agentic-qe 1.9.0 → 1.9.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (55) hide show
  1. package/CHANGELOG.md +40 -0
  2. package/README.md +17 -1
  3. package/dist/cli/commands/learn/index.d.ts.map +1 -1
  4. package/dist/cli/commands/learn/index.js +3 -4
  5. package/dist/cli/commands/learn/index.js.map +1 -1
  6. package/dist/cli/init/directory-structure.d.ts.map +1 -1
  7. package/dist/cli/init/directory-structure.js +2 -18
  8. package/dist/cli/init/directory-structure.js.map +1 -1
  9. package/dist/cli/init/index.js +7 -7
  10. package/dist/cli/init/index.js.map +1 -1
  11. package/dist/core/memory/SwarmMemoryManager.d.ts.map +1 -1
  12. package/dist/core/memory/SwarmMemoryManager.js +53 -1
  13. package/dist/core/memory/SwarmMemoryManager.js.map +1 -1
  14. package/dist/mcp/handlers/memory/memory-store.d.ts +6 -2
  15. package/dist/mcp/handlers/memory/memory-store.d.ts.map +1 -1
  16. package/dist/mcp/handlers/memory/memory-store.js +26 -4
  17. package/dist/mcp/handlers/memory/memory-store.js.map +1 -1
  18. package/dist/mcp/server.d.ts.map +1 -1
  19. package/dist/mcp/server.js +2 -1
  20. package/dist/mcp/server.js.map +1 -1
  21. package/package.json +1 -1
  22. package/.claude/commands/github/code-review-swarm.md +0 -514
  23. package/.claude/commands/github/github-modes.md +0 -147
  24. package/.claude/commands/github/issue-tracker.md +0 -292
  25. package/.claude/commands/github/multi-repo-swarm.md +0 -519
  26. package/.claude/commands/github/pr-manager.md +0 -170
  27. package/.claude/commands/github/project-board-sync.md +0 -471
  28. package/.claude/commands/github/release-manager.md +0 -338
  29. package/.claude/commands/github/release-swarm.md +0 -544
  30. package/.claude/commands/github/repo-architect.md +0 -367
  31. package/.claude/commands/github/swarm-issue.md +0 -482
  32. package/.claude/commands/github/swarm-pr.md +0 -285
  33. package/.claude/commands/github/sync-coordinator.md +0 -301
  34. package/.claude/commands/github/workflow-automation.md +0 -442
  35. package/.claude/commands/hooks/overview.md +0 -132
  36. package/.claude/commands/pair/commands.md +0 -546
  37. package/.claude/commands/pair/config.md +0 -510
  38. package/.claude/commands/pair/examples.md +0 -512
  39. package/.claude/commands/pair/modes.md +0 -348
  40. package/.claude/commands/pair/session.md +0 -407
  41. package/.claude/commands/pair/start.md +0 -209
  42. package/.claude/commands/sparc/orchestrator.md +0 -132
  43. package/.claude/commands/sparc/sparc-modes.md +0 -174
  44. package/.claude/commands/stream-chain/pipeline.md +0 -121
  45. package/.claude/commands/stream-chain/run.md +0 -70
  46. package/.claude/commands/swarm/analysis.md +0 -95
  47. package/.claude/commands/swarm/development.md +0 -96
  48. package/.claude/commands/swarm/examples.md +0 -168
  49. package/.claude/commands/swarm/maintenance.md +0 -102
  50. package/.claude/commands/swarm/optimization.md +0 -117
  51. package/.claude/commands/swarm/research.md +0 -136
  52. package/.claude/commands/swarm/testing.md +0 -131
  53. package/.claude/commands/truth/start.md +0 -143
  54. package/.claude/commands/verify/check.md +0 -50
  55. package/.claude/commands/verify/start.md +0 -128
@@ -1,168 +0,0 @@
1
- # Examples Swarm Strategy
2
-
3
- ## Common Swarm Patterns
4
-
5
- ### Research Swarm
6
-
7
- #### Using MCP Tools
8
- ```javascript
9
- // Initialize research swarm
10
- mcp__claude-flow__swarm_init({
11
- "topology": "mesh",
12
- "maxAgents": 6,
13
- "strategy": "adaptive"
14
- })
15
-
16
- // Spawn research agents
17
- mcp__claude-flow__agent_spawn({
18
- "type": "researcher",
19
- "name": "AI Trends Researcher",
20
- "capabilities": ["web-search", "analysis", "synthesis"]
21
- })
22
-
23
- // Orchestrate research
24
- mcp__claude-flow__task_orchestrate({
25
- "task": "research AI trends",
26
- "strategy": "parallel",
27
- "priority": "medium"
28
- })
29
-
30
- // Monitor progress
31
- mcp__claude-flow__swarm_status({
32
- "swarmId": "research-swarm"
33
- })
34
- ```
35
-
36
- #### Using CLI (Fallback)
37
- ```bash
38
- npx claude-flow swarm "research AI trends" \
39
- --strategy research \
40
- --mode distributed \
41
- --max-agents 6 \
42
- --parallel
43
- ```
44
-
45
- ### Development Swarm
46
-
47
- #### Using MCP Tools
48
- ```javascript
49
- // Initialize development swarm
50
- mcp__claude-flow__swarm_init({
51
- "topology": "hierarchical",
52
- "maxAgents": 8,
53
- "strategy": "balanced"
54
- })
55
-
56
- // Spawn development team
57
- const devAgents = [
58
- { type: "architect", name: "API Designer" },
59
- { type: "coder", name: "Backend Developer" },
60
- { type: "tester", name: "API Tester" },
61
- { type: "documenter", name: "API Documenter" }
62
- ]
63
-
64
- devAgents.forEach(agent => {
65
- mcp__claude-flow__agent_spawn({
66
- "type": agent.type,
67
- "name": agent.name,
68
- "swarmId": "dev-swarm"
69
- })
70
- })
71
-
72
- // Orchestrate development
73
- mcp__claude-flow__task_orchestrate({
74
- "task": "build REST API",
75
- "strategy": "sequential",
76
- "dependencies": ["design", "implement", "test", "document"]
77
- })
78
-
79
- // Enable monitoring
80
- mcp__claude-flow__swarm_monitor({
81
- "swarmId": "dev-swarm",
82
- "interval": 5000
83
- })
84
- ```
85
-
86
- #### Using CLI (Fallback)
87
- ```bash
88
- npx claude-flow swarm "build REST API" \
89
- --strategy development \
90
- --mode hierarchical \
91
- --monitor \
92
- --output sqlite
93
- ```
94
-
95
- ### Analysis Swarm
96
-
97
- #### Using MCP Tools
98
- ```javascript
99
- // Initialize analysis swarm
100
- mcp__claude-flow__swarm_init({
101
- "topology": "mesh",
102
- "maxAgents": 5,
103
- "strategy": "adaptive"
104
- })
105
-
106
- // Spawn analysis agents
107
- mcp__claude-flow__agent_spawn({
108
- "type": "analyst",
109
- "name": "Code Analyzer",
110
- "capabilities": ["static-analysis", "complexity-analysis"]
111
- })
112
-
113
- mcp__claude-flow__agent_spawn({
114
- "type": "analyst",
115
- "name": "Security Analyzer",
116
- "capabilities": ["security-scan", "vulnerability-detection"]
117
- })
118
-
119
- // Parallel analysis execution
120
- mcp__claude-flow__parallel_execute({
121
- "tasks": [
122
- { "id": "analyze-code", "command": "analyze codebase structure" },
123
- { "id": "analyze-security", "command": "scan for vulnerabilities" },
124
- { "id": "analyze-performance", "command": "identify bottlenecks" }
125
- ]
126
- })
127
-
128
- // Generate comprehensive report
129
- mcp__claude-flow__performance_report({
130
- "format": "detailed",
131
- "timeframe": "current"
132
- })
133
- ```
134
-
135
- #### Using CLI (Fallback)
136
- ```bash
137
- npx claude-flow swarm "analyze codebase" \
138
- --strategy analysis \
139
- --mode mesh \
140
- --parallel \
141
- --timeout 300
142
- ```
143
-
144
- ## Error Handling Examples
145
-
146
- ```javascript
147
- // Setup fault tolerance
148
- mcp__claude-flow__daa_fault_tolerance({
149
- "agentId": "all",
150
- "strategy": "auto-recovery"
151
- })
152
-
153
- // Handle errors gracefully
154
- try {
155
- await mcp__claude-flow__task_orchestrate({
156
- "task": "complex operation",
157
- "strategy": "parallel"
158
- })
159
- } catch (error) {
160
- // Check swarm health
161
- const status = await mcp__claude-flow__swarm_status({})
162
-
163
- // Log error patterns
164
- await mcp__claude-flow__error_analysis({
165
- "logs": [error.message]
166
- })
167
- }
168
- ```
@@ -1,102 +0,0 @@
1
- # Maintenance Swarm Strategy
2
-
3
- ## Purpose
4
- System maintenance and updates through coordinated agents.
5
-
6
- ## Activation
7
-
8
- ### Using MCP Tools
9
- ```javascript
10
- // Initialize maintenance swarm
11
- mcp__claude-flow__swarm_init({
12
- "topology": "star",
13
- "maxAgents": 5,
14
- "strategy": "sequential"
15
- })
16
-
17
- // Orchestrate maintenance task
18
- mcp__claude-flow__task_orchestrate({
19
- "task": "update dependencies",
20
- "strategy": "sequential",
21
- "priority": "medium",
22
- "dependencies": ["backup", "test", "update", "verify"]
23
- })
24
- ```
25
-
26
- ### Using CLI (Fallback)
27
- `npx claude-flow swarm "update dependencies" --strategy maintenance`
28
-
29
- ## Agent Roles
30
-
31
- ### Agent Spawning with MCP
32
- ```javascript
33
- // Spawn maintenance agents
34
- mcp__claude-flow__agent_spawn({
35
- "type": "analyst",
36
- "name": "Dependency Analyzer",
37
- "capabilities": ["dependency-analysis", "version-management"]
38
- })
39
-
40
- mcp__claude-flow__agent_spawn({
41
- "type": "monitor",
42
- "name": "Security Scanner",
43
- "capabilities": ["security", "vulnerability-scan"]
44
- })
45
-
46
- mcp__claude-flow__agent_spawn({
47
- "type": "tester",
48
- "name": "Test Runner",
49
- "capabilities": ["testing", "validation"]
50
- })
51
-
52
- mcp__claude-flow__agent_spawn({
53
- "type": "documenter",
54
- "name": "Documentation Updater",
55
- "capabilities": ["documentation", "changelog"]
56
- })
57
- ```
58
-
59
- ## Safety Features
60
-
61
- ### Backup and Recovery
62
- ```javascript
63
- // Create system backup
64
- mcp__claude-flow__backup_create({
65
- "components": ["code", "config", "dependencies"],
66
- "destination": "./backups/maintenance-" + Date.now()
67
- })
68
-
69
- // Create state snapshot
70
- mcp__claude-flow__state_snapshot({
71
- "name": "pre-maintenance-" + Date.now()
72
- })
73
-
74
- // Enable fault tolerance
75
- mcp__claude-flow__daa_fault_tolerance({
76
- "agentId": "all",
77
- "strategy": "checkpoint-recovery"
78
- })
79
- ```
80
-
81
- ### Security Scanning
82
- ```javascript
83
- // Run security scan
84
- mcp__claude-flow__security_scan({
85
- "target": "./",
86
- "depth": "comprehensive"
87
- })
88
- ```
89
-
90
- ### Monitoring
91
- ```javascript
92
- // Health check before/after
93
- mcp__claude-flow__health_check({
94
- "components": ["dependencies", "tests", "build"]
95
- })
96
-
97
- // Monitor maintenance progress
98
- mcp__claude-flow__swarm_monitor({
99
- "swarmId": "maintenance-swarm",
100
- "interval": 3000
101
- })
102
- ```
@@ -1,117 +0,0 @@
1
- # Optimization Swarm Strategy
2
-
3
- ## Purpose
4
- Performance optimization through specialized analysis.
5
-
6
- ## Activation
7
-
8
- ### Using MCP Tools
9
- ```javascript
10
- // Initialize optimization swarm
11
- mcp__claude-flow__swarm_init({
12
- "topology": "mesh",
13
- "maxAgents": 6,
14
- "strategy": "adaptive"
15
- })
16
-
17
- // Orchestrate optimization task
18
- mcp__claude-flow__task_orchestrate({
19
- "task": "optimize performance",
20
- "strategy": "parallel",
21
- "priority": "high"
22
- })
23
- ```
24
-
25
- ### Using CLI (Fallback)
26
- `npx claude-flow swarm "optimize performance" --strategy optimization`
27
-
28
- ## Agent Roles
29
-
30
- ### Agent Spawning with MCP
31
- ```javascript
32
- // Spawn optimization agents
33
- mcp__claude-flow__agent_spawn({
34
- "type": "optimizer",
35
- "name": "Performance Profiler",
36
- "capabilities": ["profiling", "bottleneck-detection"]
37
- })
38
-
39
- mcp__claude-flow__agent_spawn({
40
- "type": "analyst",
41
- "name": "Memory Analyzer",
42
- "capabilities": ["memory-analysis", "leak-detection"]
43
- })
44
-
45
- mcp__claude-flow__agent_spawn({
46
- "type": "optimizer",
47
- "name": "Code Optimizer",
48
- "capabilities": ["code-optimization", "refactoring"]
49
- })
50
-
51
- mcp__claude-flow__agent_spawn({
52
- "type": "tester",
53
- "name": "Benchmark Runner",
54
- "capabilities": ["benchmarking", "performance-testing"]
55
- })
56
- ```
57
-
58
- ## Optimization Areas
59
-
60
- ### Performance Analysis
61
- ```javascript
62
- // Analyze bottlenecks
63
- mcp__claude-flow__bottleneck_analyze({
64
- "component": "all",
65
- "metrics": ["cpu", "memory", "io", "network"]
66
- })
67
-
68
- // Run benchmarks
69
- mcp__claude-flow__benchmark_run({
70
- "suite": "performance"
71
- })
72
-
73
- // WASM optimization
74
- mcp__claude-flow__wasm_optimize({
75
- "operation": "simd-acceleration"
76
- })
77
- ```
78
-
79
- ### Optimization Operations
80
- ```javascript
81
- // Optimize topology
82
- mcp__claude-flow__topology_optimize({
83
- "swarmId": "optimization-swarm"
84
- })
85
-
86
- // DAA optimization
87
- mcp__claude-flow__daa_optimization({
88
- "target": "performance",
89
- "metrics": ["speed", "memory", "efficiency"]
90
- })
91
-
92
- // Load balancing
93
- mcp__claude-flow__load_balance({
94
- "swarmId": "optimization-swarm",
95
- "tasks": optimizationTasks
96
- })
97
- ```
98
-
99
- ### Monitoring and Reporting
100
- ```javascript
101
- // Performance report
102
- mcp__claude-flow__performance_report({
103
- "format": "detailed",
104
- "timeframe": "7d"
105
- })
106
-
107
- // Trend analysis
108
- mcp__claude-flow__trend_analysis({
109
- "metric": "performance",
110
- "period": "30d"
111
- })
112
-
113
- // Cost analysis
114
- mcp__claude-flow__cost_analysis({
115
- "timeframe": "30d"
116
- })
117
- ```
@@ -1,136 +0,0 @@
1
- # Research Swarm Strategy
2
-
3
- ## Purpose
4
- Deep research through parallel information gathering.
5
-
6
- ## Activation
7
-
8
- ### Using MCP Tools
9
- ```javascript
10
- // Initialize research swarm
11
- mcp__claude-flow__swarm_init({
12
- "topology": "mesh",
13
- "maxAgents": 6,
14
- "strategy": "adaptive"
15
- })
16
-
17
- // Orchestrate research task
18
- mcp__claude-flow__task_orchestrate({
19
- "task": "research topic X",
20
- "strategy": "parallel",
21
- "priority": "medium"
22
- })
23
- ```
24
-
25
- ### Using CLI (Fallback)
26
- `npx claude-flow swarm "research topic X" --strategy research`
27
-
28
- ## Agent Roles
29
-
30
- ### Agent Spawning with MCP
31
- ```javascript
32
- // Spawn research agents
33
- mcp__claude-flow__agent_spawn({
34
- "type": "researcher",
35
- "name": "Web Researcher",
36
- "capabilities": ["web-search", "content-extraction", "source-validation"]
37
- })
38
-
39
- mcp__claude-flow__agent_spawn({
40
- "type": "researcher",
41
- "name": "Academic Researcher",
42
- "capabilities": ["paper-analysis", "citation-tracking", "literature-review"]
43
- })
44
-
45
- mcp__claude-flow__agent_spawn({
46
- "type": "analyst",
47
- "name": "Data Analyst",
48
- "capabilities": ["data-processing", "statistical-analysis", "visualization"]
49
- })
50
-
51
- mcp__claude-flow__agent_spawn({
52
- "type": "documenter",
53
- "name": "Report Writer",
54
- "capabilities": ["synthesis", "technical-writing", "formatting"]
55
- })
56
- ```
57
-
58
- ## Research Methods
59
-
60
- ### Information Gathering
61
- ```javascript
62
- // Parallel information collection
63
- mcp__claude-flow__parallel_execute({
64
- "tasks": [
65
- { "id": "web-search", "command": "search recent publications" },
66
- { "id": "academic-search", "command": "search academic databases" },
67
- { "id": "data-collection", "command": "gather relevant datasets" }
68
- ]
69
- })
70
-
71
- // Store research findings
72
- mcp__claude-flow__memory_usage({
73
- "action": "store",
74
- "key": "research-findings-" + Date.now(),
75
- "value": JSON.stringify(findings),
76
- "namespace": "research",
77
- "ttl": 604800 // 7 days
78
- })
79
- ```
80
-
81
- ### Analysis and Validation
82
- ```javascript
83
- // Pattern recognition in findings
84
- mcp__claude-flow__pattern_recognize({
85
- "data": researchData,
86
- "patterns": ["trend", "correlation", "outlier"]
87
- })
88
-
89
- // Cognitive analysis
90
- mcp__claude-flow__cognitive_analyze({
91
- "behavior": "research-synthesis"
92
- })
93
-
94
- // Cross-reference validation
95
- mcp__claude-flow__quality_assess({
96
- "target": "research-sources",
97
- "criteria": ["credibility", "relevance", "recency"]
98
- })
99
- ```
100
-
101
- ### Knowledge Management
102
- ```javascript
103
- // Search existing knowledge
104
- mcp__claude-flow__memory_search({
105
- "pattern": "topic X",
106
- "namespace": "research",
107
- "limit": 20
108
- })
109
-
110
- // Create knowledge connections
111
- mcp__claude-flow__neural_patterns({
112
- "action": "learn",
113
- "operation": "knowledge-graph",
114
- "metadata": {
115
- "topic": "X",
116
- "connections": relatedTopics
117
- }
118
- })
119
- ```
120
-
121
- ### Reporting
122
- ```javascript
123
- // Generate research report
124
- mcp__claude-flow__workflow_execute({
125
- "workflowId": "research-report-generation",
126
- "params": {
127
- "findings": findings,
128
- "format": "comprehensive"
129
- }
130
- })
131
-
132
- // Monitor progress
133
- mcp__claude-flow__swarm_status({
134
- "swarmId": "research-swarm"
135
- })
136
- ```
@@ -1,131 +0,0 @@
1
- # Testing Swarm Strategy
2
-
3
- ## Purpose
4
- Comprehensive testing through distributed execution.
5
-
6
- ## Activation
7
-
8
- ### Using MCP Tools
9
- ```javascript
10
- // Initialize testing swarm
11
- mcp__claude-flow__swarm_init({
12
- "topology": "star",
13
- "maxAgents": 7,
14
- "strategy": "parallel"
15
- })
16
-
17
- // Orchestrate testing task
18
- mcp__claude-flow__task_orchestrate({
19
- "task": "test application",
20
- "strategy": "parallel",
21
- "priority": "high"
22
- })
23
- ```
24
-
25
- ### Using CLI (Fallback)
26
- `npx claude-flow swarm "test application" --strategy testing`
27
-
28
- ## Agent Roles
29
-
30
- ### Agent Spawning with MCP
31
- ```javascript
32
- // Spawn testing agents
33
- mcp__claude-flow__agent_spawn({
34
- "type": "tester",
35
- "name": "Unit Tester",
36
- "capabilities": ["unit-testing", "mocking", "coverage"]
37
- })
38
-
39
- mcp__claude-flow__agent_spawn({
40
- "type": "tester",
41
- "name": "Integration Tester",
42
- "capabilities": ["integration", "api-testing", "contract-testing"]
43
- })
44
-
45
- mcp__claude-flow__agent_spawn({
46
- "type": "tester",
47
- "name": "E2E Tester",
48
- "capabilities": ["e2e", "ui-testing", "user-flows"]
49
- })
50
-
51
- mcp__claude-flow__agent_spawn({
52
- "type": "tester",
53
- "name": "Performance Tester",
54
- "capabilities": ["load-testing", "stress-testing", "benchmarking"]
55
- })
56
-
57
- mcp__claude-flow__agent_spawn({
58
- "type": "monitor",
59
- "name": "Security Tester",
60
- "capabilities": ["security-testing", "penetration-testing", "vulnerability-scanning"]
61
- })
62
- ```
63
-
64
- ## Test Coverage
65
-
66
- ### Coverage Analysis
67
- ```javascript
68
- // Quality assessment
69
- mcp__claude-flow__quality_assess({
70
- "target": "test-coverage",
71
- "criteria": ["line-coverage", "branch-coverage", "function-coverage"]
72
- })
73
-
74
- // Edge case detection
75
- mcp__claude-flow__pattern_recognize({
76
- "data": testScenarios,
77
- "patterns": ["edge-case", "boundary-condition", "error-path"]
78
- })
79
- ```
80
-
81
- ### Test Execution
82
- ```javascript
83
- // Parallel test execution
84
- mcp__claude-flow__parallel_execute({
85
- "tasks": [
86
- { "id": "unit-tests", "command": "npm run test:unit" },
87
- { "id": "integration-tests", "command": "npm run test:integration" },
88
- { "id": "e2e-tests", "command": "npm run test:e2e" }
89
- ]
90
- })
91
-
92
- // Batch processing for test suites
93
- mcp__claude-flow__batch_process({
94
- "items": testSuites,
95
- "operation": "execute-test-suite"
96
- })
97
- ```
98
-
99
- ### Performance Testing
100
- ```javascript
101
- // Run performance benchmarks
102
- mcp__claude-flow__benchmark_run({
103
- "suite": "performance-tests"
104
- })
105
-
106
- // Security scanning
107
- mcp__claude-flow__security_scan({
108
- "target": "application",
109
- "depth": "comprehensive"
110
- })
111
- ```
112
-
113
- ### Monitoring and Reporting
114
- ```javascript
115
- // Monitor test execution
116
- mcp__claude-flow__swarm_monitor({
117
- "swarmId": "testing-swarm",
118
- "interval": 2000
119
- })
120
-
121
- // Generate test report
122
- mcp__claude-flow__performance_report({
123
- "format": "detailed",
124
- "timeframe": "current-run"
125
- })
126
-
127
- // Get test results
128
- mcp__claude-flow__task_results({
129
- "taskId": "test-execution-001"
130
- })
131
- ```