agentic-flow 2.0.2 → 2.0.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
# 🚀 Agentic-Flow v2
|
|
1
|
+
# 🚀 Agentic-Flow v2
|
|
2
2
|
|
|
3
|
-
> **Production-ready AI agent orchestration
|
|
3
|
+
> **Production-ready AI agent orchestration with 66 self-learning agents, 213 MCP tools, and autonomous multi-agent swarms.**
|
|
4
4
|
|
|
5
5
|
[](https://www.npmjs.com/package/agentic-flow)
|
|
6
6
|
[](https://opensource.org/licenses/MIT)
|
|
@@ -9,7 +9,57 @@
|
|
|
9
9
|
|
|
10
10
|
---
|
|
11
11
|
|
|
12
|
-
##
|
|
12
|
+
## ⚡ Quick Start (60 seconds)
|
|
13
|
+
|
|
14
|
+
```bash
|
|
15
|
+
# 1. Initialize your project
|
|
16
|
+
npx agentic-flow init
|
|
17
|
+
|
|
18
|
+
# 2. Bootstrap intelligence from your codebase
|
|
19
|
+
npx agentic-flow hooks pretrain
|
|
20
|
+
|
|
21
|
+
# 3. Start Claude Code with self-learning hooks
|
|
22
|
+
claude
|
|
23
|
+
```
|
|
24
|
+
|
|
25
|
+
That's it! Your project now has:
|
|
26
|
+
- 🧠 **Self-learning hooks** that improve agent routing over time
|
|
27
|
+
- 🤖 **80+ specialized agents** (coder, tester, reviewer, architect, etc.)
|
|
28
|
+
- ⚡ **Background workers** triggered by keywords (ultralearn, optimize, audit)
|
|
29
|
+
- 📊 **213 MCP tools** for swarm coordination
|
|
30
|
+
|
|
31
|
+
### Common Commands
|
|
32
|
+
|
|
33
|
+
```bash
|
|
34
|
+
# Route a task to the optimal agent
|
|
35
|
+
npx agentic-flow hooks route "implement user authentication"
|
|
36
|
+
|
|
37
|
+
# View learning metrics
|
|
38
|
+
npx agentic-flow hooks metrics
|
|
39
|
+
|
|
40
|
+
# Dispatch background workers
|
|
41
|
+
npx agentic-flow workers dispatch "ultralearn how caching works"
|
|
42
|
+
|
|
43
|
+
# Run MCP server for Claude Code
|
|
44
|
+
npx agentic-flow mcp start
|
|
45
|
+
```
|
|
46
|
+
|
|
47
|
+
### Use in Code
|
|
48
|
+
|
|
49
|
+
```typescript
|
|
50
|
+
import { AgenticFlow } from 'agentic-flow';
|
|
51
|
+
|
|
52
|
+
const flow = new AgenticFlow();
|
|
53
|
+
await flow.initialize();
|
|
54
|
+
|
|
55
|
+
// Route task to best agent
|
|
56
|
+
const result = await flow.route('Fix the login bug');
|
|
57
|
+
console.log(`Best agent: ${result.agent} (${result.confidence}% confidence)`);
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
---
|
|
61
|
+
|
|
62
|
+
## 🎉 What's New in v2
|
|
13
63
|
|
|
14
64
|
### **SONA: Self-Optimizing Neural Architecture** 🧠
|
|
15
65
|
|
|
@@ -38,58 +88,20 @@ Agentic-Flow v2 now includes **ALL** advanced vector/graph, GNN, and attention c
|
|
|
38
88
|
|
|
39
89
|
## 📖 Table of Contents
|
|
40
90
|
|
|
41
|
-
- [
|
|
91
|
+
- [Quick Start](#-quick-start-60-seconds)
|
|
92
|
+
- [What's New](#-whats-new-in-v2)
|
|
42
93
|
- [Key Features](#-key-features)
|
|
43
|
-
- [Benefits](#-benefits)
|
|
44
|
-
- [Use Cases](#-use-cases)
|
|
45
|
-
- [Business Applications](#business-applications)
|
|
46
|
-
- [Research & Development](#research--development)
|
|
47
|
-
- [Enterprise Solutions](#enterprise-solutions)
|
|
48
94
|
- [Performance Benchmarks](#-performance-benchmarks)
|
|
49
|
-
- [
|
|
50
|
-
- [
|
|
51
|
-
- [
|
|
52
|
-
- [Self-Learning Hooks System](#-self-learning-hooks-system)
|
|
53
|
-
- [Background Workers System](#-background-workers-system)
|
|
95
|
+
- [Project Initialization](#-project-initialization-init)
|
|
96
|
+
- [Self-Learning Hooks](#-self-learning-hooks-system)
|
|
97
|
+
- [Background Workers](#-background-workers-system)
|
|
54
98
|
- [Installation](#-installation)
|
|
55
|
-
- [
|
|
99
|
+
- [API Reference](#-api-reference)
|
|
56
100
|
- [Architecture](#-architecture)
|
|
57
101
|
- [Contributing](#-contributing)
|
|
58
102
|
|
|
59
103
|
---
|
|
60
104
|
|
|
61
|
-
## 🌟 Introduction
|
|
62
|
-
|
|
63
|
-
**Agentic-Flow** is the most advanced open-source AI agent orchestration platform, combining cutting-edge research with production-ready implementation. Built with Claude Agent SDK, it enables developers to create, deploy, and manage sophisticated multi-agent systems with unprecedented ease and performance.
|
|
64
|
-
|
|
65
|
-
### Why Agentic-Flow?
|
|
66
|
-
|
|
67
|
-
In the rapidly evolving landscape of AI agents, Agentic-Flow stands out by offering:
|
|
68
|
-
|
|
69
|
-
1. **Self-Learning Agents**: SONA-powered agents that improve +55% over time
|
|
70
|
-
2. **Complete Integration**: The only framework with full AgentDB@alpha + SONA support
|
|
71
|
-
3. **Production-Ready**: Battle-tested with enterprise-grade features
|
|
72
|
-
4. **Blazing Fast**: 2.49x-7.47x performance improvements over standard approaches
|
|
73
|
-
5. **Cost Efficient**: 60-70% cost savings with intelligent LLM routing
|
|
74
|
-
6. **Highly Flexible**: 66 specialized agents, 213 MCP tools, 8 attention mechanisms
|
|
75
|
-
7. **Well-Documented**: 6,500+ lines of comprehensive guides and API reference
|
|
76
|
-
|
|
77
|
-
### What Makes v2.0.0-alpha Special?
|
|
78
|
-
|
|
79
|
-
Agentic-Flow v2 represents a **quantum leap** in AI agent orchestration:
|
|
80
|
-
|
|
81
|
-
- **Sub-millisecond adaptive learning** with SONA integration
|
|
82
|
-
- **+55% quality improvement** through continual learning
|
|
83
|
-
- **60-70% cost savings** with intelligent LLM routing
|
|
84
|
-
- **150x-12,500x faster vector search** with HNSW indexing
|
|
85
|
-
- **352x faster code editing** with Agent Booster optimization
|
|
86
|
-
- **4x-13x speedup potential** with Flash Attention and optimizations
|
|
87
|
-
- **+12.4% better recall** with GNN query refinement
|
|
88
|
-
- **Attention-based consensus** for smarter multi-agent coordination
|
|
89
|
-
- **Graph-aware reasoning** with GraphRoPE and topology-aware coordination
|
|
90
|
-
|
|
91
|
-
---
|
|
92
|
-
|
|
93
105
|
## 🔥 Key Features
|
|
94
106
|
|
|
95
107
|
### 🎓 SONA: Self-Optimizing Neural Architecture
|
|
@@ -884,106 +896,6 @@ console.log(`Common critiques: ${stats.commonCritiques}`);
|
|
|
884
896
|
|
|
885
897
|
---
|
|
886
898
|
|
|
887
|
-
## 🚀 Quick Start
|
|
888
|
-
|
|
889
|
-
### Installation
|
|
890
|
-
|
|
891
|
-
```bash
|
|
892
|
-
# Install Agentic-Flow v2.0.0-alpha
|
|
893
|
-
npm install agentic-flow@alpha
|
|
894
|
-
```
|
|
895
|
-
|
|
896
|
-
### Basic Usage
|
|
897
|
-
|
|
898
|
-
```typescript
|
|
899
|
-
import { EnhancedAgentDBWrapper } from 'agentic-flow/core';
|
|
900
|
-
import { AttentionCoordinator } from 'agentic-flow/coordination';
|
|
901
|
-
|
|
902
|
-
// Initialize with Flash Attention (4x faster!)
|
|
903
|
-
const wrapper = new EnhancedAgentDBWrapper({
|
|
904
|
-
dimension: 768,
|
|
905
|
-
enableAttention: true,
|
|
906
|
-
enableGNN: true,
|
|
907
|
-
attentionConfig: {
|
|
908
|
-
type: 'flash', // Recommended for production
|
|
909
|
-
numHeads: 8,
|
|
910
|
-
headDim: 64,
|
|
911
|
-
},
|
|
912
|
-
gnnConfig: {
|
|
913
|
-
numLayers: 3,
|
|
914
|
-
hiddenDim: 256,
|
|
915
|
-
},
|
|
916
|
-
});
|
|
917
|
-
|
|
918
|
-
await wrapper.initialize();
|
|
919
|
-
|
|
920
|
-
// Use Flash Attention (2.49x-7.47x speedup)
|
|
921
|
-
const query = new Float32Array(768); // Your query embedding
|
|
922
|
-
const candidates = []; // Your candidate embeddings
|
|
923
|
-
|
|
924
|
-
const result = await wrapper.flashAttention(
|
|
925
|
-
query,
|
|
926
|
-
stackVectors(candidates),
|
|
927
|
-
stackVectors(candidates)
|
|
928
|
-
);
|
|
929
|
-
|
|
930
|
-
console.log(`Runtime: ${result.runtime}`);
|
|
931
|
-
console.log(`Time: ${result.executionTimeMs}ms`);
|
|
932
|
-
console.log(`Memory: ${result.memoryUsage} bytes`);
|
|
933
|
-
|
|
934
|
-
// Use GNN query refinement (+12.4% recall)
|
|
935
|
-
const gnnResult = await wrapper.gnnEnhancedSearch(query, {
|
|
936
|
-
k: 10,
|
|
937
|
-
graphContext: {
|
|
938
|
-
nodes: documentEmbeddings,
|
|
939
|
-
edges: documentRelations,
|
|
940
|
-
},
|
|
941
|
-
});
|
|
942
|
-
|
|
943
|
-
console.log(`Found ${gnnResult.results.length} results`);
|
|
944
|
-
console.log(`Recall improved by ${gnnResult.improvementPercent}%`);
|
|
945
|
-
|
|
946
|
-
// Use multi-agent coordination
|
|
947
|
-
const coordinator = new AttentionCoordinator(wrapper.getAttentionService());
|
|
948
|
-
|
|
949
|
-
const consensus = await coordinator.coordinateAgents([
|
|
950
|
-
{ agentId: 'agent-1', output: 'Answer A', embedding: embed1 },
|
|
951
|
-
{ agentId: 'agent-2', output: 'Answer B', embedding: embed2 },
|
|
952
|
-
{ agentId: 'agent-3', output: 'Answer C', embedding: embed3 },
|
|
953
|
-
], 'flash');
|
|
954
|
-
|
|
955
|
-
console.log(`Consensus: ${consensus.consensus}`);
|
|
956
|
-
console.log(`Top agent: ${consensus.topAgents[0].agentId}`);
|
|
957
|
-
```
|
|
958
|
-
|
|
959
|
-
### Spawn Specialized Agents
|
|
960
|
-
|
|
961
|
-
```typescript
|
|
962
|
-
import { Task } from 'agentic-flow';
|
|
963
|
-
|
|
964
|
-
// Spawn agents concurrently
|
|
965
|
-
await Promise.all([
|
|
966
|
-
Task('Researcher', 'Analyze requirements and patterns', 'researcher'),
|
|
967
|
-
Task('Coder', 'Implement core features', 'coder'),
|
|
968
|
-
Task('Tester', 'Create comprehensive tests', 'tester'),
|
|
969
|
-
Task('Reviewer', 'Review code quality', 'reviewer'),
|
|
970
|
-
]);
|
|
971
|
-
```
|
|
972
|
-
|
|
973
|
-
### Use MCP Tools
|
|
974
|
-
|
|
975
|
-
```typescript
|
|
976
|
-
import { mcp__claude_flow__swarm_init } from 'agentic-flow/mcp';
|
|
977
|
-
|
|
978
|
-
// Initialize swarm coordination
|
|
979
|
-
await mcp__claude_flow__swarm_init({
|
|
980
|
-
topology: 'mesh',
|
|
981
|
-
maxAgents: 10,
|
|
982
|
-
});
|
|
983
|
-
```
|
|
984
|
-
|
|
985
|
-
---
|
|
986
|
-
|
|
987
899
|
## 🔧 Project Initialization (init)
|
|
988
900
|
|
|
989
901
|
The `init` command sets up your project with the full Agentic-Flow infrastructure, including Claude Code integration, hooks, agents, and skills.
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "agentic-flow",
|
|
3
|
-
"version": "2.0.
|
|
3
|
+
"version": "2.0.3",
|
|
4
4
|
"description": "Production-ready AI agent orchestration platform with 66 specialized agents, 213 MCP tools, ReasoningBank learning memory, and autonomous multi-agent swarms. Built by @ruvnet with Claude Agent SDK, neural networks, memory persistence, GitHub integration, and distributed consensus protocols.",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"main": "dist/index.js",
|
|
@@ -258,7 +258,7 @@ export function log(message) {
|
|
|
258
258
|
wasm.log(ptr0, len0);
|
|
259
259
|
}
|
|
260
260
|
|
|
261
|
-
function
|
|
261
|
+
function __wbg_adapter_4(arg0, arg1, arg2) {
|
|
262
262
|
wasm.__wbindgen_export_5(arg0, arg1, addHeapObject(arg2));
|
|
263
263
|
}
|
|
264
264
|
|
|
@@ -540,7 +540,7 @@ export function __wbindgen_cast_2241b6af4c4b2941(arg0, arg1) {
|
|
|
540
540
|
|
|
541
541
|
export function __wbindgen_cast_8eb6fd44e7238d11(arg0, arg1) {
|
|
542
542
|
// Cast intrinsic for `Closure(Closure { dtor_idx: 62, function: Function { arguments: [Externref], shim_idx: 63, ret: Unit, inner_ret: Some(Unit) }, mutable: true }) -> Externref`.
|
|
543
|
-
const ret = makeMutClosure(arg0, arg1, 62,
|
|
543
|
+
const ret = makeMutClosure(arg0, arg1, 62, __wbg_adapter_4);
|
|
544
544
|
return addHeapObject(ret);
|
|
545
545
|
};
|
|
546
546
|
|
|
Binary file
|