total (56 + 30 + 16)
65
+ - All new code tests passing
66
+ - Regression suite: 55 passed, 5 skipped (pre-existing issues)
67
+
10
68
  ## [2.5.4] - 2025-12-15
11
69
 
12
70
  ### Fixed
package/README.md CHANGED
@@ -9,7 +9,7 @@
9
9
  <img alt="NPM Downloads" src="https://img.shields.io/npm/dw/agentic-qe">
10
10
 
11
11
 
12
- **Version 2.5.4** | [Changelog](CHANGELOG.md) | [Contributors](CONTRIBUTORS.md) | [Issues](https://github.com/proffesor-for-testing/agentic-qe/issues) | [Discussions](https://github.com/proffesor-for-testing/agentic-qe/discussions)
12
+ **Version 2.5.5** | [Changelog](CHANGELOG.md) | [Contributors](CONTRIBUTORS.md) | [Issues](https://github.com/proffesor-for-testing/agentic-qe/issues) | [Discussions](https://github.com/proffesor-for-testing/agentic-qe/discussions)
13
13
 
14
14
  > AI-powered test automation that learns from every task, switches between 300+ AI models on-the-fly, scores code testability, visualizes agent activity in real-time, and improves autonomously overnight — with built-in safety guardrails and full observability.
15
15