agentic-flow 1.6.6 → 1.7.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. package/.claude/agents/test-neural.md +5 -0
  2. package/.claude/settings.json +20 -19
  3. package/.claude/skills/.claude-flow/metrics/agent-metrics.json +1 -0
  4. package/.claude/skills/.claude-flow/metrics/performance.json +87 -0
  5. package/.claude/skills/.claude-flow/metrics/task-metrics.json +10 -0
  6. package/.claude/skills/agentdb-memory-patterns/SKILL.md +166 -0
  7. package/.claude/skills/agentdb-vector-search/SKILL.md +126 -0
  8. package/.claude/skills/agentic-flow/agentdb-memory-patterns/SKILL.md +166 -0
  9. package/.claude/skills/agentic-flow/agentdb-vector-search/SKILL.md +126 -0
  10. package/.claude/skills/agentic-flow/reasoningbank-intelligence/SKILL.md +201 -0
  11. package/.claude/skills/agentic-flow/swarm-orchestration/SKILL.md +179 -0
  12. package/.claude/skills/reasoningbank-intelligence/SKILL.md +201 -0
  13. package/.claude/skills/skill-builder/.claude-flow/metrics/agent-metrics.json +1 -0
  14. package/.claude/skills/skill-builder/.claude-flow/metrics/performance.json +87 -0
  15. package/.claude/skills/skill-builder/.claude-flow/metrics/task-metrics.json +10 -0
  16. package/.claude/skills/skill-builder/README.md +308 -0
  17. package/.claude/skills/skill-builder/SKILL.md +910 -0
  18. package/.claude/skills/skill-builder/docs/SPECIFICATION.md +358 -0
  19. package/.claude/skills/skill-builder/resources/schemas/skill-frontmatter.schema.json +41 -0
  20. package/.claude/skills/skill-builder/resources/templates/full-skill.template +118 -0
  21. package/.claude/skills/skill-builder/resources/templates/minimal-skill.template +38 -0
  22. package/.claude/skills/skill-builder/scripts/generate-skill.sh +334 -0
  23. package/.claude/skills/skill-builder/scripts/validate-skill.sh +198 -0
  24. package/.claude/skills/swarm-orchestration/SKILL.md +179 -0
  25. package/CHANGELOG.md +61 -0
  26. package/README.md +79 -1
  27. package/dist/cli/skills-manager.js +1295 -0
  28. package/dist/cli/update-message.js +175 -0
  29. package/dist/cli-proxy.js +8 -1
  30. package/dist/utils/cli.js +17 -0
  31. package/package.json +2 -2
  32. package/.claude/answer.md +0 -1
@@ -0,0 +1,126 @@
1
+ ---
2
+ name: "AgentDB Vector Search"
3
+ description: "Implement semantic vector search with AgentDB for intelligent document retrieval, similarity matching, and context-aware querying. Use when building RAG systems, semantic search engines, or intelligent knowledge bases."
4
+ ---
5
+
6
+ # AgentDB Vector Search
7
+
8
+ ## What This Skill Does
9
+
10
+ Implements vector-based semantic search using AgentDB's high-performance vector database with 150x-12,500x faster operations than traditional solutions. Enables similarity search, hybrid search (vector + metadata), and real-time embedding generation.
11
+
12
+ ## Prerequisites
13
+
14
+ - agentic-flow v1.5.11+ or agentdb v1.0.4+
15
+ - Node.js 18+
16
+ - OpenAI API key (for embeddings) or custom embedding model
17
+
18
+ ## Quick Start
19
+
20
+ ```typescript
21
+ import { AgentDB } from 'agentdb';
22
+
23
+ // Initialize AgentDB with vector support
24
+ const db = new AgentDB({
25
+ persist: true,
26
+ vectorDimensions: 1536, // OpenAI ada-002 dimensions
27
+ enableVectorIndex: true
28
+ });
29
+
30
+ // Store documents with vectors
31
+ await db.storeMemory({
32
+ text: "The quantum computer achieved 100 qubits",
33
+ metadata: { category: "technology", date: "2025-01-15" },
34
+ embedding: await generateEmbedding(text) // Your embedding function
35
+ });
36
+
37
+ // Semantic search
38
+ const results = await db.searchSimilar(
39
+ queryEmbedding,
40
+ { limit: 10, threshold: 0.7 }
41
+ );
42
+ ```
43
+
44
+ ## Core Features
45
+
46
+ ### 1. Vector Storage
47
+ ```typescript
48
+ // Store with automatic embedding
49
+ await db.storeWithEmbedding({
50
+ content: "Your document text",
51
+ metadata: { source: "docs", page: 42 }
52
+ });
53
+ ```
54
+
55
+ ### 2. Similarity Search
56
+ ```typescript
57
+ // Find similar documents
58
+ const similar = await db.findSimilar("quantum computing", {
59
+ limit: 5,
60
+ minScore: 0.75
61
+ });
62
+ ```
63
+
64
+ ### 3. Hybrid Search (Vector + Metadata)
65
+ ```typescript
66
+ // Combine vector similarity with metadata filtering
67
+ const results = await db.hybridSearch({
68
+ query: "machine learning models",
69
+ filters: {
70
+ category: "research",
71
+ date: { $gte: "2024-01-01" }
72
+ },
73
+ limit: 20
74
+ });
75
+ ```
76
+
77
+ ## Advanced Usage
78
+
79
+ ### RAG (Retrieval Augmented Generation)
80
+ ```typescript
81
+ // Build RAG pipeline
82
+ async function ragQuery(question: string) {
83
+ // 1. Get relevant context
84
+ const context = await db.searchSimilar(
85
+ await embed(question),
86
+ { limit: 5, threshold: 0.7 }
87
+ );
88
+
89
+ // 2. Generate answer with context
90
+ const prompt = `Context: ${context.map(c => c.text).join('\n')}
91
+ Question: ${question}`;
92
+
93
+ return await llm.generate(prompt);
94
+ }
95
+ ```
96
+
97
+ ### Batch Operations
98
+ ```typescript
99
+ // Efficient batch storage
100
+ await db.batchStore(documents.map(doc => ({
101
+ text: doc.content,
102
+ embedding: doc.vector,
103
+ metadata: doc.meta
104
+ })));
105
+ ```
106
+
107
+ ## Performance Tips
108
+
109
+ - **Indexing**: Enable vector index for 10-100x faster searches
110
+ - **Batch Size**: Use batch operations for 1000+ documents
111
+ - **Dimensions**: Match embedding model (1536 for OpenAI ada-002)
112
+ - **Threshold**: Start at 0.7 for quality results
113
+
114
+ ## Troubleshooting
115
+
116
+ ### Issue: Slow search performance
117
+ **Solution**: Enable vector index: `enableVectorIndex: true`
118
+
119
+ ### Issue: Poor relevance
120
+ **Solution**: Adjust similarity threshold or use hybrid search
121
+
122
+ ## Learn More
123
+
124
+ - AgentDB Docs: packages/agentdb/README.md
125
+ - Vector DB API: packages/agentdb/docs/vector-api.md
126
+ - Performance Guide: docs/agentdb/performance.md
@@ -0,0 +1,201 @@
1
+ ---
2
+ name: "ReasoningBank Intelligence"
3
+ description: "Implement adaptive learning with ReasoningBank for pattern recognition, strategy optimization, and continuous improvement. Use when building self-learning agents, optimizing workflows, or implementing meta-cognitive systems."
4
+ ---
5
+
6
+ # ReasoningBank Intelligence
7
+
8
+ ## What This Skill Does
9
+
10
+ Implements ReasoningBank's adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.
11
+
12
+ ## Prerequisites
13
+
14
+ - agentic-flow v1.5.11+
15
+ - AgentDB v1.0.4+ (for persistence)
16
+ - Node.js 18+
17
+
18
+ ## Quick Start
19
+
20
+ ```typescript
21
+ import { ReasoningBank } from 'agentic-flow/reasoningbank';
22
+
23
+ // Initialize ReasoningBank
24
+ const rb = new ReasoningBank({
25
+ persist: true,
26
+ learningRate: 0.1,
27
+ adapter: 'agentdb' // Use AgentDB for storage
28
+ });
29
+
30
+ // Record task outcome
31
+ await rb.recordExperience({
32
+ task: 'code_review',
33
+ approach: 'static_analysis_first',
34
+ outcome: {
35
+ success: true,
36
+ metrics: {
37
+ bugs_found: 5,
38
+ time_taken: 120,
39
+ false_positives: 1
40
+ }
41
+ },
42
+ context: {
43
+ language: 'typescript',
44
+ complexity: 'medium'
45
+ }
46
+ });
47
+
48
+ // Get optimal strategy
49
+ const strategy = await rb.recommendStrategy('code_review', {
50
+ language: 'typescript',
51
+ complexity: 'high'
52
+ });
53
+ ```
54
+
55
+ ## Core Features
56
+
57
+ ### 1. Pattern Recognition
58
+ ```typescript
59
+ // Learn patterns from data
60
+ await rb.learnPattern({
61
+ pattern: 'api_errors_increase_after_deploy',
62
+ triggers: ['deployment', 'traffic_spike'],
63
+ actions: ['rollback', 'scale_up'],
64
+ confidence: 0.85
65
+ });
66
+
67
+ // Match patterns
68
+ const matches = await rb.matchPatterns(currentSituation);
69
+ ```
70
+
71
+ ### 2. Strategy Optimization
72
+ ```typescript
73
+ // Compare strategies
74
+ const comparison = await rb.compareStrategies('bug_fixing', [
75
+ 'tdd_approach',
76
+ 'debug_first',
77
+ 'reproduce_then_fix'
78
+ ]);
79
+
80
+ // Get best strategy
81
+ const best = comparison.strategies[0];
82
+ console.log(`Best: ${best.name} (score: ${best.score})`);
83
+ ```
84
+
85
+ ### 3. Continuous Learning
86
+ ```typescript
87
+ // Enable auto-learning from all tasks
88
+ await rb.enableAutoLearning({
89
+ threshold: 0.7, // Only learn from high-confidence outcomes
90
+ updateFrequency: 100 // Update models every 100 experiences
91
+ });
92
+ ```
93
+
94
+ ## Advanced Usage
95
+
96
+ ### Meta-Learning
97
+ ```typescript
98
+ // Learn about learning
99
+ await rb.metaLearn({
100
+ observation: 'parallel_execution_faster_for_independent_tasks',
101
+ confidence: 0.95,
102
+ applicability: {
103
+ task_types: ['batch_processing', 'data_transformation'],
104
+ conditions: ['tasks_independent', 'io_bound']
105
+ }
106
+ });
107
+ ```
108
+
109
+ ### Transfer Learning
110
+ ```typescript
111
+ // Apply knowledge from one domain to another
112
+ await rb.transferKnowledge({
113
+ from: 'code_review_javascript',
114
+ to: 'code_review_typescript',
115
+ similarity: 0.8
116
+ });
117
+ ```
118
+
119
+ ### Adaptive Agents
120
+ ```typescript
121
+ // Create self-improving agent
122
+ class AdaptiveAgent {
123
+ async execute(task: Task) {
124
+ // Get optimal strategy
125
+ const strategy = await rb.recommendStrategy(task.type, task.context);
126
+
127
+ // Execute with strategy
128
+ const result = await this.executeWithStrategy(task, strategy);
129
+
130
+ // Learn from outcome
131
+ await rb.recordExperience({
132
+ task: task.type,
133
+ approach: strategy.name,
134
+ outcome: result,
135
+ context: task.context
136
+ });
137
+
138
+ return result;
139
+ }
140
+ }
141
+ ```
142
+
143
+ ## Integration with AgentDB
144
+
145
+ ```typescript
146
+ // Persist ReasoningBank data
147
+ await rb.configure({
148
+ storage: {
149
+ type: 'agentdb',
150
+ options: {
151
+ database: './reasoning-bank.db',
152
+ enableVectorSearch: true
153
+ }
154
+ }
155
+ });
156
+
157
+ // Query learned patterns
158
+ const patterns = await rb.query({
159
+ category: 'optimization',
160
+ minConfidence: 0.8,
161
+ timeRange: { last: '30d' }
162
+ });
163
+ ```
164
+
165
+ ## Performance Metrics
166
+
167
+ ```typescript
168
+ // Track learning effectiveness
169
+ const metrics = await rb.getMetrics();
170
+ console.log(`
171
+ Total Experiences: ${metrics.totalExperiences}
172
+ Patterns Learned: ${metrics.patternsLearned}
173
+ Strategy Success Rate: ${metrics.strategySuccessRate}
174
+ Improvement Over Time: ${metrics.improvement}
175
+ `);
176
+ ```
177
+
178
+ ## Best Practices
179
+
180
+ 1. **Record consistently**: Log all task outcomes, not just successes
181
+ 2. **Provide context**: Rich context improves pattern matching
182
+ 3. **Set thresholds**: Filter low-confidence learnings
183
+ 4. **Review periodically**: Audit learned patterns for quality
184
+ 5. **Use vector search**: Enable semantic pattern matching
185
+
186
+ ## Troubleshooting
187
+
188
+ ### Issue: Poor recommendations
189
+ **Solution**: Ensure sufficient training data (100+ experiences per task type)
190
+
191
+ ### Issue: Slow pattern matching
192
+ **Solution**: Enable vector indexing in AgentDB
193
+
194
+ ### Issue: Memory growing large
195
+ **Solution**: Set TTL for old experiences or enable pruning
196
+
197
+ ## Learn More
198
+
199
+ - ReasoningBank Guide: agentic-flow/src/reasoningbank/README.md
200
+ - AgentDB Integration: packages/agentdb/docs/reasoningbank.md
201
+ - Pattern Learning: docs/reasoning/patterns.md
@@ -0,0 +1,179 @@
1
+ ---
2
+ name: "Swarm Orchestration"
3
+ description: "Orchestrate multi-agent swarms with agentic-flow for parallel task execution, dynamic topology, and intelligent coordination. Use when scaling beyond single agents, implementing complex workflows, or building distributed AI systems."
4
+ ---
5
+
6
+ # Swarm Orchestration
7
+
8
+ ## What This Skill Does
9
+
10
+ Orchestrates multi-agent swarms using agentic-flow's advanced coordination system. Supports mesh, hierarchical, and adaptive topologies with automatic task distribution, load balancing, and fault tolerance.
11
+
12
+ ## Prerequisites
13
+
14
+ - agentic-flow v1.5.11+
15
+ - Node.js 18+
16
+ - Understanding of distributed systems (helpful)
17
+
18
+ ## Quick Start
19
+
20
+ ```bash
21
+ # Initialize swarm
22
+ npx agentic-flow hooks swarm-init --topology mesh --max-agents 5
23
+
24
+ # Spawn agents
25
+ npx agentic-flow hooks agent-spawn --type coder
26
+ npx agentic-flow hooks agent-spawn --type tester
27
+ npx agentic-flow hooks agent-spawn --type reviewer
28
+
29
+ # Orchestrate task
30
+ npx agentic-flow hooks task-orchestrate \
31
+ --task "Build REST API with tests" \
32
+ --mode parallel
33
+ ```
34
+
35
+ ## Topology Patterns
36
+
37
+ ### 1. Mesh (Peer-to-Peer)
38
+ ```typescript
39
+ // Equal peers, distributed decision-making
40
+ await swarm.init({
41
+ topology: 'mesh',
42
+ agents: ['coder', 'tester', 'reviewer'],
43
+ communication: 'broadcast'
44
+ });
45
+ ```
46
+
47
+ ### 2. Hierarchical (Queen-Worker)
48
+ ```typescript
49
+ // Centralized coordination, specialized workers
50
+ await swarm.init({
51
+ topology: 'hierarchical',
52
+ queen: 'architect',
53
+ workers: ['backend-dev', 'frontend-dev', 'db-designer']
54
+ });
55
+ ```
56
+
57
+ ### 3. Adaptive (Dynamic)
58
+ ```typescript
59
+ // Automatically switches topology based on task
60
+ await swarm.init({
61
+ topology: 'adaptive',
62
+ optimization: 'task-complexity'
63
+ });
64
+ ```
65
+
66
+ ## Task Orchestration
67
+
68
+ ### Parallel Execution
69
+ ```typescript
70
+ // Execute tasks concurrently
71
+ const results = await swarm.execute({
72
+ tasks: [
73
+ { agent: 'coder', task: 'Implement API endpoints' },
74
+ { agent: 'frontend', task: 'Build UI components' },
75
+ { agent: 'tester', task: 'Write test suite' }
76
+ ],
77
+ mode: 'parallel',
78
+ timeout: 300000 // 5 minutes
79
+ });
80
+ ```
81
+
82
+ ### Pipeline Execution
83
+ ```typescript
84
+ // Sequential pipeline with dependencies
85
+ await swarm.pipeline([
86
+ { stage: 'design', agent: 'architect' },
87
+ { stage: 'implement', agent: 'coder', after: 'design' },
88
+ { stage: 'test', agent: 'tester', after: 'implement' },
89
+ { stage: 'review', agent: 'reviewer', after: 'test' }
90
+ ]);
91
+ ```
92
+
93
+ ### Adaptive Execution
94
+ ```typescript
95
+ // Let swarm decide execution strategy
96
+ await swarm.autoOrchestrate({
97
+ goal: 'Build production-ready API',
98
+ constraints: {
99
+ maxTime: 3600,
100
+ maxAgents: 8,
101
+ quality: 'high'
102
+ }
103
+ });
104
+ ```
105
+
106
+ ## Memory Coordination
107
+
108
+ ```typescript
109
+ // Share state across swarm
110
+ await swarm.memory.store('api-schema', {
111
+ endpoints: [...],
112
+ models: [...]
113
+ });
114
+
115
+ // Agents read shared memory
116
+ const schema = await swarm.memory.retrieve('api-schema');
117
+ ```
118
+
119
+ ## Advanced Features
120
+
121
+ ### Load Balancing
122
+ ```typescript
123
+ // Automatic work distribution
124
+ await swarm.enableLoadBalancing({
125
+ strategy: 'dynamic',
126
+ metrics: ['cpu', 'memory', 'task-queue']
127
+ });
128
+ ```
129
+
130
+ ### Fault Tolerance
131
+ ```typescript
132
+ // Handle agent failures
133
+ await swarm.setResiliency({
134
+ retry: { maxAttempts: 3, backoff: 'exponential' },
135
+ fallback: 'reassign-task'
136
+ });
137
+ ```
138
+
139
+ ### Performance Monitoring
140
+ ```typescript
141
+ // Track swarm metrics
142
+ const metrics = await swarm.getMetrics();
143
+ // { throughput, latency, success_rate, agent_utilization }
144
+ ```
145
+
146
+ ## Integration with Hooks
147
+
148
+ ```bash
149
+ # Pre-task coordination
150
+ npx agentic-flow hooks pre-task --description "Build API"
151
+
152
+ # Post-task synchronization
153
+ npx agentic-flow hooks post-task --task-id "task-123"
154
+
155
+ # Session restore
156
+ npx agentic-flow hooks session-restore --session-id "swarm-001"
157
+ ```
158
+
159
+ ## Best Practices
160
+
161
+ 1. **Start small**: Begin with 2-3 agents, scale up
162
+ 2. **Use memory**: Share context through swarm memory
163
+ 3. **Monitor metrics**: Track performance and bottlenecks
164
+ 4. **Enable hooks**: Automatic coordination and sync
165
+ 5. **Set timeouts**: Prevent hung tasks
166
+
167
+ ## Troubleshooting
168
+
169
+ ### Issue: Agents not coordinating
170
+ **Solution**: Verify memory access and enable hooks
171
+
172
+ ### Issue: Poor performance
173
+ **Solution**: Check topology (use adaptive) and enable load balancing
174
+
175
+ ## Learn More
176
+
177
+ - Swarm Guide: docs/swarm/orchestration.md
178
+ - Topology Patterns: docs/swarm/topologies.md
179
+ - Hooks Integration: docs/hooks/coordination.md
@@ -0,0 +1,201 @@
1
+ ---
2
+ name: "ReasoningBank Intelligence"
3
+ description: "Implement adaptive learning with ReasoningBank for pattern recognition, strategy optimization, and continuous improvement. Use when building self-learning agents, optimizing workflows, or implementing meta-cognitive systems."
4
+ ---
5
+
6
+ # ReasoningBank Intelligence
7
+
8
+ ## What This Skill Does
9
+
10
+ Implements ReasoningBank's adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.
11
+
12
+ ## Prerequisites
13
+
14
+ - agentic-flow v1.5.11+
15
+ - AgentDB v1.0.4+ (for persistence)
16
+ - Node.js 18+
17
+
18
+ ## Quick Start
19
+
20
+ ```typescript
21
+ import { ReasoningBank } from 'agentic-flow/reasoningbank';
22
+
23
+ // Initialize ReasoningBank
24
+ const rb = new ReasoningBank({
25
+ persist: true,
26
+ learningRate: 0.1,
27
+ adapter: 'agentdb' // Use AgentDB for storage
28
+ });
29
+
30
+ // Record task outcome
31
+ await rb.recordExperience({
32
+ task: 'code_review',
33
+ approach: 'static_analysis_first',
34
+ outcome: {
35
+ success: true,
36
+ metrics: {
37
+ bugs_found: 5,
38
+ time_taken: 120,
39
+ false_positives: 1
40
+ }
41
+ },
42
+ context: {
43
+ language: 'typescript',
44
+ complexity: 'medium'
45
+ }
46
+ });
47
+
48
+ // Get optimal strategy
49
+ const strategy = await rb.recommendStrategy('code_review', {
50
+ language: 'typescript',
51
+ complexity: 'high'
52
+ });
53
+ ```
54
+
55
+ ## Core Features
56
+
57
+ ### 1. Pattern Recognition
58
+ ```typescript
59
+ // Learn patterns from data
60
+ await rb.learnPattern({
61
+ pattern: 'api_errors_increase_after_deploy',
62
+ triggers: ['deployment', 'traffic_spike'],
63
+ actions: ['rollback', 'scale_up'],
64
+ confidence: 0.85
65
+ });
66
+
67
+ // Match patterns
68
+ const matches = await rb.matchPatterns(currentSituation);
69
+ ```
70
+
71
+ ### 2. Strategy Optimization
72
+ ```typescript
73
+ // Compare strategies
74
+ const comparison = await rb.compareStrategies('bug_fixing', [
75
+ 'tdd_approach',
76
+ 'debug_first',
77
+ 'reproduce_then_fix'
78
+ ]);
79
+
80
+ // Get best strategy
81
+ const best = comparison.strategies[0];
82
+ console.log(`Best: ${best.name} (score: ${best.score})`);
83
+ ```
84
+
85
+ ### 3. Continuous Learning
86
+ ```typescript
87
+ // Enable auto-learning from all tasks
88
+ await rb.enableAutoLearning({
89
+ threshold: 0.7, // Only learn from high-confidence outcomes
90
+ updateFrequency: 100 // Update models every 100 experiences
91
+ });
92
+ ```
93
+
94
+ ## Advanced Usage
95
+
96
+ ### Meta-Learning
97
+ ```typescript
98
+ // Learn about learning
99
+ await rb.metaLearn({
100
+ observation: 'parallel_execution_faster_for_independent_tasks',
101
+ confidence: 0.95,
102
+ applicability: {
103
+ task_types: ['batch_processing', 'data_transformation'],
104
+ conditions: ['tasks_independent', 'io_bound']
105
+ }
106
+ });
107
+ ```
108
+
109
+ ### Transfer Learning
110
+ ```typescript
111
+ // Apply knowledge from one domain to another
112
+ await rb.transferKnowledge({
113
+ from: 'code_review_javascript',
114
+ to: 'code_review_typescript',
115
+ similarity: 0.8
116
+ });
117
+ ```
118
+
119
+ ### Adaptive Agents
120
+ ```typescript
121
+ // Create self-improving agent
122
+ class AdaptiveAgent {
123
+ async execute(task: Task) {
124
+ // Get optimal strategy
125
+ const strategy = await rb.recommendStrategy(task.type, task.context);
126
+
127
+ // Execute with strategy
128
+ const result = await this.executeWithStrategy(task, strategy);
129
+
130
+ // Learn from outcome
131
+ await rb.recordExperience({
132
+ task: task.type,
133
+ approach: strategy.name,
134
+ outcome: result,
135
+ context: task.context
136
+ });
137
+
138
+ return result;
139
+ }
140
+ }
141
+ ```
142
+
143
+ ## Integration with AgentDB
144
+
145
+ ```typescript
146
+ // Persist ReasoningBank data
147
+ await rb.configure({
148
+ storage: {
149
+ type: 'agentdb',
150
+ options: {
151
+ database: './reasoning-bank.db',
152
+ enableVectorSearch: true
153
+ }
154
+ }
155
+ });
156
+
157
+ // Query learned patterns
158
+ const patterns = await rb.query({
159
+ category: 'optimization',
160
+ minConfidence: 0.8,
161
+ timeRange: { last: '30d' }
162
+ });
163
+ ```
164
+
165
+ ## Performance Metrics
166
+
167
+ ```typescript
168
+ // Track learning effectiveness
169
+ const metrics = await rb.getMetrics();
170
+ console.log(`
171
+ Total Experiences: ${metrics.totalExperiences}
172
+ Patterns Learned: ${metrics.patternsLearned}
173
+ Strategy Success Rate: ${metrics.strategySuccessRate}
174
+ Improvement Over Time: ${metrics.improvement}
175
+ `);
176
+ ```
177
+
178
+ ## Best Practices
179
+
180
+ 1. **Record consistently**: Log all task outcomes, not just successes
181
+ 2. **Provide context**: Rich context improves pattern matching
182
+ 3. **Set thresholds**: Filter low-confidence learnings
183
+ 4. **Review periodically**: Audit learned patterns for quality
184
+ 5. **Use vector search**: Enable semantic pattern matching
185
+
186
+ ## Troubleshooting
187
+
188
+ ### Issue: Poor recommendations
189
+ **Solution**: Ensure sufficient training data (100+ experiences per task type)
190
+
191
+ ### Issue: Slow pattern matching
192
+ **Solution**: Enable vector indexing in AgentDB
193
+
194
+ ### Issue: Memory growing large
195
+ **Solution**: Set TTL for old experiences or enable pruning
196
+
197
+ ## Learn More
198
+
199
+ - ReasoningBank Guide: agentic-flow/src/reasoningbank/README.md
200
+ - AgentDB Integration: packages/agentdb/docs/reasoningbank.md
201
+ - Pattern Learning: docs/reasoning/patterns.md