agentic-qe 2.2.2 → 2.3.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.claude/agents/qe-api-contract-validator.md +43 -12
- package/.claude/agents/qe-chaos-engineer.md +53 -23
- package/.claude/agents/qe-code-complexity.md +42 -12
- package/.claude/agents/qe-coverage-analyzer.md +52 -24
- package/.claude/agents/qe-deployment-readiness.md +43 -12
- package/.claude/agents/qe-flaky-test-hunter.md +59 -16
- package/.claude/agents/qe-fleet-commander.md +2 -2
- package/.claude/agents/qe-performance-tester.md +54 -24
- package/.claude/agents/qe-production-intelligence.md +43 -12
- package/.claude/agents/qe-quality-analyzer.md +2 -2
- package/.claude/agents/qe-quality-gate.md +43 -12
- package/.claude/agents/qe-regression-risk-analyzer.md +54 -10
- package/.claude/agents/qe-requirements-validator.md +43 -12
- package/.claude/agents/qe-security-scanner.md +53 -23
- package/.claude/agents/qe-test-data-architect.md +43 -12
- package/.claude/agents/qe-test-executor.md +2 -2
- package/.claude/agents/qe-test-generator.md +55 -22
- package/.claude/agents/qe-visual-tester.md +43 -12
- package/.claude/agents/qx-partner.md +44 -12
- package/.claude/agents/subagents/qe-code-reviewer.md +31 -0
- package/.claude/agents/subagents/qe-coverage-gap-analyzer.md +31 -0
- package/.claude/agents/subagents/qe-data-generator.md +31 -0
- package/.claude/agents/subagents/qe-flaky-investigator.md +31 -0
- package/.claude/agents/subagents/qe-integration-tester.md +31 -0
- package/.claude/agents/subagents/qe-performance-validator.md +31 -0
- package/.claude/agents/subagents/qe-security-auditor.md +31 -0
- package/.claude/agents/subagents/qe-test-data-architect-sub.md +31 -0
- package/.claude/agents/subagents/qe-test-implementer.md +31 -0
- package/.claude/agents/subagents/qe-test-refactorer.md +31 -0
- package/.claude/agents/subagents/qe-test-writer.md +31 -0
- package/.claude/skills/agentic-quality-engineering/SKILL.md +90 -0
- package/CHANGELOG.md +106 -0
- package/README.md +1 -1
- package/dist/agents/BaseAgent.d.ts +2 -1
- package/dist/agents/BaseAgent.d.ts.map +1 -1
- package/dist/agents/BaseAgent.js +8 -4
- package/dist/agents/BaseAgent.js.map +1 -1
- package/dist/cli/init/claude-config.d.ts.map +1 -1
- package/dist/cli/init/claude-config.js +50 -30
- package/dist/cli/init/claude-config.js.map +1 -1
- package/dist/cli/init/helpers.d.ts +5 -0
- package/dist/cli/init/helpers.d.ts.map +1 -1
- package/dist/cli/init/helpers.js +54 -0
- package/dist/cli/init/helpers.js.map +1 -1
- package/dist/cli/init/index.d.ts.map +1 -1
- package/dist/cli/init/index.js +6 -0
- package/dist/cli/init/index.js.map +1 -1
- package/dist/core/memory/HNSWVectorMemory.js +1 -1
- package/dist/mcp/server-instructions.d.ts +1 -1
- package/dist/mcp/server-instructions.js +1 -1
- package/package.json +1 -1
|
@@ -298,8 +298,7 @@ notifyTestCompletion({
|
|
|
298
298
|
});
|
|
299
299
|
```
|
|
300
300
|
|
|
301
|
-
|
|
302
|
-
|
|
301
|
+
<learning_protocol>
|
|
303
302
|
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
304
303
|
|
|
305
304
|
### Required Learning Actions (Call AFTER Task Completion)
|
|
@@ -412,6 +411,7 @@ if (pastLearnings.success && pastLearnings.data) {
|
|
|
412
411
|
- ✅ **ALWAYS** after generating recommendations
|
|
413
412
|
- ✅ When discovering new effective strategies
|
|
414
413
|
- ✅ When achieving exceptional performance metrics
|
|
414
|
+
</learning_protocol>
|
|
415
415
|
|
|
416
416
|
## Error Handling & Recovery
|
|
417
417
|
|
|
@@ -69,8 +69,11 @@ Coordination:
|
|
|
69
69
|
</memory_namespace>
|
|
70
70
|
|
|
71
71
|
<learning_protocol>
|
|
72
|
-
|
|
73
|
-
|
|
72
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
73
|
+
|
|
74
|
+
### Query Past Learnings BEFORE Starting Task
|
|
75
|
+
|
|
76
|
+
```typescript
|
|
74
77
|
mcp__agentic_qe__learning_query({
|
|
75
78
|
agentId: "qe-test-generator",
|
|
76
79
|
taskType: "test-generation",
|
|
@@ -80,43 +83,73 @@ mcp__agentic_qe__learning_query({
|
|
|
80
83
|
})
|
|
81
84
|
```
|
|
82
85
|
|
|
83
|
-
|
|
84
|
-
|
|
86
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
87
|
+
|
|
88
|
+
**1. Store Learning Experience:**
|
|
89
|
+
```typescript
|
|
85
90
|
mcp__agentic_qe__learning_store_experience({
|
|
86
91
|
agentId: "qe-test-generator",
|
|
87
92
|
taskType: "test-generation",
|
|
88
|
-
reward: 0.
|
|
93
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
89
94
|
outcome: {
|
|
90
|
-
testsGenerated:
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
95
|
+
testsGenerated: <count>,
|
|
96
|
+
coverageAchieved: <percentage>,
|
|
97
|
+
passRate: <percentage>,
|
|
98
|
+
framework: "<framework>",
|
|
99
|
+
executionTime: <ms>
|
|
94
100
|
},
|
|
95
101
|
metadata: {
|
|
96
|
-
algorithm: "
|
|
97
|
-
testTypes: ["
|
|
102
|
+
algorithm: "<algorithm_used>",
|
|
103
|
+
testTypes: ["<types>"],
|
|
104
|
+
codeComplexity: "<low|medium|high>"
|
|
98
105
|
}
|
|
99
106
|
})
|
|
100
107
|
```
|
|
101
108
|
|
|
102
|
-
Store
|
|
103
|
-
```
|
|
109
|
+
**2. Store Task Artifacts:**
|
|
110
|
+
```typescript
|
|
111
|
+
mcp__agentic_qe__memory_store({
|
|
112
|
+
key: "aqe/test-generation/results/<task_id>",
|
|
113
|
+
value: {
|
|
114
|
+
testsGenerated: [...],
|
|
115
|
+
coverageReport: {...},
|
|
116
|
+
recommendations: [...]
|
|
117
|
+
},
|
|
118
|
+
namespace: "aqe",
|
|
119
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
120
|
+
})
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
124
|
+
```typescript
|
|
104
125
|
mcp__agentic_qe__learning_store_pattern({
|
|
105
|
-
pattern: "
|
|
106
|
-
confidence: 0.
|
|
126
|
+
pattern: "<description of successful strategy>",
|
|
127
|
+
confidence: <0.0-1.0>,
|
|
107
128
|
domain: "test-generation",
|
|
108
129
|
metadata: {
|
|
109
|
-
testPatterns: ["
|
|
110
|
-
effectiveness:
|
|
130
|
+
testPatterns: ["<patterns>"],
|
|
131
|
+
effectiveness: <rate>,
|
|
132
|
+
codeContext: "<when this works best>"
|
|
111
133
|
}
|
|
112
134
|
})
|
|
113
135
|
```
|
|
114
136
|
|
|
115
|
-
Reward
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
137
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
138
|
+
| Reward | Criteria |
|
|
139
|
+
|--------|----------|
|
|
140
|
+
| 1.0 | Perfect: 95%+ coverage, all tests pass, <5s generation |
|
|
141
|
+
| 0.9 | Excellent: 90%+ coverage, <10s generation, minor issues |
|
|
142
|
+
| 0.7 | Good: 80%+ coverage, <20s generation |
|
|
143
|
+
| 0.5 | Acceptable: 70%+ coverage, completed successfully |
|
|
144
|
+
| 0.3 | Partial: Some tests generated but coverage <70% |
|
|
145
|
+
| 0.0 | Failed: No tests generated or major errors |
|
|
146
|
+
|
|
147
|
+
**When to Call Learning Tools:**
|
|
148
|
+
- ✅ **ALWAYS** after completing main task
|
|
149
|
+
- ✅ **ALWAYS** after generating test suites
|
|
150
|
+
- ✅ **ALWAYS** after analyzing coverage
|
|
151
|
+
- ✅ When discovering new effective testing patterns
|
|
152
|
+
- ✅ When achieving exceptional coverage metrics
|
|
120
153
|
</learning_protocol>
|
|
121
154
|
|
|
122
155
|
<output_format>
|
|
@@ -69,8 +69,11 @@ Coordination:
|
|
|
69
69
|
</memory_namespace>
|
|
70
70
|
|
|
71
71
|
<learning_protocol>
|
|
72
|
-
|
|
73
|
-
|
|
72
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
73
|
+
|
|
74
|
+
### Query Past Learnings BEFORE Starting Task
|
|
75
|
+
|
|
76
|
+
```typescript
|
|
74
77
|
mcp__agentic_qe__learning_query({
|
|
75
78
|
agentId: "qe-visual-tester",
|
|
76
79
|
taskType: "visual-testing",
|
|
@@ -80,12 +83,14 @@ mcp__agentic_qe__learning_query({
|
|
|
80
83
|
})
|
|
81
84
|
```
|
|
82
85
|
|
|
83
|
-
|
|
84
|
-
|
|
86
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
87
|
+
|
|
88
|
+
**1. Store Learning Experience:**
|
|
89
|
+
```typescript
|
|
85
90
|
mcp__agentic_qe__learning_store_experience({
|
|
86
91
|
agentId: "qe-visual-tester",
|
|
87
92
|
taskType: "visual-testing",
|
|
88
|
-
reward: 0.
|
|
93
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
89
94
|
outcome: {
|
|
90
95
|
regressionsDetected: 3,
|
|
91
96
|
accuracy: 0.98,
|
|
@@ -100,8 +105,23 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
100
105
|
})
|
|
101
106
|
```
|
|
102
107
|
|
|
103
|
-
Store
|
|
104
|
-
```
|
|
108
|
+
**2. Store Task Artifacts:**
|
|
109
|
+
```typescript
|
|
110
|
+
mcp__agentic_qe__memory_store({
|
|
111
|
+
key: "aqe/visual/test-results/<task_id>",
|
|
112
|
+
value: {
|
|
113
|
+
regressions: [],
|
|
114
|
+
accessibilityViolations: [],
|
|
115
|
+
screenshots: {},
|
|
116
|
+
diffImages: []
|
|
117
|
+
},
|
|
118
|
+
namespace: "aqe",
|
|
119
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
120
|
+
})
|
|
121
|
+
```
|
|
122
|
+
|
|
123
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
124
|
+
```typescript
|
|
105
125
|
mcp__agentic_qe__learning_store_pattern({
|
|
106
126
|
pattern: "AI-powered visual diff with 95% threshold detects regressions with <2% false positives",
|
|
107
127
|
confidence: 0.95,
|
|
@@ -113,11 +133,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
113
133
|
})
|
|
114
134
|
```
|
|
115
135
|
|
|
116
|
-
Reward
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
136
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
137
|
+
| Reward | Criteria |
|
|
138
|
+
|--------|----------|
|
|
139
|
+
| 1.0 | Perfect (100% regressions detected, 0 false positives, <10s) |
|
|
140
|
+
| 0.9 | Excellent (99%+ detected, <1% false positives, <20s) |
|
|
141
|
+
| 0.7 | Good (95%+ detected, <5% false positives, <40s) |
|
|
142
|
+
| 0.5 | Acceptable (90%+ detected, completed) |
|
|
143
|
+
| 0.3 | Partial: Task partially completed |
|
|
144
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
145
|
+
|
|
146
|
+
**When to Call Learning Tools:**
|
|
147
|
+
- ✅ **ALWAYS** after completing visual testing
|
|
148
|
+
- ✅ **ALWAYS** after detecting regressions
|
|
149
|
+
- ✅ **ALWAYS** after validating accessibility
|
|
150
|
+
- ✅ When discovering new effective comparison patterns
|
|
151
|
+
- ✅ When achieving exceptional detection accuracy
|
|
121
152
|
</learning_protocol>
|
|
122
153
|
|
|
123
154
|
<output_format>
|
|
@@ -89,8 +89,11 @@ Coordination:
|
|
|
89
89
|
</memory_namespace>
|
|
90
90
|
|
|
91
91
|
<learning_protocol>
|
|
92
|
-
|
|
93
|
-
|
|
92
|
+
**⚠️ MANDATORY**: When executed via Claude Code Task tool, you MUST call learning MCP tools to persist learning data.
|
|
93
|
+
|
|
94
|
+
### Query Past Learnings BEFORE Starting Task
|
|
95
|
+
|
|
96
|
+
```typescript
|
|
94
97
|
mcp__agentic_qe__learning_query({
|
|
95
98
|
agentId: "qx-partner",
|
|
96
99
|
taskType: "qx-analysis",
|
|
@@ -100,12 +103,14 @@ mcp__agentic_qe__learning_query({
|
|
|
100
103
|
})
|
|
101
104
|
```
|
|
102
105
|
|
|
103
|
-
|
|
104
|
-
|
|
106
|
+
### Required Learning Actions (Call AFTER Task Completion)
|
|
107
|
+
|
|
108
|
+
**1. Store Learning Experience:**
|
|
109
|
+
```typescript
|
|
105
110
|
mcp__agentic_qe__learning_store_experience({
|
|
106
111
|
agentId: "qx-partner",
|
|
107
112
|
taskType: "qx-analysis",
|
|
108
|
-
reward: 0.
|
|
113
|
+
reward: <calculated_reward>, // 0.0-1.0 based on criteria below
|
|
109
114
|
outcome: {
|
|
110
115
|
qxScore: 82,
|
|
111
116
|
oracleProblemsDetected: 2,
|
|
@@ -121,8 +126,24 @@ mcp__agentic_qe__learning_store_experience({
|
|
|
121
126
|
})
|
|
122
127
|
```
|
|
123
128
|
|
|
124
|
-
Store
|
|
125
|
-
```
|
|
129
|
+
**2. Store Task Artifacts:**
|
|
130
|
+
```typescript
|
|
131
|
+
mcp__agentic_qe__memory_store({
|
|
132
|
+
key: "aqe/qx/analysis-results/<task_id>",
|
|
133
|
+
value: {
|
|
134
|
+
qxScore: 0,
|
|
135
|
+
oracleProblems: [],
|
|
136
|
+
recommendations: [],
|
|
137
|
+
balanceAssessment: {},
|
|
138
|
+
impactAnalysis: {}
|
|
139
|
+
},
|
|
140
|
+
namespace: "aqe",
|
|
141
|
+
persist: true // IMPORTANT: Must be true for persistence
|
|
142
|
+
})
|
|
143
|
+
```
|
|
144
|
+
|
|
145
|
+
**3. Store Discovered Patterns (when applicable):**
|
|
146
|
+
```typescript
|
|
126
147
|
mcp__agentic_qe__learning_store_pattern({
|
|
127
148
|
pattern: "User convenience vs business revenue conflicts indicate oracle problem requiring stakeholder alignment session",
|
|
128
149
|
confidence: 0.92,
|
|
@@ -135,11 +156,22 @@ mcp__agentic_qe__learning_store_pattern({
|
|
|
135
156
|
})
|
|
136
157
|
```
|
|
137
158
|
|
|
138
|
-
Reward
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
159
|
+
### Reward Calculation Criteria (0-1 scale)
|
|
160
|
+
| Reward | Criteria |
|
|
161
|
+
|--------|----------|
|
|
162
|
+
| 1.0 | Perfect (All heuristics applied, oracle problems resolved, <5s) |
|
|
163
|
+
| 0.9 | Excellent (95%+ heuristics, actionable recommendations, <10s) |
|
|
164
|
+
| 0.7 | Good (90%+ heuristics, balance found, <20s) |
|
|
165
|
+
| 0.5 | Acceptable (Core analysis complete, recommendations generated) |
|
|
166
|
+
| 0.3 | Partial: Task partially completed |
|
|
167
|
+
| 0.0 | Failed: Task failed or major errors |
|
|
168
|
+
|
|
169
|
+
**When to Call Learning Tools:**
|
|
170
|
+
- ✅ **ALWAYS** after completing QX analysis
|
|
171
|
+
- ✅ **ALWAYS** after detecting oracle problems
|
|
172
|
+
- ✅ **ALWAYS** after generating recommendations
|
|
173
|
+
- ✅ When discovering new effective heuristic patterns
|
|
174
|
+
- ✅ When achieving exceptional QX scores
|
|
143
175
|
</learning_protocol>
|
|
144
176
|
|
|
145
177
|
<output_format>
|
|
@@ -42,4 +42,35 @@ Returns approval/rejection verdict with detailed issues list, quality metrics, a
|
|
|
42
42
|
Reports to: qe-test-generator (TDD workflow coordinator)
|
|
43
43
|
Triggers: After REFACTOR phase completes, before final code acceptance
|
|
44
44
|
</coordination>
|
|
45
|
+
|
|
46
|
+
<learning_protocol>
|
|
47
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
48
|
+
|
|
49
|
+
**Store Experience:**
|
|
50
|
+
```typescript
|
|
51
|
+
mcp__agentic_qe__learning_store_experience({
|
|
52
|
+
agentId: "qe-code-reviewer",
|
|
53
|
+
taskType: "code-review",
|
|
54
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
55
|
+
outcome: { /* task-specific results */ },
|
|
56
|
+
metadata: { phase: "REVIEW", cycleId: "<cycleId>" }
|
|
57
|
+
})
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
**Store Artifacts:**
|
|
61
|
+
```typescript
|
|
62
|
+
mcp__agentic_qe__memory_store({
|
|
63
|
+
key: "aqe/review/<task_id>",
|
|
64
|
+
value: { /* task artifacts */ },
|
|
65
|
+
namespace: "aqe",
|
|
66
|
+
persist: true
|
|
67
|
+
})
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
**Reward Criteria:**
|
|
71
|
+
- 1.0: No critical issues, complexity <15, coverage ≥95%, security scan clean, all quality gates pass
|
|
72
|
+
- 0.7: Minor issues only, complexity <20, coverage ≥90%, no security vulnerabilities
|
|
73
|
+
- 0.5: Some issues, acceptable quality thresholds met
|
|
74
|
+
- 0.0: Critical issues detected, security vulnerabilities, or quality gate failures
|
|
75
|
+
</learning_protocol>
|
|
45
76
|
</qe_subagent_definition>
|
|
@@ -42,4 +42,35 @@ Returns prioritized gap list with risk scores, test recommendations, and project
|
|
|
42
42
|
Reports to: qe-coverage-analyzer, qe-quality-gate
|
|
43
43
|
Triggers: When coverage below target thresholds or quality gate validation
|
|
44
44
|
</coordination>
|
|
45
|
+
|
|
46
|
+
<learning_protocol>
|
|
47
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
48
|
+
|
|
49
|
+
**Store Experience:**
|
|
50
|
+
```typescript
|
|
51
|
+
mcp__agentic_qe__learning_store_experience({
|
|
52
|
+
agentId: "qe-coverage-gap-analyzer",
|
|
53
|
+
taskType: "coverage-gap-analysis",
|
|
54
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
55
|
+
outcome: { /* task-specific results */ },
|
|
56
|
+
metadata: { phase: "COVERAGE_ANALYSIS", cycleId: "<cycleId>" }
|
|
57
|
+
})
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
**Store Artifacts:**
|
|
61
|
+
```typescript
|
|
62
|
+
mcp__agentic_qe__memory_store({
|
|
63
|
+
key: "aqe/coverage-gaps/<task_id>",
|
|
64
|
+
value: { /* task artifacts */ },
|
|
65
|
+
namespace: "aqe",
|
|
66
|
+
persist: true
|
|
67
|
+
})
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
**Reward Criteria:**
|
|
71
|
+
- 1.0: All gaps identified with accurate risk scores, actionable test templates generated, impact analysis complete
|
|
72
|
+
- 0.7: Good gap detection, reasonable prioritization, test recommendations provided
|
|
73
|
+
- 0.5: Gaps identified, basic prioritization, acceptable recommendations
|
|
74
|
+
- 0.0: Missed critical gaps or inaccurate risk assessment
|
|
75
|
+
</learning_protocol>
|
|
45
76
|
</qe_subagent_definition>
|
|
@@ -43,4 +43,35 @@ Reports to: qe-test-data-architect
|
|
|
43
43
|
Triggers: When test data needed for TDD cycles or integration testing
|
|
44
44
|
Handoff: Set readyForHandoff=true when all data generated with valid referential integrity
|
|
45
45
|
</coordination>
|
|
46
|
+
|
|
47
|
+
<learning_protocol>
|
|
48
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
49
|
+
|
|
50
|
+
**Store Experience:**
|
|
51
|
+
```typescript
|
|
52
|
+
mcp__agentic_qe__learning_store_experience({
|
|
53
|
+
agentId: "qe-data-generator",
|
|
54
|
+
taskType: "test-data-generation",
|
|
55
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
56
|
+
outcome: { /* task-specific results */ },
|
|
57
|
+
metadata: { phase: "DATA_GENERATION", cycleId: "<cycleId>" }
|
|
58
|
+
})
|
|
59
|
+
```
|
|
60
|
+
|
|
61
|
+
**Store Artifacts:**
|
|
62
|
+
```typescript
|
|
63
|
+
mcp__agentic_qe__memory_store({
|
|
64
|
+
key: "aqe/test-data/<task_id>",
|
|
65
|
+
value: { /* task artifacts */ },
|
|
66
|
+
namespace: "aqe",
|
|
67
|
+
persist: true
|
|
68
|
+
})
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
**Reward Criteria:**
|
|
72
|
+
- 1.0: Realistic data, 100% referential integrity, edge cases included, high throughput achieved
|
|
73
|
+
- 0.7: Good data quality, minor relationship issues, edge cases present
|
|
74
|
+
- 0.5: Acceptable data, some integrity issues, basic edge case coverage
|
|
75
|
+
- 0.0: Invalid data, broken relationships, or missing edge cases
|
|
76
|
+
</learning_protocol>
|
|
46
77
|
</qe_subagent_definition>
|
|
@@ -57,4 +57,35 @@ Reports to: qe-flaky-test-hunter, qe-quality-gate
|
|
|
57
57
|
Triggers: When test run history available for flakiness analysis
|
|
58
58
|
Handoff: Emit flaky-investigator:completed with flakyTestsFound count
|
|
59
59
|
</coordination>
|
|
60
|
+
|
|
61
|
+
<learning_protocol>
|
|
62
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
63
|
+
|
|
64
|
+
**Store Experience:**
|
|
65
|
+
```typescript
|
|
66
|
+
mcp__agentic_qe__learning_store_experience({
|
|
67
|
+
agentId: "qe-flaky-investigator",
|
|
68
|
+
taskType: "flaky-investigation",
|
|
69
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
70
|
+
outcome: { /* task-specific results */ },
|
|
71
|
+
metadata: { phase: "FLAKY_ANALYSIS", cycleId: "<cycleId>" }
|
|
72
|
+
})
|
|
73
|
+
```
|
|
74
|
+
|
|
75
|
+
**Store Artifacts:**
|
|
76
|
+
```typescript
|
|
77
|
+
mcp__agentic_qe__memory_store({
|
|
78
|
+
key: "aqe/flaky/<task_id>",
|
|
79
|
+
value: { /* task artifacts */ },
|
|
80
|
+
namespace: "aqe",
|
|
81
|
+
persist: true
|
|
82
|
+
})
|
|
83
|
+
```
|
|
84
|
+
|
|
85
|
+
**Reward Criteria:**
|
|
86
|
+
- 1.0: All flaky tests detected, accurate root cause classification, high-confidence fixes with effort estimates
|
|
87
|
+
- 0.7: Good detection, reasonable root cause analysis, actionable fixes
|
|
88
|
+
- 0.5: Flaky tests identified, basic classification, some fix recommendations
|
|
89
|
+
- 0.0: Missed flaky tests or incorrect root cause analysis
|
|
90
|
+
</learning_protocol>
|
|
60
91
|
</qe_subagent_definition>
|
|
@@ -56,4 +56,35 @@ Reports to: qe-test-executor
|
|
|
56
56
|
Triggers: When integration test scope requested
|
|
57
57
|
Handoff: Set readyForHandoff=true when all critical tests pass
|
|
58
58
|
</coordination>
|
|
59
|
+
|
|
60
|
+
<learning_protocol>
|
|
61
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
62
|
+
|
|
63
|
+
**Store Experience:**
|
|
64
|
+
```typescript
|
|
65
|
+
mcp__agentic_qe__learning_store_experience({
|
|
66
|
+
agentId: "qe-integration-tester",
|
|
67
|
+
taskType: "integration-testing",
|
|
68
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
69
|
+
outcome: { /* task-specific results */ },
|
|
70
|
+
metadata: { phase: "INTEGRATION", cycleId: "<cycleId>" }
|
|
71
|
+
})
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
**Store Artifacts:**
|
|
75
|
+
```typescript
|
|
76
|
+
mcp__agentic_qe__memory_store({
|
|
77
|
+
key: "aqe/integration/<task_id>",
|
|
78
|
+
value: { /* task artifacts */ },
|
|
79
|
+
namespace: "aqe",
|
|
80
|
+
persist: true
|
|
81
|
+
})
|
|
82
|
+
```
|
|
83
|
+
|
|
84
|
+
**Reward Criteria:**
|
|
85
|
+
- 1.0: All critical tests pass, contracts validated, proper connection lifecycle, no latency issues
|
|
86
|
+
- 0.7: Most tests pass, minor contract issues, acceptable performance
|
|
87
|
+
- 0.5: Core tests pass, some integration failures, acceptable for non-critical paths
|
|
88
|
+
- 0.0: Critical test failures, contract violations, or connection errors
|
|
89
|
+
</learning_protocol>
|
|
59
90
|
</qe_subagent_definition>
|
|
@@ -58,4 +58,35 @@ Reports to: qe-performance-tester
|
|
|
58
58
|
Triggers: After performance test execution completes
|
|
59
59
|
Handoff: Set readyForHandoff=true only if all SLA validations pass
|
|
60
60
|
</coordination>
|
|
61
|
+
|
|
62
|
+
<learning_protocol>
|
|
63
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
64
|
+
|
|
65
|
+
**Store Experience:**
|
|
66
|
+
```typescript
|
|
67
|
+
mcp__agentic_qe__learning_store_experience({
|
|
68
|
+
agentId: "qe-performance-validator",
|
|
69
|
+
taskType: "performance-validation",
|
|
70
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
71
|
+
outcome: { /* task-specific results */ },
|
|
72
|
+
metadata: { phase: "PERFORMANCE", cycleId: "<cycleId>" }
|
|
73
|
+
})
|
|
74
|
+
```
|
|
75
|
+
|
|
76
|
+
**Store Artifacts:**
|
|
77
|
+
```typescript
|
|
78
|
+
mcp__agentic_qe__memory_store({
|
|
79
|
+
key: "aqe/performance/<task_id>",
|
|
80
|
+
value: { /* task artifacts */ },
|
|
81
|
+
namespace: "aqe",
|
|
82
|
+
persist: true
|
|
83
|
+
})
|
|
84
|
+
```
|
|
85
|
+
|
|
86
|
+
**Reward Criteria:**
|
|
87
|
+
- 1.0: All SLA validations pass, no regressions, performance budgets met
|
|
88
|
+
- 0.7: Most SLAs pass, minor regressions (<10%), acceptable performance
|
|
89
|
+
- 0.5: Core SLAs pass, some violations, acceptable for non-critical endpoints
|
|
90
|
+
- 0.0: Critical SLA violations or significant performance regressions (>10%)
|
|
91
|
+
</learning_protocol>
|
|
61
92
|
</qe_subagent_definition>
|
|
@@ -60,4 +60,35 @@ Reports to: qe-security-scanner
|
|
|
60
60
|
Triggers: Before release or when security scan requested
|
|
61
61
|
Handoff: ALWAYS block if critical vulnerabilities detected, set readyForHandoff=false
|
|
62
62
|
</coordination>
|
|
63
|
+
|
|
64
|
+
<learning_protocol>
|
|
65
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
66
|
+
|
|
67
|
+
**Store Experience:**
|
|
68
|
+
```typescript
|
|
69
|
+
mcp__agentic_qe__learning_store_experience({
|
|
70
|
+
agentId: "qe-security-auditor",
|
|
71
|
+
taskType: "security-audit",
|
|
72
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
73
|
+
outcome: { /* task-specific results */ },
|
|
74
|
+
metadata: { phase: "SECURITY", cycleId: "<cycleId>" }
|
|
75
|
+
})
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
**Store Artifacts:**
|
|
79
|
+
```typescript
|
|
80
|
+
mcp__agentic_qe__memory_store({
|
|
81
|
+
key: "aqe/security/<task_id>",
|
|
82
|
+
value: { /* task artifacts */ },
|
|
83
|
+
namespace: "aqe",
|
|
84
|
+
persist: true
|
|
85
|
+
})
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
**Reward Criteria:**
|
|
89
|
+
- 1.0: No critical/high vulnerabilities, all compliance standards met, comprehensive remediation guidance
|
|
90
|
+
- 0.7: Only medium/low vulnerabilities, most compliance checks pass, good remediation steps
|
|
91
|
+
- 0.5: Some vulnerabilities detected, partial compliance, basic remediation
|
|
92
|
+
- 0.0: Critical vulnerabilities detected or major compliance violations
|
|
93
|
+
</learning_protocol>
|
|
63
94
|
</qe_subagent_definition>
|
|
@@ -59,4 +59,35 @@ Reports to: qe-test-data-architect, qe-integration-orchestrator
|
|
|
59
59
|
Triggers: When test data generation is requested with schema definition
|
|
60
60
|
Handoff: Store dataset in memory namespace, emit `test-data-architect-sub:completed` event
|
|
61
61
|
</coordination>
|
|
62
|
+
|
|
63
|
+
<learning_protocol>
|
|
64
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
65
|
+
|
|
66
|
+
**Store Experience:**
|
|
67
|
+
```typescript
|
|
68
|
+
mcp__agentic_qe__learning_store_experience({
|
|
69
|
+
agentId: "qe-test-data-architect-sub",
|
|
70
|
+
taskType: "test-data-architecture",
|
|
71
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
72
|
+
outcome: { /* task-specific results */ },
|
|
73
|
+
metadata: { phase: "DATA_ARCHITECTURE", cycleId: "<cycleId>" }
|
|
74
|
+
})
|
|
75
|
+
```
|
|
76
|
+
|
|
77
|
+
**Store Artifacts:**
|
|
78
|
+
```typescript
|
|
79
|
+
mcp__agentic_qe__memory_store({
|
|
80
|
+
key: "aqe/test-data-arch/<task_id>",
|
|
81
|
+
value: { /* task artifacts */ },
|
|
82
|
+
namespace: "aqe",
|
|
83
|
+
persist: true
|
|
84
|
+
})
|
|
85
|
+
```
|
|
86
|
+
|
|
87
|
+
**Reward Criteria:**
|
|
88
|
+
- 1.0: 100% referential integrity, high throughput (>10k rec/sec), comprehensive edge cases, proper streaming
|
|
89
|
+
- 0.7: Good integrity (no orphans), acceptable throughput, edge cases included
|
|
90
|
+
- 0.5: Minor integrity issues, adequate throughput, basic edge case coverage
|
|
91
|
+
- 0.0: Broken relationships, low throughput, or missing edge cases
|
|
92
|
+
</learning_protocol>
|
|
62
93
|
</qe_subagent_definition>
|
|
@@ -72,4 +72,35 @@ Receives from: qe-test-writer (RED phase output with failing tests)
|
|
|
72
72
|
Handoff: Store GREEN output in memory, emit `test-implementer:completed`, qe-test-refactorer picks up
|
|
73
73
|
Validation: readyForHandoff=true ONLY if allTestsPassing=true AND testFile.hash unchanged
|
|
74
74
|
</coordination>
|
|
75
|
+
|
|
76
|
+
<learning_protocol>
|
|
77
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
78
|
+
|
|
79
|
+
**Store Experience:**
|
|
80
|
+
```typescript
|
|
81
|
+
mcp__agentic_qe__learning_store_experience({
|
|
82
|
+
agentId: "qe-test-implementer",
|
|
83
|
+
taskType: "tdd-green-phase",
|
|
84
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
85
|
+
outcome: { /* task-specific results */ },
|
|
86
|
+
metadata: { phase: "GREEN", cycleId: "<cycleId>" }
|
|
87
|
+
})
|
|
88
|
+
```
|
|
89
|
+
|
|
90
|
+
**Store Artifacts:**
|
|
91
|
+
```typescript
|
|
92
|
+
mcp__agentic_qe__memory_store({
|
|
93
|
+
key: "aqe/tdd/green/<task_id>",
|
|
94
|
+
value: { /* task artifacts */ },
|
|
95
|
+
namespace: "aqe",
|
|
96
|
+
persist: true
|
|
97
|
+
})
|
|
98
|
+
```
|
|
99
|
+
|
|
100
|
+
**Reward Criteria:**
|
|
101
|
+
- 1.0: All tests pass, minimal implementation, YAGNI enforced, no test modifications
|
|
102
|
+
- 0.7: All tests pass, slightly over-engineered, tests unchanged
|
|
103
|
+
- 0.5: Tests pass but implementation too complex or tests were modified
|
|
104
|
+
- 0.0: Tests still failing or test file hash changed
|
|
105
|
+
</learning_protocol>
|
|
75
106
|
</qe_subagent_definition>
|
|
@@ -83,4 +83,35 @@ Receives from: qe-test-implementer (GREEN phase output with passing tests)
|
|
|
83
83
|
Handoff: Store REFACTOR output, emit `test-refactorer:completed`, TDD cycle COMPLETE
|
|
84
84
|
Validation: cycleComplete=true ONLY if allTestsPassing=true AND testFile.hash unchanged AND coverage not decreased
|
|
85
85
|
</coordination>
|
|
86
|
+
|
|
87
|
+
<learning_protocol>
|
|
88
|
+
**⚠️ MANDATORY**: After completing your task, call learning MCP tools.
|
|
89
|
+
|
|
90
|
+
**Store Experience:**
|
|
91
|
+
```typescript
|
|
92
|
+
mcp__agentic_qe__learning_store_experience({
|
|
93
|
+
agentId: "qe-test-refactorer",
|
|
94
|
+
taskType: "tdd-refactor-phase",
|
|
95
|
+
reward: <calculated_reward>, // 0.0-1.0
|
|
96
|
+
outcome: { /* task-specific results */ },
|
|
97
|
+
metadata: { phase: "REFACTOR", cycleId: "<cycleId>" }
|
|
98
|
+
})
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
**Store Artifacts:**
|
|
102
|
+
```typescript
|
|
103
|
+
mcp__agentic_qe__memory_store({
|
|
104
|
+
key: "aqe/tdd/refactor/<task_id>",
|
|
105
|
+
value: { /* task artifacts */ },
|
|
106
|
+
namespace: "aqe",
|
|
107
|
+
persist: true
|
|
108
|
+
})
|
|
109
|
+
```
|
|
110
|
+
|
|
111
|
+
**Reward Criteria:**
|
|
112
|
+
- 1.0: Tests pass, significant quality improvement (complexity -50%+, maintainability +30%+), no coverage drop
|
|
113
|
+
- 0.7: Tests pass, good quality improvement, minor coverage change
|
|
114
|
+
- 0.5: Tests pass, minimal improvement, coverage maintained
|
|
115
|
+
- 0.0: Tests fail or coverage decreased
|
|
116
|
+
</learning_protocol>
|
|
86
117
|
</qe_subagent_definition>
|