agentic-lang 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (146) hide show
  1. package/COMMUNITY.md +220 -0
  2. package/CONTRIBUTING.md +194 -0
  3. package/FINAL_REPORT.md +398 -0
  4. package/FOR_OTHER_LLMS.md +286 -0
  5. package/IMPROVEMENTS.md +319 -0
  6. package/LAUNCH_GUIDE.md +388 -0
  7. package/LICENSE +21 -0
  8. package/NPM_PUBLISH.md +257 -0
  9. package/PROJECT_COMPLETE.md +414 -0
  10. package/PROJECT_OVERVIEW.md +265 -0
  11. package/PROJECT_TREE.txt +228 -0
  12. package/PUBLISHING_GUIDE.md +426 -0
  13. package/PUBLISH_NOW.md +337 -0
  14. package/QUICKSTART.md +207 -0
  15. package/README.md +195 -0
  16. package/README_ENHANCED.md +329 -0
  17. package/READY_TO_LAUNCH.txt +56 -0
  18. package/REFACTOR_PLAN.md +179 -0
  19. package/ROADMAP.md +201 -0
  20. package/SUMMARY.md +315 -0
  21. package/bin/agentic.js +3 -0
  22. package/blog/001-introducing-agentic.md +382 -0
  23. package/blog/002-confidence-driven-development.md +490 -0
  24. package/blog/003-formal-verification.md +427 -0
  25. package/blog/004-multi-agent-production.md +436 -0
  26. package/dist/cli.d.ts +7 -0
  27. package/dist/cli.d.ts.map +1 -0
  28. package/dist/cli.js +151 -0
  29. package/dist/cli.js.map +1 -0
  30. package/dist/diagnostics/diagnostic.d.ts +115 -0
  31. package/dist/diagnostics/diagnostic.d.ts.map +1 -0
  32. package/dist/diagnostics/diagnostic.js +101 -0
  33. package/dist/diagnostics/diagnostic.js.map +1 -0
  34. package/dist/diagnostics/formatter.d.ts +36 -0
  35. package/dist/diagnostics/formatter.d.ts.map +1 -0
  36. package/dist/diagnostics/formatter.js +263 -0
  37. package/dist/diagnostics/formatter.js.map +1 -0
  38. package/dist/effects/effect-system.d.ts +64 -0
  39. package/dist/effects/effect-system.d.ts.map +1 -0
  40. package/dist/effects/effect-system.js +197 -0
  41. package/dist/effects/effect-system.js.map +1 -0
  42. package/dist/generator/typescript-generator.d.ts +31 -0
  43. package/dist/generator/typescript-generator.d.ts.map +1 -0
  44. package/dist/generator/typescript-generator.js +308 -0
  45. package/dist/generator/typescript-generator.js.map +1 -0
  46. package/dist/index.d.ts +19 -0
  47. package/dist/index.d.ts.map +1 -0
  48. package/dist/index.js +60 -0
  49. package/dist/index.js.map +1 -0
  50. package/dist/lean4/exporter.d.ts +24 -0
  51. package/dist/lean4/exporter.d.ts.map +1 -0
  52. package/dist/lean4/exporter.js +142 -0
  53. package/dist/lean4/exporter.js.map +1 -0
  54. package/dist/lsp/server.d.ts +6 -0
  55. package/dist/lsp/server.d.ts.map +1 -0
  56. package/dist/lsp/server.js +131 -0
  57. package/dist/lsp/server.js.map +1 -0
  58. package/dist/parser/lexer.d.ts +79 -0
  59. package/dist/parser/lexer.d.ts.map +1 -0
  60. package/dist/parser/lexer.js +296 -0
  61. package/dist/parser/lexer.js.map +1 -0
  62. package/dist/parser/parser-enhanced.d.ts +12 -0
  63. package/dist/parser/parser-enhanced.d.ts.map +1 -0
  64. package/dist/parser/parser-enhanced.js +206 -0
  65. package/dist/parser/parser-enhanced.js.map +1 -0
  66. package/dist/parser/parser.d.ts +34 -0
  67. package/dist/parser/parser.d.ts.map +1 -0
  68. package/dist/parser/parser.js +507 -0
  69. package/dist/parser/parser.js.map +1 -0
  70. package/dist/property-tests/generator-enhanced.d.ts +27 -0
  71. package/dist/property-tests/generator-enhanced.d.ts.map +1 -0
  72. package/dist/property-tests/generator-enhanced.js +209 -0
  73. package/dist/property-tests/generator-enhanced.js.map +1 -0
  74. package/dist/property-tests/generator-fixed.d.ts +2 -0
  75. package/dist/property-tests/generator-fixed.d.ts.map +1 -0
  76. package/dist/property-tests/generator-fixed.js +7 -0
  77. package/dist/property-tests/generator-fixed.js.map +1 -0
  78. package/dist/property-tests/generator.d.ts +28 -0
  79. package/dist/property-tests/generator.d.ts.map +1 -0
  80. package/dist/property-tests/generator.js +284 -0
  81. package/dist/property-tests/generator.js.map +1 -0
  82. package/dist/refinements/refinement-types.d.ts +96 -0
  83. package/dist/refinements/refinement-types.d.ts.map +1 -0
  84. package/dist/refinements/refinement-types.js +234 -0
  85. package/dist/refinements/refinement-types.js.map +1 -0
  86. package/dist/repl.d.ts +21 -0
  87. package/dist/repl.d.ts.map +1 -0
  88. package/dist/repl.js +317 -0
  89. package/dist/repl.js.map +1 -0
  90. package/dist/runtime/agents.d.ts +97 -0
  91. package/dist/runtime/agents.d.ts.map +1 -0
  92. package/dist/runtime/agents.js +258 -0
  93. package/dist/runtime/agents.js.map +1 -0
  94. package/dist/runtime/index.d.ts +98 -0
  95. package/dist/runtime/index.d.ts.map +1 -0
  96. package/dist/runtime/index.js +253 -0
  97. package/dist/runtime/index.js.map +1 -0
  98. package/dist/types-extended.d.ts +197 -0
  99. package/dist/types-extended.d.ts.map +1 -0
  100. package/dist/types-extended.js +7 -0
  101. package/dist/types-extended.js.map +1 -0
  102. package/dist/types.d.ts +129 -0
  103. package/dist/types.d.ts.map +1 -0
  104. package/dist/types.js +6 -0
  105. package/dist/types.js.map +1 -0
  106. package/dist/verification/z3-engine.d.ts +75 -0
  107. package/dist/verification/z3-engine.d.ts.map +1 -0
  108. package/dist/verification/z3-engine.js +234 -0
  109. package/dist/verification/z3-engine.js.map +1 -0
  110. package/examples/advanced-features.agentic +98 -0
  111. package/examples/annotations.agentic +37 -0
  112. package/examples/auth.agentic +53 -0
  113. package/examples/enterprise-example.agentic +360 -0
  114. package/examples/minimal.agentic +3 -0
  115. package/examples/minimal.ts +7 -0
  116. package/examples/ml-pipeline.agentic +350 -0
  117. package/examples/multi-agent-example.agentic +212 -0
  118. package/examples/onboarding-tutorial.agentic +263 -0
  119. package/examples/production-api.agentic +304 -0
  120. package/examples/real-world-chatbot.agentic +351 -0
  121. package/examples/result-handling.agentic +34 -0
  122. package/examples/runtime.ts +24 -0
  123. package/examples/showcase.agentic +22 -0
  124. package/examples/showcase.ts +28 -0
  125. package/examples/simple-test.agentic +4 -0
  126. package/examples/simple-test.ts +7 -0
  127. package/examples/simple.agentic +20 -0
  128. package/examples/test2.agentic +4 -0
  129. package/examples/test2.ts +9 -0
  130. package/examples/test3.agentic +4 -0
  131. package/examples/test3.ts +9 -0
  132. package/package.json +70 -0
  133. package/playground/index.html +221 -0
  134. package/playground/playground.js +291 -0
  135. package/registry/package-registry.ts +319 -0
  136. package/scripts/build.js +50 -0
  137. package/scripts/validate-confidence-mutation.ts +112 -0
  138. package/stdlib/async/promise.agentic +216 -0
  139. package/stdlib/database/pool.agentic +235 -0
  140. package/stdlib/file/io.agentic +194 -0
  141. package/stdlib/http/client.agentic +168 -0
  142. package/video-scripts/001-agentic-in-100-seconds.md +175 -0
  143. package/vscode-extension/README.md +67 -0
  144. package/vscode-extension/language-configuration.json +31 -0
  145. package/vscode-extension/package.json +46 -0
  146. package/vscode-extension/syntaxes/agentic.tmLanguage.json +134 -0
@@ -0,0 +1,360 @@
1
+ // Enterprise-Grade Application Example
2
+ // Demonstrates: audit logging, compliance, security, observability
3
+
4
+ @module("enterprise")
5
+
6
+ // Audit logging for compliance
7
+ @audit_trail(
8
+ retention: 7 * 365d, // 7 years (regulatory requirement)
9
+ encryption: "AES-256",
10
+ immutable: true,
11
+ compliance: ["SOC2", "HIPAA", "GDPR"]
12
+ )
13
+ @confidence(0.96)
14
+ @complete
15
+ func processFinancialTransaction(
16
+ transaction: Transaction,
17
+ user: User
18
+ ) -> Result<Receipt, TransactionError> {
19
+ @audit.start({
20
+ action: "financial_transaction",
21
+ userId: user.id,
22
+ amount: transaction.amount,
23
+ timestamp: now(),
24
+ ipAddress: user.ipAddress,
25
+ userAgent: user.userAgent
26
+ })
27
+
28
+ // Validate user permissions
29
+ @requires_permission("financial.transactions.process")
30
+ if !user.hasPermission("financial.transactions.process") {
31
+ @audit.fail("insufficient_permissions", {
32
+ required: "financial.transactions.process",
33
+ userPermissions: user.permissions
34
+ })
35
+ return Err(TransactionError.INSUFFICIENT_PERMISSIONS)
36
+ }
37
+
38
+ // Validate transaction
39
+ @confidence(0.94)
40
+ validation = validateTransaction(transaction) match {
41
+ Ok(_) -> {},
42
+ Err(e) -> {
43
+ @audit.fail("validation_failed", { error: e, transaction })
44
+ return Err(TransactionError.VALIDATION_FAILED(e))
45
+ }
46
+ }
47
+
48
+ // Check for fraud
49
+ @confidence(0.89)
50
+ @llm_call(model: "fraud-detection-v2")
51
+ fraudCheck = detectFraud(transaction, user.history) match {
52
+ Ok(result) if result.score < 0.3 -> {}, // Low fraud risk
53
+ Ok(result) if result.score < 0.7 -> {
54
+ // Medium risk - require additional approval
55
+ @requires_approval(
56
+ approvers: ["fraud_team"],
57
+ timeout: 30m,
58
+ escalation: "security_team"
59
+ )
60
+ @audit.warning("fraud_check_flagged", { score: result.score })
61
+ },
62
+ Ok(result) -> {
63
+ // High risk - reject
64
+ @audit.fail("fraud_detected", {
65
+ score: result.score,
66
+ reasons: result.reasons
67
+ })
68
+ return Err(TransactionError.FRAUD_DETECTED)
69
+ },
70
+ Err(e) -> {
71
+ @audit.error("fraud_check_error", { error: e })
72
+ // Fail closed - require manual review
73
+ @escalate_to_human("Fraud detection system unavailable")
74
+ }
75
+ }
76
+
77
+ // Execute transaction with two-phase commit
78
+ @transaction(isolation: "serializable")
79
+ @confidence(0.93)
80
+ receipt = executeTransaction(transaction) match {
81
+ Ok(r) -> r,
82
+ Err(e) -> {
83
+ @audit.fail("transaction_execution_failed", { error: e })
84
+ return Err(TransactionError.EXECUTION_FAILED(e))
85
+ }
86
+ }
87
+
88
+ // Success audit
89
+ @audit.success({
90
+ receiptId: receipt.id,
91
+ amount: transaction.amount,
92
+ timestamp: now(),
93
+ processingTime: elapsed()
94
+ })
95
+
96
+ // GDPR: Record data processing
97
+ @gdpr_record({
98
+ dataSubject: user.id,
99
+ processing: "financial_transaction",
100
+ legalBasis: "contract",
101
+ purpose: "service_delivery",
102
+ retention: "7_years_regulatory"
103
+ })
104
+
105
+ return Ok(receipt)
106
+ }
107
+
108
+ // PII handling with encryption
109
+ @pii_protection(
110
+ encrypt: ["ssn", "creditCard", "bankAccount"],
111
+ mask_in_logs: true,
112
+ requires_consent: true
113
+ )
114
+ @confidence(0.97)
115
+ @complete
116
+ func storeUserData(data: SensitiveUserData) -> Result<void, PrivacyError> {
117
+ // Check consent
118
+ if !data.user.hasConsent("data_storage") {
119
+ @audit.compliance_violation("missing_consent", {
120
+ userId: data.user.id,
121
+ dataTypes: ["pii", "financial"]
122
+ })
123
+ return Err(PrivacyError.MISSING_CONSENT)
124
+ }
125
+
126
+ // Encrypt PII automatically
127
+ encrypted = {
128
+ userId: data.user.id,
129
+ ssn: encrypt(data.ssn, key: envVar("PII_ENCRYPTION_KEY")),
130
+ creditCard: encrypt(data.creditCard, key: envVar("PII_ENCRYPTION_KEY")),
131
+ // Non-PII stored as-is
132
+ name: data.name,
133
+ email: data.email
134
+ }
135
+
136
+ database.sensitive_data.insert(encrypted) match {
137
+ Ok(_) -> {
138
+ @audit.pii_stored({
139
+ userId: data.user.id,
140
+ dataTypes: ["ssn", "creditCard"],
141
+ encrypted: true
142
+ })
143
+ return Ok(void)
144
+ },
145
+ Err(e) -> {
146
+ @audit.error("pii_storage_failed", { error: e })
147
+ return Err(PrivacyError.STORAGE_FAILED(e))
148
+ }
149
+ }
150
+ }
151
+
152
+ // GDPR right to erasure
153
+ @gdpr_compliant(right: "erasure")
154
+ @confidence(0.94)
155
+ @complete
156
+ @property("removes all user data")
157
+ @property("cascades to related records")
158
+ @property("generates deletion certificate")
159
+ func deleteUserData(userId: string, reason: string) -> Result<DeletionCertificate, Error> {
160
+ @audit.start({
161
+ action: "gdpr_erasure",
162
+ userId: userId,
163
+ reason: reason,
164
+ requestedBy: getCurrentUser().id
165
+ })
166
+
167
+ // Find all user data across systems
168
+ @parallel(maxConcurrency: 5)
169
+ deletions = [
170
+ database.users.delete(userId),
171
+ database.transactions.deleteByUser(userId),
172
+ database.sensitive_data.deleteByUser(userId),
173
+ redis.deleteUserSessions(userId),
174
+ s3.deleteUserFiles(userId)
175
+ ]
176
+
177
+ // Verify all deletions succeeded
178
+ failures = deletions.filter(r => r.isErr())
179
+
180
+ if failures.length > 0 {
181
+ @audit.fail("incomplete_deletion", { failures })
182
+ return Err(Error.INCOMPLETE_DELETION {
183
+ failed: failures.length,
184
+ total: deletions.length
185
+ })
186
+ }
187
+
188
+ // Generate deletion certificate (legal requirement)
189
+ certificate = DeletionCertificate {
190
+ userId: userId,
191
+ deletedAt: now(),
192
+ requestReason: reason,
193
+ systemsAffected: ["database", "redis", "s3"],
194
+ verification: hash(deletions),
195
+ signature: sign(userId, now())
196
+ }
197
+
198
+ @audit.success({
199
+ userId: userId,
200
+ certificate: certificate.id
201
+ })
202
+
203
+ return Ok(certificate)
204
+ }
205
+
206
+ // Role-based access control
207
+ @rbac(
208
+ resource: "financial_reports",
209
+ requiredRoles: ["accountant", "cfo", "auditor"]
210
+ )
211
+ @confidence(0.95)
212
+ @complete
213
+ func generateFinancialReport(
214
+ period: Period,
215
+ user: User
216
+ ) -> Result<FinancialReport, AccessError> {
217
+ // Automatic RBAC check before function executes
218
+
219
+ if !user.hasAnyRole(["accountant", "cfo", "auditor"]) {
220
+ @audit.access_denied({
221
+ userId: user.id,
222
+ resource: "financial_reports",
223
+ requiredRoles: ["accountant", "cfo", "auditor"],
224
+ userRoles: user.roles
225
+ })
226
+ return Err(AccessError.INSUFFICIENT_PRIVILEGES)
227
+ }
228
+
229
+ @audit.access_granted({
230
+ userId: user.id,
231
+ resource: "financial_reports",
232
+ userRole: user.roles.first()
233
+ })
234
+
235
+ report = compileFinancialData(period)
236
+
237
+ @audit.report_generated({
238
+ reportId: report.id,
239
+ period: period,
240
+ generatedBy: user.id,
241
+ dataPoints: report.data.length
242
+ })
243
+
244
+ return Ok(report)
245
+ }
246
+
247
+ // Distributed tracing for microservices
248
+ @opentelemetry(
249
+ service: "enterprise-app",
250
+ exporter: "otlp",
251
+ endpoint: "https://telemetry.company.com"
252
+ )
253
+ @confidence(0.91)
254
+ @effects(network, database, io, async)
255
+ func orchestrateWorkflow(request: WorkflowRequest) -> Result<WorkflowOutput, Error> {
256
+ @span("validate_request", attributes: {
257
+ workflowType: request.type,
258
+ requestedBy: request.userId
259
+ })
260
+ validation = validateRequest(request)
261
+
262
+ @span("fetch_user_data", attributes: {
263
+ userId: request.userId
264
+ })
265
+ @retry(maxAttempts: 3, backoff: "exponential")
266
+ userData = database.users.find(request.userId)
267
+
268
+ @span("external_api_call", attributes: {
269
+ api: "partner-service",
270
+ timeout: "10s"
271
+ })
272
+ @circuit_breaker(threshold: 5, timeout: 60s)
273
+ externalData = partnerAPI.fetch(request.partnerId)
274
+
275
+ @span("llm_processing", attributes: {
276
+ model: "gpt-4.5",
277
+ max_tokens: 1000
278
+ })
279
+ @cost_tracked(userId: request.userId, feature: "workflow_processing")
280
+ processed = llm.process({
281
+ userData: userData,
282
+ externalData: externalData,
283
+ instructions: request.instructions
284
+ })
285
+
286
+ @span("store_results")
287
+ database.results.insert(processed)
288
+
289
+ return Ok(WorkflowOutput {
290
+ result: processed,
291
+ traceId: getCurrentTraceId()
292
+ })
293
+ }
294
+
295
+ // Security: Input sanitization
296
+ @security_hardened(
297
+ injection_prevention: ["sql", "xss", "command"],
298
+ rate_limiting: { requests: 100, window: "1m" },
299
+ ip_whitelist: ["10.0.0.0/8", "192.168.0.0/16"]
300
+ )
301
+ @confidence(0.95)
302
+ @complete
303
+ func executeUserQuery(
304
+ query: UserQuery,
305
+ user: User
306
+ ) -> Result<QueryResult, SecurityError> {
307
+ // Automatic input sanitization
308
+ sanitized = SecurityGuard.sanitize(query) match {
309
+ Ok(q) -> q,
310
+ Err(e) -> {
311
+ @audit.security_violation({
312
+ type: "input_validation_failed",
313
+ userId: user.id,
314
+ violationType: e.violationType,
315
+ blocked: true
316
+ })
317
+ return Err(SecurityError.MALICIOUS_INPUT(e))
318
+ }
319
+ }
320
+
321
+ // Check rate limit
322
+ if RateLimiter.isExceeded(user.id) {
323
+ @audit.rate_limit_exceeded({ userId: user.id })
324
+ return Err(SecurityError.RATE_LIMIT_EXCEEDED)
325
+ }
326
+
327
+ // Execute with parameterized query (prevents SQL injection)
328
+ result = database.query(sanitized.sql, sanitized.params)
329
+
330
+ return Ok(result)
331
+ }
332
+
333
+ // Compliance reporting
334
+ @compliance_report(
335
+ standard: "SOC2_TYPE2",
336
+ controls: ["access_control", "encryption", "audit_logging"]
337
+ )
338
+ @confidence(0.92)
339
+ func generateSOC2Report(period: Period) -> SOC2Report {
340
+ auditLogs = collectAuditLogs(period)
341
+ accessLogs = collectAccessLogs(period)
342
+ securityIncidents = collectSecurityIncidents(period)
343
+
344
+ evidence = {
345
+ totalAuditEvents: auditLogs.length,
346
+ accessControlViolations: accessLogs.filter(l => l.denied).length,
347
+ securityIncidents: securityIncidents.length,
348
+ encryptionCoverage: calculateEncryptionCoverage(),
349
+ backupVerification: verifyBackups(period)
350
+ }
351
+
352
+ return SOC2Report {
353
+ period: period,
354
+ controls: evaluateControls(evidence),
355
+ evidence: evidence,
356
+ compliance: assessCompliance(evidence),
357
+ generatedAt: now(),
358
+ signature: signReport(evidence)
359
+ }
360
+ }
@@ -0,0 +1,3 @@
1
+ func add(a: number, b: number) -> number {
2
+ return a
3
+ }
@@ -0,0 +1,7 @@
1
+ // Auto-generated from examples/minimal.agentic
2
+ import { AgenticRuntime, Result, Ok, Err } from './runtime';
3
+
4
+ function add(a: number, b: number): number {
5
+ return a;
6
+ }
7
+
@@ -0,0 +1,350 @@
1
+ // Machine Learning Pipeline Example
2
+ // Demonstrates: data processing, model inference, monitoring, cost optimization
3
+
4
+ @module("ml_pipeline")
5
+
6
+ // Data preprocessing with validation
7
+ @confidence(0.91)
8
+ @complete
9
+ @needs(validator: DataValidator)
10
+ @effects(io, state)
11
+ @property("handles missing values")
12
+ @property("normalizes numeric features")
13
+ @property("encodes categorical features")
14
+ func preprocessData(rawData: DataFrame) -> Result<ProcessedData, ValidationError> {
15
+ // Validate schema
16
+ @confidence(0.95)
17
+ validated = validator.validateSchema(rawData, schema: dataSchema) match {
18
+ Ok(data) -> data,
19
+ Err(errors) -> {
20
+ @context {
21
+ what_failed: "Schema validation",
22
+ errors: errors,
23
+ suggestions: ["Check data format", "Verify required columns present"]
24
+ }
25
+ return Err(ValidationError.SCHEMA_MISMATCH(errors))
26
+ }
27
+ }
28
+
29
+ // Handle missing values
30
+ @property("imputation preserves data distribution")
31
+ cleaned = validated
32
+ .fillna(strategy: "median", columns: numericColumns)
33
+ .fillna(strategy: "mode", columns: categoricalColumns)
34
+
35
+ // Normalize numeric features
36
+ @property("normalized values in range [0, 1]")
37
+ normalized = cleaned.normalize(columns: numericColumns, method: "min-max")
38
+
39
+ // Encode categorical features
40
+ @property("one-hot encoding preserves information")
41
+ encoded = normalized.oneHot(columns: categoricalColumns)
42
+
43
+ return Ok(ProcessedData {
44
+ data: encoded,
45
+ metadata: {
46
+ rowsProcessed: rawData.rows.length,
47
+ columnsProcessed: rawData.columns.length,
48
+ missingValuesHandled: countMissing(rawData),
49
+ encodingMaps: encoded.encodingMaps
50
+ }
51
+ })
52
+ }
53
+
54
+ // Model inference with cost tracking
55
+ @cost_optimized(
56
+ cached_predictions: true,
57
+ batch_size: 32,
58
+ model_selection: "quality_vs_cost"
59
+ )
60
+ @confidence(0.89)
61
+ @effects(llm_call, cost, async)
62
+ func runInference(
63
+ input: ProcessedData,
64
+ userId: string
65
+ ) -> Result<Predictions, InferenceError> {
66
+ // Check cache first (zero cost)
67
+ cacheKey = hash(input)
68
+ cached = cache.get("predictions:${cacheKey}")
69
+
70
+ if cached {
71
+ @cost_saved(estimatedCost: 0.05)
72
+ @trace_decision("cache_hit", { cacheKey })
73
+ return Ok(cached)
74
+ }
75
+
76
+ // Check budget
77
+ budget = costRuntime.checkBudget(userId)
78
+
79
+ if budget.remaining < 0.10 {
80
+ return Err(InferenceError.BUDGET_EXCEEDED {
81
+ remaining: budget.remaining,
82
+ required: 0.10
83
+ })
84
+ }
85
+
86
+ // Select model based on input complexity
87
+ complexity = assessComplexity(input)
88
+
89
+ model = complexity match {
90
+ "simple" -> {
91
+ @llm_call(model: "gpt-4.5-turbo", max_tokens: 100)
92
+ @cost_tracked(userId: userId, feature: "inference_simple")
93
+ "gpt-4.5-turbo"
94
+ },
95
+ "moderate" -> {
96
+ @llm_call(model: "gpt-4.5", max_tokens: 500)
97
+ @cost_tracked(userId: userId, feature: "inference_moderate")
98
+ "gpt-4.5"
99
+ },
100
+ "complex" -> {
101
+ @llm_call(model: "o3", max_tokens: 2000)
102
+ @cost_tracked(userId: userId, feature: "inference_complex")
103
+ @requires_approval(if: budget.remaining < 1.00)
104
+ "o3"
105
+ }
106
+ }
107
+
108
+ // Run inference
109
+ @timeout(30s)
110
+ @retry(maxAttempts: 3, backoff: "exponential")
111
+ predictions = model.predict(input) match {
112
+ Ok(preds) -> preds,
113
+ Err(e) -> {
114
+ @context {
115
+ what_failed: "Model inference",
116
+ model: model,
117
+ inputSize: input.data.length,
118
+ suggestions: ["Check API status", "Verify input format", "Try simpler model"]
119
+ }
120
+ return Err(InferenceError.INFERENCE_FAILED(e))
121
+ }
122
+ }
123
+
124
+ // Cache successful predictions
125
+ cache.set("predictions:${cacheKey}", predictions, ttl: 1h)
126
+
127
+ // Monitor prediction confidence
128
+ @monitor_prediction_quality(
129
+ predictions: predictions,
130
+ threshold: 0.80,
131
+ alert_on_drift: true
132
+ )
133
+
134
+ return Ok(predictions)
135
+ }
136
+
137
+ // Batch inference for efficiency
138
+ @batch_optimization(
139
+ maxBatchSize: 32,
140
+ maxWaitTime: 5s
141
+ )
142
+ @confidence(0.87)
143
+ @effects(llm_call, cost, async)
144
+ func batchInference(
145
+ inputs: ProcessedData[],
146
+ userId: string
147
+ ) -> Result<Predictions[], Error> {
148
+ // Batch requests to reduce per-request overhead
149
+ // 50-70% cost savings vs individual requests
150
+
151
+ batched = createBatches(inputs, size: 32)
152
+
153
+ @parallel(maxConcurrency: 4)
154
+ results = batched.map(batch => {
155
+ @llm_call(model: "gpt-4.5-turbo")
156
+ @cost_tracked(userId: userId, feature: "batch_inference")
157
+ return model.predictBatch(batch)
158
+ })
159
+
160
+ return Ok(results.flatten())
161
+ }
162
+
163
+ // Model monitoring and drift detection
164
+ @healthcheck(interval: 5m)
165
+ @confidence(0.88)
166
+ @effects(database, io)
167
+ func monitorModelPerformance() -> HealthStatus {
168
+ // Get recent predictions
169
+ predictions = database.predictions
170
+ .findRecent(limit: 1000)
171
+
172
+ // Calculate performance metrics
173
+ metrics = {
174
+ averageConfidence: mean(predictions.map(p => p.confidence)),
175
+ errorRate: predictions.filter(p => p.error).length / predictions.length,
176
+ latencyP95: percentile(predictions.map(p => p.latency), 0.95),
177
+ costPerPrediction: sum(predictions.map(p => p.cost)) / predictions.length
178
+ }
179
+
180
+ // Check for drift
181
+ if metrics.averageConfidence < 0.70 {
182
+ @alert("warning", {
183
+ message: "Model confidence declining",
184
+ averageConfidence: metrics.averageConfidence,
185
+ recommendation: "Consider retraining or model upgrade"
186
+ })
187
+ return HealthStatus.DEGRADED
188
+ }
189
+
190
+ if metrics.errorRate > 0.05 {
191
+ @alert("critical", {
192
+ message: "Error rate elevated",
193
+ errorRate: metrics.errorRate,
194
+ recommendation: "Investigate model or data issues"
195
+ })
196
+ return HealthStatus.FAILED
197
+ }
198
+
199
+ return HealthStatus.OK
200
+ }
201
+
202
+ // A/B testing for model comparison
203
+ @ab_test(
204
+ variants: {
205
+ control: "gpt-4.5-turbo",
206
+ treatment: "fine-tuned-model-v2"
207
+ },
208
+ split: 0.5, // 50/50 split
209
+ metric: "prediction_accuracy",
210
+ duration: 7d
211
+ )
212
+ @confidence(0.86)
213
+ func compareModels(input: ProcessedData) -> Predictions {
214
+ // Automatically routes 50% to each model
215
+ // Tracks performance metrics
216
+ // Reports which model is better
217
+ }
218
+
219
+ // Feature engineering with confidence tracking
220
+ @confidence(0.84)
221
+ @partial("Basic features only, domain expertise needed for advanced")
222
+ @uncertain("Optimal feature set not determined via experimentation")
223
+ func engineerFeatures(rawData: DataFrame) -> EngineeeredFeatures {
224
+ features = {
225
+ // Numeric features
226
+ age: rawData.age,
227
+ income: log(rawData.income + 1), // Log transform
228
+ creditScore: rawData.creditScore / 850, // Normalize
229
+
230
+ // Categorical features
231
+ category: oneHot(rawData.category),
232
+ region: embedding(rawData.region),
233
+
234
+ // Interaction features
235
+ ageIncomeRatio: rawData.age / (rawData.income + 1),
236
+
237
+ // Time-based features
238
+ dayOfWeek: rawData.timestamp.dayOfWeek(),
239
+ hourOfDay: rawData.timestamp.hour()
240
+ }
241
+
242
+ @trace_features({
243
+ engineered: Object.keys(features).length,
244
+ original: rawData.columns.length,
245
+ transformation: "numeric_log_categorical_onehot"
246
+ })
247
+
248
+ return features
249
+ }
250
+
251
+ // Full ML pipeline orchestration
252
+ @workflow(persistent: true, resumable: true)
253
+ @confidence(0.85)
254
+ @effects(io, database, llm_call, cost, async)
255
+ func mlPipeline(
256
+ dataSource: DataSource,
257
+ userId: string
258
+ ) -> Result<MLPipelineOutput, PipelineError> {
259
+ // Step 1: Extract data
260
+ @checkpoint("data_extraction")
261
+ @retry(maxAttempts: 3)
262
+ rawData = dataSource.extract() match {
263
+ Ok(data) -> data,
264
+ Err(e) -> return Err(PipelineError.EXTRACTION_FAILED(e))
265
+ }
266
+
267
+ // Step 2: Preprocess
268
+ @checkpoint("preprocessing")
269
+ @confidence(0.91)
270
+ processed = preprocessData(rawData) match {
271
+ Ok(data) -> data,
272
+ Err(e) -> return Err(PipelineError.PREPROCESSING_FAILED(e))
273
+ }
274
+
275
+ // Step 3: Feature engineering
276
+ @checkpoint("feature_engineering")
277
+ @confidence(0.84)
278
+ features = engineerFeatures(processed.data)
279
+
280
+ // Step 4: Run inference
281
+ @checkpoint("inference")
282
+ @budget_limit(user_daily: 10.00, action: "throttle")
283
+ predictions = runInference(features, userId) match {
284
+ Ok(preds) -> preds,
285
+ Err(e) -> return Err(PipelineError.INFERENCE_FAILED(e))
286
+ }
287
+
288
+ // Step 5: Post-process and validate
289
+ @checkpoint("postprocessing")
290
+ @confidence(0.93)
291
+ @property("predictions in valid range")
292
+ validated = validatePredictions(predictions) match {
293
+ Ok(preds) -> preds,
294
+ Err(e) -> {
295
+ @alert("critical", "Prediction validation failed")
296
+ return Err(PipelineError.INVALID_PREDICTIONS(e))
297
+ }
298
+ }
299
+
300
+ // Step 6: Store results
301
+ @checkpoint("storage")
302
+ @transaction
303
+ database.predictions.insert({
304
+ userId: userId,
305
+ predictions: validated,
306
+ metadata: {
307
+ dataSource: dataSource.name,
308
+ timestamp: now(),
309
+ modelVersion: getCurrentModelVersion(),
310
+ cost: getTotalCost(userId)
311
+ }
312
+ })
313
+
314
+ @checkpoint("complete")
315
+
316
+ return Ok(MLPipelineOutput {
317
+ predictions: validated,
318
+ metadata: {
319
+ processingTime: elapsed(),
320
+ totalCost: getTotalCost(userId),
321
+ confidence: averageConfidence(validated)
322
+ }
323
+ })
324
+ }
325
+
326
+ // Monitoring dashboard data
327
+ @confidence(0.92)
328
+ @effects(database, io)
329
+ func getMLMetrics(period: Period) -> MLMetricsDashboard {
330
+ return MLMetricsDashboard {
331
+ totalPredictions: database.predictions.count(period),
332
+ averageLatency: database.predictions.averageLatency(period),
333
+ errorRate: database.predictions.errorRate(period),
334
+ costMetrics: {
335
+ totalCost: costRuntime.getTotal(period),
336
+ costPerPrediction: costRuntime.getAverage(period),
337
+ costByModel: costRuntime.getByModel(period)
338
+ },
339
+ qualityMetrics: {
340
+ averageConfidence: database.predictions.averageConfidence(period),
341
+ mutationScore: getLatestMutationScore(),
342
+ verificationStatus: getVerificationStatus()
343
+ },
344
+ usageMetrics: {
345
+ topUsers: database.predictions.topUsers(period, limit: 10),
346
+ topFeatures: database.predictions.topFeatures(period, limit: 10),
347
+ peakHours: database.predictions.getHourlyDistribution(period)
348
+ }
349
+ }
350
+ }