@zkclaw/credentials 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1 @@
1
+ {"noir_version":"0.38.0+e784523a15c0c233a5a794f28498635b7ce86325","hash":2808063007223154237,"abi":{"parameters":[{"name":"signature","type":{"kind":"array","length":64,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"message_hash","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"pub_key_x","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"pub_key_y","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"storage_hash","type":{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"storage_nodes","type":{"kind":"array","length":7,"type":{"kind":"array","length":532,"type":{"kind":"integer","sign":"unsigned","width":8}}},"visibility":"private"},{"name":"storage_leaf","type":{"kind":"array","length":69,"type":{"kind":"integer","sign":"unsigned","width":8}},"visibility":"private"},{"name":"storage_depth","type":{"kind":"integer","sign":"unsigned","width":32},"visibility":"private"},{"name":"storage_value","type":{"kind":"field"},"visibility":"private"},{"name":"chain_id","type":{"kind":"field"},"visibility":"private"},{"name":"block_number","type":{"kind":"field"},"visibility":"private"},{"name":"token_address","type":{"kind":"field"},"visibility":"private"},{"name":"balance_slot","type":{"kind":"field"},"visibility":"private"},{"name":"verified_balance","type":{"kind":"field"},"visibility":"private"}],"return_type":{"abi_type":{"kind":"tuple","fields":[{"kind":"field"},{"kind":"field"},{"kind":"field"},{"kind":"field"},{"kind":"field"},{"kind":"array","length":32,"type":{"kind":"integer","sign":"unsigned","width":8}}]},"visibility":"public"},"error_types":{}},"bytecode":"H4sIAAAAAAAA/+ydBXhV1/btgzvECe7FISdCEgoFira4uwUS3L04RYq7u7u7u7u7u7vb26t3n/89PR23tzRzbtZ8l/N9+7H/v9tvv7HmmmvsOZIQIrn869Mik4vLfr9/3Ucyrijmn+oT04lFAiwyYFEAiwpYNMCiAxYDsJiAxQIsNmBxAIsLWDzA4gOWADBXwNwAcwfMAzBPwLwA8wYsIWA+gCUCLDFgSQBLClgywJIDlgKwlIClAiw1YGkASwtYOsC+Ayw9YBkAywhYJsAyA5YFsKyAZQMsO2C+gNkA8wPMH7AAwAIBywFYEGDBgIUAlhOw7wHLBVhuwH4ALA9geQHLB9iPgOUHrABgBQErBFhhwIoA9hNgPwNWFLBigBUHrARgJQErBVhpwMoAVhawcoCVB6wCYBUBqwRYZcCqAFYVsGqAVQesBmA1AasFWG3AQgGrA1hdwMIACwesHmD1AWsAWEPAGgHWGLAmgDUFrBlgzQFrAVhLwFoB1hqwNoC1BawdYO0B6wDYL4B1BKwTYJ0B6wJYV8C6AdYdsB6A/QpYT8B6AdYbsD6A/QZYX8D6AdYfsAGADQRsEGCDARsC2FDAhgE2HLARgI0EbBRgowEbA9hYwMYBNh6wCYBNBGwSYJMBmwLYVMCmATYdsBmAzQRsFmCzAZsD2FzA5gE2H7AFgC0EbBFgiwFbAthSwJYBthywFYCtBGwVYKsBWwPYWsDWAbYesA2AbQRsE2CbAdsC2FbAtgG2HbAdgO0EbBdguwHbA9hewPYBth+wA4AdBOwQYIcBOwLYUcCOAXYcsBOAnQTsFGCnATsD2FnAzgF2HrALgF0E7BJglwG7AthVwK4Bdh2wG4DdBOwWYLcBuwPYXcDuAXYfsAeAPQTsEWCPAXsC2FPAngH2HLAXgL0E7BVgrwF7A9hbwN4B9h6wD4B9BOwTYJ8BU/+PM4sEWGTAogAWFbBogEUHLAZgMQGLBVhswOIAFheweIDFBywBYK6AuQHmDpgHYJ6AeQHmDVhCwHwASwRYYsCSAJYUsGSAJQcsBWApAUsFWGrA0gCWFrB0gH0HWHrAMgCWEbBMgGUGLAtgWQHLBlh2wHwBswHmB5g/YAGABQKWA7AgwIIBCwEsJ2DfA5YLsNyA/QBYHsDyApYPsB8Byw9YAcAKAlYIsMKAFQHsJ8B+BqwoYMUAKw5YCcBKAlYKsNKAlQGsLGDlACsPWAXAKgJWCbDKgFUBrCpg1QCrDlgNwGoCVguw2oCFAlYHsLqAhQEWDlg9wOoD1gCwhoA1AqwxYE0AawpYM8CaA9YCsJaAtQKsNWBtAGsLWDvA2gPWAbBfAOsIWCfAOgPWBbCugHUDrDtgPQD7FbCegPUCrDdgfQD7DbC+gPUDrD9gAwAbCNggwAYDNgSwoYANA2w4YCMAGwnYKMBGAzYGsLGAjQNsPGATAJsI2CTAJgM2BbCpgE0DbDpgMwCbCdgswGYDNgewuYDNA2w+YAsAWwjYIsAWA7YEsKWALQNsOWArAFsJ2CrAVgO2BrC1gK0DbD1gGwDbCNgmwDYDtgWwrYBtA2w7YDsA2wnYLsB2A7YHsL2A7QNsP2AHADsI2CHADgN2BLCjgB0D7DhgJwA7CdgpwE4Ddgaws4CdA+w8YBcAuwjYJcAuA3YFsKuAXQPsOmA3ALsJ2C3AbgN2B7C7gN0D7D5gDwB7CNgjwB4D9gSwp4A9A+w5YC8AewnYK8BeA/YGsLeAvQPsPWAfAPsI2CfAPgOmfrDPmUUCLDJgUQCLClg0wKIDFgOwmIDFAiw2YHEAiwtYPMDiA5YAMFfA3ABzB8wDME/AvADzBiwhYD6AJQIsMWBJAEsKWDLAkgOWArCUgKUCLDVgaQBLC1g6wL4DLD1gGQDLCFgmwDIDlgWwrIBlAyw7YL6A2QDzA8wfsADAAgHLAVgQYMGAhQCWE7DvAcsFWG7AfgAsD2B5AcsH2I+A5QesAGAFASsEWGHAigD2E2A/A1YUsGKAFQesBGAlASsFWGnAygBWFrBygJUHrAJgFQGrBFhlwKoAVhWwaoBVB6wGYDUBqwVYbcBCAasDWF3AwgALB6weYPUBawBYQ8AaAdYYsCaANQWsGWDNAWsBWEvAWgHWGrA2gLUFrB1g7QHrANgvgHUErBNgnQHrAlhXwLoB1h2wHoD9ClhPwHoB1huwPoD9BlhfwPoB1h+wAYANBGwQYIMBGwLYUMCGATYcsBGAjQRsFGCjARsD2FjAxgE2HrAJgE0EbBJgkwGbAthUwKYBNh2wGYDNBGwWYLMBmwPYXMDmATYfsAWALQRsEWCLAVsC2FLAlgG2HLAVgK0EbBVgqwFbA9hawNYBth6wDYBtBGwTYJsB2wLYVsC2AbYdsB2A7QRsF2C7AdsD2F7A9gG2H7ADgB0E7BBghwE7AthRwI4BdhywE4CdBOwUYKcBOwPYWcDOAXYesAuAXQTsEmCXAbsC2FXArgF2HbAbgN0E7BZgtwG7A9hdwO4Bdh+wB4A9BOwRYI8BewLYU8CeAfYcsBeAvQTsFWCvAXsD2FvA3gH2HrAPgH0E7BNgnwFTN84sEmCRAYsCWFTAogEWHbAYgMUELBZgsQGLA1hcwOIBFh+wBIC5AuYGmDtgHoB5AuYFmDdgCQHzASwRYIkBSwJYUsCSAZYcsBSApQQsFWCpAUsDWFrA0gH2HWDpAcsAWEbAMgGWGbAsgGUFLBtg2QHzBcwGmB9g/oAFABYIWA7AggALBiwEsJyAfQ9YLsByA/YDYHkAywtYPsB+BCw/YAUAKwhYIcAKA1YEsJ8A+xmwooAVA6w4YCUAKwlYKcBKA1YGsLKAlQOsPGAVAKsIWCXAKgNWBbCqgFUDrDpgNQCrCVgtwGoDFgpYHcDqAhYGWDhg9QCrD1gDwBoC1giwxoA1AawpYM0Aaw5YC8BaAtYKsNaAtQGsLWDtAGsPWAfAfgGsI2CdAOsMWBfAugLWDbDugPUA7FfAegLWC7DegPUB7DfA+gLWD7D+gA0AbCBggwAbDNgQwIYCNgyw4YCNAGwkYKMAGw3YGMDGAjYOsPGATQBsImCTAJsM2BTApgI2DbDpgM0AbCZgswCbDdgcwOYCNg+w+YAtAGwhYIsAWwzYEsCWArYMsOWArQBsJWCrAFsN2BrA1gK2DrD1gG0AbCNgmwDbDNgWwLYCtg2w7YDtAGwnYLsA2w3YHsD2ArYPsP2AHQDsIGCHADsM2BHAjgJ2DLDjgJ0A7CRgpwA7DdgZwM4Cdg6w84BdAOwiYJcAuwzYFcCuAnYNsOuA3QDsJmC3ALsN2B3A7gJ2D7D7gD0A7CFgjwB7DNgTwJ4C9gyw54C9AOwlYK8Aew3YG8DeAvYOsPeAfQDsI2CfAPsMmPqFfc4sEmCRAYsCWFTAogEWHbAYgMUELBZgsQGLA1hcwOIBFh+wBIC5AuYGmDtgHoB5AuYFmDdgCQHzASwRYIkBSwJYUsCSAZYcsBSApQQsFWCpAUsDWFrA0gH2HWDpAcsAWEbAMgGWGbAsgGUFLBtg2QHzBcwGmB9g/oAFABYIWA7AggALBiwEsJyAfQ9YLsByA/YDYHkAywtYPsB+BCw/YAUAKwhYIcAKA1YEsJ8A+xmwooAVA6w4YCUAKwlYKcBKA1YGsLKAlQOsPGAVAKsIWCXAKgNWBbCqgFUDrDpgNQCrCVgtwGoDFgpYHcDqAhYGWDhg9QCrD1gDwBoC1giwxoA1AawpYM0Aaw5YC8BaAtYKsNaAtQGsLWDtAGsPWAfAfgGsI2CdAOsMWBfAugLWDbDugPUA7FfAegLWC7DegPUB7DfA+gLWD7D+gA0AbCBggwAbDNgQwIYCNgyw4YCNAGwkYKMAGw3YGMDGAjYOsPGATQBsImCTAJsM2BTApgI2DbDpgM0AbCZgswCbDdgcwOYCNg+w+YAtAGwhYIsAWwzYEsCWArYMsOWArQBsJWCrAFsN2BrA1gK2DrD1gG0AbCNgmwDbDNgWwLYCtg2w7YDtAGwnYLsA2w3YHsD2ArYPsP2AHQDsIGCHADsM2BHAjgJ2DLDjgJ0A7CRgpwA7DdgZwM4Cdg6w84BdAOwiYJcAuwzYFcCuAnYNsOuA3QDsJmC3ALsN2B3A7gJ2D7D7gD0A7CFgjwB7DNgTwJ4C9gyw54C9AOwlYK8Aew3YG8DeAvYOsPeAfQDsI2CfAPsMmPrHOZxZJMAiAxYFsKiARQMsOmAxAIsJWCzAYgMWB7C4gMUDLD5gCQBzBcwNMHfAPADzBMwLMG/AEgLmA1giwBIDlgSwpIAlAyw5YCkASwlYKsBSA5YGsLSApQPsO8DSA5YBsIyAZQIsM2BZAMsKWDbAsgPmC5gNMD/A/AELACwQsByABQEWDFgIYDkB+x6wXIDlBuwHwPIAlhewfID9CFh+wAoAVhCwQoAVBqwIYD8B9jNgRQErBlhxwEoAVhKwUoCVBqwMYGUBKwdYecAqAFYRsEqAVQasCmBVAasGWHXAagBWE7BagNUGLBSwOoDVBSwMsHDA6gFWH7AGgDUErBFgjQFrAlhTwJoB1hywFoC1BKwVYK0BawNYW8DaAdYesA6A/QJYR8A6AdYZsC6AdQWsG2DdAesB2K+A9QSsF2C9AesD2G+A9QWsH2D9ARsA2EDABgE2GLAhgA0FbBhgwwEbAdhIwEYBNhqwMYCNBWwcYOMBmwDYRMAmATYZsCmATQVsGmDTAZsB2EzAZgE2G7A5gM0FbB5g8wFbANhCwBYBthiwJYAtBWwZYMsBWwHYSsBWAbYasDWArQVsHWDrAdsA2EbANgG2GbAtgG0FbBtg2wHbAdhOwHYBthuwPYDtBWwfYPsBOwDYQcAOAXYYsCOAHQXsGGDHATsB2EnATgF2GrAzgJ0F7Bxg5wG7ANhFwC4BdhmwK4BdBewaYNcBuwHYTcBuAXYbsDuA3QXsHmD3AXsA2EPAHgH2GLAngD0F7BlgzwF7AdhLwF4B9hqwN4C9BewdYO8B+wDYR8A+AfYZMPUP8TqzSIBFBiwKYFEBiwZYdMBiABYTsFiAxQYsDmBxAYsHWHzAEgDmCpgbYO6AeQDmCZgXYN6AJQTMB7BEgCUGLAlgSQFLBlhywFIAlhKwVIClBiwNYGkBSwfYd4ClBywDYBkBywRYZsCyAJYVsGyAZQfMFzAbYH6A+QMWAFggYDkACwIsGLAQwHIC9j1guQDLDdgPgOUBLC9g+QD7EbD8gBUArCBghQArDFgRwH4C7GfAigJWDLDigJUArCRgpQArDVgZwMoCVg6w8oBVAKwiYJUAqwxYFcCqAlYNsOqA1QCsJmC1AKsNWChgdQCrC1gYYOGA1QOsPmANAGsIWCPAGgPWBLCmgDUDrDlgLQBrCVgrwFoD1gawtoC1A6w9YB0A+wWwjoB1AqwzYF0A6wpYN8C6A9YDsF8B6wlYL8B6A9YHsN8A6wtYP8D6AzYAsIGADQJsMGBDABsK2DDAhgM2ArCRgI0CbDRgYwAbC9g4wMYDNgGwiYBNAmwyYFMAmwrYNMCmAzYDsJmAzQJsNmBzAJsL2DzA5gO2ALCFgC0CbDFgSwBbCtgywJYDtgKwlYCtAmw1YGsAWwvYOsDWA7YBsI2AbQJsM2BbANsK2DbAtgO2A7CdgO0CbDdgewDbC9g+wPYDdgCwg4AdAuwwYEcAOwrYMcCOA3YCsJOAnQLsNGBnADsL2DnAzgN2AbCLgF0C7DJgVwC7Ctg1wK4DdgOwm4DdAuw2YHcAuwvYPcDuA/YAsIeAPQLsMWBPAHsK2DPAngP2ArCXgL0C7DVgbwB7C9g7wN4D9gGwj4B9AuwzYC4x/swiARYZsCiARQUsGmDRAYsBWEzAYgEWG7A4gMUFLB5g8QFLAJgrYG6AuQPmAZgnYF6AeQOWEDAfwBIBlhiwJIAlBSwZYMkBSwFYSsBSAZYasDSApQUsHWDfAZYesAyAZQQsE2CZAcsCWFbAsgGWHTBfwGyA+QHmD1gAYIGA5QAsCLBgwEIAywnY94DlAiw3YD8AlgewvIDlA+xHwPIDVgCwgoAVAqwwYEUA+wmwnwErClgxwIoDVgKwkoCVAqw0YGUAKwtYOcDKA1YBsIqAVQKsMmBVAKsKWDXAqgNWA7CagNUCrDZgoYDVAawuYGGAhQNWD7D6gDUArCFgjQBrDFgTwJoC1gyw5oC1AKwlYK0Aaw1YG8DaAtYOsPaAdQDsF8A6AtYJsM6AdQGsK2DdAOsOWA/AfgWsJ2C9AOsNWB/AfgOsL2D9AOsP2ADABgI2CLDBgA0BbChgwwAbDtgIwEYCNgqw0YCNAWwsYOMAGw/YBMAmAjYJsMmATQFsKmDTAJsO2AzAZgI2C7DZgM0BbC5g8wCbD9gCwBYCtgiwxYAtAWwpYMsAWw7YCsBWArYKsNWArQFsLWDrAFsP2AbANgK2CbDNgG0BbCtg2wDbDtgOwHYCtguw3YDtAWwvYPsA2w/YAcAOAnYIsMOAHQHsKGDHADsO2AnATgJ2CrDTgJ0B7Cxg5wA7D9gFwC4Cdgmwy4BdAewqYNcAuw7YDcBuAnYLsNuA3QHsLmD3ALsP2APAHgL2CLDHgD0B7ClgzwB7DtgLwF4C9gqw14C9AewtYO8Aew/YB8A+AvYJsM+AKeDMIgEWGbAogEUFLBpg0QGLAVhMwGIBFhuwOIDFBSweYPEBSwCYK2BugLkD5gGYJ2BegHkDlhAwH8ASAZYYsCSAJQUsGWDJAUsBWErAUgGWGrA0gKUFLB1g3wGWHrAMgGUELBNgmQHLAlhWwLIBlh0wX8BsgPkB5g9YAGCBgOUALAiwYMBCAMsJ2PeA5QIsN2A/AJYHsLyA5QPsR8DyA1YAsIKAFQKsMGBFAPsJsJ8BKwpYMcCKA1YCsJKAlQKsNGBlACsLWDnAygNWAbCKgFUCrDJgVQCrClg1wKoDVgOwmoDVAqw2YKGA1QGsLmBhgIUDVg+w+oA1AKwhYI0AawxYE8CaAtYMsOaAtQCsJWCtAGsNWBvA2gLWDrD2gHUA7BfAOgLWCbDOgHUBrCtg3QDrDlgPwH4FrCdgvQDrDVgfwH4DrC9g/QDrD9gAwAYCNgiwwYANAWwoYMMAGw7YCMBGAjYKsNGAjQFsLGDjABsP2ATAJgI2CbDJgE0BbCpg0wCbDtgMwGYCNguw2YDNAWwuYPMAmw/YAsAWArYIsMWALQFsKWDLAFsO2ArAVgK2CrDVgK0BbC1g6wBbD9gGwDYCtgmwzYBtAWwrYNsA2w7YDsB2ArYLsN2A7QFsL2D7ANsP2AHADgJ2CLDDgB0B7ChgxwA7DtgJwE4Cdgqw04CdAewsYOcAOw/YBcAuAnYJsMuAXQHsKmDXALsO2A3AbgJ2C7DbgN0B7C5g9wC7D9gDwB4C9giwx4A9AewpYM8Aew7YC8BeAvYKsNeAvQHsLWDvAHsP2AfAPgL2CbDPgLnE+jOLBFhkwKIAFhWwaIBFBywGYDEBiwVYbMDiABYXsHiAxQcsAWCugLkB5g6YB2CegHkB5g1YQsB8AEsEWGLAkgCWFLBkgCUHLAVgKQFLBVhqwNIAlhawdIB9B1h6wDIAlhGwTIBlBiwLYFkBywZYdsB8AbMB5geYP2ABgAUClgOwIMCCAQsBLCdg3wOWC7DcgP0AWB7A8gKWD7AfAcsPWAHACgJWCLDCgBUB7CfAfgasKGDFACsOWAnASgJWCrDSgJUBrCxg5QArD1gFwCoCVgmwyoBVAawqYNUAqw5YDcBqAlYLsNqAhQJWB7C6gIUBFg5YPcDqA9YAsIaANQKsMWBNAGsKWDPAmgPWArCWgLUCrDVgbQBrC1g7wNoD1gGwXwDrCFgnwDoD1gWwroB1A6w7YD0A+xWwnoD1Aqw3YH0A+w2wvoD1A6w/YAMAGwjYIMAGAzYEsKGADQNsOGAjABsJ2CjARgM2BrCxgI0DbDxgEwCbCNgkwCYDNgWwqYBNA2w6YDMAmwnYLMBmAzYHsLmAzQNsPmALAFsI2CLAFgO2BLClgC0DbDlgKwBbCdgqwFYDtgawtYCtA2w9YBsA2wjYJsA2A7YFsK2AbQNsO2A7ANsJ2C7AdgO2B7C9gO0DbD9gBwA7CNghwA4DdgSwo4AdA+w4YCcAOwnYKcBOA3YGsLOAnQPsPGAXALsI2CXALgN2BbCrgF0D7DpgNwC7CdgtwG4Ddgewu4DdA+w+YA8AewjYI8AeA/YEsKeAPQPsOWAvAHsJ2CvAXgP2BrC3gL0D7D1gHwD7CNgnwD4D5hL7zywSYJEBiwJYVMCiARYdsBiAxQQsFmCxAYsDWFzA4gEWH7AEgLkC5gaYO2AegHkC5gWYN2AJAfMBLBFgiQFLAlhSwJIBlhywFIClBCwVYKkBSwNYWsDSAfYdYOkBywBYRsAyAZYZsCyAZQUsG2DZAfMFzAaYH2D+gAUAFghYDsCCAAsGLASwnIB9D1guwHID9gNgeQDLC1g+wH4ELD9gBQArCFghwAoDVgSwnwD7GbCigBUDrDhgJQArCVgpwEoDVgawsoCVA6w8YBUAqwhYJcAqA1YFsKqAVQOsOmA1AKsJWC3AagMWClgdwOoCFgZYOGD1AKsPWAPAGgLWCLDGgDUBrClgzQBrDlgLwFoC1gqw1oC1AawtYO0Aaw9YB8B+AawjYJ0A6wxYF8C6AtYNsO6A9QDsV8B6AtYLsN6A9QHsN8D6AtYPsP6ADQBsIGCDABsM2BDAhgI2DLDhgI0AbCRgowAbDdgYwMYCNg6w8YBNAGwiYJMAmwzYFMCmAjYNsOmAzQBsJmCzAJsN2BzA5gI2D7D5gC0AbCFgiwBbDNgSwJYCtgyw5YCtAGwlYKsAWw3YGsDWArYOsPWAbQBsI2CbANsM2BbAtgK2DbDtgO0AbCdguwDbDdgewPYCtg+w/YAdAOwgYIcAOwzYEcCOAnYMsOOAnQDsJGCnADsN2BnAzgJ2DrDzgF0A7CJglwC7DNgVwK4Cdg2w64DdAOwmYLcAuw3YHcDuAnYPsPuAPQDsIWCPAHsM2BPAngL2DLDngL0A7CVgrwB7DdgbwN4C9g6w94B9AOwjYJ8A+wyYS5w/s0iARQYsCmBRAYsGWHTAYgAWE7BYgMUGLA5gcQGLB1h8wBIA5gqYG2DugHkA5gmYF2DegCUEzAewRIAlBiwJYEkBSwZYcsBSAJYSsFSApQYsDWBpAUsH2HeApQcsA2AZAcsEWGbAsgCWFbBsgGUHzBcwG2B+gPkDFgBYIGA5AAsCLBiwEMByAvY9YLkAyw3YD4DlASwvYPkA+xGw/IAVAKwgYIUAKwxYEcB+AuxnwIoCVgyw4oCVAKwkYKUAKw1YGcDKAlYOsPKAVQCsImCVAKsMWBXAqgJWDbDqgNUArCZgtQCrDVgoYHUAqwtYGGDhgNUDrD5gDQBrCFgjwBoD1gSwpoA1A6w5YC0AawlYK8BaA9YGsLaAtQOsPWAdAPsFsI6AdQKsM2BdAOsKWDfAugPWA7BfAesJWC/AegPWB7DfAOsLWD/A+gM2ALCBgA0CbDBgQwAbCtgwwIYDNgKwkYCNAmw0YGMAGwvYOMDGAzYBsImATQJsMmBTAJsK2DTApgM2A7CZgM0CbDZgcwCbC9g8wOYDtgCwhYAtAmwxYEsAWwrYMsCWA7YCsJWArQJsNWBrAFsL2DrA1gO2AbCNgG0CbDNgWwDbCtg2wLYDtgOwnYDtAmw3YHsA2wvYPsD2A3YAsIOAHQLsMGBHADsK2DHAjgN2ArCTgJ0C7DRgZwA7C9g5wM4DdgGwi4BdAuwyYFcAuwrYNcCuA3YDsJuA3QLsNmB3ALsL2D3A7gP2ALCHgD0C7DFgTwB7CtgzwJ4D9gKwl4C9Auw1YG8AewvYO8DeA/YBsI+AfQLsM2Aucf/MIgEWGbAogEUFLBpg0QGLAVhMwGIBFhuwOIDFBSweYPEBSwCYK2BugLkD5gGYJ2BegHkDlhAwH8ASAZYYsCSAJQUsGWDJAUsBWErAUgGWGrA0gKUFLB1g3wGWHrAMgGUELBNgmQHLAlhWwLIBlh0wX8BsgPkB5g9YAGCBgOUALAiwYMBCAMsJ2PeA5QIsN2A/AJYHsLyA5QPsR8DyA1YAsIKAFQKsMGBFAPsJsJ8BKwpYMcCKA1YCsJKAlQKsNGBlACsLWDnAygNWAbCKgFUCrDJgVQCrClg1wKoDVgOwmoDVAqw2YKGA1QGsLmBhgIUDVg+w+oA1AKwhYI0AawxYE8CaAtYMsOaAtQCsJWCtAGsNWBvA2gLWDrD2gHUA7BfAOgLWCbDOgHUBrCtg3QDrDlgPwH4FrCdgvQDrDVgfwH4DrC9g/QDrD9gAwAYCNgiwwYANAWwoYMMAGw7YCMBGAjYKsNGAjQFsLGDjABsP2ATAJgI2CbDJgE0BbCpg0wCbDtgMwGYCNguw2YDNAWwuYPMAmw/YAsAWArYIsMWALQFsKWDLAFsO2ArAVgK2CrDVgK0BbC1g6wBbD9gGwDYCtgmwzYBtAWwrYNsA2w7YDsB2ArYLsN2A7QFsL2D7ANsP2AHADgJ2CLDDgB0B7ChgxwA7DtgJwE4Cdgqw04CdAewsYOcAOw/YBcAuAnYJsMuAXQHsKmDXALsO2A3AbgJ2C7DbgN0B7C5g9wC7D9gDwB4C9giwx4A9AewpYM8Aew7YC8BeAvYKsNeAvQHsLWDvAHsP2AfAPgL2CbDPgLnE+zOLBFhkwKIAFhWwaIBFBywGYDEBiwVYbMDiABYXsHiAxQcsAWCugLkB5g6YB2CegHkB5g1YQsB8AEsEWGLAkgCWFLBkgCUHLAVgKQFLBVhqwNIAlhawdIB9B1h6wDIAlhGwTIBlBiwLYFkBywZYdsB8AbMB5geYP2ABgAUClgOwIMCCAQsBLCdg3wOWC7DcgP0AWB7A8gKWD7AfAcsPWAHACgJWCLDCgBUB7CfAfgasKGDFACsOWAnASgJWCrDSgJUBrCxg5QArD1gFwCoCVgmwyoBVAawqYNUAqw5YDcBqAlYLsNqAhQJWB7C6gIUBFg5YPcDqA9YAsIaANQKsMWBNAGsKWDPAmgPWArCWgLUCrDVgbQBrC1g7wNoD1gGwXwDrCFgnwDoD1gWwroB1A6w7YD0A+xWwnoD1Aqw3YH0A+w2wvoD1A6w/YAMAGwjYIMAGAzYEsKGADQNsOGAjABsJ2CjARgM2BrCxgI0DbDxgEwCbCNgkwCYDNgWwqYBNA2w6YDMAmwnYLMBmAzYHsLmAzQNsPmALAFsI2CLAFgO2BLClgC0DbDlgKwBbCdgqwFYDtgawtYCtA2w9YBsA2wjYJsA2A7YFsK2AbQNsO2A7ANsJ2C7AdgO2B7C9gO0DbD9gBwA7CNghwA4DdgSwo4AdA+w4YCcAOwnYKcBOA3YGsLOAnQPsPGAXALsI2CXALgN2BbCrgF0D7DpgNwC7CdgtwG4Ddgewu4DdA+w+YA8AewjYI8AeA/YEsKeAPQPsOWAvAHsJ2CvAXgP2BrC3gL0D7D1gHwD7CNgnwD4D5hL/zywSYJEBiwJYVMCiARYdsBiAxQQsFmCxAYsDWFzA4gEWH7AEgLkC5gaYO2AegHkC5gWYN2AJAfMBLBFgiQFLAlhSwJIBlhywFIClBCwVYKkBSwNYWsDSAfYdYOkBywBYRsAyAZYZsCyAZQUsG2DZAfMFzAaYH2D+gAUAFghYDsCCAAsGLASwnIB9D1guwHID9gNgeQDLC1g+wH4ELD9gBQArCFghwAoDVgSwnwD7GbCigBUDrDhgJQArCVgpwEoDVgawsoCVA6w8YBUAqwhYJcAqA1YFsKqAVQOsOmA1AKsJWC3AagMWClgdwOoCFgZYOGD1AKsPWAPAGgLWCLDGgDUBrClgzQBrDlgLwFoC1gqw1oC1AawtYO0Aaw9YB8B+AawjYJ0A6wxYF8C6AtYNsO6A9QDsV8B6AtYLsN6A9QHsN8D6AtYPsP6ADQBsIGCDABsM2BDAhgI2DLDhgI0AbCRgowAbDdgYwMYCNg6w8YBNAGwiYJMAmwzYFMCmAjYNsOmAzQBsJmCzAJsN2BzA5gI2D7D5gC0AbCFgiwBbDNgSwJYCtgyw5YCtAGwlYKsAWw3YGsDWArYOsPWAbQBsI2CbANsM2BbAtgK2DbDtgO0AbCdguwDbDdgewPYCtg+w/YAdAOwgYIcAOwzYEcCOAnYMsOOAnQDsJGCnADsN2BnAzgJ2DrDzgF0A7CJglwC7DNgVwK4Cdg2w64DdAOwmYLcAuw3YHcDuAnYPsPuAPQDsIWCPAHsM2BPAngL2DLDngL0A7CVgrwB7DdgbwN4C9g6w94B9AOwjYJ8A+wyYS4I/s0iARQYsCmBRAYsGWHTAYgAWE7BYgMUGLA5gcQGLB1h8wBIA5gqYG2DugHkA5gmYF2DegCUEzAewRIAlBiwJYEkBSwZYcsBSAJYSsFSApQYsDWBpAUsH2HeApQcsA2AZAcsEWGbAsgCWFbBsgGUHzBcwG2B+gPkDFgBYIGA5AAsCLBiwEMByAvY9YLkAyw3YD4DlASwvYPkA+xGw/IAVAKwgYIUAKwxYEcB+AuxnwIoCVgyw4oCVAKwkYKUAKw1YGcDKAlYOsPKAVQCsImCVAKsMWBXAqgJWDbDqgNUArCZgtQCrDVgoYHUAqwtYGGDhgNUDrD5gDQBrCFgjwBoD1gSwpoA1A6w5YC0AawlYK8BaA9YGsLaAtQOsPWAdAPsFsI6AdQKsM2BdAOsKWDfAugPWA7BfAesJWC/AegPWB7DfAOsLWD/A+gM2ALCBgA0CbDBgQ0wW1biiG1dBl399lM8qX1U+qnxT+aTyReWDyveUzylfUz6mfEv5lPIl5UPKd5TPKF9RPqJ8Q/mE8gXlA+rcq3OuzrU6x+rcqnOqzqU6h+rcqXOmzpU6R+rcqHOizoU6B6rvVZ+rvlZ9rPpW9anqS9WHqu9Un6m+Un2k+kb1ieoL1Qdq39U+q31V+6j2Te2T2he1D6ruqs6qrqqOqm6qTi5OtRtqsJTGn5Fd/viJZP6Z1/zTN2If26gEZM/yTWk+Z6PxzE3Gtdm4thjXVuPaZlzbjWuHce00rl3Gtdu49hjXXuPaZ1z7jeuAcR00rkPGddi4jhjXUeM6ZlzHjeuEcZ00rlPGddq4zhjXWeM6Z1znjetCgn8VybGWG0FvbgJsM2BbANsK2DbAtgO2A7CdgO0CbDdgewDbC9g+wPYDdgCwg4AdAuwwYEcAOwrYMcCOA3YCsJOAnQLsNGBnADsL2DnAzgN2wWSOn1Tmn3nNP30j9vnDmfX3zREQEBbkF2bzt9X29QsJDQ70DQgMzRFsC7YFBgfW9Qv29w8LDggOCgkNCfINsQX4h9nCA0P8w82HbSR4Vli4+vjaNhE9S61xM8mz/lWvLRF/lp9ZL9vWiD4r4P9qb9sWsWf5OuyjbXtEnuX3h56w7fjnz/J16i/bzn/4rBzhf+pV265/9qxg0Pe23f/kWcHwDNn2fPmzgv7DebTt/dJnBf3Hs23b92XP8vsLn7Dt/5JnBf2l59gO/P1n1fkv/mU7+HefFfRfvdB26O89y/dv+Krt8N95lu/f8mjbkf/+rMC/6fe2o//tWQF/+91hO/aXzwoI/4L3kO34Xz0r6IveabYT//lZwV/4frSd/A/PCgn/4net7RR+lu8/eG/bTqNn+f6jGcB25s/Psv3DecJ21vlZdf/xbGI798dn+UdgzrGdd3iWX3iEZibbBcLM5OLwsWe9vH/fs/9ytrtAOCdeJFuzv280l99/te7/ZVnHD3W+vUi4V456LyVgFKweTv3cy4TNwLXuywn+XWCi5/7ebPFc/vyFFI410BlDXV8gl+bZNl9fx1pcMWt+1fzCyf8l2StmEzqyqyDdRmEsYkQT6RXCpr9KvLkcB/wKMI6IrvuKkLfdecK9vka25hwBVr7trjG97a4nYBR8neFtd0Pzt51a9w3hb7vzZM0WUgfIZXnb3TRrfsv5bXcTvO1uWfC2O0/4trtJ2PS3mDaX2vUp13ybzj1tLi70b+LLpmlEJu5Bymhwh3haoDYttcd3GKYk3ddt7x3qdd8VMh1S9vg9Zp/wjdjHpvbkHoNP3CGs4X0B5+U+w3l5QDyh22eVBw5auWpB3U/3CPvpIVNdHyb4c3Kj9qZzhHV4RFaHgDArk+sj4v2zfx4nYBT8mCG5PtE8uap1PxGeXM+RNVuoH5DLklyfmjV/5pxcn4Lk+syC5ErhWvbk+pSw6Z8xbS6161Ou+bnmE+lD0zSiENfwIWENKY33heb7ofrlBcN0S7hu+PKi6JcnDJMsZe+81DwZqRq+ZKjhC8IavhLyVQlK/3qtueeoPXnN4DlvmJLfG8ZEba8F9Rmi7Ke3THV9a0GiPktYh3dkdQjyszJRvyPeP/vnfQJGwe8ZEvUHzRO1WvcH4Yn6LFmzBYcBuSyJ+qNZ80/OifojSNSfLEjUFK5lT9QfCZv+E9PmUrs+5Zo/az5NvTVNgzpRvyWsIanxuuq9H6pflEbq6ZZw3SyJ2t6H1JMsZe9EYq6hb8Q+v59lpZG6ho69E9EaRiauof1D/Q6g9K8omnuO2pMoDJ4TlXCvHWeoqK58idpeC+ozRNlP0ZjqGs2VP1GfIaxDdLI6hNmsTNTRiffP/onhyig4hiv9c2MSvli41h3T9d8FJnqupYn6DFkAsYUDuSyJOpZZ89iuLn9Mz7Fc/5yo1X/EnajPECbqWIRNH9uVZ3OpXZ9yzXE0n6aimaZBnaijEdaQ0njjar4fql/iMky3hOtmSdT2PqSeZCl7J57miVrVMB5DDeMS1jC+kERN6V8JNPcctScJGDzHlSn5uTImanstqM8QZT+5MdXVzYJEfZowUbuT1cHf0kTtTrx/9o+HK6NgD4ZE7al5olbr9hSeqE+TJeo6liVqL7Pm3s6J2gskam8LEvVpwkTtRdj03q48m0vt+pRrTqj5NOVmmgZ1onYjrCGl8fpovh+qX3wYplvCdbMkansfUk+ylL2TSPNErWqYiKGGPoQ1TCwkUVP6VxLNPUftSRIGz0nKlPySMiZqey2ozxBlPyVjqmsyCxL1KcJEnZysDrUt/X2XyYn3z/5J4cooOAVDok6peaJW604pPFGfovs1eb5ALkuiTmXWPLVzok4FEnVqCxL1KcJEnYqw6VO78mwutetTrjmN5tNUMtM0qBN1MsIaUhpvWs33Q/VLWobplnDdLIna3ofUkyxl76TTPFGrGqZjqGFawhp+JyRRU/pXes09R+1JegbPycCU/DIwJmp7LajPEGU/ZWSqa0YLEvVJwkSdiawOfiFWJupMxPtn/2R2ZRScmSFRZ9E8Uat1ZxGeqE+SJeq6QUAuS6LOatY8m3OizgoSdTYLEvVJwkSdlbDps7nybC6161OuObvm01RG0zSoE3VGwhpSGq+v5vuh+sWXYbolXDdLorb3IfUkS9k7Ns0TtaqhjaGGvoQ19BOSqCn9y19zz1F74s/gOQFMyS+AMVHba0F9hij7KZCproEWJOoThIk6B1kdQoOtTNQ5iPfP/glyZRQcxJCogzVP1GrdwcIT9Qm6X4gfDOSyJOoQs+Y5nRN1CEjUOS1I1CcIE3UIYdPndOXZXGrXp1zz95pPU4GmaVAn6kDCGlIaby7N90P1Sy6G6ZZw3SyJ2t6H1JMsZe/k1jxRqxrmZqhhLsIa/iAkUVP6Vx7NPUftSR4Gz8nLlPzyMiZqey2ozxBlP+Vjqms+CxL1ccJE/SNZHQIt/anvH4n3z/7J78ooOD9Doi6geaJW6y4gPFEfp/sHlnyBXJZEXdCseSHnRF0QJOpCFiTq44SJuiBh0xdy5dlcatenXHNhzaepfKZpUCfqfIQ1pDTeIprvh+qXIgzTLeG6WRK1vQ+pJ1nK3vlJ80StavgTQw2LENbwZyGJmtK/imruOWpPijJ4TjGm5FeMMVHba0F9hij7qThTXYtbkKiPESbqEnTfoQm0MlGXIN4/+6ekK6PgkgyJupTmiVqtu5TwRH2MLlGHArksibq0WfMyzom6NEjUZSxI1McIE3VpwqYv48qzudSuT7nmsppPU8VN06BO1MUJa0hpvOU03w/VL+UYplvCdbMkansfUk+ylL1TXvNErWpYnqGG5QhrWEFIoqb0r4qae47ak4oMnlOJKflVYkzU9lpQnyHKfqrMVNfKFiTqo4SJugrdPJnDykRdhXj/7J+qroyCqzIk6mqaJ2q17mrCE/VRup/6rg3ksiTq6mbNazgn6uogUdewIFEfJUzU1QmbvoYrz+ZSuz7lmmtqPk1VNk2DOlFXJqwhpfHW0nw/VL/UYphuCdfNkqjtfUg9yVL2Tm3NE7WqYW2GGtYirGGokERN6V91NPcctSd1GDynLlPyq8uYqO21oD5DlP0UxlTXMAsS9RHCRB1OVodgS//1rHDi/bN/6rkyCq7HkKjra56o1brrC0/UR8gSdZBl/3pWA7PmDZ0TdQOQqBtakKiPECbqBoRN39CVZ3OpXZ9yzY00n6bCTNOgTtRhhDWkNN7Gmu+H6pfGDNMt4bpZErW9D6knWcreaaJ5olY1bMJQw8aENWwqJFFT+lczzT1H7UkzBs9pzpT8mjMmanstqM8QZT+1YKprCwsS9WHCRN1SaKJuSbx/9k8rV0bBrRgSdWvNE7Vad2vhifqwwETdxqx5W+dE3QYk6rYWJOrDhIm6DWHTtxWSqCnX3E7zaaqFaRrUiboFYQ0pjbe95vuh+qU9w3RLuG6WRG3vQ+pJlrJ3OmieqFUNOzDUsD1hDX8Rkqgp/auj5p6j9qQjg+d0Ykp+nRgTtb0W1GeIsp86M9W1swWJ+hBhou5CVodAS3/Xdxfi/bN/uroyCu7KkKi7aZ6o1bq7CU/Uh8gSdW3Lftd3d7PmPZwTdXeQqHtYkKgPESbq7oRN38OVZ3OpXZ9yzb9qPk11Nk2DOlF3JqwhpfH21Hw/VL/0ZJhuCdfNkqjtfUg9yVL2Ti/NE7WqYS+GGvYkrGFvIYma0r/6aO45ak/6MHjOb0zJ7zfGRG2vBfUZouynvkx17WtBoj5ImKj70SXqulYm6n7E+2f/9HdlFNyfIVEP0DxRq3UPEJ6oD9Ilan8glyVRDzRrPsg5UQ8EiXqQBYn6IGGiHkjY9INceTaX2vUp1zxY82mqr2ka1Im6L2ENKY13iOb7ofplCMN0S7hulkRt70PqSZayd4ZqnqhVDYcy1HAIYQ2HCUnUlP41XHPPUXsynMFzRjAlvxGMidpeC+ozRNlPI5nqOtKCRH2AMFGPIquDn6Xfox5FvH/2z2hXRsGjGRL1GM0TtVr3GOGJ+gBZoq5r2feox5o1H+ecqMeCRD3OgkR9gDBRjyVs+nGuPJtL7fqUax6v+TQ10jQN6kQ9krCGlMY7QfP9UP0ygWG6JVw3S6K29yH1JEvZOxM1T9SqhhMZajiBsIaThCRqSv+arLnnqD2ZzOA5U5iS3xTGRG2vBfUZouynqUx1nWpBot5PmKinkdXB39/KRD2NeP/sn+mujIKnMyTqGZonarXuGcIT9X6yRF2nLpDLkqhnmjWf5ZyoZ4JEPcuCRL2fMFHPJGz6Wa48m0vt+pRrnq35NDXVNA3qRD2VsIaUxjtH8/1Q/TKHYbolXDdLorb3IfUkS9k7czVP1KqGcxlqOIewhvOEJGpK/5qvueeoPZnP4DkLmJLfAsZEba8F9Rmi7KeFTHVdaEGi3keYqBeR1SHM0u9RLyLeP/tnsSuj4MUMiXqJ5olarXuJ8ES9jyxR2yz7HvVSs+bLnBP1UpCol1mQqPcRJuqlhE2/zJVnc6ldn3LNyzWfphaapkGdqBcS1pDSeFdovh+qX1YwTLeE62ZJ1PY+pJ5kKXtnpeaJWtVwJUMNVxDWcJWQRE3pX6s19xy1J6sZPGcNU/Jbw5io7bWgPkOU/bSWqa5rLUjUewkT9TqyOgRYmqjXEe+f/bPelVHweoZEvUHzRK3WvUF4ot5LlqhDLUvUG82ab3JO1BtBot5kQaLeS5ioNxI2/SZXns2ldn3KNW/WfJpaa5oGdaJeS1hDSuPdovl+qH7ZwjDdEq6bJVHb+5B6kqXsna2aJ2pVw60MNdxCWMNtQhI1pX9t19xz1J5sZ/CcHUzJbwdjorbXgvoMUfbTTqa67rQgUe8hTNS7yOoQFGJlot5FvH/2z25XRsG7GRL1Hs0TtVr3HuGJeg9Zog4OAnJZEvVes+b7nBP1XpCo91mQqPcQJuq9hE2/z5Vnc8m/jkq45v2aT1M7TdOgTtQ7CWtIabwHNN8P1S8HGKZbwnWzJGp7H1JPspS9c1DzRK1qeJChhgcIa3hISKKm9K/DmnuO2pPDDJ5zhCn5HWFM1PZaUJ8hyn46ylTXoxYk6t2EifoY3XdoLE3Ux4j3z/457soo+DhDoj6heaJW6z4hPFHvJkvUAZYl6pNmzU85J+qTIFGfsiBR7yZM1CcJm/6UK8/mUrs+5ZpPaz5NHTVNgzpRHyWsIaXxntF8P1S/nGGYbgnXzZKo7X1IPclS9s5ZzRO1quFZhhqeIazhOSGJmtK/zmvuOWpPzjN4zgWm5HeBMVHba0F9hij76SJTXS9akKh3ESbqS3Tfo/a1MlFfIt4/++eyK6PgywyJ+ormiVqt+4rwRL2LLFGH+AK5LIn6qlnza86J+ipI1NcsSNS7CBP1VcKmv+bKs7nUrk+55uuaT1MXTdOgTtQXCWtIabw3NN8P1S83GKZbwnWzJGp7H1JPspS9c1PzRK1qeJOhhjcIa3hLSKKm9K/bmnuO2pPbDJ5zhyn53WFM1PZaUJ8hyn66y1TXuxYk6p2Eifoe3TxpszJR3yPeP/vnviuj4PsMifqB5olarfuB8ES9kyxR5wgHclkS9UOz5o+cE/VDkKgfWZCodxIm6oeETf/IlWdzqV2fcs2PNZ+m7pqmQZ2o7xLWkNJ4n2i+H6pfnjBMt4TrZknU9j6knmQpe+ep5ola1fApQw2fENbwmZBETelfzzX3HLUnzxk85wVT8nvBmKjttaA+Q5T99JKpri8tSNQ7CBP1K7I6BFj6r2e9It4/++e1K6Pg1wyJ+o3miVqt+43wRL2D7jeTWfavZ701a/7OOVG/BYn6nQWJegdhon5L2PTvXHk2l9r1Kdf8XvNp6qVpGtSJ+iVhDSmN94Pm+6H65QPDdEu4bpZEbe9D6kmWsnc+ap6oVQ0/MtTwA2ENPwlJ1JT+9Vlzz1F78pnBc1zceJKfei5XorbXgvoMUfZTJKa6RnLjT9TbCRN1ZLI6hFn6PerIxPtn/0RxYxQcxY3+uVHd9E7Uat1R3f5dYKLnWpqot9P961mWfY86mlnz6G4uf0zP0dz+nKjVf8SdqLcTJupohE0f3Y1nc6ldn3LNMdz0nqYimaZBnagjEdaQ0nhjar4fql9iutFPt4TrZknU9j6knmQpeycWcw19I/b5/SzHYqhhTMIaxiauof1D/Q6g9K84mnuO2pM4DJ4Tlyn5xWVM1PZaUJ8hyn6Kx1TXeBYk6m2EiTo+WR3CA61M1PGJ98/+SeDGKDgBQ6J21TxRq3W7Ck/U28gStW8okMuSqN3Mmrs7J2o3kKjdLUjU2wgTtRth07u78WwutetTrtlD82kqnmka1Ik6HmENKY3XU/P9UP3iyTDdEq6bJVHb+5B6kqXsHS/NE7WqoRdDDT0Ja+gtJFFT+ldCzT1H7UlCBs/xYUp+PoyJ2l4L6jNE2U+JmOqayIJEvZUwUScmq0OIpT/1nZh4/+yfJG6MgpMwJOqkmidqte6kwhP1Vrq/R23ZT30nM2ue3DlRJwOJOrkFiXorYaJORtj0yd14Npfa9SnXnELzaSqRaRrUiToRYQ0pjTel5vuh+iUlw3RLuG6WRG3vQ+pJlrJ3UmmeqFUNUzHUMCVhDVMLSdSU/pVGc89Re5KGwXPSMiW/tIyJ2l4L6jNE2U/pmOqazoJEvYUwUX9H9z1qS3/X93fE+2f/pHdjFJyeIVFn0DxRq3VnEJ6ot9D91LcvkMuSqDOaNc/knKgzgkSdyYJEvYUwUWckbPpMbjybS+36lGvOrPk0lc40DepEnY6whpTGm0Xz/VD9koVhuiVcN0uitvch9SRL2TtZNU/UqoZZGWqYhbCG2YQkakr/yq6556g9yc7gOb5Myc+XMVHba0F9hij7ycZUV5tZVyvT5eYEtGuxf/zcGAX7MaRLf83TpVq3P0O6RFopDog/wyEmPHjs+61rDSnXHSBkmLARrjlQ82FCrTWAYZjIofnwrfYlB7PnRLSGQUyDQ9BXGBw2MQ0OwW6MgoMZBocQzQcHte4QIYODauQQhkNMePDY91vXGlKuO6eQwSGIcM3faz44qLXmZBgccmk+OKh9ycXsORGtYW6mwSG3Bd/D30j4PfwfCM+QlcPSD248w1IeN0bBeRiGpbyaD0u/b5RFw5JvxD623KZW6m8d5ibcI8r9zqf5C1QZXT6GF+iPmr9A1Zp/ZFh3fqaXXn7wIyDUNeHeM5IzzjD0UJ73Apr3vaphAYYa5iOsYUEhQYvynVNI8/eE2pNCDH5ZmMkvCzN+u/c/1cI3Yh8bZT8pbTHMtddy+de7Q93XdrgPdbiv43Bf1+E+zOE+3OG+nsN9fYf7Bg73DR3uGzncN3a4b+Jw39ThvpnDfXOH+xYO9y0d7ls53Ld2uG/jcN/W4b6dw317h/sODve/ONx3dLjv5HDf2eG+i8N9V4f7bg733R3uezjc/+pw39PhvpfDfW+H+z4O97853Pd1uO/ncN/f4X6Aw/1Ah/tBDveDHe6HONwPdbgf5nA/3OF+hMP9SIf7UQ73ox3uxzjcj3W4H+dwP97hfoLD/USH+0kO95Md7l0c7iM53Ed2uI/icB/V4T6aw310h/sYDvcxHe5jOdzHdriP43Af1+E+nsN9fIf7BA73rg73bg737g73Hg73ng73Xg733g73CR3ufRzuEzncJ3a4T+Jwn9ThPpnDfXKH+xQO9ykd7lM53Kd2uE/jcJ/W4T6dw/13DvfpHe4zONxndLjP5HCf2eE+i8N9Vof7bA732R3ufR3ubQ73fg73/g73AQ73gQ73ORzugxzugx3uQxzuczrcf+9wn8vhPrfD/Q8O93kc7vM63OdzuP/R4T6/w30Bh/uCDveFHO4LO9wXcbj/yeH+Z4f7og73xRzuizvcl3C4L+lwX8rhvrTDfRmH+7IO9+Uc7ss73FdwuK/ocF/J4b6yw30Vh/uqDvfVHO6rO9zXcLivad7/5PB1GReXf/tRXvNP34h9bD8Rzgx/9Xc2YhLrrkX1LJuvb22aZ9nU/xNK8Szbv/6oE/Fn2ew3dSP6LNu/b8Mi9iyb4/8RHpFn2f74f9Zz4cl9LhHrXZszcDwfP5vnu6j60z5IRDL/h01OrKjDYbV/YkdM3J/E1nL5drD+/pP+9w7WF74kfJ1eErafCV84RS36Qo9vxD6kay72F88KDgoLDQ8K8K/tGxAeajwnR3iYf22/EFt4sL/xeP8AW2jtMN+6AaFBOQJyBIcHWfo3eosxfTewuBuj4OIMX6Upofl3A9W6Swj50amiptaIHljn51LuUUmmr1Cq5+Zz+ddXGKyauuu70A0HDVzohoOGLnTDQSMXuuGgsQvdcNDEhW44aOpCNxw0c+F5CbtErHf/cuouZfpbaeepuxSYuktbMHV/O1hf8qT/vYMV0am7FOELrbSQqZtyzWWETt1lmKbusm6MgssyTN3lNJ+61brLCZm6S5taqaduyj0qzzR1l/8KU3dzF7rhoIUL3XDQ0oVuOGjlQjcctHahGw7auNANB21d6IaDdi48L2GXiPXuX07dFUx/q+g8dVcAU3dFC6bubwfrS570v3ewIjp1VyB8oVUUMnVTrrmS0Km7EtPUXdmNUXBlhqm7iuZTt1p3FSFTd0VTK/XUTblHVZmm7qpfYepu70I3HHRwoRsOfnGhGw46utANB51c6IaDzi50w0EXF7rhoKsLz0vYJWK9+5dTdzXT36o7T93VwNRd3YKp+9vB+pIn/e8drIhO3dUIX2jVhUzdlGuuIXTqrsE0ddd0YxRck2HqrqX51K3WXUvI1F3d1Eo9dVPuUW2mqbv2V5i6u7nQDQfdXeiGgx4udMPBry50w0FPF7rhoJcL3XDQ24VuOOjjwvMSdolY7/7l1B1q+lsd56k7FEzddSyYuru5fDtYf/9J/3sHK6JTdyjhC62OkKmbcs11hU7ddZmm7jA3RsFhDFN3uOZTt1p3uJCpu46plXrqptyjekxTd72vMHX/5kI3HPR1oRsO+rnQDQf9XeiGgwEudMPBQBe64WCQC91wMNiF5yXsErHe/cupu77pbw2cp+76YOpuYMHU/e1gfcmT/vcOVkSn7vqEL7QGQqZuyjU3FDp1N2Sauhu5MQpuxDB1N9Z86lbrbixk6m5gaqWeuin3qAnT1N3kK0zdQ1zohoOhLnTDwTAXuuFguAvdcDDChW44GOlCNxyMcqEbDka78LyEXSLWu385dTc1/a2Z89TdFEzdzSyYur8drC950v/ewYro1N2U8IXWTMjUTbnm5kKn7uZMU3cLN0bBLRim7paaT91q3S2FTN3NTK3UUzflHrVimrpbfYWpe4wL3XAw1oVuOBjnQjccjHehGw4muNANBxNd6IaDSS50w8FkF56XsEvEevcvp+7Wpr+1cZ66W4Opu40FU/e3g/UlT/rfO1gRnbpbE77Q2giZuinX3Fbo1N2Waepu58YouB3D1N1e86lbrbu9kKm7jamVeuqm3KMOTFN3B3PqVvdxXP74q4Udf+GZ469hcPzLYY4/sur4jXTHL+85Dx1UPUb8PN9vz/v2vL/6BBM/j1rft+f97z3vF8NXOxpXJ+PqbFxdjKurcXUzru7G1cO4fjWunsbVy7h6G1cf4/rNuPoaVz/j6m9cA4xroHENMq7BxjXEuIYa1zC3P38lhnpW+IXw3Wb/CtFw45kjjGukcY0yrtHGNca4xhrXODMlO74H1X/v+O/3qD9HADYSsFGAjQZsDGBjARvn9u+vdNk/sRhrHtHZZDjBs8LC1cfXNoLoWWqNI0me9a96jYr4s/zs4XV0RJ8V8O8gPCZiz/J1DNVjI/Isvz8G9HGEZ5rbfzoy+M9445kTjGuicU0yrsnGNcW4phrXNOA/44EPTABsImCTAJsM2BTApgI2zQL/6UjoP+MJ/WcCof9MJPSfSYT+M5nQf6YQ+s9UQv+ZJsh/OjH4z3TjmTOMa6ZxzTKu2cY1x7jmGtc84D/TgQ/MAGwmYLMAmw3YHMDmAjbPAv/pROg/0wn9Zwah/8wk9J9ZhP4zm9B/5hD6z1xC/5knyH86M/jPfOOZC4xroXEtMq7FxrXEuJYa1zLgP/OBDywAbCFgiwBbDNgSwJYCtswC/+lM6D/zCf1nAaH/LCT0n0WE/rOY0H+WEPrPUkL/WcboP55/9yzY/t7zJ/89rX/raVP+7rr/xtOm/v0a/tenfdE8+l+eNv3L9vYvnzbjS/vkL54288t77j8+bdY/6d//8LTZ/+wswKfN+afnCjxt7j8/o396WoTmDaenzY+Yd/zhaQsi6kMOT1sYcU/7v6ctovBH82mLabz296ctofJt42lL6d4BpO+TlOZzlhvPXGFcK41rlXGtNq41xrXWuNYZ13rj2mBcG41rk3FtNq4txrXVuLYZ13bj2mFcO41rl3HtNq49xrXXuPYZ137jOmBcB43rkHEdNq4jxnXUuI6BGXQ5mAVXALYSsFWArQZsDWBrAVsH2HrANgC2EbBNgG0GbAtgWwHbBth2wHYAthOwXYDtBmwPYHsB2wfYfsAOAHYQsEOAHQbsCGBHATvm9ueMEWD+mdf88z8eoG9z1f99vs1VX/a0b3PVlz3t21z1ZU/7Nld92dOWEX4daDnh14FWEH4daCXh14FWEX4daDXh14HWEH4daC3h14HW/fNn/emH7tf/w2flCP9Tr9o2/LNnBYO+t238J88KhmfItunLnxX0H86jbfOXPivoP55t25Yve5bfX/iEbeuXPCvoLz3Htu3vP6vOf/Ev2/a/+6yg/+qFth1/71m+f8NXbTv/zrN8/5ZH23b992cF/k2/t+3+b88K+NvvDtuev3xWQPgXvIdse//qWUFf9E6z7fvPzwr+wvejbf9/eFZI+Be/a20H8LN8/8F723YQPcv3H80AtkN/fpbtH84TtsPOz6r7j2cT25E/Pss/AnOO7ajDs/zCIzQz2Y7RzXJ/+Ze/IjrbHSOcE4+Trdnf0r/8dZxwrxz1nnBjFKweTv3ck4TNwLXuk27/LjDRc33/6lcDUK+BzhjqUv41cCeVf/zm7Cmz5qfNL27/31cbT5lN6MhOg69ARmEsYkQT6SnCpj9NvLkcB/wUMI6IrvuUkLfdUcK9PkO25hwBVr7tzjC97c66MQo+y/C2O6f5206t+5zwt91RsmYLqQPksrztzps1v+D8tjsP3nYXLHjbHSV8250nbPoLTJtL7fqUa75I5542Fxf6N/FJ0zQiE/cgZTS4RDwtUJuW2uNLDFOS7uu29w71ui8LmQ4pe/wKs0/4RuxjU3tyhcEnLhHW8KqA83KV4bxcI57Q7bPKNQetXLWg7qcrhP10namu193+nNyovekIYR1ukNUhIMzK5HqDeP/sn5tujIJvMiTXW5onV7XuW8KT6xGyZgv1A3JZkutts+Z3nJPrbZBc71iQXClcy55cbxM2/R2mzaV2fco139V8Ir1umkYU4hpeJ6whpfHe03w/VL/cY5huCdfN8lsb7X1IPclS9s59zZORquF9hhreI6zhAyFflaD0r4eae47ak4cMnvOIKfk9YkzU9lpQnyHKfnrMVNfHFiTqw4R1eEJWhyA/KxP1E+L9s3+eujEKfsqQqJ9pnqjVup8JT9SHyZotOAzIZUnUz82av3BO1M9Bon5hQaKmcC17on5O2PQvmDaX2vUp1/xS82nqsWka1In6MWENKY33leb7ofrlFcN0S7hulkRt70PqSZayd15rnqhVDV8z1PAVYQ3fCEnUlP71VnPPUXvylsFz3jElv3eMidpeC+ozRNlP75nq+t6CRH2IsA4fyOoQZrMyUX8g3j/756Mbo+CPDIn6k+aJWq37k/BEfYis2WzhQC5Lov5sr7m7yx/T82eQqNV/xJ2oKVzLnqg/Uza9O8/mUrs+5Zojues9Tb03TYM6Ub8nrCGl8UbWfD9UvyiN1NMt4bpZErW9D6knWcreicJcQ9+IfX4/y0ojdQ0deyeiNYxKXEP7h/odQOlf0TT3HLUn0Rg8JzrhXjvOUNHd+RK1vRbUZ4iyn2Iw1TWGO3+iPkhYh5hkdfC3NFHHJN4/+yeWO6PgWO70z41N+GLhWnds938XmOi5libqg2SJuo5liTqOWfO4zok6jvufE3VcCxL1QcJEHYew6eO682wutetTrjme5tNUDNM0qBN1DMIaUhpvfM33Q/VLfIbpNj5xkqHWZ+9D6kmWsncSaJ6oVQ0TMNQwPmENXYUkakr/ctPcc9SeuDF4jjtT8nNnTNT2WlCfIcp+8mCqq4cFifoAYaL2JKtDbUt/36Un8f7ZP17ujIK9GBK1t+aJWq3bW3iiPkCWqHNY9vsuE5o193FO1AlBovaxIFEfIEzUCQmb3sedZ3OpXZ9yzYk0n6Y8TNOgTtQehDWkNN7Emu+H6pfEDNMt4bpZErW9D6knWcreSaJ5olY1TMJQw8SENUwqJFFT+lcyzT1H7UkyBs9JzpT8kjMmanstqM8QZT+lYKprCgsS9X7CRJ2SrA5+IVYm6pTE+2f/pHJnFJyKIVGn1jxRq3WnFp6o95Ml6rpBQC5Lok5j1jytc6JOAxJ1WgsS9X7CRJ2GsOnTuvNsLrXrU645nebTVArTNKgTdQrCGlIa73ea74fql+8YplvCdbMkansfUk+ylL2TXvNErWqYnqGG3xHWMIOQRE3pXxk19xy1JxkZPCcTU/LLxJio7bWgPkOU/ZSZqa6ZLUjU+wgTdRayOoQGW5mosxDvn/2T1Z1RcFaGRJ1N80St1p1NeKLeR5aoA4KBXJZEnd2sua9zos4OErWvBYl6H2Gizk7Y9L7uPJtL7fqUa7ZpPk1lNk2DOlFnJqwhpfH6ab4fql/8GKZbwnWzJGp7H1JPspS94695olY19GeooR9hDQOEJGpK/wrU3HPUngQyeE4OpuSXgzFR22tBfYYo+ymIqa5BFiTqvYSJOpisDoGW/tR3MPH+2T8h7oyCQxgSdU7NE7Vad07hiXovWaIOteynvr83a57LOVF/DxJ1LgsS9V7CRP09YdPncufZXGrXp1xzbs2nqSDTNKgTdRBhDSmN9wfN90P1yw8M0y3hulkStb0PqSdZyt7Jo3miVjXMw1DDHwhrmFdIoqb0r3yae47ak3wMnvMjU/L7kTFR22tBfYYo+yk/U13zW5Co9xAm6gJ036EJtDJRFyDeP/unoDuj4IIMibqQ5olarbuQ8ES9hy5RhwK5LIm6sFnzIs6JujBI1EUsSNR7CBN1YcKmL+LOs7nUrk+55p80n6bym6ZBnajzE9aQ0nh/1nw/VL/8zDDdEq6bJVHb+5B6kqXsnaKaJ2pVw6IMNfyZsIbFhCRqSv8qrrnnqD0pzuA5JZiSXwnGRG2vBfUZouynkkx1LWlBot5NmKhL0c2TOaxM1KWI98/+Ke3OKLg0Q6Iuo3miVusuIzxR76b7qe/aQC5Loi5r1rycc6IuCxJ1OQsS9W7CRF2WsOnLufNsLrXrU665vObTVEnTNKgTdUnCGlIabwXN90P1SwWG6ZZw3SyJ2t6H1JMsZe9U1DxRqxpWZKhhBcIaVhKSqCn9q7LmnqP2pDKD51RhSn5VGBO1vRbUZ4iyn6oy1bWqBYl6F2GirkZWh2BL//WsasT7Z/9Ud2cUXJ0hUdfQPFGrddcQnqh3kSXqIMv+9ayaZs1rOSfqmiBR17IgUe8iTNQ1CZu+ljvP5lK7PuWaa2s+TVU1TYM6UVclrCGl8YZqvh+qX0IZplvCdbMkansfUk+ylL1TR/NErWpYh6GGoYQ1rCskUVP6V5jmnqP2JIzBc8KZkl84Y6K214L6DFH2Uz2mutazIFHvJEzU9YUm6vrE+2f/NHBnFNyAIVE31DxRq3U3FJ6odwpM1I3Mmjd2TtSNQKJubEGi3kmYqBsRNn1jIYmacs1NNJ+m6pmmQZ2o6xHWkNJ4m2q+H6pfmjJMt4TrZknU9j6knmQpe6eZ5ola1bAZQw2bEtawuZBETelfLTT3HLUnLRg8pyVT8mvJmKjttaA+Q5T91Iqprq0sSNQ7CBN1a7I6BFr6u75bE++f/dPGnVFwG4ZE3VbzRK3W3VZ4ot5BlqhrW/a7vtuZNW/vnKjbgUTd3oJEvYMwUbcjbPr27jybS+36lGvuoPk01co0DepE3YqwhpTG+4vm+6H65ReG6ZZw3SyJ2t6H1JMsZe901DxRqxp2ZKjhL4Q17CQkUVP6V2fNPUftSWcGz+nClPy6MCZqey2ozxBlP3VlqmtXCxL1dsJE3Y0uUde1MlF3I94/+6e7O6Pg7gyJuofmiVqtu4fwRL2dLlH7A7ksifpXs+Y9nRP1ryBR97QgUW8nTNS/EjZ9T3eezaV2fco199J8mupqmgZ1ou5KWENK4+2t+X6ofunNMN0SrpslUdv7kHqSpeydPponalXDPgw17E1Yw9+EJGpK/+qrueeoPenL4Dn9mJJfP8ZEba8F9Rmi7Kf+THXtb0Gi3kaYqAeQ1cHP0u9RDyDeP/tnoDuj4IEMiXqQ5olarXuQ8ES9jSxR17Xse9SDzZoPcU7Ug0GiHmJBot5GmKgHEzb9EHeezaV2fco1D9V8mupvmgZ1ou5PWENK4x2m+X6ofhnGMN0SrpslUdv7kHqSpeyd4ZonalXD4Qw1HEZYwxFCEjWlf43U3HPUnoxk8JxRTMlvFGOitteC+gxR9tNoprqOtiBRbyVM1GPI6uDvb2WiHkO8f/bPWHdGwWMZEvU4zRO1Wvc44Yl6K1mirlMXyGVJ1OPNmk9wTtTjQaKeYEGi3kqYqMcTNv0Ed57NpXZ9yjVP1HyaGm2aBnWiHk1YQ0rjnaT5fqh+mcQw3RKumyVR2/uQepKl7J3JmidqVcPJDDWcRFjDKUISNaV/TdXcc9SeTGXwnGlMyW8aY6K214L6DFH203Smuk63IFFvIUzUM8jqEGbp96hnEO+f/TPTnVHwTIZEPUvzRK3WPUt4ot5Clqhtln2PerZZ8znOiXo2SNRzLEjUWwgT9WzCpp/jzrO51K5Puea5mk9T003ToE7U0wlrSGm88zTfD9Uv8ximW8J1syRqex9ST7KUvTNf80StajifoYbzCGu4QEiipvSvhZp7jtqThQyes4gp+S1iTNT2WlCfIcp+WsxU18UWJOrNhIl6CVkdAixN1EuI98/+WerOKHgpQ6JepnmiVuteJjxRbyZL1KGWJerlZs1XOCfq5SBRr7AgUW8mTNTLCZt+hTvP5lK7PuWaV2o+TS02TYM6US8mrCGl8a7SfD9Uv6ximG4J182SqO19SD3JUvbOas0TtarhaoYariKs4RohiZrSv9Zq7jlqT9YyeM46puS3jjFR22tBfYYo+2k9U13XW5CoNxEm6g1kdQgKsTJRbyDeP/tnozuj4I0MiXqT5olarXuT8ES9iSxRBwcBuSyJerNZ8y3OiXozSNRbLEjUmwgT9WbCpt/izrO55F9HJVzzVs2nqfWmaVAn6vWENaQ03m2a74fql20M0y3hulkStb0PqSdZyt7ZrnmiVjXczlDDbYQ13CEkUVP6107NPUftyU4Gz9nFlPx2MSZqey2ozxBlP+1mqutuCxL1RsJEvYfuOzSWJuo9xPtn/+x1ZxS8lyFR79M8Uat17xOeqDeSJeoAyxL1frPmB5wT9X6QqA9YkKg3Eibq/YRNf8CdZ3OpXZ9yzQc1n6Z2m6ZBnah3E9aQ0ngPab4fql8OMUy3hOtmSdT2PqSeZCl757DmiVrV8DBDDQ8R1vCIkERN6V9HNfcctSdHGTznGFPyO8aYqO21oD5DlP10nKmuxy1I1BsIE/UJuu9R+1qZqE8Q75/9c9KdUfBJhkR9SvNErdZ9Snii3kCWqEN8gVyWRH3arPkZ50R9GiTqMxYk6g2Eifo0YdOfcefZXGrXp1zzWc2nqeOmaVAn6uOENaQ03nOa74fql3MM0y3hulkStb0PqSdZyt45r3miVjU8z1DDc4Q1vCAkUVP610XNPUftyUUGz7nElPwuMSZqey2ozxBlP11mqutlCxL1esJEfYVunrRZmaivEO+f/XPVnVHwVYZEfU3zRK3WfU14ol5PlqhzhAO5LIn6ulnzG86J+jpI1DcsSNTrCRP1dcKmv+HOs7nUrk+55puaT1OXTdOgTtSXCWtIaby3NN8P1S+3GKZbwnWzJGp7H1JPspS9c1vzRK1qeJuhhrcIa3hHSKKm9K+7mnuO2pO7DJ5zjyn53WNM1PZaUJ8hyn66z1TX+xYk6nWEifoB3c88WvqvZz0g3j/756E7o+CHDIn6keaJWq37kfBEvY7uN5NZ9q9nPTZr/sQ5UT8GifqJBYl6HWGifkzY9E/ceTaX2vUp1/xU82nqvmka1In6PmENKY33meb7ofrlGcN0S7hulkRt70PqSZayd55rnqhVDZ8z1PAZYQ1fCEnUlP71UnPPUXvyksFzXjElv1eMidpeC+ozRNlPr5nq+tqCRL2WMFG/IatDmKXfo35DvH/2z1t3RsFvGRL1O80TtVr3O+GJei3dv55l2feo35s1/+CcqN+DRP3BgkS9ljBRvyds+g/uPJtL7fqUa/6o+TT12jQN6kT9mrCGlMb7SfP9UP3yiWG6JVw3S6K29yH1JEvZO581T9Sqhp8ZaviJcvDxkJGoKf0rkofenqP2RGmkPtORCffacYaK7MGXqO21oD5DlP0UhamuUTz4E/UawkQdlawO4YFWJuqoxPtn/0TzYBQczYP+udE99E7Uat3RPf5dYKLnWpqo15Alat9QIJclUccwax7Tw+WP6TmGx58TtfqPuBP1GsJEHYOw6WN68GwutetTrjmW5tNUFNM0qBN1FMIaUhpvbM33Q/VLbIbpNjZxkqHWZ+9D6kmWsnfiMNfQN2Kf389yHIYaxiasYVwhiZrSv+Jp7jlqT+IxeE58puQXnzFR22tBfYYo+ykBU10TWJCoVxMmaleyOoRY+lPfrsT7Z/+4eTAKdmNI1O6aJ2q1bnfhiXo13d+jtuynvj3Mmns6J2oPkKg9LUjUqwkTtQdh03t68GwutetTrtlL82kqgWka1Ik6AWENKY3XW/P9UP3izTDdEq6bJVHb+5B6kqXsnYSaJ2pVw4QMNfQmrKGPkERN6V+JNPcctSeJGDwnMVPyS8yYqO21oD5DlP2UhKmuSSxI1KsIE3VSuu9RW/q7vpMS75/9k8yDUXAyhkSdXPNErdadXHiiXkX3U9+W/a7vFGbNUzon6hQgUae0IFGvIkzUKQibPqUHz+ZSuz7lmlNpPk0lMU2DOlEnIawhpfGm1nw/VL+kZphuCdfNkqjtfUg9yVL2ThrNE7WqYRqGGqYmrGFaIYma0r/Sae45ak/SMXjOd0zJ7zvGRG2vBfUZouyn9Ex1TW/W1cp0udKNdi32TwYPRsEZGNJlRs3TpVp3RoZ0ibRSHJCMDIeY8OCx77euNaRcdyYhw0R6wjVn1nyYUGvNxDBMZNF8+Fb7koXZcyJaw6xMg0PWrzA4rGAaHLJ5MArOxjA4ZNd8cFDrzi5kcFCNnJ3hEBMePPb91rWGlOv2FTI4ZCVcs03zwUGt1ZdhcPDTfHBQ++LH7DkRraE/0+Dgb8H38JcTfg8/gPAMWTksBXjwDEuBHoyCAxmGpRyaD0tq3TksGpZ8I/ax+Ztaqb916E+4R5T7HaT5C1QZXRDDCzRY8xeoWnMww7pDmF56IeBHQKhrwr1nFGc8B8PQQ3nec2re96qGORlqGERYw++FBC3Kd04uzd8Tak9yMfhlbia/zM347d7/VAvfiH1slP30Vz9/GTOium1//D/3R+yrqn942oGIfoXW4WkHI/7V3v972iGKrxybTztM81Xo3592hOor2sbTjtJ9ddx2zI3Hw10i1rs2Z+B4PvKYGSqv88/kqv9hkxPL63BY7Z/YERP37WD908//6MH6wpeEr9NLwpaH8IWT16KhzTdiH9I15/uLZwUHhYWGBwX41/YNCA81npMjPMy/tl+ILTzY33i8f4AttHaYb92A0KAcATmCw4Ms/ds5+Zi+svejB6PgHxkmrvyaf2VPrTu/kG+D5jW1RvTAOj+Xco8KMKUN9dx8Lv/6WQarpu7thMPBDsLhYCfhcLCLcDjYTTgc7CEcDvYSDgf7BE7dBU1/K+Q8dRcEU3chC6bubwfry572v3awIjp1FyR8oRUSMnVTrrmw0Km7MNPUXcSDUXARhqn7J82nbrXun4RM3YVMrdRTN+Ue/cw0df/8Fabu9YTDwQbC4WAj4XCwiXA42Ew4HGwhHA62Eg4H2wRO3UVNfyvmPHUXBVN3MQum7m8H68ue9r92sCI6dRclfKEVEzJ1U665uNCpuzjT1F3Cg1FwCYapu6TmU7dad0khU3cxUyv11E25R6WYpu5SX2HqXk44HKwgHA5WEg4HqwiHg9WEw8EawuFgLeFwsE7g1F3a9LcyzlN3aTB1l7Fg6v52sL7saf9rByuiU3dpwhdaGSFTN+WaywqdussyTd3lPBgFl2OYustrPnWrdZcXMnWXMbVST92Ue1SBaequ8BWm7pMJ6IaDUwnohoPTCVzIhoMzCVzIhoOzCVzIhoNzCVzIhoPzCej84kICnpewS8R69y+n7oqmv1Vynrorgqm7kgVT97eD9WVP+187WBGduisSvtAqCZm6KddcWejUXZlp6q7iwSi4CsPUXVXzqVutu6qQqbuSqZV66qbco2pMU3e1rzB1HyQcDg4RDgeHCYeDI4TDwVHC4eAY4XBwnHA4OCFw6q5u+lsN56m7Opi6a1gwdX87WF/2tP+1gxXRqbs64QuthpCpm3LNNYVO3TWZpu5aHoyCazFM3bU1n7rVumsLmbprmFqpp27KPQplmrpDv8LUvZNwONhFOBzsJhwO9hAOB3sJh4N9hMPBfsLh4IDAqbuO6W91nafuOmDqrmvB1P3tYH3Z0/7XDlZEp+46hC+0ukKmbso1hwmdusOYpu5wD0bB4QxTdz3Np2617npCpu66plbqqZtyj+ozTd31v8LUvZFwONhEOBxsJhwOthAOB1sJh4NthMPBdsLhYIfAqbuB6W8NnafuBmDqbmjB1P3tYH3Z0/7XDlZEp+4GhC+0hkKmbso1NxI6dTdimrobezAKbswwdTfRfOpW624iZOpuaGqlnrop96gp09Td1Jy61X0clz/+amHHX3jm+GsYHP9ymOOPrDp+I93xy3vOQwdVjxE/z/fb8749768+wcTPo9b37Xn/e89rZvhqc+NqYVwtjauVcbU2rjbG1da42hlXe+PqYFy/GFdH4+pkXJ2Nq4txdTWubsbV3bh6GNevxtXTuHoZV2/j6uPx56/EUM8KzQjfbfavEP1mPLOvcfUzrv7GNcC4BhrXIOMabKZkx/eg+u9juvyR9QWsH2D9ARsA2EDABgE22OPP/9ZSLMaaR3Q2+Y3gWWHh6uNr60v0LLXGfiTP+le9+kf8WX728Dogos8K+HcQHhixZ/k6hupBEXmW3x8D+mDCM83tP80Z/GeI8cyhxjXMuIYb1wjjGmlco4xrNPCfIcAHhgI2DLDhgI0AbCRgowAbbYH/NCf0nyGE/jOU0H+GEfrPcEL/GUHoPyMJ/WcUof+MFuQ/LRj8Z4zxzLHGNc64xhvXBOOaaFyTjGsy8J8xwAfGAjYOsPGATQBsImCTAJtsgf+0IPSfMYT+M5bQf8YR+s94Qv+ZQOg/Ewn9ZxKh/0wW5D8tGfxnivHMqcY1zbimG9cM45ppXLOMazbwnynAB6YCNg2w6YDNAGwmYLMAm22B/7Qk9J8phP4zldB/phH6z3RC/5lB6D8zCf1nFqH/zBbkP8MIf+IipfmcOcb65xrXPOOab1wLjGuhcS0yrsXGtcS4lhrXMuNablwrjGulca0yrtXGtca41hrXOuNab1wbjGujcW0yrs3GtcW4thrXNuPablw7jGunce0yrt3A3+YAn5kL2DzA5gO2ALCFgC0CbDFgSwBbCtgywJYDtgKwlYCtAmw1YGsAWwvYOsDWA7YBsI2AbQJsM2BbANsK2DbAtgO2A7CdgO0CbDd4f6Uy/8xr/ukbsc8fzmxE319zCN9fcwnfX/MI31/zCd9fCwjfXwsJ31+LCN9fi//5s/70w0JL/uGzcoT/qVdtS//Zs4JB39uW/ZNnBcMzZFv+5c8K+g/n0bbiS58V9B/Ptm3llz3L7y98wrbqS54V9JeeY1v9959V57/4l23N331W0H/1Qtvav/cs37/hq7Z1f+dZvn/Lo23r//uzAv+m39s2/LdnBfztd4dt418+KyD8C95Dtk1/9aygL3qn2Tb/52cFf+H70bblPzwrJPyL37W2rfhZvv/gvW3bhp7l+49mANv2Pz/L9g/nCdsO52fV/ceziW3nH5/lH4E5x7bL4Vl+4RGamWy7CfNdVOMZKrKkNJ+328wxO81cs93MOVvN3LPZzEEbzVy03sxJa83ctNrMUSvNXLXczFlLzdy12MxhC81cNt/MaWp2U7Og88f55/IiOm/u9qB71h6yffC39Adp6XT/8Qdp93owClYPp37uPsJm4Fr3PodDQfRc37/6a1bUa6Azq7qUf6XGSeUfv9C136z5AfOLOf+XrvebTejIDoDEHYWxiBFNyfsJm/4A8eZyHPD9wDgiuu79hA7q2DfUb7tdhHt9kGzNOQKsfNsdZHrbHfJgFHyI4W13WPO3nVr3YeFvu11kzRZSB8hledsdMWt+1PltdwS87Y5a8LbbRfi2O0LY9EeZNpfa9SnXfIzOPW0uLvRv4n2maUQm7kHKaHCceFqgNi21x8cZpiTd123vHep1nxAyHVL2+Elmn/CN2Mem9uQkg08cJ6zhKQHn5RTDeTlNPKHbZ5XTDlq5akHdTycJ++kMU13PePw5uVF7007COpwlq0NAmJXJ9Szx/tk/5zwYBZ9jSK7nNU+uat3nhSfXnWTNFuoH5LIk1wtmzS86J9cLILletCC5UriWPbleIGz6i0ybS+36lGu+pPlEesY0jSjENTxDWENK472s+X6ofrnMMN0SrpvlN+DY+5B6kqXsnSuaJyNVwysMNbxMWMOrQr4qQelf1zT3HLUn1xg85zpT8rvOmKjttaA+Q5T9dIOprjcsSNQ7COtwk6wOQX5WJuqbxPtn/9zyYBR8iyFR39Y8Uat13xaeqHeQNVtwGJDLkqjvmDW/65yo74BEfdeCRE3hWvZEfYew6e8ybS6161Ou+Z7m09QN0zSoE/UNwhpSGu99zfdD9ct9humWcN0sidreh9STLGXvPNA8UasaPmCo4X3CGj4Ukqgp/euR5p6j9uQRg+c8Zkp+jxkTtb0W1GeIsp+eMNX1iQWJejthHZ6S1SHMZmWifkq8f/bPMw9Gwc8YEvVzzRO1Wvdz4Yl6O1mz2cKBXJZE/cKs+UvnRP0CJOqXFiRqCteyJ+oXhE3/kmlzqV2fcs2vNJ+mnpimQZ2onxDWkNJ4X2u+H6pfXjNMt4TrZknU9j6knmQpe+eN5ola1fANQw1fE9bwrZBETelf7zT3HLUn7xg85z1T8nvPmKjttaA+Q5T99IGprh8sSNTbCOvwkawO/pYm6o/E+2f/fPJgFPyJIVF/1jxRq3V/Fp6ot5E1Wx3LErWLp1kLT5c/pmf1PzgnavUfcSdqCteyJ2q1hog+y970kTx5Npfa9SnXHNlT72nqg2ka1In6A6FZUhpvFM33Q/VLFE/66ZZw3SyJ2t6H1JMsZe9EZa6hb8Q+v59lpZG6hlEI/TAacQ3tH+p3AKV/Rdfcc9SeRGfwnBiEe+04Q8Xw5EvU9lpQnyHKforJVNeYnvyJeithHWKR1aG2pb/vMhbx/tk/sT0ZBcf2pH9uHMIXC9e643j+u8BEz7U0UW8lS9Q5LPt9l3HNmsdzTtRxQaKOZ0Gi3kqYqOMSNn08T57NpXZ9yjXH13yaimmaBnWijklYQ0rjTaD5fqh+ScAw3RKumyVR2/uQepKl7B1XzRO1qqErQw0TENbQTUiipvQvd809R+2JO4PneDAlPw/GRG2vBfUZouwnT6a6elqQqLcQJmovsjr4hViZqL2I98/+8fZkFOzNkKgTap6o1boTCk/UW8gSdd0gIJclUfuYNU/knKh9QKJOZEGi3kKYqH0Imz6RJ8/mUrs+5ZoTaz5NeZqmQZ2oPQlrSGm8STTfD9UvSRimW8J1syRqex9ST7KUvZNU80StapiUoYZJCGuYTEiipvSv5Jp7jtqT5Ayek4Ip+aVgTNT2WlCfIcp+SslU15QWJOrNhIk6FVkdQoOtTNSpiPfP/kntySg4NUOiTqN5olbrTiM8UW8mS9QBwUAuS6JOa9Y8nXOiTgsSdToLEvVmwkSdlrDp03nybC6161Ou+TvNp6mUpmlQJ+qUhDWkNN70mu+H6pf0DNMt4bpZErW9D6knWcreyaB5olY1zMBQw/SENcwoJFFT+lcmzT1H7UkmBs/JzJT8MjMmanstqM8QZT9lYaprFgsS9SbCRJ2VrA6Blv7Ud1bi/bN/snkyCs7GkKiza56o1bqzC0/Um8gSdahlP/Xta9bc5pyofUGitlmQqDcRJmpfwqa3efJsLrXrU67ZT/NpKotpGtSJOgthDSmN11/z/VD94s8w3RKumyVR2/uQepKl7J0AzRO1qmEAQw39CWsYKCRRU/pXDs09R+1JDgbPCWJKfkGMidpeC+ozRNlPwUx1DbYgUW8kTNQhdN+hCbQyUYcQ75/9k9OTUXBOhkT9veaJWq37e+GJeiNdog4FclkSdS6z5rmdE3UukKhzW5CoNxIm6lyETZ/bk2dzqV2fcs0/aD5NBZumQZ2ogwlrSGm8eTTfD9UveRimW8J1syRqex9ST7KUvZNX80T9+5ljqGEewhrmE5KoKf3rR809R+3Jjwyek58p+eVnTNT2WlCfIcp+KsBU1wIWJOoNhIm6IN08mcPKRF2QeP/sn0KejIILMSTqwponarXuwsIT9Qa6n/quDeSyJOoiZs1/ck7URUCi/smCRL2BMFEXIWz6nzx5Npfa9SnX/LPm01QB0zSoE3UBwhpSGm9RzfdD9UtRhumWcN0sidreh9STLGXvFNM8UasaFmOoYVHCGhYXkqgp/auE5p6j9qQEg+eUZEp+JRkTtb0W1GeIsp9KMdW1lAWJej1hoi5NVodgS//1rNLE+2f/lPFkFFyGIVGX1TxRq3WXFZ6o15Ml6iDL/vWscmbNyzsn6nIgUZe3IFGvJ0zU5Qibvrwnz+ZSuz7lmitoPk2VMk2DOlGXIqwhpfFW1Hw/VL9UZJhuCdfNkqjtfUg9yVL2TiXNE7WqYSWGGlYkrGFlIYma0r+qaO45ak+qMHhOVabkV5UxUdtrQX2GKPupGlNdq1mQqNcRJurqQhN1deL9s39qeDIKrsGQqGtqnqjVumsKT9TrBCbqWmbNazsn6logUde2IFGvI0zUtQibvraQRE255lDNp6lqpmlQJ+pqhDWkNN46mu+H6pc6DNMt4bpZErW9D6knWcreqat5olY1rMtQwzqENQwTkqgp/Stcc89RexLO4Dn1mJJfPcZEba8F9Rmi7Kf6THWtb0GiXkuYqBuQ1SHQ0t/13YB4/+yfhp6MghsyJOpGmidqte5GwhP1WrJEXduy3/Xd2Kx5E+dE3Rgk6iYWJOq1hIm6MWHTN/Hk2Vxq16dcc1PNp6n6pmlQJ+r6hDWkNN5mmu+H6pdmDNMt4bpZErW9D6knWcreaa55olY1bM5Qw2aENWwhJFFT+ldLzT1H7UlLBs9pxZT8WjEmanstqM8QZT+1ZqprawsS9RrCRN2GLlHXtTJRtyHeP/unrSej4LYMibqd5olarbud8ES9hi5R+wO5LIm6vVnzDs6Juj1I1B0sSNRrCBN1e8Km7+DJs7nUrk+55l80n6Zam6ZBnahbE9aQ0ng7ar4fql86Mky3hOtmSdT2PqSeZCl7p5PmiVrVsBNDDTsS1rCzkERN6V9dNPcctSddGDynK1Py68qYqO21oD5DlP3Ujamu3SxI1KsJE3V3sjr4Wfo96u7E+2f/9PBkFNyDIVH/qnmiVuv+VXiiXk2WqOta9j3qnmbNezkn6p4gUfeyIFGvJkzUPQmbvpcnz+ZSuz7lmntrPk11M02DOlF3I6whpfH20Xw/VL/0YZhuCdfNkqjtfUg9yVL2zm+aJ2pVw98YatiHsIZ9hSRqSv/qp7nnqD3px+A5/ZmSX3/GRG2vBfUZouynAUx1HWBBol5FmKgHktXB39/KRD2QeP/sn0GejIIHMSTqwZonarXuwcIT9SqyRF2nLpDLkqiHmDUf6pyoh4BEPdSCRL2KMFEPIWz6oZ48m0vt+pRrHqb5NDXANA3qRD2AsIaUxjtc8/1Q/TKcYbolXDdLorb3IfUkS9k7IzRP1KqGIxhqOJywhiOFJGpK/xqlueeoPRnF4DmjmZLfaMZEba8F9Rmi7KcxTHUdY0GiXkmYqMeS1SHM0u9RjyXeP/tnnCej4HEMiXq85olarXu88ES9kixR2yz7HvUEs+YTnRP1BJCoJ1qQqFcSJuoJhE0/0ZNnc6ldn3LNkzSfpsaYpkGdqMcQ1pDSeCdrvh+qXyYzTLeE62ZJ1PY+pJ5kKXtniuaJWtVwCkMNJxPWcKqQRE3pX9M09xy1J9MYPGc6U/Kbzpio7bWgPkOU/TSDqa4zLEjUKwgT9UyyOgRYmqhnEu+f/TPLk1HwLIZEPVvzRK3WPVt4ol5BlqhDLUvUc8yaz3VO1HNAop5rQaJeQZio5xA2/VxPns2ldn3KNc/TfJqaYZoGdaKeQVhDSuOdr/l+qH6ZzzDdEq6bJVHb+5B6kqXsnQWaJ2pVwwUMNZxPWMOFQhI1pX8t0txz1J4sYvCcxUzJbzFjorbXgvoMUfbTEqa6LrEgUS8nTNRLyeoQFGJlol5KvH/2zzJPRsHLGBL1cs0TtVr3cuGJejlZog4OAnJZEvUKs+YrnRP1CpCoV1qQqJcTJuoVhE2/0pNnc8m/jkq45lWaT1NLTNOgTtRLCGtIabyrNd8P1S+rGaZbwnWzJGp7H1JPspS9s0bzRK1quIahhqsJa7hWSKKm9K91mnuO2pN1DJ6znin5rWdM1PZaUJ8hyn7awFTXDRYk6mWEiXoj3XdoLE3UG4n3z/7Z5MkoeBNDot6seaJW694sPFEvI0vUAZYl6i1mzbc6J+otIFFvtSBRLyNM1FsIm36rJ8/mUrs+5Zq3aT5NbTBNgzpRbyCsIaXxbtd8P1S/bGeYbgnXzZKo7X1IPclS9s4OzRO1quEOhhpuJ6zhTiGJmtK/dmnuOWpPdjF4zm6m5LebMVHba0F9hij7aQ9TXfdYkKiXEibqvXTfo/a1MlHvJd4/+2efJ6PgfQyJer/miVqte7/wRL2ULFGH+AK5LIn6gFnzg86J+gBI1ActSNRLCRP1AcKmP+jJs7nUrk+55kOaT1N7TNOgTtR7CGtIabyHNd8P1S+HGaZbwnWzJGp7H1JPspS9c0TzRK1qeIShhocJa3hUSKKm9K9jmnuO2pNjDJ5znCn5HWdM1PZaUJ8hyn46wVTXExYk6iWEifok3TxpszJRnyTeP/vnlCej4FMMifq05olarfu08ES9hCxR5wgHclkS9Rmz5medE/UZkKjPWpColxAm6jOETX/Wk2dzqV2fcs3nNJ+mTpimQZ2oTxDWkNJ4z2u+H6pfzjNMt4TrZknU9j6knmQpe+eC5ola1fACQw3PE9bwopBETelflzT3HLUnlxg85zJT8rvMmKjttaA+Q5T9dIWprlcsSNSLCRP1VbqfebT0X8+6Srx/9s81T0bB1xgS9XXNE7Va93XhiXox3W8ms+xfz7ph1vymc6K+ARL1TQsS9WLCRH2DsOlvevJsLrXrU675lubT1BXTNKgT9RXCGlIa723N90P1y22G6ZZw3SyJ2t6H1JMsZe/c0TxRqxreYajhbcIa3hWSqCn9657mnqP25B6D59xnSn73GRO1vRbUZ4iynx4w1fWBBYl6EWGifkhWhzBLv0f9kHj/7J9HnoyCHzEk6seaJ2q17sfCE/Uiun89y7LvUT8xa/7UOVE/AYn6qQWJehFhon5C2PRPPXk2l9r1Kdf8TPNp6oFpGtSJ+gFhDSmN97nm+6H65TnDdEu4bpZEbe9D6kmWsndeaJ6oVQ1fMNTwOWENXwpJ1JT+9Upzz1F78orBc14zJb/XjInaXgvqM0TZT2+Y6vrGgkS9kDBRvyWrQ3iglYn6LfH+2T/vPBkFv2NI1O81T9Rq3e+FJ+qFZInaNxTIZUnUH8yaf3RO1B9Aov5oQaJeSJioPxA2/UdPns2ldn3KNX/SfJp6Y5oGdaJ+Q1hDSuP9rPl+qH75zDDdEq6bJVHb+5B6kiV9aXvpnahVDZVG6hp+JqxhJOIa2j/U7wBK/4rspbfnqD1RGqnPdBTCvXacoaJ48SVqey2ozxBlP0VlqmtUL/5EvYAwUUcjq0OIpT/1HY14/+yf6F6MgqN70T83hpfeiVqtO4bXvwtM9FxLE/UCur9HbdlPfcc0ax7Ly+WP6Tmm158TtfqPuBP1AsJEHZOw6WN58WwutetTrjm25tNUVNM0qBN1VMIaUhpvHM33Q/VLHIbpNg5xkqHWZ+9D6kmWsnfiap6oVQ3jMtQwDmEN4wlJ1JT+FV9zz1F7Ep/BcxIwJb8EjInaXgvqM0TZT65MdXW1IFHPJ0zUbmR1CLf0d327Ee+f/ePuxSjYnSFRe2ieqNW6PYQn6vl0P/Vt2e/69jRr7uWcqD1BovayIFHPJ0zUnoRN7+XFs7nUrk+5Zm/NpylX0zSoE7UrYQ0pjTeh5vuh+iUhw3RLuG6WRG3vQ+pJlrJ3fDRP1KqGPgw1TEhYw0RCEjWlfyXW3HPUniRm8JwkTMkvCWOitteC+gxR9lNSpromNetqZbqc50G7FvsnmRej4GQM6TK55ulSrTs5Q7pEWikOSHKGQ0x48Nj3W9caUq47hZBhIinhmlNqPkyotaZgGCZSaT58q31Jxew5Ea1haqbBIfVXGBzmMg0OabwYBadhGBzSaj44qHWnFTI4qEZOy3CICQ8e+37rWkPKdacTMjikJlzzd5oPDmqt6RgGh/SaDw5qX9Ize05Ea5iBaXDIYMH38OcQfg8/I+EZsnJYyujFMyxl8mIUnIlhWMqs+bCk1p2Z6Xv4VjXbHKbJPIsXo+AsDM2WVfNmU+vOatFk7huxjy2DeTCov0+dgXCPKM0lm+bTmuqdbAzTWnbNpzW15uwM6/ZlmrB8wc8bUdeEe88oznhmhgmb8rzbNO97VUMbQw2zEdbQT0iqp3zn+Gv+nlB74s/glwFMfhnA+LMF/6kWvhH72Cj7ycqgsIspKOTwYhScg2EDgzQPCmrdQUxBwf6hfrFQ1jRY6AELZvqyT4gXo+AQhgOWU/MDptadU/iXfXYyufn3XoyCv2dotlyaN5tady4hX/ZRhyKXF/0ITmkIuYlHcPuHes2Ub8QfiNdMtdZ//bWl8HB731BpVHv8A3389aPswzxMkUg9N6WLtT/dk4dpcsnrxSmY4WWST/OXiVp3PuGTyw6myeVHL0bBPzI0W37Nm02tO7+QyUUdivwMkwulIRTQ/IuHylwKMHzxsCDTm7Kg+aZEtYjgRBNm7yfivyzun4+wBwoS9mYhpj0q9BWmmUJM00xhL0bBhRleMEU0f8GodRcRPs1sZ5pmfvJiFPwTQ7P9rHmzqXX/LGSaUYfiZ4ZphtIQimo+zShzKcowzRRjelMW45tm6tr7iXiaCShC2APFCHuzONMeFf8K00xxpmmmhBej4BIML5iSmr9g1LpLCp9mtjFNM6W8GAWXYmi20po3m1p3aSHTjDoUpRmmGUpDKKP5NKPMpQzDNFOW6U1Zlm+aqWPvJ+JpJrAkYQ+UJezNckx7VO4rTDPlmKaZ8l6MgsszvGAqaP6CUeuuIHya2co0zVT0YhRckaHZKmnebGrdlYRMM+pQVGKYZigNobLm04wyl8oM00wVpjdlFb5pJtTeT8TTTI4KhD1QhbA3qzLtUdWvMM1UZZpmqnkxCq7G8IKprvkLRq27uvBpZgvTNFPDi1FwDYZmq6l5s6l11xQyzahDUZNhmqE0hFqaTzPKXGoxTDO1md6Utfmmmdr2fiKeZoKqE/ZAbcLeDGXao9CvMM2EMk0zdbwYBddheMHU1fwFo9ZdV/g0s5lpmgnzYhQcxtBs4Zo3m1p3uJBpRh2KcIZphtIQ6mk+zShzqccwzdRnelPW55tmQuz9RDzNBNcl7IH6hL3ZgGmPGnyFaaYB0zTT0ItRcEOGF0wjzV8wat2NhE8zm5immcZejIIbMzRbE82bTa27iZBpRh2KJgzTDKUhNNV8mlHm0pRhmmnG9KZsxjfNBNv7iXiaCWlE2APNCHuzOdMeNf8K00xzpmmmhRej4BYML5iWmr9g1LpbCp9mNjJNM628GAW3Ymi21po3m1p3ayHTjDoUrRmmGUpDaKP5NKPMpQ3DNNOW6U3Zlm+aCbL3E/E0U7slYQ+0JezNdkx71O4rTDPtmKaZ9l6MgtszvGA6aP6CUevuIHya2cA0zfzixSj4F4Zm66h5s6l1dxQyzahD0ZFhmqE0hE6aTzPKXDoxTDOdmd6UnfmmmRz2fiKeZkI7EPZAZ8Le7MK0R12+wjTThWma6erFKLgrwwumm+YvGLXubsKnmfVM00x3L0bB3RmarYfmzabW3UPINKMORQ+GaYbSEH7VfJpR5vIrwzTTk+lN2ZNvmgm09xPxNFOnG2EP9CTszV5Me9TrK0wzvZimmd5ejIJ7M7xg+mj+glHr7iN8mlnHNM385sUo+DeGZuurebOpdfcVMs2oQ9GXYZqhNIR+mk8zylz6MUwz/ZnelP35ppkAez8RTzN1+xD2QH/C3hzAtEcDvsI0M4BpmhnoxSh4IMMLZpDmLxi17kHCp5m1TNPMYC9GwYMZmm2I5s2m1j1EyDSjDsUQhmmG0hCGaj7NKHMZyjDNDGN6Uw7jm2b87f1EPM2EDSLsgWGEvTmcaY+Gf4VpZjjTNDPCi1HwCIYXzEjNXzBq3SOFTzNrmKaZUV6MgkcxNNtozZtNrXu0kGlGHYrRDNMMpSGM0XyaUeYyhmGaGcv0phzLN8342fuJeJoJH0nYA2MJe3Mc0x6N+wrTzDimaWa8F6Pg8QwvmAmav2DUuicIn2ZWM00zE70YBU9kaLZJmjebWvckIdOMOhSTGKYZSkOYrPk0o8xlMsM0M4XpTTmFb5r5v36inWZsf+gn34h9bFMIe3Mq0x5N/QrTzFSmaWaaF6PgaQwvmOmav2DUuqcLn2ZWMU0zM7wYBc9gaLaZmjebWvdMIdOMOhQzGaYZSkOYpfk0o8xlFsM0M5vpTTmbb5rxtfcT8TTzhxeMb8Q+ttmEvTmHaY/mfIVpZg7TNDPXi1HwXIYXzDzNXzBq3fOETzMrmaaZ+V6MguczNNsCzZtNrXuBkGlGHYoFDNMMpSEs1HyaUeaykGGaWcT0plzENs2Ehdv7iXia8ZtH2AOLCHtzMdMeLf4K08xipmlmiRej4CUML5ilmr9g1LqXCp9mVjBNM8u8GAUvY2i25Zo3m1r3ciHTjDoUyxmmGUpDWKH5NKPMZQXDNLOS6U25km+aCbP3E/E047+UsAdWEvbmKqY9WvUVpplVTNPMai9GwasZXjBrdP/iv6FvjfBpZjnTNLPWi1HwWoZmW6d5s6l1rxMyzahDsY5hmqE0hPWaTzPKXNYzTDMbmN6UG/immbr2fiKeZgLWEPbABsLe3Mi0Rxu/wjSzkWma2eTFKHgTwwtms+YvGLXuzcKnmWVM08wWL0bBWxiabavmzabWvVXINKMOxVaGaYbSELZpPs0oc9nGMM1sZ3pTbuebZurY+4l4mgncTNgD2wl7cwfTHu34CtPMDqZpZqcXo+CdDC+YXZq/YNS6dwmfZpYyTTO7vRgF72Zotj2aN5ta9x4h04w6FHsYphlKQ9ir+TSjzGUvwzSzj+lNuY9vmgm19xPxNJNjF2EP7CPszf1Me7T/K0wz+5mmmQNejIIPMLxgDmr+glHrPih8mlnCNM0c8mIUfIih2Q5r3mxq3YeFTDPqUBxmmGYoDeGI5tOMMpcjDNPMUaY35VG+aaa2vZ+Ip5mgg4Q9cJSwN48x7dGxrzDNHGOaZo57MQo+zvCCOaH5C0at+4TwaWYx0zRz0otR8EmGZjulebOpdZ8SMs2oQ3GKYZqhNITTmk8zylxOM0wzZ5jelGf4ppkQez8RTzPBJwh74Axhb55l2qOzX2GaOcs0zZzzYhR8juEFc17zF4xa93nh08wipmnmghej4AsMzXZR82ZT674oZJpRh+IiwzRDaQiXNJ9mlLlcYphmLjO9KS/zTTPB9n4inmZCzhP2wGXC3rzCtEdXvsI0c4VpmrnqxSj4KsML5prmLxi17mvCp5mFTNPMdS9GwdcZmu2G5s2m1n1DyDSjDsUNhmmG0hBuaj7NKHO5yTDN3GJ6U97im2aC7P1EPM3UvkbYA7cIe/M20x7d/grTzG2maeaOF6PgOwwvmLuav2DUuu8Kn2YWME0z97wYBd9jaLb7mjebWvd9IdOMOhT3GaYZSkN4oPk0o8zlAcM085DpTfmQb5rJYe8n4mkm9C5hDzwk7M1HTHv06CtMM4+YppnHXoyCHzO8YJ5o/oJR634ifJqZzzTNPPViFPyUodmead5sat3PhEwz6lA8Y5hmKA3huebTjDKX5wzTzAumN+ULvmkm0N5PxNNMnSeEPfCCsDdfMu3Ry68wzbxkmmZeeTEKfsXwgnmt+QtGrfu1kBdMclMr9QuGco/eaP6CUfv9huEF85bJvN7yvWAC7P1E/IKp+5qwB94S9uY7pj169xVeMO+YXjDvvRgFv2d4wXzQ/AWj1v1ByAsmramV+gVDuUcfNX/BqP3+yPCC+cRkXp/4XjD+9n4ifsGEfSDsgU+EvfmZaY8+f4UXzGemF4yLN6Ng9XDq50by1vsFo9Ydyfvf9SV6LovWrKZW6hcM5R5F9tb7BaP2O7I3/QsmijePeannpjSfS/yC8bP3E/ELJjwSYQ9EIezNqEx7FNVhj+wf6jMalbAO0cjq4PeHOkSzoA7RCOsQnbBPrRwuonvzDBcxvBkFx2AYLmJqPlyodcdkGC7UgfNw+fOH6vkuTH1AacBcGmNRalSuEM/l3y7o+NFXeLCvC1dz2YwJ0eGZsc3DEcfbLIj9VRLbdAtHpv6jmE6iaEeXPxYxYuOVry02oTvFId5c6vFXuVxsEE18I/Yhdfi4xO7D4Y5xGaJJPO9vb554At488ak1UjdSNLNBqU03GpnpBtviEhpGAkLTdXyRJfD+9xckrZoOogmcDlzN6cDNeTpQ/4OPE3OzYDqIRjgduBI2qhvh5n5JU2rwhQib/caFvin/79mOtXA3m9LDuSndwcjqAb4iEoWxiP/wWX7ms2zuhE3pQby51I6o3hTu3vT7QfkGotwPT82/Mq/GX0+G8dfr2/hro6wBl0Zv7vHXN2Ifm2pOb4YGTah5LlXrTsiwbh+mb8f4mJOg0EnGBuSyTDKJzEkmsfMkkwhMMomFTTKJCN+ciZk2l/qLZZTfI0yi+bSgpqxEmk9vlD2YVPP9UP2SlOElkYzpJZHsL36uwjdiH7ZaJP82ydqSe+uvMYXuk6xqzhQMDZqSYXPUh/qHSChNPpXmxqz2JBXDXqdmMubUsqd3PyCXZXpPY07vaZ2n9zRgek8rbHpPQ3hA0zJtrs7Tezq6w/n7mqkPnDKkNAw/LpCKsIbfaf5lGbXH3zEYe3omY0/POHFz1SLDt4nblsFbf40ZdZ+4VXNmZGjQTJqblDLkTAzrzsxkUpllT5/+QC7L9JnFnD6zOk+fWcD0mVXY9JmFcIrIyrS5Ok+f2egO5+9r5pg+s2g+fWbX3NjVHmdnMHZfJmP3ZZw+uWph+zZ92mze+mv00336VM3px9Cg/gKmT3+GdQcwmVSA7OkzAMhlmT4Dzekzh/P0GQimzxzCps9AwikiB9Pm6jx9BtEdzt/XzDF9Bmo+fQZrbuxqj4MZjD2EydhDGKdPrlrk/DZ92nJ666/xe92nT9Wc3zM0aC4B02cuhnXnZjKp3LKnz0Agl2X6/MGcPvM4T58/gOkzj7Dp8wfCKSIP0+bqPH3mpTucv6+ZY/r8QfPpM5/mxq72OB+Dsf/IZOw/Mk6fXLXI/236tOX31l9jAd2nT9WcBRgatKCA6bMgw7oLMZlUIdnTZw4gl2X6LGxOn0Wcp8/CYPosImz6LEw4RRRh2lydp8+f6A7n72vmmD4Laz59/qy5sas9/pnB2IsyGXtRxumTqxbFvk2ftmLe+mssrvv0qZqzOEODlhAwfZZgWHdJJpMqKXv6DAJyWabPUub0Wdp5+iwFps/SwqbPUoRTRGmmzdV5+ixDdzh/XzPH9FlK8+mzrObGrva4LIOxl2My9nKM0ydXLcp/mz5t5b3111hB9+lTNWcFhgatKGD6rMiw7kpMJlVJ9vQZDOSyTJ+VzemzivP0WRlMn1WETZ+VCaeIKkybq/P0WZXucP6+Zo7ps7Lm02c1zY1d7XE1BmOvzmTs1RmnT65a1Pg2fdpqeOuvsabu06dqzpoMDVpLwPRZi2HdtZlMqrbs6TMEyGWZPkPN6bOO8/QZCqbPOsKmz1DCKaIO0+bqPH3WpTucv6+ZY/oM1Xz6DNPc2NUehzEYeziTsYczTp9ctaj3bfq01fPWX2N93adP1Zz1GRq0gYDpswHDuhsymVRD2dNnbSCXZfpsZE6fjZ2nz0Zg+mwsbPpsRDhFNGbaXJ2nzyZ0h/P3NXNMn400nz6bam7sao+bMhh7MyZjb8Y4fXLVovm36dPW3Ft/jS10nz5Vc7ZgaNCWAqbPlgzrbsVkUq1kT5+hQC7L9NnanD7bOE+frcH02UbY9NmacIpow7S5Ok+fbekO5+9r5pg+W2s+fbbT3NjVHrdjMPb2TMbennH65KpFh2/Tp62Dt/4af9F9+lTN+QtDg3YUMH12ZFh3JyaT6iR7+qwD5LJMn53N6bOL8/TZGUyfXYRNn50Jp4guTJur8/TZle5w/r5mjumzs+bTZzfNjV3tcTcGY+/OZOzdGadPrlr0+DZ92np466/xV92nT9WcvzI0aE8B02dPhnX3YjKpXrKnz7pALsv02ducPvs4T5+9wfTZR9j02ZtwiujDtLk6T5+/0R3O39fMMX321nz67Ku5sas97stg7P2YjL0f4/TJVYv+36ZPW39v/TUO0H36VM05gKFBBwqYPgcyrHsQk0kNkj19hgG5LNPnYHP6HOI8fQ4G0+cQYdPnYMIpYgjT5uo8fQ6lO5y/r5lj+hys+fQ5THNjV3s8jMHYhzMZ+3DG6ZOrFiO+TZ+2Ed76axyp+/SpmnMkQ4OOEjB9jmJY92gmkxote/oMB3JZps8x5vQ51nn6HAOmz7HCps8xhFPEWKbN1Xn6HEd3OH9fM8f0OUbz6XO85sau9ng8g7FPYDL2CYzTJ1ctJn6bPm0TvfXXOEn36VM15ySGBp0sYPqczLDuKUwmNUX09GnzBXJZps+p5vQ5zXn6nAqmz2nCps+phFPENKbN1Xn6nE52OG3QlCimz6maT58zNDd2tcczGIx9JpOxz2ScPrlqMevb9Gmb5a2/xtm6T5+qOWczNOgcAdPnHIZ1z2Uyqbmyp08bkMsyfc4zp8/5ztPnPDB9zhc2fc4jnCLmM22uztPnArrp8/c1c0yf8zSfPhdqbuxqjxcyGPsiJmNfxDh9ctVi8bfp07bYW3+NS3SfPlVzLmFo0KUCps+lDOtexmRSy2RPn35ALsv0udycPlc4T5/LwfS5Qtj0uZxwiljBtLk6T58r6abP39fMMX0u13z6XKW5sas9XsVg7KuZjH014/TJVYs136ZP2xpv/TWu1X36VM25lqFB1wmYPtcxrHs9k0mtlz19+gO5LNPnBnP63Og8fW4A0+dGYdPnBsIpYiPT5uo8fW6imz5/XzPH9LlB8+lzs+bGrvZ4M4Oxb2Ey9i2M0ydXLbZ+mz5tW73117hN9+lTNec2hgbdLmD63M6w7h1MJrVD9vQZAOSyTJ87zelzl/P0uRNMn7uETZ87CaeIXUybq/P0uZtu+vx9zRzT507Np889mhu72uM9DMa+l8nY9zJOn1y12Pdt+rTt89Zf437dp0/VnPsZGvSAgOnzAMO6DzKZ1EHZ02cgkMsyfR4yp8/DztPnITB9HhY2fR4inCIOM22uztPnEbrp8/c1c0yfhzSfPo9qbuxqj48yGPsxJmM/xjh9ctXi+Lfp03bcW3+NJ3SfPlVznmBo0JMCps+TDOs+xWRSp2RPnzmAXJbp87Q5fZ5xnj5Pg+nzjLDp8zThFHGGaXN1nj7P0k2fv6+ZY/o8rfn0eU5zY1d7fI7B2M8zGft5xumTqxYXvk2ftgve+mu8qPv0qZrzIkODXhIwfV5iWPdlJpO6LHv6DAJyWabPK+b0edV5+rwCps+rwqbPK4RTxFWmzdV5+rxGN33+vmaO6fOK5tPndc2NXe3xdQZjv8Fk7DcYp0+uWtz8Nn3abnrrr/GW7tOnas5bDA16W8D0eZth3XeYTOqO7OkzGMhlmT7vmtPnPefp8y6YPu8Jmz7vEk4R95g2V+fp8z7d9Pn7mjmmz7uaT58PNDd2tccPGIz9IZOxP2ScPrlq8ejb9Gl75K2/xse6T5+qOR8zNOgTAdPnE4Z1P2Uyqaeyp88QIJdl+nxmTp/PnafPZ2D6fC5s+nxGOEU8Z9pcnafPF3TT5+9r5pg+n2k+fb7U3NjVHr9kMPZXTMb+inH65KrF62/Tp+21t/4a3+g+farmfMPQoG8FTJ9vGdb9jsmk3smePmsDuSzT53tz+vzgPH2+B9PnB2HT53vCKeID0+bqPH1+pJs+f18zx/T5XvPp85Pmxq72+BODsX9mMvbPjNMnVy1cEn6bPilrwKUxErVGaoG/N2dC+gaNnFBvk1KGHJlh3VES8piUeq7g6TMUyGWZPqMm/Nef0RK6/HHSjJrwz9On+o9SOonSefqMmpBQV0KezdV5+oxOdjj/tWaO6VPtsc7TZwzNjV3tcQwGY4/JZOwxE/JNn1y1iPVt+rTFEjB9xtZ9+lTNGZuhQeMImD7jMKw7LpNJxZU9fdYBclmmz3jm9BnfefqMB6bP+MKmz3iE02f8hDybq/P0mYBu+vx9zRzTZzzNp09XzY1d7bErg7G7MRm7G+P0yVUL92/Tp81dwPTpofv0qZrTg6FBPQVMn54M6/ZiMikv2dNnXSCXZfr0NqfPhM7TpzeYPhMKmz69CafPhAl5Nlfn6dOHbvr8fc0c06e35tNnIs2NXe1xIgZjT8xk7IkZp0+uWiT5Nn3akgiYPpPqPn2q5kzK0KDJBEyfyRjWnZzJpJLLnj7DgFyW6TOFOX2mdJ4+U4DpM6Ww6TMF4fSZMiHP5uo8faaimz5/XzPH9JlC8+kzte7GbuhLzWDsaZiMPQ3j9MlVi7Tfpk9bWgHTZzrdp0/VnOkYGvQ7AdPndwzrTs9kUullT5/hQC7L9JnBnD4zOk+fGcD0mVHY9JmBcPrMmJBnc3WePjPRTZ+/r5lj+syg+fSZWXNjV3ucmcHYszAZexbTg77E2H0j9rFRnIPw3z9hvkAui7FnNY09m7OxZwXGnu1vGLtvxD5/KGJEjT0robFnI95c6oOkDqd9Mwn34w+NyKGZUif1gY5rGHx8hr9emJ3J9LKb0yxHLdyMOqRiqIUvUy18HWph/1B7FeE+2nwJvcrGVFMbY38lZOovP6Za+DHWIiVTLfyZauHPWAtVh0wMtQhgqkUAcy38GWoRyFSLQOZa5GKoRQ6mWuRgrkVBhloEMdUiiLkWJRhqEcxUi2DmWlRkqEUIUy1CmGtRi6EWOZlqkZO5Fg0YavE9Uy2+Z65FS4Za5GKqRS7mWnRkqEVuplrkZq5FT4Za/MBUix+YazGQoRZ5mGqRh7kWoxhqkZepFnmZazGZoRb5mGqRj7kWcxhq8SNTLX5krsVShlrkZ6pFfuZarGOoRQGmWhRgrsV2hloUZKpFQeZaHGCoRSGmWhRirsVJhloUZqpFYeZacPyLyUWYalGEuRYc/37fT0y1+Im5Fhz/mszPTLX4mbkWHL/bvChTLYoy14LjN20WY6pFMeZacPzep+JMtSjOXAuO30JQgqkWJZhrwfF34koy1aIkcy04fkK7FFMtSjn8hLZjPdSfKV3++KGu1W8e9D9HRa2xrwCN/QRo7C9A4wABGgcK0DhIgMbBAjQOEaBxqACNwwRoHC5A4wgBGkcK0DhKgMbRAjSOEaBxrACN4wRoHC9A4wQBGicK0DhJgMbJAjROEaBxqgCN0wRonC5A4wwBGmcK0DhLgMbZhBrR1yRLG1+3LGNcZY2rnHGVN64KxlXRuCoZV2XjqmJcVY2rmnFVN64axlXTuGoZV23jCjWuOsZV17jCjCvcuOoZV33jamBcDY2rkXE1Nq4mxtXUuJoZV3Pnv8xb2vwiqiMrA1hZwMoBVh6wCoBVBKwSYJUBqwJYVcCqAVYdsBqA1QSsFmC1AQsFrA5gdQELAywcsHqA1QesAWANAWsEWGPAmgDWFLBmgDVP+OW/UsU3Yh9b6YT0huP4oXm27Q9/875Fwn/92dL5sKr/IaoTa2kyxw/132Z1LOI//W5Q2L/+irutBcGz7N9Zasm0uZGJN5dyza2YvpvWKiH/34ouzVSHiD6rNVNNW38Fwysj0PDamIbX1tnw2gDDa2uB4ZUhNLw2hI3aVojhUa65HdPhbGeB4ZVhqkNEn9Weqabtv4LhlRVoeB1Mw/vF2fA6AMP7xQLDK0toeB0IG/UXIYZHueaOTIezowWGV5apDhF9Viemmnb6CoZXTqDhdTYNr4uz4XUGhtfFAsMrR2h4nQkbtYsQw6Ncc1emw9nVAsMrx1SHiD6rG1NNu30Fwysv0PC6m4bXw9nwugPD62GB4ZUnNLzuhI3aQ4jhUa75V6bD+asFhleeqQ4RfVZPppr2/AqGV0Gg4fUyDa+3s+H1AobX2wLDq0BoeL0IG7W3EMOjXHMfpsPZxwLDq8BUh4g+6zemmv72FQyvokDD62saXj9nw+sLDK+fBYZXkdDw+hI2aj8hhke55v5Mh7O/BYZXkakOEX3WAKaaDvgKhldJoOENNA1vkLPhDQSGN8gCw6tEaHgDCRt1kBDDo1zzYKbDOdgCw6vEVIeIPmsIU02HfAXDqyzQ8IaahjfM2fCGAsMbZoHhVSY0vKGEjTpMiOFRrnk40+EcboHhVWaqQ0SfNYKppiO+guFVEWh4I03DG+VseCOB4Y2ywPCqEBreSMJGHSXE8CjXPJrpcI62wPCqMNUhos8aw1TTMV/B8KoKNLyxpuGNcza8scDwxllgeFUJDW8sYaOOE2J4lGsez3Q4x1tgeFWZ6hDRZ01gqumEr2B41QQa3kTT8CY5G95EYHiTLDC8aoSGN5GwUScJMTzKNU9mOpyTLTC8akx1iOizpjDVdMpXMLzqAg1vqml405wNbyowvGkWGF51QsObStio04QYHuWapzMdzukWGF51pjpE9FkzmGo64ysYXg2BhjfTNLxZzoY3ExjeLAsMrwah4c0kbNRZQgyPcs2zmQ7nbAsMrwZTHSL6rDlMNZ3zFQyvpkDDm2sa3jxnw5sLDG+eBYZXk9Dw5hI26jwhhke55vlMh3O+BYZXk6kOEX3WAqaaLvgKhldLoOEtNA1vkbPhLQSGt8gCw6tFaHgLCRt1kRDDo1zzYqbDudgCw6vFVIeIPmsJU02XfAXDqy3Q8JaahrfM2fCWAsNbZoHh1SY0vKWEjbpMiOFRrnk50+FcboHh1WaqQ0SftYKppiu+guGFCjS8labhrXI2vJXA8FZZYHihhIa3krBRVwkxPMo1r2Y6nKstMLxQpjpE9FlrmGq65isYXh2BhrfWNLx1zoa3FhjeOgsMrw6h4a0lbNR1QgyPcs3rmQ7negsMrw5THSL6rA1MNd3wFQyvrkDD22ga3iZnw9sIDG+TBYZXl9DwNhI26iYhhke55s1Mh3OzBYZXl6kOEX3WFqaabvkKhhcm0PC2moa3zdnwtgLD22aB4YURGt5WwkbdJsTwKNe8nelwbrfA8MKY6hDRZ+1gqumOr2B44QINb6dpeLucDW8nMLxdFhheOKHh7SRs1F1CDI9yzbuZDuduCwwvnKkOEX3WHqaa7vkKhldPoOHtNQ1vn7Ph7QWGt88Cw6tHaHh7CRt1nxDDo1zzfqbDud8Cw6vHVIeIPusAU00PfAXDqy/Q8A6ahnfI2fAOAsM7ZIHh1Sc0vIOEjXpIiOFRrvkw0+E8bIHh1WeqQ0SfdYSppke+guE1EGh4R03DO+ZseEeB4R2zwPAaEBreUcJGPSbE8CjXfJzpcB63wPAaMNUhos86wVTTE1/B8BoKNLyTpuGdcja8k8DwTllgeA0JDe8kYaOeEmJ4lGs+zXQ4T1tgeA2Z6hDRZ51hqumZr2B4jQQa3lnT8M45G95ZYHjnLDC8RoSGd5awUc8JMTzKNZ9nOpznLTC8Rkx1iOizLjDV9MJXMLzGAg3voml4l5wN7yIwvEsWGF5jQsO7SNiol4QYHuWaLzMdzssWGF5jpjpE9FlXmGp65SsYXhOBhnfVNLxrzoZ3FRjeNQsMrwmh4V0lbNRrQgyPcs3XmQ7ndQsMrwlTHSL6rBtMNb3xFQyvqUDDu2ka3i1nw7sJDO+WBYbXlNDwbhI26i0hhke55ttMh/O2BYbXlKkOEX3WHaaa3vkKhtdMoOHdNQ3vnrPh3QWGd88Cw2tGaHh3CRv1nhDDo1zzfabDed8Cw2vGVIeIPusBU00ffAXDay7Q8B6ahvfI2fAeAsN7ZIHhNSc0vIeEjfpIiOFRrvkx0+F8bIHhNWeqQ0Sf9YSppk9ATWl7y9c2NAFdHZ4S1tSxDuq5KV2+zPgp1+L7zz42+w2QS/Zsx1o8M43/ubPxq/8hkhN7bhbV8ROFsYj/8Fl+5rNszwib6znh5kZz+Xdt7Y3oGfmvm9M3Yh/bFhf6Fxe1xq0CNG4ToHG7AI07BGjcKUDjLgEadwvQuEeAxr0CNO4ToHG/AI0HBGg8KEDjIQEaDwvQeESAxqMCNB4ToPG4AI0nBGg8KUDjKQEaTwvQeEaAxrMCNJ4ToPG8AI0XBGi8KEDjJQEaLwvQeEWAxqsCNF4ToPG6AI03BGi8KUDjLQEabwvQeEeAxrsCNN4ToPG+AI0PBGh8KEDjIwEaHwvQ+ESAxqcCND4ToPG5AI0vBGh8KUDjKwEaXwvQ+EaAxrcCNL4ToPG9AI0fBGj8KEDjJwEaPwvQqB6ou8ZIAjRGFqAxigCNUQVojCZAY3QBGmMI0BhTgMZYAjTGFqAxjgCNcQVojCdAY3wBGhMI0OgqQKObAI3uAjR6CNDoKUCjlwCN3gI0JhSg0UeAxkQCNCYWoDGJAI1JBWhMJkBjcgEaUwjQmFKAxlQCNKYWoDGNAI1pBWhMJ0DjdwI0phegMYMAjRkFaMwkQGNmARqzCNCYVYDGbAI0Zheg0VeARpsAjX4CNPoL0BggQGOgAI05BGgMEqAxWIDGEAEacwrQ+L0AjbkEaMwtQOMPAjTmEaAxrwCN+QRo/FGAxvwCNBYQoLGgAI2FBGgsLEBjEQEafxKg8WcBGosK0FhMgMbiAjSWEKCxpACNpQRoLC1AYxkBGssK0FhOgMbyAjRWEKCxogCNlQRorCxAYxUBGqsK0FhNgMbqAjTWEKCxpgCNtQRorC1AY6gAjXUEaKwrQGOYAI3hAjTWE6CxvgCNDQRobChAYyMBGhsL0NhEgMamAjQ2E6CxuQCNLQRobClAYysBGlsL0NhGgMa2AjS2E6CxvQCNHQRo/EWAxo4CNHYSoLGzAI1dBGjsKkBjNwEauwvQ2EOAxl8FaOwpQGMvARp7C9DYR4DG3wRo7CtAYz8BGvsL0DhAgMaBAjQOEqBxsACNQwRoHCpA4zABGocL0DhCgMaRAjSOEqBxtACNYwRoHCtA4zgBGscL0DhBgMaJAjROEqBxsgCNUwRonCpA4zQBGqcL0DhDgMaZAjTOEqBxtgCNcwRonCtA4zwBGucL0LhAgMaFAjQuEqBxsQCNSwRoXCpA4zIBGpcL0LhCgMaVAjSuEqBxtQCNawRoXCtA4zoBGtcL0LhBgMaNAjRuEqBxswCNWwRo3CpA4zYBGrcL0LhDgMadAjTuEqBxtwCNewRo3CtA4z4BGvcL0HhAgMaDAjQeEqDxsACNRwRoPCpA4zEBGo8L0HhCgMaTAjSeEqDxtACNZwRoPCtA4zkBGs8L0HhBgMaLAjReEqDxsgCNVwRovCpA4zUBGq8L0HhDgMabAjTeEqDxtgCNdwRovCtA4z0BGu8L0PhAgMaHAjQ+EqDxsQCNTwRofCpA4zMBGp8L0PhCgMaXAjS+EqDxtQCNbwRofCtA4zsBGt8L0PhBgMaPAjR+EqDxswCNLpH11xhJgMbIAjRGEaAxqgCN0QRojC5AYwwBGmMK0BhLgMbYAjTGEaAxrgCN8QRojC9AYwIBGl0FaHQToNFdgEYPARo9BWj0EqDRW4DGhAI0+gjQmEiAxsQCNCYRoDGpAI3JBGhMLkBjCgEaUwrQmEqAxtQCNKYRoDGtAI3pBGj8ToDG9AI0ZhCgMaMAjZkEaMwsQGMWARqzCtCYTYDG7AI0+grQaBOg0U+ARn8BGgMEaAwUoDGHAI1BAjQGC9AYIkBjTgEavxegMZcAjbkFaPxBgMY8AjTmFaAxnwCNPwrQmF+AxgICNBYUoLGQAI2FBWgsIkDjTwI0/ixAY1EBGosJ0FhcgMYSAjSWFKCxlACNpQVoLCNAY1kBGssJ0FhegMYKAjRWFKCxkgCNlQVorCJAY1UBGqsJ0FhdgMYaAjTWFKCxlgCNtQVoDBWgsY4AjXUFaAwToDFcgMZ6AjTWF6CxgQCNDQVobCRAY2MBGpsI0NhUgMZmAjQ2F6CxhQCNLQVobCVAY2sBGtsI0NhWgMZ2AjS2F6CxgwCNvwjQ2FGAxk4CNHYWoLGLAI1dBWjsJkBjdwEaewjQ+KsAjT0FaOwlQGNvARr7CND4mwCNfQVo7CdAY38BGgcI0DhQgMZBAjQOFqBxiACNQwVoHCZA43ABGkcI0DhSgMZRAjSOFqBxjACNYwVoHCdA43gBGicI0DhRgMZJAjROFqBxigCNUwVonCZA43QBGmcI0DhTgMZZAjTOFqBxjgCNcwVonCdA43wBGhcI0LhQgMZFAjQuFqBxiQCNSwVoXCZA43IBGlcI0LhSgMZVAjSuFqBxjQCNawVoXCdA43oBGjcI0LhRgMZNAjRuFqBxiwCNWwVo3CZA43YBGncI0LhTgMZdAjTuFqBxjwCNewVo3CdA434BGg8I0HhQgMZDAjQeFqDxiACNRwVoPCZA43FCjVFc/v15kfBff740/3yV8N/a/7QIf98cAQFhQX5hNn9bbV+/kNDgQN+AwNAcwbZgW2BwYF2/YH//sOCA4KCQ0JAg3xBbgH+YLTwwxD/c/P/4WUK6gihtUUyNahEpzXs7ewnYK5NxrU09PzLxxr9KSKfxdUL6RlefyIx9EtFnvSHsOdQ3vhH72NSevElI349vCffa8Qy9dThD/2n/fSP2sb3Wc/99o5lrjery5w91X7xgOqvUOl8K0fmK+Dx4RnZh3f8tLvR1Jf/ioACN2wRo3C5A4w4BGncK0LhLgMbdAjTuEaBxrwCN+wRo3C9A4wEBGg8K0HhIgMbDAjQeEaDxqACNxwRoPC5A4wkBGk8K0HhKgMbTAjSeEaDxrACN5wRoPC9A4wUBGi8K0HhJgMbLAjReEaDxqgCN1wRovC5A4w0BGm8K0HhLgMbbAjTeEaDxrgCN9wRovC9A4wMBGh8K0PhIgMbHAjQ+EaDxqQCNzwRofC5A4wsBGl8K0PhKgMbXAjS+EaDxrQCN7wRofC9A4wcBGj8K0PhJgMbPAjSqB+quMZIAjZEFaIwiQGNUARqjCdAYXYDGGAI0xhSgMZYAjbEFaIwjQGNcARrjCdAYX4DGBAI0ugrQ6CZAo7sAjR4CNHoK0OglQKO3AI0JBWj0EaAxkQCNiQVoTCJAY1IBGpMJ0JhcgMYUAjSmFKAxlQCNqQVoTCNAY1oBGtMJ0PidAI3pBWjMIEBjRgEaMwnQmFmAxiwCNGYVoDGbAI3ZBWj0FaDRJkCjnwCN/gI0BgjQGChAYw4BGoMEaAwWoDFEgMacAjR+L0BjLgEacwvQ+IMAjXkEaMwrQGM+ARp/FKAxvwCNBQRoLChAYyEBGgsL0FhEgMafBGj8WYDGogI0FhOgsbgAjSUEaCwpQGMpARpLC9BYRoDGsgI0lhOgsbwAjRUEaKwoQGMlARorC9BYRYDGqgI0VhOgsboAjTUEaKwpQGMtARprC9AYKkBjHQEa6wrQGCZAY7gAjfUEaKwvQGMDARobCtDYSIDGxgI0NhGgsakAjc0EaGwuQGMLARpbCtDYSoDG1gI0thGgsa0Aje0EaGwvQGMHARp/EaCxowCNnQRo7CxAYxcBGrsK0NhNgMbuAjT2EKDxVwEaewrQ2EuAxt4CNPYRoPE3ARr7CtDYT4DG/gI0DhCgcaAAjYMEaBwsQOMQARqHCtA4TIDG4QI0jhCgcaQAjaMEaBwtQOMYARrHCtA4ToDG8QI0ThCgcaIAjZMEaJwsQOMUARqnCtA4TYDG6QI0zhCgcaYAjbMEaJwtQOMcARrnCtA4T4DG+QI0LhCgcaEAjYsEaFwsQOMSARqXCtC4TIDG5QI0rhCgcaUAjasEaFwtQOMaARrXCtC4ToDG9QI0bhCgcaMAjZsEaNwsQOMWARq3CtC4TYDG7QI07hCgcacAjbsEaNwtQOMeARr3CtC4T4DG/QI0HhCg8aAAjYcEaDwsQOMRARqPCtB4TIDG4wI0nhCg8aQAjacEaDwtQOMZARrPCtB4ToDG8wI0XhCg8aIAjZcEaLwsQOMVARqvCtB4TYDG6wI03hCg8aYAjbcEaLwtQOMdARrvCtB4T4DG+wI0PhCg8aEAjY8EaHwsQOMTARqfCtD4TIDG5wI0vhCg8aUAja8EaHwtQOMbARrfCtD4ToDG9wI0fhCg8aMAjZ8EaPwsQKNLZP01RhKgMbIAjVEEaIwqQGM0ARqjC9AYQ4DGmAI0xhKgMbYAjXEEaIwrQGM8ARrjC9CYQIBGVwEa3QRodBeg0UOARk8BGr0EaPQWoDGhAI0+AjQmEqAxsQCNSQRoTCpAYzIBGpML0JhCgMaUAjSmEqAxtQCNaQRoTCtAYzoBGr8ToDG9AI0ZBGjMKEBjJgEaMwvQmEWAxqwCNGYToDG7AI2+AjTaBGj0E6DRX4DGAAEaAwVozCFAY5AAjcECNIYI0JhTgMbvBWjMJUBjbgEafxCgMY8AjXkFaMwnQOOPAjTmF6CxgACNBQVoLCRAY2EBGosI0PiTAI0/C9BYVIDGYgI0FhegsYQAjSUFaCwlQGNpARrLCNBYVoDGcgI0lhegsYIAjRUFaKwkQGNlARqrCNBYVYDGagI0VhegsYYAjTUFaKwlQGNtARpDBWisI0BjXQEawwRoDBegsZ4AjfUFaGwgQGNDARobCdDYWIDGJgI0NhWgsZkAjc0FaGwhQGNLARpbCdDYWoDGNgI0thWgsZ0Aje0FaOwgQOMvAjR2FKCxkwCNnQVo7CJAY1cBGrsJ0NhdgMYeAjT+KkBjTwEaewnQ2FuAxj4CNP4mQGNfARr7CdDYX4DGAQI0DhSgcZAAjYMFaBwiQONQARqHCdA4XIDGEQI0jhSgcZQAjaMFaBwjQONYARrHCdA4XoDGCQI0ThSgcZIAjZMFaJwiQONUARqnCdA4XYDGGQI0zhSgcZYAjbMFaJwjQONcARrnCdA4X4DGBQI0LhSgcZEAjYsFaFwiQONSARqXCdC4XIDGFQI0rhSgcZUAjasFaFwjQONaARrXCdC4XoDGDQI0bhSgcZMAjZsFaNwiQONWARq3CdC4XYDGHQI07hSgcZcAjbsFaNwjQONeARr3CdC4X4DGAwI0HhSg8ZAAjYcFaDwiQONRARqPCdB4nFBjJAeNKc37dwldXN4b1wfj+mhcn4zrs3G5+Bj/nXFFNq4oxhXVuKIZV3TjimFcMY0rlnHFNq44xhXXuOIZV3zjSmBcrsblZlzuxuVhXJ7G5WVc3saV0Lh8jCuRz7/rRV641wlpCxfF1KgKFtO8t7P3gH0A7CNgnwD7DJjaEGcWCbDIgEUBLCpg0QCLDlgMwGICFguw2IDFASwuYPEAiw9YAsBcAXMDzB0wD8A8AfMCzBuwhID5AJbIZI6fKOafec0/fSP2sU1xeJa/b46AgLAgvzCbv622r19IaHCgb0BgaI5gW7AtMDiwrl+wv39YcEBwUEhoSJBviC3AP8wWHhjiH24+7F1Cumcl9qE7v9FUP7k4mI3Dh9p3KHU76k3iwyg4iQ/9c5P60DUD17qT+vy7wETP9XVx+FAf1qkudDV9T3hYkwk9rMmYDmtyH0bByRkOawrND6tadwphh3WaC11NPxAe1pRCD2tKpsOayodRcCqGw5pa88Oq1p2a6bByTCkpwB5FtK5pfGSY1HTCNX8kNKm0Qk0qLZNJpfNhFJyOwaS+09yk1Lq/E2JSykzTMJhUeiEmNYNwzZ8ITSqDUJPKwGRSGX0YBWdkMKlMmpuUWncmISalzDQ9g0llFmJSMwnX/JnQpLIINaksTCaV1YdRcFYGk8qmuUmpdWcTYlLKTDMzmFR2ISY1i3DNLoR96SvUpHyZTMrmwyjYxmBSfpqblFq3nxCTUmaancGk/IWY1GzCNUci7MsAoSYVwGRSgT6MggMZTCqH5ial1p1DiEkpM/VnMKkgISY1h3DNkQn7MlioSQUzmVSID6PgEAaTyqm5Sal15xRiUspMgxhM6nshJjWXcM1RCPsyl1CTysVkUrl9GAXnZjCpHzQ3KbXuH4SYlDLT7xlMKo8Qk5pHuOaohH2ZV6hJ5WUyqXw+jILzMZjUj5qblFr3j0JMSplpHgaTyi/EpOYTrjkaYV8WEGpSBZhMqqAPo+CCDCZVSHOTUusuJMSklJnmZzCpwkJMagHhmqMT9mURoSZVhMmkfuIyKSX4JwaT+llzk1Lr/lmISSkzLcxgUkWFmNRCwjXHIOzLYkJNqhiTSRX3YRRcnMGkSmhuUmrdJYSYlDLTogwmVVKISS0iXHNMwr4sJdSkSjGZVGkfRsGlGUyqjOYmpdZdRohJKTMtyWBSZYWY1GLCNcci7MtyQk2qHJNJlfdhFFyewaQqaG5Sat0VhJiUMtOyDCZVUYhJLSFcc2zCvqwk1KQqMZlUZR9GwZUZTKqK5ial1l1FiEkpM63IYFJVhZjUUsI1xyHsy2pCTaoak0lV92EUXJ3BpGpoblJq3TWEmJQy06oMJlVTiEktI1xzXMK+rCXUpGoxmVRtH0bBtRlMKlRzk1LrDhViUspMazKYVB0hJrWccM3xCPuyrlCTqstkUmE+jILDGEwqXHOTUusOF2JSykzrMJhUPSEmtYJwzfEJ+7K+UJOqz2RSDXwYBTdgMKmGmpuUWndDISalzLQeg0k1EmJSKwnXnICwLxsLNanGTCbVxIdRcBMGk2qquUmpdTcVYlLKTBsxmFQzISa1inDNroR92VyoSTVnMqkWPoyCWzCYVEvNTUqtu6UQk1Jm2ozBpFoJManVhGt2I+zL1kJNqjWTSbXxYRTchsGk2mpuUmrdbYWYlDLTVgwm1U6ISa0hXLM7YV+2F2pS7ZlMqoMPo+AODCb1i+Ympdb9ixCTUmbajsGkOgoxqbWEa/Yg7MtOQk2qE5NJdfZhFNyZwaS6aG5Sat1dhJiUMtOODCbVVYhJrSNcsydhX3YTalLdmEyquw+j4O4MJtVDc5NS6+4hxKSUmXZlMKlfhZjUesI1exH2ZU+hJtWTyaR6+TAK7sVgUr01Nym17t5CTEqZ6a8MJtVHiEltIFyzN2Ff/ibUpH5jMqm+PoyC+zKYVD/NTUqtu58Qk1Jm2ofBpPoLMamNhGtOSNiXA4Sa1AAmkxrowyh4IINJDdLcpNS6BwkxKWWm/RlMarAQk9pEuGYfwr4cItSkhjCZ1FAfRsFDGUxqmOYmpdY9TIhJKTMdzGBSw4WY1GbCNSci7MsRQk1qBJNJjfRhFDySwaRGaW5Sat2jhJiUMtPhDCY12kfvdav9Gc2w7jGar/t1QheXMQzrfp2Q1lTVyyiqy58/1PV4kZDnZUqt86UQna8S0r6kPCO7sO7/Fhf6ulJr3CpA4zYBGrcL0LhDgMadAjTuEqBxtwCNewRo3CtA4z4BGvcL0HhAgMaDAjQeEqDxsACNRwRoPCpA4zEBGo8L0HhCgMaTAjSeEqDxtACNZwRoPCtA4zkBGs8L0HhBgMaLAjReEqDxsgCNVwRovCpA4zUBGq8L0HhDgMabAjTeEqDxtgCNdwRovCtA4z0BGu8L0PhAgMaHAjQ+EqDxsQCNTwRofCpA4zMBGp8L0PhCgMaXAjS+EqDxtQCNbwRofCtA4zsBGt8L0PhBgMaPAjR+EqDxswCN6oG6a4wkQGNkARqjCNAYVYDGaAI0RhegMYYAjTEFaIwlQGNsARrjCNAYV4DGeAI0xhegMYEAja4CNLoJ0OguQKOHAI2eAjR6CdDoLUBjQgEafQRoTCRAY2IBGpMI0JhUgMZkAjQmF6AxhQCNKQVoTCVAY2oBGtMI0JhWgMZ0AjR+J0BjegEaMwjQmFGAxkwCNGYWoDGLAI1ZBWjMJkBjdgEafQVotAnQ6CdAo78AjQECNAYK0JhDgMYgARqDBWgMEaAxpwCN3wvQmEuAxtwCNP4gQGMeARrzCtCYT4DGHwVozC9AYwEBGgsK0FhIgMbCAjQWEaDxJwEafxagsagAjcUEaCwuQGMJARpLCtBYSoDG0gI0lhGgsawAjeUEaCwvQGMFARorCtBYSYDGygI0VhGgsaoAjdUEaKwuQGMNARprCtBYS4DG2gI0hgrQWEeAxroCNIYJ0BguQGM9ARrrC9DYQIDGhgI0NhKgsbEAjU0EaGwqQGMzARqbC9DYQoDGlgI0thKgsbUAjW0EaGwrQGM7ARrbC9DYQYDGXwRo7ChAYycBGjsL0NhFgMauAjR2E6CxuwCNPQRo/FWAxp4CNPYSoLG3AI19BGj8TYDGvgI09hOgsb8AjQMEaBwoQOMgARoHC9A4RIDGoQI0DhOgcbgAjSMEaBwpQOMoARpHC9A4RoDGsQI0jhOgcbwAjRMEaJwoQOMkARonC9A4RYDGqQI0ThOgcboAjTMEaJwpQOMsARpnC9A4R4DGuQI0zhOgcb4AjQsEaFwoQOMiARoXC9C4RIDGpQI0LhOgcbkAjSsEaFwpQOMqARpXC9C4RoDGtQI0rhOgcb0AjRsEaNwoQOMmARo3C9C4RYDGrQI0bhOgcbsAjTsEaNwpQOMuARp3C9C4R4DGvQI07hOgcb8AjQcEaDwoQOMhARoPC9B4RIDGowI0HhOg8bgAjScEaDwpQOMpARpPC9B4RoDGswI0nhOg8bwAjRcEaLwoQOMlARovC9B4RYDGqwI0XhOg8boAjTcEaLwpQOMtARpvC9B4R4DGuwI03hOg8b4AjQ8EaHwoQOMjARofC9D4RIDGpwI0PhOg8bkAjS8EaHwpQOMrARpfC9D4RoDGtwI0vhOg8b0AjR8EaPwoQOMnARo/C9DoEll/jZEEaIwsQGMUARqjCtAYTYDG6AI0xhCgMaYAjbEEaIwtQGMcARrjCtAYT4DG+AI0JhCg0VWARjcBGt0FaPQQoNFTgEYvARq9BWhMKECjjwCNiQRoTCxAYxIBGpMK0JhMgMbkAjSmEKAxpQCNqQRoTC1AYxoBGtMK0JhOgMbvBGhML0BjBgEaMwrQmEmAxswCNGYRoDGrAI3ZBGjMLkCjrwCNNgEa/QRo9BegMUCAxkABGnMI0BgkQGOwAI0hAjTmFKDxewEacwnQmFuAxh8EaMwjQGNeARrzCdD4owCN+QVoLCBAY0EBGgsJ0FhYgMYiAjT+JEDjzwI0FhWgsZgAjcUFaCwhQGNJARpLCdBYWoDGMgI0lhWgsZwAjeUFaKwgQGNFARorCdBYWYDGKgI0VhWgsZoAjdUFaKwhQGNNARprCdBYW4DGUAEa6wjQWFeAxjABGsMFaKwnQGN9ARobCNDYUIDGRgI0NhagsYkAjU0FaGwmQGNzARpbCNDYUoDGVgI0thagsY0AjW0FaGwnQGN7ARo7CND4iwCNHQVo7CRAY2cBGrsI0NhVgMZuAjR2F6CxhwCNvwrQ2FOAxl4CNPYWoLGPAI2/CdDYV4DGfgI09hegcYAAjQMFaBwkQONgARqHCNA4VIDGYQI0DhegcYQAjSMFaBwlQONoARrHCNA4VoDGcQI0jhegcYIAjRMFaJwkQONkARqnCNA4VYDGaQI0ThegcYYAjTMFaJwlQONsARrnCNA4V4DGeQI0zhegcYEAjQsFaFwkQONiARqXCNC4VIDGZQI0LhegcYUAjSsFaFwlQONqARrXCNC4VoDGdQI0rhegcYMAjRsFaNwkQONmARq3CNC4VYDGbQI0bhegcYcAjTsFaNwlQONuARr3CNC4V4DGfQI07heg8YAAjQcFaDwkQONhARqPCNB4VIDGYwI0HifUGNlBo795P9bHxWWccY03rgnGNdG4JhnXZOOaYlxTjWuacU03rhnGNdO4ZhnXbOOaY1xzjWuecc03rgXGtdC4FhnXYuNaYlxLjWuZcS03rhXGtdK4VhnXauNaY1xrjWudca03rg3GtdG4NhnXZuPaYlxbjWubcW03rh3GtdO4dhnXbuPaY1x7jWufce33+dd6Dvj8ew/IN+N1QrrNUNqimBrVJqQ07+1sHGDjAZsA2ETAJgE2GbApgE0FbBpg0wGbAdhMwGYBNhuwOYDNBWweYPMBWwDYQsAWAbYYsCWALQVsGWDLAVsB2ErAVgG2GrA1gK0FbB1g6wHbANhGwDYBthmwLYBtBWwbYNsB2wHYTsB2AbYbsD2A7QVsH2D7ATtgsqjG5e3y/68xO37sL6K85p/+vjkCAsKC/MJs/rbavn4hocGBvgGBoTmCbcG2wODAun7B/v5hwQHBQSGhIUG+IbYA/zBbeGCIf7jppaqGVM866EPl8TZbNOMZcV0cXkgOn0hONfCN2MdGp/tf7yb755APo+BDPgwTPGEzcK37sMOhIHoui1Y18BwGexTRuh7xoV13ZOJ1tzDWfYSwj+x1pNbpOJBGVONRH/178ShDLx7z4Rnqj5kvdvUSiOfQo44fzhehb8Q+NoJ+sNlvwNLJnu1Y1+Omr57wcfnjlHXcbBxHdsLcIMdPVCEb8g91+Zm6bMcJze0EcaNQH3BlHMdlvHD9uUzuJJPJnXQ4Q1JqcYqwFqoO3i5//lA934WntrZTPvprPE2tkatBdZ7qzjAd/DMWHHyd63r2m4nYzgowkXOam8jvTXmO4S13XkCcO8+w7gtMhncBpAWq+BYWrj5hlN9fslHuv4qwUR3Wq+rhGfmPtaDujy0u+pvLVgEatwnQuF2Axh0CNO4UoHGXAI27BWjcI0DjXgEa9wnQuF+AxgMCNB4UoPGQAI2HBWg8IkDjUQEajwnQeFyAxhMCNJ4UoPGUAI2nBWg8I0DjWQEazwnQeF6AxgsCNF4UoPGSAI2XBWi8IkDjVQEarwnQeF2AxhsCNN4UoPGWAI23BWi8I0DjXQEa7wnQeF+AxgcCND4UoPGRAI2PBWh8IkDjUwEanwnQ+FyAxhcCNL4UoPGVAI2vBWh8I0DjWwEa3wnQ+F6Axg8CNH4UoPGTAI2fBWhUD9RdYyQBGiML0BhFgMaoAjRGE6AxugCNMQRojClAYywBGmML0BhHgMa4AjTGE6AxvgCNCQRodBWg0U2ARncBGj0EaPQUoNFLgEZvARoTCtDoI0BjIgEaEwvQmESAxqQCNCYToDG5AI0pBGhMKUBjKgEaUwvQmEaAxrQCNKYToPE7ARrTC9CYQYDGjAI0ZhKgMbMAjVkEaMwqQGM2ARqzC9DoK0CjTYBGPwEa/QVoDBCgMVCAxhwCNAYJ0BgsQGOIAI05BWj8XoDGXAI05hag8QcBGvMI0JhXgMZ8AjT+KEBjfgEaCwjQWFCAxkICNBYWoLGIAI0/CdD4swCNRQVoLCZAY3EBGksI0FhSgMZSAjSWFqCxjACNZQVoLCdAY3kBGisI0FhRgMZKAjRWFqCxigCNVQVorCZAY3UBGmsI0FhTgMZaAjTWFqAxVIDGOgI01hWgMUyAxnABGusJ0FhfgMYGAjQ2FKCxkQCNjQVobCJAY1MBGpsJ0NhcgMYWAjS2FKCxlQCNrQVobCNAY1sBGtsJ0NhegMYOAjT+IkBjRwEaOwnQ2FmAxi4CNHYVoLGbAI3dBWjsIUDjrwI09hSgsZcAjb0FaOwjQONvAjT2FaCxnwCN/QVoHCBA40ABGgcJ0DhYgMYhAjQOFaBxmACNwwVoHCFA40gBGkcJ0DhagMYxAjSOFaBxnACN4wVonCBA40QBGicJ0DhZgMYpAjROFaBxmgCN0wVonCFA40wBGmcJ0DhbgMY5AjTOFaBxngCN8wVoXCBA40IBGhcJ0LhYgMYlAjQuFaBxmQCNywVoXCFA40oBGlcJ0LhagMY1AjSuFaBxnQCN6wVo3CBA40YBGjcJ0LhZgMYtAjRuFaBxmwCN2wVo3CFA404BGncJ0LhbgMY9AjTuFaBxnwCN+wVoPCBA40EBGg8J0HhYgMYjAjQeFaDxmACNxwVoPCFA40kBGk8J0HhagMYzAjSeFaDxnACN5wVovCBA40UBGi8J0HhZgMYrAjReFaDxmgCN1wVovCFA400BGm8J0HhbgMY7AjTeFaDxngCN9wVofCBA40MBGh8J0PhYgMYnAjQ+FaDxmQCNzwVofCFA40sBGl8J0PhagMY3AjS+FaDxnQCN7wVo/CBA40cBGj8J0PhZgEaXyPprjCRAY2QBGqMI0BhVgMZoAjRGF6AxhgCNMQVojCVAY2wBGuMI0BhXgMZ4AjTGF6AxgQCNrgI0ugnQ6C5Ao4cAjZ4CNHoJ0OgtQGNCARp9BGhMJEBjYgEakwjQmFSAxmQCNCYXoDGFAI0pBWhMJUBjagEa0wjQmFaAxnQCNH4nQGN6ARozCNCYUYDGTAI0ZhagMYsAjVkFaMwmQGN2ARp9BWi0CdDoJ0CjvwCNAQI0BgrQmEOAxiABGoMFaAwRoDGnAI3fC9CYS4DG3AI0/iBAYx4BGvMK0JhPgMYfBWjML0BjAQEaCwrQWEiAxsICNBYRoPEnARp/FqCxqACNxQRoLC5AYwkBGksK0FhKgMbSAjSWEaCxrACN5QRoLC9AYwUBGisK0FhJgMbKAjRWEaCxqgCN1QRorC5AYw0BGmsK0FhLgMbaAjSGCtBYR4DGugI0hgnQGC5AYz0BGusL0NhAgMaGAjQ2EqCxsQCNTQRobCpAYzMBGpsL0NhCgMaWAjS2EqCxtQCNbQRobCtAYzsBGtsL0NhBgMZfBGjsKEBjJwEaOwvQ2EWAxq4CNHYToLG7AI09BGj8VYDGngI09hKgsbcAjX0EaPxNgMa+AjT2E6CxvwCNAwRoHChA4yABGgcL0DhEgMahAjQOE6BxuACNIwRoHClA4ygBGkcL0DhGgMaxAjSOE6BxvACNEwRonChA4yQBGicL0DhFgMapAjROE6BxugCNMwRonClA4ywBGmcL0DhHgMa5AjTOE6BxvgCNCwRoXChA4yIBGhcL0LhEgMalAjQuE6BxuQCNKwRoXClA4yoBGlcL0LhGgMa1AjSuE6BxvQCNGwRo3ChA4yYBGjcL0LhFgMatAjRuE6BxuwCNOwRo3ClA4y4BGncL0LhHgMa9AjTuE6BxvwCNBwRoPChA4yEBGg8L0HhEgMajAjQeE6DxOINGDp2nfeh0RnLQmNK8v2g8/5JxXTauK8Z11biuGdd147phXDeN65Zx3TauO8Z117juGdd943pgXA+N65FxPTauJ8b11LieGddz43phXC+N65VxvTauN8b11rjeGdd74/rg8+96kRfudULawkUxNaqCxTTv7ewSYJcBuwLYVcCuAXYdsBuA3QTsFmC3AbsD2F3A7gF2H7AHgD0E7BFgjwF7AthTwJ4B9hywF4C9BOwVYK8BewPYW8DeAfYesA8mc3HhOR8Xff78XH/fHAEBYUF+YTZ/W21fv5DQ4EDfgMDQHMG2YFtgcGBdv2B//7DggOCgkNCQIN8QW4B/mC08MMQ/3HzwRx+ec/fxL2oRUc1T1H4a9YhMXOMphBo/MdX1k0Nd7Z8oxHUg7AmbYx0iWtPPTDX9zHxuLzGcW5dEPLVQz+U6t1OZzu1UQo2RmOoaKRH/uSXsCZtjHSJa08hMNY2ciPfcXmY4t1GYahGF8dxOYzq30wg1RmWqa1QLzi1hT9iiEp7baEw1jcZ8bq8wnNvoTLWIznhupzOd2+mEGmMw1TWGBeeWsCdsMQjPbUymmsZkPrdXGc5tLKZaxGI8tzOYzu0MQo2xmeoa24JzS9gTttiE5zYOU03jMJ/bawznNi5TLeIyntuZTOd2JqHGeEx1jWfBuSXsCVs8wnMbn6mm8ZnP7XWGc5uAqRYJGM/tLKZzO4tQoytTXV0tOLeEPWFzJTy3bkw1dWM+tzcYzq07Uy3cGc/tbKZzO5tQowdTXT0sOLeEPWHzIDy3nkw19WQ+tzcZzq0XUy28GM/tHKZzO4dQozdTXb0tOLeEPWHzJjy3CZlqmpD53N5iOLc+TLXwYTy3c5nO7VxCjYmY6prIgnNL2BO2RITnNjFTTRMzn9vbDOc2CVMtkjCe23lM53YeocakTHVNasG5JewJW1LCc5uMqabJmM/tHYZzm5ypFskZz+18pnM7n1BjCqa6prDg3BL2hC0F4blNyVTTlMzn9i7DuU3FVIv/x95dBsfRZWkelwVmZrHMbFeqBCUzMzPbki2ZmZmZmZmZmZmZmZmZ7c2cLoc1/eb0h/E9ivrvbkWcsONOR/YvT93nsdxv73YqwdwuF8rtcoXG1EJ7TR0FuVV4J7TUCnObRminaYRz+1Qgt2mFdpFWMLcrhHK7QqExndBe00VBbhXeCS2dwtymF9ppeuHcPhPIbQahXWQQzO1KodyuVGjMKLTXjFGQW4V3QsuoMLeZhHaaSTi3zwVym1loF5kFc7tKKLerFBqzCO01SxTkVuGd0LIozG1WoZ1mFc7tC4HcZhPaRTbB3K4Wyu1qhcbsQnvNHgW5VXgntOwKc5tDaKc5hHP7UiC3FqFdWARzu0Yot2sUGjWhvWpRkFuFd0LTFObWX2in/sK5fSWQW6vQLqyCuV0rlNu1Co0BQnsNiILcKrwTWoDC3AYK7TRQOLevBXIbJLSLIMHcrhPK7TqFxmChvQZHQW4V3gktWGFubUI7tQnn9o1AbkOEdhEimNv1Qrldr9CYU2ivOaMgtwrvhJZTYW5zCe00l3Bu3wrkNrfQLnIL5naDUG43KDTmEdprnijIrcI7oeVRmNu8QjvNK5zbdwK5zSe0i3yCud0olNuNCo35hfaaPwpyq/BOaPkV5raA0E4LCOf2vUBuCwrtoqBgbjcJ5XaTQmMhob0WioLcKrwTWiGFuS0stNPCwrn9IJDbIkK7KCKY281Cud2s0FhUaK9FoyC3Cu+EVlRhbosJ7bSYcG4/CuS2uNAuigvmdotQbrcoNJYQ2muJKMitwjuhlVCY25JCOy0pnNtPArktJbSLUoK53SqU260KjaWF9lo6CnKr8E5opRXmtozQTssI5/azQG7LCu2irGButwnldptCYzmhvZaLgtwqvBNaOYW5LS+00/LCuf0ikNsKQruoIJjb7UK53a7QWFForxWjILcK74RWUWFuKwnttJJwbr8K5Lay0C4qC+Z2h1Budyg0VhHaa5UoyK3CO6FVUZjbqkI7rSqc228Cua0mtItqgrndKZTbnQqN1YX2Wj0KcqvwTmjVFea2htBOawjn9rtAbmsK7aKmYG53CeV2l0JjLaG91oqC3Cq8E1othbmtLbTT2vaduukTz+nPvYr8UX2H3/z9/2609vtXE66qZ1si76KO+79+retuX8jvBRr/h2j/dmb8i/z+DeUiuMT/5bP87c/S6ii8qHXd1X25bk5/dvv7IiZ1/s+X0/J3H+28s7qgSRkvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwCj8Q92Hd0YDWB0BhhdAEZXgNENYIwOMMYAGGMCjLEAxtgAYxyAMS7AGA9gjA8wJgAYEwKMiQDGxABjEoAxKcCYDGBMDjCmABhTAozuAKMHwOgJMHoBjN4Aow/A6Asw+gGMqQDG1ABjGoAxLcCYDmBMDzBmABgzAoyZAMbMAGMWgDErwJgNYMwOMOYAGC0AowYw+gOMVoAxAGAMBBiDAMZggNEGMIYAjDkBxlwAY26AMQ/AmBdgzAcw5gcYCwCMBQHGQgBjYYCxCMBYFGAsBjAWBxhLAIwlAcZSAGNpgLEMwFgWYCwHMJYHGCsAjBUBxkoAY2WAsQrAWBVgrAYwVgcYawCMNQHGWgBjbYCxDsBYF2CsBzDWBxhDAcYwgLEBwNgQYAwHGCMAxkYAY2OAsQnA2BRgbAYwNgcYWwCMLQHGVgBja4CxDcDYFmBsBzC2Bxg7AIwdAcZOAGNngLELwNgVYOwGMHYHGHsAjD0Bxl4AY2+AsQ/A2Bdg7Acw9gcYBwCMAwHGQQDjYIBxCMA4FGAcBjAOBxhHAIwjAcZRAONogHEMwDgWYBwHMI4HGCcAjBMBxkkA42SAcQrAOBVgnAYwTgcYZwCMMwHGWQDjbIBxDsA4F2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwCjk6vjG6MBjM4AowvA6AowugGM0QHGGABjTIAxFsAYG2CMAzDGBRjjAYzxAcYEAGNCgDERwJgYYEwCMCYFGJMBjMkBxhQAY0qA0R1g9AAYPQFGL4DRG2D0ARh9AUY/gDEVwJgaYEwDMKYFGNMBjOkBxgwAY0aAMRPAmBlgzAIwZgUYswGM2QHGHACjBWDUAEZ/gNEKMAYAjIEAYxDAGAww2gDGEIAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYyjAGAYwNgAYGwKM4QBjBMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPhIodHF6c+nnvu/fq1v/zXU/Y/9Hy9htQQFBIQH+4drVi3U4h8SZgu0BASGBdk0mxZoC2zob7Naw20BtuCQsJBgS4gWYA3XIgJDrBH2f+M67uoWYthc7EbjJfzsv/99Vt/kLNR+JvVuxvOdFX/xoe7qjGHu6i+68XEWvCd/+6wGCu+c2b2x/N1HM76TBu7q72NDhd915Aw1jJSh/+n7t/zdRwtzzO/f4mZ/V1enf35U34t6QllV7awPcYYqzkNSZyfR7/+8M+A/HAQYLwKMlwDGywDjFYDxKsB4DWC8DjDeABhvAoy3AMbbAOMdgPEuwHgPYLwPMD4AGB8CjI8AxscA4xOA8SnA+AxgfA4wvgAYXwKMrwDG1wDjG4DxLcD4DmB8DzB+ABg/AoyfAMbPAOMXgPErwPgNYPwOMP4AGH8CjL8ARuMf0Du6MRrA6AwwugCMrgCjG8AYHWCMATDGBBhjAYyxAcY4AGNcgDEewBgfYEwAMCYEGBMBjIkBxiQAY1KAMRnAmBxgTAEwpgQY3QFGD4DRE2D0Ahi9AUYfgNEXYPQDGFMBjKkBxjQAY1qAMR3AmB5gzAAwZgQYMwGMmQHGLABjVoAxG8CYHWDMATBaAEYNYPQHGK0AYwDAGAgwBgGMwQCjDWAMARhzAoy5AMbcAGMegDEvwJgPYMwPMBYAGAsCjIUAxsIAYxGAsSjAWAxgLA4wlgAYSwKMpQDG0gBjGYCxLMBYDmAsDzBWABgrAoyVAMbKAGMVgLEqwFgNYKwOMNYAGGsCjLUAxtoAYx2AsS7AWA9grA8whgKMYQBjA4CxIcAYDjBGAIyNAMbGAGMTgLEpwNgMYGwOMLYAGFsCjK0AxtYAYxuAsS3A2A5gbA8wdgAYOwKMnQDGzgBjF4CxK8DYDWDsDjD2ABh7Aoy9AMbeAGMfgLEvwNgPYOwPMA4AGAcCjIMAxsEA4xCAcSjAOAxgHA4wjgAYRwKMowDG0QDjGIBxLMA4DmAcDzBOABgnAoyTAMbJAOMUgHEqwDgNYJwOMM4AGGcCjLMAxtkA4xyAcS7AOA9gnA8wLgAYFwKMiwDGxQDjEoBxKcC4DGBcDjCuABhXAoyrAMbVAOMagHEtwLgOYFwPMG4AGDcCjJsAxs0A4xaAcSvAuA1g3A4w7gAYdwKMuwDG3QDjHoBxL8C4D2DcDzAeABgPAoyHAMbDAOMRgPEowHgMYDwOMJ4AGE8CjKcAxtMA4xmA8SzAeA5gPA8wXgAYLwKMlwDGywDjFYDxKsB4DWC8DjDeABhvAoy3AMbbAOMdgPEuwHgPYLwPMD4AGB8CjI8AxscA4xOA8SnA+AxgfA4wvgAYXwKMrwDG1wDjG4DxLcD4DmB8DzB+ABg/AoyfAMbPAOMXgPErwPgNYPwOMP4AGH8CjL8ARidXxzdGAxidAUYXgNEVYHQDGKMDjDEAxpgAYyyAMTbAGAdgjAswxgMY4wOMCQDGhABjIoAxMcCYBGBMCjAmAxiTA4wpAMaUAKM7wOgBMHoCjF4AozfA6AMw+gKMfgBjKoAxNcCYBmBMCzCmAxjTA4wZAMaMAGMmgDEzwJgFYMwKMGYDGLMDjDkARgvAqAGM/gCjFWAMABgDAcYggDEYYLQBjCEAY06AMRfAmBtgzAMw5gUY8wGM+QHGAgBjQYCxEMBYGGAsAjAWBRiLAYzFAcYSAGNJgLEUwFgaYCwDMJYFGMsBjOUBxgoAY0WAsRLAWBlgrAIwVgUYqwGM1QHGGgBjTYCxFsBYG2CsAzDWBRjrAYz1AcZQgDEMYGwAMDYEGMMBxgiAsRHA2BhgbAIwNgUYmwGMzQHGFgBjS4CxFcDYGmBsAzC2BRjbAYztAcYOAGNHgLETwNgZYOwCMHYFGLsBjN0Bxh4AY0+AsRfA2Btg7AMw9gUY+wGM/QHGAQDjQIBxEMA4GGAcAjAOBRiHAYzDAcYRAONIgHEUwDgaYBwDMI4FGMcBjOMBxgkA40SAcRLAOBlgnAIwTgUYpwGM0wHGGQDjTIBxFsA4G2CcAzDOBRjnAYzzAcYFAONCgHERwLgYYFwCMC4FGJcBjMsBxhUA40qAcRXAuBpgXAMwrgUY1wGM6wHGDQDjRoBxE8C4GWDcAjBuBRi3AYzbAcYdAONOgHEXwLgbYNwDMO4FGPcBjPsBxgMA40GA8RDAeBhgPAIwHgUYjwGMxwHGEwDjSYDxFMB4GmA8AzCeBRjPAYznAcYLAONFgPESwHgZYLwCMF4FGK8BjNcBxhsA402A8RbAeBtgvAMw3gUY7wGM9wHGBwDjQ4DxkUJjtEhGP/vvw92dnCL0aaRPY32a6NNUn2b6NNenhT4t9WmlT2t92ujTVp92+rTXp4M+HfXppE9nfbro01Wfbvp016eHPj316aVPb3366NNXn3769Hf/sy/liwtzV7s4F7vRWFhM++9/n0WYnDUyOWtsctbE5KypyVkzk7PmJmctTM5ampy1MjlrbXLWxuSsrclZO5Oz9iZnHUzOOpqcdTI562xy1sXkrKvJWTeTs+4mZz1MznqanPUyOettctbH5KyvyVk/k7P+9rPIHxf7r/ntv1r+7qP9SvnnWVZLUEBAeLB/uGbVQi3+IWG2QEtAYFiQTbNpgbbAhv42qzXcFmALDgkLCbaEaAHWcC0iMMQaYX9YuLu6Zw1QmF83/RlxnSKVTaSP6t5R6Y7sHeguCB7orv65gxReBqn3HuT+Z8GKnmtxivRRHVZnhTuNUPiswdCwDhYK6xB3QfAQgbAOdfCwGu89FBZWN4U7baTwWcOgYR0mFNbh7oLg4QJhHeHgYTXee4RQWCV+Shlq8h397V5HujNKKqbCu9RY4bNGQUtqlFBJjXYXBI8WKKkxDl5SxnuPgZSUUaYjBUpqLKSk4ii8S00UPmsctKTGCZXUeHdB8HiBkprg4CVlvPcESEkZZTpWoKQmQkoqvsK71FThsyZBS2qSUElNdhcETxYoqSkOXlLGe0+BlJRRphMFSmoqpKQSKbxLzRQ+axq0pKYJldR0d0HwdIGSmuHgJWW89wxISRllOlWgpGZCSiqpwrvUXOGzZkFLapZQSc12FwTPFiipOQ5eUsZ7z4GUlFGmMwVKai6kpFIovEstFD5rHrSk5gmV1Hx3QfB8gZJa4OAlZbz3AkhJGWU6V6CkFkJKykPhXWqp8FmLoCW1SKikFrsLghcLlNQSBy8p472XQErKKNOFAiW1FFJS3grvUiuFz1oGLallQiW13F0QvFygpFY4eEkZ770CUlJGmS4VKKmVkJLyU3iXWit81ipoSa0SKqnV7oLg1QIltcbBS8p47zWQkjLKdKVASa2FlFQahXepjcJnrYOW1DqhklrvLgheL1BSGxy8pIz33gApKaNM1wqU1EZISaVXeJfaKnzWJmhJbRIqqc3uguDNAiW1xcFLynjvLZCSMsp0o0BJbYWUVCaFd6mdwmdtg5bUNqGS2u4uCN4uUFI7HLykjPfeASkpo0y3CpTUTkhJZVV4l9orfNYuaEntEiqp3e6C4N0CJbXHwUvKeO89kJIyynSnQEnthZRUDoV3qYPCZ+2DltQ+oZLa7y4I3i9QUgccvKSM9z4AKSmjTPcKlNRBSEn5K7xLHRU+6xC0pA4JldRhd0HwYYGSOuLgJWW89xFISRllelCgpI5CSipQ4V3qpPBZx6AldUyopI67C4KPC5TUCQcvKeO9T0BKyijTowIldRJSUjaFd6mzwmedgpbUKaGSOu0uCD4tUFJnHLykjPc+Aykpo0xPCpTUWUhJ5VJ4l7oofNY5aEmdEyqp8+6C4PMCJXXBwUvKeO8LkJIyyvSsQEldhJRUXoV3qavCZ12CltQloZK67C4IvixQUlccvKSM974CKSmjTC8KlNRVSEkVUHiXuil81jVoSV0TKqnr7oLg6wIldcPBS8p47xuQkjLK9KpASd2ElFRhhXepu8Jn3YKW1C2hkrrtLgi+LVBSdxy8pIz3vgMpKaNMbwqU1F1ISRVTeJd6KHzWPWhJ3RMqqfvuguD7AiX1wMFLynjvB5CSMsr0rkBJPYSUVEmFd6mnwmc9gpbUI6GSeuwuCH4sUFJPHLykjPd+Aikpo0wfCpTUU0hJlVF4l3opfNYzaEk9Eyqp5+6C4OcCJfXCwUvKeO8XkJIyyvSpQEm9hJRUeYV3qbfCZ72CltQroZJ67S4Ifi1QUm8cvKSM934DKSmjTF8KlNRbSElVUniX+ih81jtoSb0TKqn37oLg9wIl9cHBS8p47w+QkjLK9K1ASX2ElFRVhXepr8JnfYKW1CehkvrsLgj+LFBSXxy8pIz3/gIpKaNMPwqU1FdISdVQeJf6KXzWN2hJfRMqqe/uguDvAiX1w8FLynjvH5CSMsr0q0BJ/YSUVG2Fd6m/wmf9gpbUL6GScvIQBBsPV/3caB6OXVLGe0fz+LNfRc8VsRpl+lOgpJw9HPu9je/H2UP9e7s4+HuH6d+1i8B7hykuVeMPI1enf35U76Oe0B+mqp31Ic5QxX9IJXV2Ev3+zzur36vy/1dBAONFgPESwHgZYLwCMF4FGK8BjNcBxhsA402A8RbAeBtgvAMw3gUY7wGM9wHGBwDjQ4DxEcD4GGB8AjA+BRifAYzPAcYXAONLgPEVwPgaYHwDML4FGN8BjO8Bxg8A40eA8RPA+Blg/AIwfgUYvwGM3wHGHwDjT4DxF8Bo/INpRzdGAxidAUYXgNEVYHQDGKMDjDEAxpgAYyyAMTbAGAdgjAswxgMY4wOMCQDGhABjIoAxMcCYBGBMCjAmAxiTA4wpAMaUAKM7wOgBMHoCjF4AozfA6AMw+gKMfgBjKoAxNcCYBmBMCzCmAxjTA4wZAMaMAGMmgDEzwJgFYMwKMGYDGLMDjDkARgvAqAGM/gCjFWAMABgDAcYggDEYYLQBjCEAY06AMRfAmBtgzAMw5gUY8wGM+QHGAgBjQYCxEMBYGGAsAjAWBRiLAYzFAcYSAGNJgLEUwFgaYCwDMJYFGMsBjOUBxgoAY0WAsRLAWBlgrAIwVgUYqwGM1QHGGgBjTYCxFsBYG2CsAzDWBRjrAYz1AcZQgDEMYGwAMDYEGMMBxgiAsRHA2BhgbAIwNgUYmwGMzQHGFgBjS4CxFcDYGmBsAzC2BRjbAYztAcYOAGNHgLETwNgZYOwCMHYFGLsBjN0Bxh4AY0+AsRfA2Btg7AMw9gUY+wGM/QHGAQDjQIBxEMA4GGAcAjAOBRiHAYzDAcYRAONIgHEUwDgaYBwDMI4FGMcBjOMBxgkA40SAcRLAOBlgnAIwTgUYpwGM0wHGGQDjTIBxFsA4G2CcAzDOBRjnAYzzAcYFAONCgHERwLgYYFwCMC4FGJcBjMsBxhUA40qAcRXAuBpgXAMwrgUY1wGM6wHGDQDjRoBxE8C4GWDcAjBuBRi3AYzbAcYdAONOgHEXwLgbYNwDMO4FGPcBjPsBxgMA40GA8RDAeBhgPAIwHgUYjwGMxwHGEwDjSYDxFMB4GmA8AzCeBRjPAYznAcYLAONFgPESwHgZYLwCMF4FGK8BjNcBxhsA402A8RbAeBtgvAMw3gUY7wGM9wHGBwDjQ4DxEcD4GGB8AjA+BRifAYzPAcYXAONLgPEVwPgaYHwDML4FGN8BjO8Bxg8A40eA8RPA+Blg/AIwfgUYvwGM3wHGHwDjT4DxF8Do5Or4xmgAozPA6AIwugKMbgBjdIAxBsAYE2CMBTDGBhjjAIxxAcZ4AGN8gDEBwJgQYEwEMCYGGJMAjEkBxmQAY3KAMQXAmBJgdAcYPQBGT4DRC2D0Bhh9AEZfgNEPYEwFMKYGGNMAjGkBxnQAY3qAMQPAmBFgzAQwZgYYswCMWQHGbABjdoAxB8BoARg1gNEfYLQCjAEAYyDAGAQwBgOMNoAxBGDMCTDmAhhzA4x5AMa8AGM+gDE/wFgAYCwIMBYCGAsDjEUAxqIAYzGAsTjAWAJgLAkwlgIYSwOMZQDGsgBjOYCxPMBYAWCsCDBWAhgrA4xVAMaqAGM1gLE6wFgDYKwJMNYCGGsDjHUAxroAYz2AsT7AGAowhgGMDQDGhgBjOMAYATA2AhgbA4xNAMamAGMzgLE5wNgCYGwJMLYCGFsDjG0AxrYAYzuAsT3A2AFg7AgwdgIYOwOMXQDGrgBjN4CxO8DYA2DsCTD2Ahh7A4x9AMa+AGM/gLE/wDgAYBwIMA4CGAcDjEMAxqEA4zCAcTjAOAJgHAkwjgIYRwOMYwDGsQDjOIBxPMA4AWCcCDBOAhgnA4xTAMapAOM0gHE6wDgDYJwJMM4CGGcDjHMAxrkA4zyAcT7AuABgXAgwLgIYFwOMSwDGpQDjMoBxOcC4AmBcCTCuAhhXA4xrAMa1AOM6gHE9wLgBYNwIMG4CGDcDjFsAxq0A4zaAcTvAuANg3Akw7gIYdwOMewDGvQDjPoBxP8B4AGA8CDAeAhgPA4xHAMajAOMxgPE4wHgCYDwJMJ4CGE8DjGcAxrMA4zmA8TzAeAFgvAgwXgIYLwOMVwDGqwDjNYDxOsB4A2C8CTDeAhhvA4x3AMa7AOM9gPE+wPgAYHwIMD5SaHSOZLTaf+/q4eTkpk90fWLoE1OfWPrE1ieOPnH1iadPfH0S6JNQn0T6JNYniT5J9UmmT3J9UuiTUh93fTz08dTHSx9vfXz08dXHT59U+qTWJ40+afVJp096fTLok1GfTPpk1ieLPln1yaZPdn1y6GPRR9PHXx+rPgH6BOoT5PGv9wn2+PMdKP8ywtzVfRmGzcVuNL4EP/vvf5+5mZxFNzmLYXIW0+QslslZbJOzOCZncU3O4pmcxTc5S2ByltDkLJHJWWKTsyQmZ0lNzpKZnCU3OUthcpbS5Mzd5MzD5MzT5MzL5Mzb5MzH5MzX5MzP5CyVyVlqk7M0JmdpTc7SmZylNznLYHKW0eQsk8lZZpOzLCZnWU3OspmcZTc5y2FyZjE500zO/E3OrCZnASZngSZnQSZnwfYzveed3J3+7y3myJ/ffxDlt/9qtQQFBIQH+4drVi3U4h8SZgu0BASGBdk0mxZoC2zob7Naw20BtuCQsJBgS4gWYA3XIgJDrBH2LjV2qOpZNg9VHa9pbvoz4jpF+gMp0ifav+3A8ncfTZ37X382/f6EeAiCQzzUPzenwssg9d45I4VC0XMtRoF4RHpemxROTu316aBPZ3266NNdnx769Nanjz799Rmgz2B9hugzXJ8R+ozWZ4w+4/WZoM9kfaboM12fGfrM1meOPvP1WaDPYn2W6LNcnxX6rNZnjT7r9dmgz2Z9tuizXZ8d+uzWZ48++/U5oM9hfY7oc1yfE/qc1ueMPuf1uaDPZX2u6HNdnxv63Nbnjj739Xmgz2N9nujzXJ8X+rxOIRc044fAnCb39m/vWi4PtX8bUf3en/Sd5hJ479wK39vFnoF//6jcq8Ruc3s4vjGPaqPqnwJ+B1PVCxuX3XhpZ8WLjPy3yL9957wOXhrGu+YVKI18HjJ/E89n/2nc+MktXqQ7Gvkj+dOr5e8+moL7oP3+jcmrK3t25L3mtzd2AQ+n//5Xo/z2ixP5rID9C4r8cYV8If9Ll7/dpeVX+JNtAcUXRXXA/6skBX5KNrNa/u5jlSq5gkIlVzBShii7KKT4p0R3p39+VD3fSWa3WiEPxzcWVm2UuqCO/FNdEaHgF4mC4DvyXov+/xLRigJKpJiDl8h/XcpiAn/KFQf8da64wHuXECq8EiZ/W1D117fwCOMTrvIfCmsqv3/jr7Cukd7X2EdS5/++C9X347yz45fLBYDxIsB4CWC8DDBeARivAozXAMbrAOMNgPEmwHgLYLwNMN4BGO8CjPcAxvsA4wOA8SHA+AhgfAwwPgEYnwKMzwDG5wDjC4DxJcD4CmB8DTC+ARjfAozvAMb3AOMHgPEjwPgJYPwMMH4BGL8CjN8Axu8A4w+A8SfA+AtgNP5BraMbowGMzgCjC8DoCjC6AYzRAcYYAGNMgDEWwBgbYIwDMMYFGOMBjPEBxgQAY0KAMRHAmBhgTAIwJgUYkwGMyQHGFABjSoDRHWD0ABg9AUYvgNEbYPQBGH0BRj+AMRXAmBpgTAMwpgUY0wGM6QHGDABjRoAxE8CYGWDMAjBmBRizAYzZAcYcAKMFYNQARn+A0QowBgCMgQBjEMAYDDDaAMYQgDEnwJgLYMwNMOYBGPMCjPkAxvwAYwGAsSDAWAhgLAwwFgEYiwKMxQDG4gBjCYCxJMBYCmAsDTCWARjLAozlAMbyAGMFgLEiwFgJYKwMMFYBGKsCjNUAxuoAYw2AsSbAWAtgrA0w1gEY6wKM9QDG+gBjKMAYBjA2ABgbAozhAGMEwNgIYGwMMDYBGJsCjM0AxuYAYwuAsSXA2ApgbA0wtgEY2wKM7QDG9gBjB4CxI8DYCWDsDDB2ARi7AozdAMbuAGMPgLEnwNgLYOwNMPYBGPsCjP0Axv4A4wCAcSDAOAhgHAwwDgEYhwKMwwDG4QDjCIBxJMA4CmAcDTCOARjHAozjAMbxAOMEgHEiwDgJYJwMME4BGKcCjNMAxukA4wyAcSbAOAtgnA0wzgEY5wKM8wDG+QDjAoBxIcC4CGBcDDAuARiXAozLAMblAOMKgHElwLgKYFwNMK4BGNcCjOsAxvUA4waAcSPAuAlg3AwwbgEYtwKM2wDG7QDjDoBxJ8C4C2DcDTDuARj3Aoz7AMb9AOMBgPEgwHgIYDwMMB4BGI8CjMcAxuMA4wmA8STAeApgPA0wngEYzwKM5wDG8wDjBYDxIsB4CWC8DDBeARivAozXAMbrAOMNgPEmwHgLYLwNMN4BGO8CjPcAxvsA4wOA8SHA+AhgfAwwPgEYnwKMzwDG5wDjC4DxJcD4CmB8DTC+ARjfAozvAMb3AOMHgPEjwPgJYPwMMH4BGL8CjN8Axu8A4w+A8SfA+AtgdHJ1fGM0gNEZYHQBGF0BRjeAMTrAGANgjAkwxgIYYwOMcQDGuABjPIAxPsCYAGBMCDAmAhgTA4xJAMakAGMygDE5wJgCYEwJMLoDjB4AoyfA6AUwegOMPgCjL8DoBzCmAhhTA4xpAMa0AGM6gDE9wJgBYMwIMGYCGDMDjFkAxqwAYzaAMTvAmANgtACMGsDoDzBaAcYAgDEQYAwCGIMBRhvAGAIw5gQYcwGMuQHGPABjXoAxH8CYH2AsADAWBBgLAYyFAcYiAGNRgLEYwFgcYCwBMJYEGEsBjKUBxjIAY1mAsRzAWB5grAAwVgQYKwGMlQHGKgBjVYCxGsBYHWCsATDWBBhrAYy1AcY6AGNdgLEewFgfYAwFGMMAxgYAY0OAMRxgjAAYGwGMjQHGJgBjU4CxGcDYHGBsATC2BBhbAYytAcY2AGNbgLEdwNgeYOwAMHYEGDsBjJ0Bxi4AY1eAsRvA2B1g7AEw9gQYewGMvQHGPgBjX4CxH8DYH2AcADAOBBgHAYyDAcYhAONQgHEYwDgcYBwBMI4EGEcBjKMBxjEA41iAcRzAOB5gnAAwTgQYJwGMkwHGKQDjVIBxGsA4HWCcATDOBBhnAYyzAcY5AONcgHEewDgfYFwAMC4EGBcBjIsBxiUA41KAcRnAuBxgXAEwrgQYVwGMqwHGNQDjWoBxHcC4HmDcADBuBBg3AYybAcYtAONWgHEbwLgdYNwBMO4EGHcBjLsBxj0A416AcR/AuB9gPAAwHgQYDwGMhwHGIwDjUYDxGMB4HGA8ATCeBBhPAYynAcYzAONZgPEcwHgeYLwAMF4EGC8BjJcBxisA41WA8RrAeB1gvAEw3gQYbwGMtwHGOwDjXYDxHsB4H2B8ADA+BBgfCRglnIU91DmjRTL62X9fUn9+KX1K61NGn7L6lNOnvD4V9KmoTyV9KutTRZ+q+lTTp7o+NfSpqU8tfWrrU0efuvrU06e+PqH6hOnTQJ+G+oTrE6FPI30a69PE48++lC8uzF3t4lzsRmNhMe2//31WyuSstMlZGZOzsiZn5UzOypucVTA5q2hyVsnkrLLJWRWTs6omZ9VMzqqbnNUwOatpclbL5Ky2yVkdk7O6Jmf1TM7qm5yFmpyFmZw1MDlraHIWbnIWYXLWyOSssclZE/uZk5P6fHxKob+rnhFnxc+NnDurJSggIDzYP1yzaqEW/5AwW6AlIDAsyKbZtEBbYEN/m9UabguwBYeEhQRbQrQAa7gWERhijbA/rKmHTIaN5/r9D3v9W/PvvboIfF+qnhV5r3/7vs2EvqNm/+E7svzd57/uaEkP9d99c6FdNP8PPfC35l8pZXrAeK4qYwuhvbaItNffH9W5VXgntBYKc9tSaKctBf/MMu5pKYHcthLaRSvB3Dq7y+TWWeGf362F9to6CnKr8E5orRXmto3QTtsI57a0QG7bCu2irWBu3YRy66Ywt+2E9touCnKr8E5o7RTmtr3QTtsL57aMQG47CO2ig2BuYwrlNqbC3HYU2mvHKMitwjuhdVSY205CO+0knNuyArntLLSLzoK5jSOU2zgKc9tFaK9doiC3Cu+E1kVhbrsK7bSrcG7LCeS2m9AuugnmNr5QbuMrzG13ob12j4LcKrwTWneFue0htNMewrktL5DbnkK76CmY20RCuU2kMLe9hPbaKwpyq/BOaL0U5ra30E57C+e2gkBu+wjtoo9gbpMK5Tapwtz2Fdpr3yjIrcI7ofVVmNt+QjvtJ5zbigK57S+0i/6CuU0hlNsUCnM7QGivA6IgtwrvhDZAYW4HCu10oHBuKwnkdpDQLgYJ5tZDKLceCnM7WGivg6MgtwrvhDZYYW6HCO10iHBuKwvkdqjQLoYK5tZbKLfeCnM7TGivw6IgtwrvhDZMYW6HC+10uHBuqwjkdoTQLkYI5tZPKLd+CnM7UmivI6MgtwrvhDZSYW5HCe10lHBuqwrkdrTQLkYL5jaNUG7TKMztGKG9jomC3Cq8E9oYhbkdK7TTscK5rSaQ23FCuxgnmNv0QrlNrzC344X2Oj4KcqvwTmjjFeZ2gtBOJwjntrpAbicK7WKiYG4zCeU2k8LcThLa66QoyK3CO6FNUpjbyUI7nSyc2xoCuZ0itIspgrnNKpTbrApzO1Vor1OjILcK74Q2VWFupwntdJpwbmsK5Ha60C6mC+Y2h1BucyjM7Qyhvc6IgtwqvBPaDIW5nSm005nCua0lkNtZQruYJZhbf6Hc+ivM7Wyhvc6OgtwqvBPabIW5nSO00znCua0tkNu5QruYK5jbQKHcBirM7Tyhvc6LgtwqvBPaPIW5nS+00/nCua0jkNsFQrtYIJhbm1BubQpzu1BorwujILcK74S2UGFuFwntdJFwbusK5Hax0C4WC+Y2l1BucynM7RKhvS6JgtwqvBPaEoW5XSq006XCua0nkNtlQrtYJpjbvEK5zaswt8uF9ro8CnKr8E5oyxXmdoXQTlcI57a+QG5XCu1ipWBuCwjltoDC3K4S2uuqKMitwjuhrVKY29VCO10tnNtQgdyuEdrFGsHcFhbKbWGFuV0rtNe1UZBbhXdCW6swt+uEdrpOOLdhArldL7SL9YK5LSaU22IKc7tBaK8boiC3Cu+EtkFhbjcK7XSjcG4bCOR2k9AuNgnmtqRQbksqzO1mob1ujoLcKrwT2maFud0itNMtwrltKJDbrUK72CqY2zJCuS2jMLfbhPa6LQpyq/BOaNsU5na70E63C+c2XCC3O4R2sUMwt+WFclteYW53Cu11ZxTkVuGd0HYqzO0uoZ3uEs5thEBudwvtYrdgbisJ5baSwtzuEdrrnijIrcI7oe1RmNu9QjvdK5zbRgK53Se0i32Cua0qlNuqCnO7X2iv+6MgtwrvhLZfYW4PCO30gHBuGwvk9qDQLg4K5raGUG5rKMztIaG9HoqC3Cq8E9ohhbk9LLTTw8K5bSKQ2yNCuzgimNvaQrmtrTC3R4X2ejQKcqvwTmhHFeb2mNBOj9l36qZPPKc/9yryR/UdfvP3/xvDmv1XfxOuqmdbIu/iuMe/fj3hYV/I7wUetxdT5DPjX+T3bygXwSX+L5/lb3+WdlzhRT3hoe7LdXP6s9vfFzGp83++nJa/+2iPXdUFTcr4BGB8CjA+AxifA4wvAMaXAOMrgPE1wPgGYHwLML4DGN8DjB8Axo8A4yeA8TPA+AVg/AowfgMYvwOMPwDGnwDjL4DR+E+aHN0YDWB0BhhdAEZXgNENYIwOMMYAGGMCjLEAxtgAYxyAMS7AGA9gjA8wJgAYEwKMiQDGxABjEoAxKcCYDGBMDjCmABhTAozuAKMHwOgJMHoBjN4Aow/A6Asw+gGMqQDG1ABjGoAxLcCYDmBMDzBmABgzAoyZAMbMAGMWgDErwJgNYMwOMOYAGC0AowYw+gOMVoAxAGAMBBiDAMZggNEGMIYAjDkBxlwAY26AMQ/AmBdgzAcw5gcYCwCMBQHGQgBjYYCxCMBYFGAsBjAWBxhLAIwlAcZSAGNpgLEMwFgWYCwHMJYHGCsAjBUBxkoAY2WAsQrAWBVgrAYwVgcYawCMNQHGWgBjbYCxDsBYF2CsBzDWBxhDAcYwgLEBwNgQYAwHGCMAxkYAY2OAsQnA2BRgbAYwNgcYWwCMLQHGVgBja4CxDcDYFmBsBzC2Bxg7AIwdAcZOAGNngLELwNgVYOwGMHYHGHsAjD0Bxl4AY2+AsQ/A2Bdg7Acw9gcYBwCMAwHGQQDjYIBxCMA4FGAcBjAOBxhHAIwjAcZRAONogHEMwDgWYBwHMI4HGCcAjBMBxkkA42SAcQrAOBVgnAYwTgcYZwCMMwHGWQDjbIBxDsA4F2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwCjU3THN0YDGJ0BRheA0RVgdAMYowOMMQDGmABjLIAxNsAYB2CMCzDGAxjjA4wJAMaEAGMigDExwJgEYEwKMCYDGJMDjCkAxpQAozvA6AEwegKMXgCjN8DoAzD6Aox+AGMqgDE1wJgGYEwLMKYDGNMDjBkAxowAYyaAMTPAmAVgzAowZgMYswOMOQBGC8CoAYz+AKMVYAwAGAMBxiCAMRhgtAGMIQBjToAxF8CYG2DMAzDmBRjzAYz5AcYCAGNBgLEQwFgYYCwCMBYFGIsBjMUBxhIAY0mAsRTAWBpgLAMwlgUYywGM5QHGCgBjRYCxEsBYGWCsAjBWBRirAYzVAcYaAGNNgLEWwFgbYKwDMNYFGOsBjPUBxlCAMQxgbAAwNgQYwwHGCICxEcDYGGBsAjA2BRibAYzNAcYWAGNLgLEVwNgaYGwDMLYFGNsBjO0Bxg4AY0eAsRPA2Blg7AIwdgUYuwGM3QHGHgBjT4CxF8DYG2DsAzD2BRj7AYz9AcYBAONAgHEQwDgYYBwCMA4FGIcBjMMBxhEA40iAcRTAOBpgHAMwjgUYxwGM4wHGCQDjRIBxEsA4GWCcAjBOBRinAYzTAcYZAONMgHEWwDgbYJwDMM4FGOcBjPMBxgUA40KAcRHAuBhgXAIwLgUYlwGMywHGFQDjSoBxFcC4GmBcAzCuBRjXAYzrAcYNAONGgHETwLgZYNwCMG4FGLcBjNsBxh0A406AcRfAuBtg3AMw7gUY9wGM+wHGAwDjQYDxEMB4GGA8AjAeBRiPAYzHAcYTAONJgPEUwHgaYDwDMJ4FGM8BjOcBxgsA40WA8RLAeBlgvAIwXgUYrwGM1wHGGwDjTYDxFsB4G2C8AzDeBRjvAYz3AcYHAONDgPERwPgYYHwCMD4FGJ8BjM8BxhcA40uA8RXA+BpgfAMwvgUY3wGM7wHGDwDjR4DxE8D4GWD8AjB+BRi/KTS6OP35nPT416+n7L+e9vhj/8dLWC1BAQHhwf7hmlULtfiHhNkCLQGBYUE2zaYF2gIb+tus1nBbgC04JCwk2BKiBVjDtYjAEGuE/d/4uIe6hRg2F7vReAk/++9/n50yOTttP5N6N+P5zoq/+NMe6oxnPNRfdOPjLHhP/vZZZxXeObN7Y/m7j2Z8J2c91N/Hcwq/68gZOhcpQ//T92/5u492xjG/f4ub/V1dnf75Uf5fYhHKqvL/IgvEeVpxHpI6O4l+/49dAf/hIMD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwCjk5vjG6MBjM4AowvA6AowugGM0QHGGABjTIAxFsAYG2CMAzDGBRjjAYzxAcYEAGNCgDERwJgYYEwCMCYFGJMBjMkBxhQAY0qA0R1g9AAYPQFGL4DRG2D0ARh9AUY/gDEVwJgaYEwDMKYFGNMBjOkBxgwAY0aAMRPAmBlgzAIwZgUYswGM2QHGHACjBWDUAEZ/gNEKMAYAjIEAYxDAGAww2gDGEIAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYyjAGAYwNgAYGwKM4QBjBMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPgIYHwMMD4BGJ8CjM8AxucA4wuA8SXA+ApgfA0wvgEY3wKM7wDG9wDjB4DxI8D4CWD8DDB+ARi/AozfAMbvAOMPgPEnwPgLYHSK7vjGaACjM8DoAjC6AoxuAGN0gDEGwBgTYIwFMMYGGOMAjHEBxngAY3yAMQHAmBBgTAQwJgYYkwCMSQHGZABjcoAxBcCYEmB0Bxg9AEZPgNELYPQGGH0ARl+A0Q9gTAUwpgYY0wCMaQHGdABjeoAxA8CYEWDMBDBmBhizAIxZAcZsAGN2gDEHwGgBGDWA0R9gtAKMAQBjIMAYBDAGA4w2gDEEYMwJMOYCGHMDjHkAxrwAYz6AMT/AWABgLAgwFgIYCwOMRQDGogBjMYCxOMBYAmAsCTCWAhhLA4xlAMayAGM5gLE8wFgBYKwIMFYCGCsDjFUAxqoAYzWAsTrAWANgrAkw1gIYawOMdQDGugBjPYCxPsAYCjCGAYwNAMaGAGM4wBgBMDYCGBsDjE0AxqYAYzOAsTnA2AJgbAkwtgIYWwOMbQDGtgBjO4CxPcDYAWDsCDB2Ahg7A4xdAMauAGM3gLE7wNgDYOwJMPYCGHsDjH0Axr4AYz+AsT/AOABgHAgwDgIYBwOMQwDGoQDjMIBxOMA4AmAcCTCOAhhHA4xjAMaxAOM4gHE8wDgBYJwIME4CGCcDjFMAxqkA4zSAcTrAOANgnAkwzgIYZwOMcwDGuQDjPIBxPsC4AGBcCDAuAhgXA4xLAMalAOMygHE5wLgCYFwJMK4CGFcDjGsAxrUA4zqAcT3AuAFg3AgwbgIYNwOMWwDGrQDjNoBxO8C4A2DcCTDuAhh3A4x7AMa9AOM+gHE/wHgAYDwIMB4CGA8DjEcAxqMA4zGA8TjAeAJgPAkwngIYTwOMZwDGswDjOYDxPMB4AWC8CDBeAhgvA4xXAMarAOM1gPE6wHgDYLwJMN4CGG8DjHcAxrsA4z2A8T7A+ABgfAgwPgIYHwOMTwDGpwDjM4DxOcD4AmB8CTC+AhhfA4xvAMa3AOM7gPE9wPgBYPwIMH4CGD8DjF8Axq8A4zeFxmiRjH7235/3cHK6oM9FfS7pc1mfK/pc1eeaPtf1uaHPTX1u6XNbnzv63NXnnj739Xmgz0N9HunzWJ8n+jzV55k+z/V5oc9LfV7p81qfN/q81eedx599qf8HhB5qF+diNxoLi2n//e+zCyZnF03OLpmcXTY5u2JydtXk7JrJ2XWTsxsmZzdNzm6ZnN02ObtjcnbX5Oyeydl9k7MHJmcPTc4emZw9Njl7YnL21OTsmcnZc5OzFyZnL03OXpmcvTY5e2Ny9tbk7J39LPLHxf5rfvuvlr/7aC0j5cRqCQoICA/2D9esWqjFPyTMFmgJCAwLsmk2LdAW2NDfZrWG2wJswSFhIcGWEC3AGq5FBIZYI+wPO6/wWe8V5tdNf0Zcp0hlE+mj/IdFD/WFbXw+eAiCP3gI/LSn8DJIvfdHjz8LVvRci1Okj+qwtlG40wsKn/UJGtZPQmH97CEI/iwQ1i8OHlbjvb/Awtpe4U4vKnzWV2hYvwqF9ZuHIPibQFi/O3hYjff+LhRWiZ9Svph8R3+71x8ejJLqpPAuXVL4rJ/QkvopVFK/PATBvwRKysnTsUvKeG/D6KT2uSJWo0x/CJRUNE9GSXVVWCyXFT7L2ZNZUirdkb0unoJg4+Gqn+vq4CVlvLcrpKSMMo3mqb6k3CAl1UNhsVxR+Kzo0JKKLlRSMTwFwTEESiqmg5eU8d4xISVllKmbQEnFgpRUb4XFclXhs2JDSyq2UEnF8RQExxEoqbgOXlLGe8eFlJRRprEESioepKT6KSyWawqfFR9aUvGFSiqBpyA4gUBJJXTwkjLeOyGkpIwyjSdQUokgJTVQYbFcV/isxNCSSixUUkk8BcFJBEoqqYOXlPHeSSElZZRpIoGSSgYpqSEKi+WGwmclh5ZUcqGSSuEpCE4hUFIpHbykjPdOCSkpo0yTCZSUO6SkhisslpsKn+UBLSkPoZLy9BQEewqUlJeDl5Tx3l6QkjLK1F2gpLwhJTVKYbHcUvgsH2hJ+QiVlK+nINhXoKT8HLykjPf2g5SUUabeAiWVClJSYxUWy22Fz0oNLanUQiWVxlMQnEagpNI6eEkZ750WUlJGmaYSKKl0kJKaoLBY7ih8VnpoSaUXKqkMnoLgDAIlldHBS8p474yQkjLKNJ1ASWWClNRkhcVyV+GzMkNLKrNQSWXxFARnESiprA5eUsZ7Z4WUlFGmmQRKKhukpKYpLJZ7Cp+VHVpS2YVKKoenIDiHQElZHLykjPe2QErKKNNsAiWlQUpqpsJiua/wWf7QkvIXKimrpyDYKlBSAQ5eUsZ7B0BKyihTTaCkAiElNUdhsTxQ+KwgaEkFCZVUsKcgOFigpGwOXlLGe9sgJWWUaaBASYVASmq+wmJ5qPBZOaEllVOopHJ5CoJzCZRUbgcvKeO9c0NKyijTEIGSygMpqUUKi+WRwmflhZZUXqGSyucpCM4nUFL5Hbyk/uuLgpSUUaZ5BEqqAKSklioslscKn1UQWlIFhUqqkKcguJBASRV28JIy3rswpKSMMi0gUFJFICW1QmGxPFH4rKLQkioqVFLFPAXBxQRKqriDl5Tx3sUhJWWUaRGBkioBKanVCovlqcJnlYSWVEmhkirlKQguJVBSpR28pIz3Lg0pKaNMSwiUVBlISa1TWCzPFD6rLLSkygqVVDlPQXA5gZIq7+AlZbx3eUhJGWVaRqCkKkBKaqPCYnmu8FkVoSVVUaikKnkKgisJlFRlBy8p470rQ0rKKNMKAiVVBVJSWxQWywuFz6oKLamqQiVVzVMQXE2gpKo7eEkZ710dUlJGmVYRKKkakJLarrBYXip8Vk1oSdUUKqlanoLgWgIlVdvBS8p479qQkjLKtIZASdWBlNQuhcXySuGz6kJLqq5QSdXzFATXEyip+g5eUsZ714eUlFGmdQRKKhRSUnsVFstrhc8Kg5ZUmFBJNfAUBDcQKKmGDl5Sxns3hJSUUaahAiUVDimpAwqL5Y3CZ0VASypCqKQaeQqCGwmUVGMHLynjvRtDSsoo03CBkmoCKanDCovlrcJnNYWWVFOhkmrmKQhuJlBSzR28pIz3bg4pKaNMmwiUVAtISR1TWCzvFD6rJbSkWgqVVCtPQXArgZJq7eAlZbx3a0hJGWXaQqCk2ng69nsb308bgfdu6+DvfUYv0rYC733GQ22pGn8YuTr986N6Hyc9ZP4wVe08BXGe9lD7h1RSZyfR7/+xq/q9qjY+ARifAozPAMbnAOMLgPElwPgKYHwNML4BGN8CjO8AxvcA4weA8SPA+Alg/AwwfgEYvwKM3wDG7wDjD4DxJ8D4C2B0cnN8YzSA0RlgdAEYXQFGN4AxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwugOMHgCjJ8DoBTB6A4w+AKMvwOgHMKYCGFMDjGkAxrQAYzqAMT3AmAFgzAgwZgIYMwOMWQDGrABjNoAxO8CYA2C0AIwawOgPMFoBxgCAMRBgDAIYgwFGG8AYAjDmBBhzAYy5AcY8AGNegDEfwJgfYCwAMBYEGAsBjIUBxiIAY1GAsRjAWBxgLAEwlgQYSwGMpQHGMgBjWYCxHMBYHmCsADBWBBgrAYyVAcYqAGNVgLEawFgdYKwBMNYEGGsBjLUBxjoAY12AsR7AWB9gDAUYwwDGBgBjQ4AxHGCMABgbAYyNAcYmAGNTgLEZwNgcYGwBMLYEGFsBjK0BxjYAY1uAsR3A2B5g7AAwdgQYOwGMnQHGLgBjV4CxG8DYHWDsATD2BBh7AYy9AcY+AGNfgLEfwNgfYBwAMA4EGAcBjIMBxiEA41CAcRjAOBxgHAEwjgQYRwGMowHGMQDjWIBxHMA4HmCcADBOBBgnAYyTAcYpAONUgHEawDgdYJwBMM4EGGcBjLMBxjkA41yAcR7AOB9gXAAwLgQYFwGMiwHGJQDjUoBxGcC4HGBcATCuBBhXAYyrAcY1AONagHEdwLgeYNwAMG4EGDcBjJsBxi0A41aAcRvAuB1g3AEw7gQYdwGMuwHGPQDjXoBxH8C4H2A8ADAeBBgPAYyHAcYjAONRgPEYwHgcYDwBMJ4EGE8BjKcBxjMA41mA8RzAeB5gvAAwXgQYLwGMlwHGKwDjVYDxGsB4HWC8ATDeBBhvAYy3AcY7AONdgPEewHgfYHwAMD4EGB8BjI8BxicA41OA8RnA+BxgfAEwvgQYXwGMrwHGNwDjW4DxHcD4HmD8ADB+BBg/AYyfAcYvAONXgPEbwPgdYPwBMP4EGH8BjE7RHd8YDWB0BhhdAEZXgNENYIwOMMYAGGMCjLEAxtgAYxyAMS7AGA9gjA8wJgAYEwKMiQDGxABjEoAxKcCYDGBMDjCmABhTAozuAKMHwOgJMHoBjN4Aow/A6Asw+gGMqQDG1ABjGoAxLcCYDmBMDzBmABgzAoyZAMbMAGMWgDErwJgNYMwOMOYAGC0AowYw+gOMVoAxAGAMBBiDAMZggNEGMIYAjDkBxlwAY26AMQ/AmBdgzAcw5gcYCwCMBQHGQgBjYYCxCMBYFGAsBjAWBxhLAIwlAcZSAGNpgLEMwFgWYCwHMJYHGCsAjBUBxkoAY2WAsQrAWBVgrAYwVgcYawCMNQHGWgBjbYCxDsBYF2CsBzDWBxhDAcYwgLEBwNgQYAwHGCMAxkYAY2OAsQnA2BRgbAYwNgcYWwCMLQHGVgBja4CxDcDYFmBsBzC2Bxg7AIwdAcZOAGNngLELwNgVYOwGMHYHGHsAjD0Bxl4AY2+AsQ/A2Bdg7Acw9gcYBwCMAwHGQQDjYIBxCMA4FGAcBjAOBxhHAIwjAcZRAONogHEMwDgWYBwHMI4HGCcAjBMBxkkA42SAcQrAOBVgnAYwTgcYZwCMMwHGWQDjbIBxDsA4F2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/KbQ6BzJaLX/vp2nk1N7fTro01GfTvp01qeLPl316aZPd3166NNTn1769Nanjz599emnT399BugzUJ9B+gzWZ4g+Q/UZps9wfUboM1KfUfqM1meMPmP1GafPeH0m6DNRn0n6TNZnij5T9Zmmz3R9ZugzU59Z+szWZ44+c/WZp898fRZ4/ut9Fnr++Q7U/0NHD3VfhmFzsRuNL8HP/vvfZ+1NzjqYnHU0OetkctbZ5KyLyVlXk7NuJmfdTc56mJz1NDnrZXLW2+Ssj8lZX5OzfiZn/U3OBpicDTQ5G2RyNtjkbIjJ2VCTs2EmZ8NNzkaYnI00ORtlcjba5GyMydlYk7NxJmfjTc4mmJxNNDmbZHI22eRsisnZVJOzaSZn003OZpiczTQ5m2VyNtvkbI7J2VyTs3kmZ/NNzhaYnC20n7nq4+30f28xR/78/oMov/1XqyUoICA82D9cs2qhFv+QMFugJSAwLMim2bRAW2BDf5vVGm4LsAWHhIUEW0K0AGu4FhEYYo2wd6mxQ1XPWuSpquM1zU1/RlynSH8gRfpE+7cdWP7uo6lz/+vPpt+fxZ6C4MWe6p+7ROFlkHrvJZFCoei5IlbjB54lJt/R3+51qadjv3cz/b2XCrz3MoXvbfwB4uH0z4/KvUrsdpmn4xuXqzaq/hPvdzBVvbBx2Y2Xdla8yMh/Y/rbd17h4KVhvOsKgdJY6Snzt86V9p88jZ9S4kW6o5E/kj+pWf7uoym4D9rv35i8urJnR97rKvsf/Ks9nf77XwNW2S9O5LPV9i8o8scV8oX8L13+dpe2SuFPcasVXxTVATeKYxXjJ0KrVMmtESq5NZEyRNnFWsU/JXo7/fOj6vlOMrvV1no6vnGdaqPUBXXkn+rWCwV/fRQE35H3uuH/l4i2AVAiGx28RP7rUm4U+FNuE+Cvc5sE3nuzUOFtNvnbgqq/voVHGJ9wlf8AVFP5/Rt/hXWN9L7GPpI6//ddqL4fj10dv1yeAIxPAcZnAONzgPEFwPgSYHwFML4GGN8AjG8BxncA43uA8QPA+BFg/AQwfgYYvwCMXwHGbwDjd4DxB8D4E2D8BTAa/1za0Y3RAEZngNEFYHQFGN0AxugAYwyAMSbAGAtgjA0wxgEY4wKM8QDG+ABjAoAxIcCYCGBMDDAmARiTAozJAMbkAGMKgDElwOgOMHoAjJ4AoxfA6A0w+gCMvgCjH8CYCmBMDTCmARjTAozpAMb0AGMGgDEjwJgJYMwMMGYBGLMCjNkAxuwAYw6A0QIwagCjP8BoBRgDAMZAgDEIYAwGGG0AYwjAmBNgzAUw5gYY8wCMeQHGfABjfoCxAMBYEGAsBDAWBhiLAIxFAcZiAGNxgLEEwFgSYCwFMJYGGMsAjGUBxnIAY3mAsQLAWBFgrAQwVgYYqwCMVQHGagBjdYCxBsBYE2CsBTDWBhjrAIx1AcZ6AGN9gDEUYAwDGBsAjA0BxnCAMQJgbAQwNgYYmwCMTQHGZgBjc4CxBcDYEmBsBTC2BhjbAIxtAcZ2AGN7gLEDwNgRYOwEMHYGGLsAjF0Bxm4AY3eAsQfA2BNg7AUw9gYY+wCMfQHGfgBjf4BxAMA4EGAcBDAOBhiHAIxDAcZhAONwgHEEwDgSYBwFMI4GGMcAjGMBxnEA43iAcQLAOBFgnAQwTgYYpwCMUwHGaQDjdIBxBsA4E2CcBTDOBhjnAIxzAcZ5AON8gHEBwLgQYFwEMC4GGJcAjEsBxmUA43KAcQXAuBJgXAUwrgYY1wCMawHGdQDjeoBxA8C4EWDcBDBuBhi3AIxbAcZtAON2gHEHwLgTYNwFMO4GGPcAjHsBxn0A436A8QDAeBBgPAQwHgYYjwCMRwHGYwDjcYDxBMB4EmA8BTCeBhjPAIxnAcZzAON5gPECwHgRYLwEMF4GGK8AjFcBxmsA43WA8QbAeBNgvAUw3gYY7wCMdwHGewDjfYDxAcD4EGB8BDA+BhifAIxPAcZnAONzgPEFwPgSYHwFML4GGN8AjG8BxncA43uA8QPA+BFg/AQwfgYYvwCMXwHGbwDjd4DxB8D4E2D8BTA6RXd8YzSA0RlgdAEYXQFGN4AxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwugOMHgCjJ8DoBTB6A4w+AKMvwOgHMKYCGFMDjGkAxrQAYzqAMT3AmAFgzAgwZgIYMwOMWQDGrABjNoAxO8CYA2C0AIwawOgPMFoBxgCAMRBgDAIYgwFGG8AYAjDmBBhzAYy5AcY8AGNegDEfwJgfYCwAMBYEGAsBjIUBxiIAY1GAsRjAWBxgLAEwlgQYSwGMpQHGMgBjWYCxHMBYHmCsADBWBBgrAYyVAcYqAGNVgLEawFgdYKwBMNYEGGsBjLUBxjoAY12AsR7AWB9gDAUYwwDGBgBjQ4AxHGCMABgbAYyNAcYmAGNTgLEZwNgcYGwBMLYEGFsBjK0BxjYAY1uAsR3A2B5g7AAwdgQYOwGMnQHGLgBjV4CxG8DYHWDsATD2BBh7AYy9AcY+AGNfgLEfwNgfYBwAMA4EGAcBjIMBxiEA41CAcRjAOBxgHAEwjgQYRwGMowHGMQDjWIBxHMA4HmCcADBOBBgnAYyTAcYpAONUgHEawDgdYJwBMM4EGGcBjLMBxjkA41yAcR7AOB9gXAAwLgQYFwGMiwHGJQDjUoBxGcC4HGBcATCuBBhXAYyrAcY1AONagHEdwLgeYNwAMG4EGDcBjJsBxi0A41aAcRvAuB1g3AEw7gQYdwGMuwHGPQDjXoBxH8C4H2A8ADAeBBgPAYyHAcYjAONRgPEYwHgcYDwBMJ4EGE8BjKcBxjMA41mA8RzAeB5gvAAwXgQYLwGMlwHGKwDjVYDxGsB4HWC8ATDeBBhvAYy3AcY7AONdgPEewHgfYHwAMD4EGB8BjI8BxicA41OA8RnA+BxgfAEwvgQYXwGMrwHGNwDjW4DxHcD4HmD8ADB+BBg/AYyfAcYvAONXgPGbgFHCuc5TnTNaJKOf/fdb9Odv1WebPtv12aHPTn126bNbnz367NVnnz779Tmgz0F9DulzWJ8j+hzV55g+x/U5oc9JfU7pc1qfM/qc1eecPuf1uaDPRX0u6XPZ88++1P+DTA+1i3OxG42FxbT//vfZVpOzbSZn203Odpic7TQ522VyttvkbI/J2V6Ts30mZ/tNzg6YnB00OTtkcnbY5OyIydlRk7NjJmfHTc5OmJydNDk7ZXJ22uTsjMnZWZOzcyZn503OLpicXTQ5u2Rydtl+5uSkPh/N9HwYGXFW/NzIubNaggICwoP9wzWrFmrxDwmzBVoCAsOCbJpNC7QFNvS3Wa3htgBbcEhYSLAlRAuwhmsRgSHWCPvDrnjKZNh4rt//w3u9KrTXq/9hr39rltprM4V7vSa012uR9vr746J4DwrvhBZ5D3+70+tCO70u2AHGPd3iqT4DN4R2ceM//Dnzt+aWQrltqTC3N4X2ejPSXqVyq/BOaDcV5vaW0E5vCf5MZNzTrQK5vS20i9uCuW0jlNs2CnN7R2ivd6IgtwrvhHZHYW7vCu30rnButwnk9p7QLu4J5ra9UG7bK8ztfaG93o+C3Cq8E9p9hbl9ILTTB8K53S6Q24dCu3gomNtOQrntpDC3j4T2+igKcqvwTmiPFOb2sdBOHwvndodAbp8I7eKJYG67CuW2q8LcPhXa69MoyK3CO6E9VZjbZ0I7fSac250CuX0utIvngrntIZTbHgpz+0Jory+iILcK74T2QmFuXwrt9KVwbncJ5PaV0C5eCea2t1BueyvM7Wuhvb6OgtwqvBPaa4W5fSO00zfCud0tkNu3Qrt4K5jbfkK57acwt++E9vouCnKr8E5o7xTm9r3QTt8L53aPQG4/CO3ig2BuBwrldqDC3H4U2uvHKMitwjuhfVSY209CO/0knNu9Arn9LLSLz4K5HSKU2yEKc/tFaK9foiC3Cu+E9kVhbr8K7fSrcG73CeT2m9AuvgnmdrhQbocrzO13ob1+j4LcKrwT2neFuf0htNMfwrndL5Dbn0K7+CmY21FCuR2lMLe/hPb6Kwpyq/BOaL8U5tbJS2anxnMlc3tAILfRhHYRzUsut2OFcjtWYW6dhfbq7CWfW4V3Qou8h7/dqYvQTl2Ec3tQILeuQrtwFcztBKHcTlCYWzehvbpFQW4V3gnNTWFuowvtNLpwbg8J5DaG0C5iCOZ2slBuJyvMbUyhvcaMgtwqvBNaTIW5jSW001jCuT0skNvYQruILZjbaUK5naYwt3GE9honCnKr8E5ocRTmNq7QTuMK5/aIQG7jCe0inmBuZwrldqbC3MYX2mv8KMitwjuhxVeY2wRCO00gnNujArlNKLSLhIK5nSOU2zkKc5tIaK+JoiC3Cu+ElkhhbhML7TSxcG6PCeQ2idAukgjmdr5QbucrzG1Sob0mjYLcKrwTWlKFuU0mtNNkwrk9LpDb5EK7SC6Y20VCuV2kMLcphPaaIgpyq/BOaCkU5jal0E5TCuf2hEBu3YV24S6Y26VCuV2qMLceQnv1iILcKrwTmofC3HoK7dRTOLcnBXLrJbQLL8HcrhDK7QqFufUW2qt3FORW4Z3QvBXm1kdopz7CuT0lkFtfoV34CuZ2tVBuVyvMrZ/QXv2iILcK74TmpzC3qYR2mko4t6cFcptaaBepBXO7Tii36xTmNo3QXtNEQW4V3gktjcLcphXaaVrh3J4RyG06oV2kE8ztRqHcblSY2/RCe00fBblVeCe09Apzm0FopxmEc3tWILcZhXaRUTC3W4Ryu0VhbjMJ7TVTFORW4Z3QMinMbWahnWYWzu05gdxmEdpFFsHcbhfK7XaFuc0qtNesUZBbhXdCy6owt9mEdppNOLfnBXKbXWgX2QVzu0sot7sU5jaH0F5zREFuFd4JLYfC3FqEdmoRzu0FgdxqQrvQBHO7Vyi3exXm1l9or/5RkFuFd0LzV5hbq9BOrcK5vSiQ2wChXQQI5vaAUG4PKMxtoNBeA6MgtwrvhBaoMLdBQjsNEs7tJYHcBgvtIlgwt4eFcntYYW5tQnu1RUFuFd4JzaYwtyFCOw0Rzu1lgdzmFNpFTsHcHhPK7TGFuc0ltNdcUZBbhXdCy6Uwt7mFdprbvlM3feI5/blXkT+q7/CbFH/9Lpr9V6sJV9WzLZF3kcfrX7/m9bIv5PcCjf9DtH87M/5Ffv+GchFc4v/yWf72Z2l5FF7UvF7qvlw3pz+7/X0Rkzr/58tp+buP9j26uqBJGX8AjD8Bxl8Ao1MMxzdGAxidAUYXgNEVYHQDGKMDjDEAxpgAYyyAMTbAGAdgjAswxgMY4wOMCQDGhABjIoAxMcCYBGBMCjAmAxiTA4wpAMaUAKM7wOgBMHoCjF4AozfA6AMw+gKMfgBjKoAxNcCYBmBMCzCmAxjTA4wZAMaMAGMmgDEzwJgFYMwKMGYDGLMDjDkARgvAqAGM/gCjFWAMABgDAcYggDEYYLQBjCEAY06AMRfAmBtgzAMw5gUY8wGM+QHGAgBjQYCxEMBYGGAsAjAWBRiLAYzFAcYSAGNJgLEUwFgaYCwDMJYFGMsBjOUBxgoAY0WAsRLAWBlgrAIwVgUYqwGM1QHGGgBjTYCxFsBYG2CsAzDWBRjrAYz1AcZQgDEMYGwAMDYEGMMBxgiAsRHA2BhgbAIwNgUYmwGMzQHGFgBjS4CxFcDYGmBsAzC2BRjbAYztAcYOAGNHgLETwNgZYOwCMHYFGLsBjN0Bxh4AY0+AsRfA2Btg7AMw9gUY+wGM/QHGAQDjQIBxEMA4GGAcAjAOBRiHAYzDAcYRAONIgHEUwDgaYBwDMI4FGMcBjOMBxgkA40SAcRLAOBlgnAIwTgUYpwGM0wHGGQDjTIBxFsA4G2CcAzDOBRjnAYzzAcYFAONCgHERwLgYYFwCMC4FGJcBjMsBxhUA40qAcRXAuBpgXAMwrgUY1wGM6wHGDQDjRoBxE8C4GWDcAjBuBRi3AYzbAcYdAONOgHEXwLgbYNwDMO4FGPcBjPsBxgMA40GA8RDAeBhgPAIwHgUYjwGMxwHGEwDjSYDxFMB4GmA8AzCeBRjPAYznAcYLAONFgPESwHgZYLwCMF4FGK8BjNcBxhsA402A8RbAeBtgvAMw3gUY7wGM9wHGBwDjQ4DxEcD4GGB8AjA+BRifAYzPAcYXAONLgPEVwPgaYHwDML4FGN8BjO8Bxg8A40eA8RPA+Blg/AIwfgUYvwGM3wHGHwDjT4DxF8DoFNPxjdEARmeA0QVgdAUY3QDG6ABjDIAxJsAYC2CMDTDGARjjAozxAMb4AGMCgDEhwJgIYEwMMCYBGJMCjMkAxuQAYwqAMSXA6A4wegCMngCjF8DoDTD6AIy+AKMfwJgKYEwNMKYBGNMCjOkAxvQAYwaAMSPAmAlgzAwwZgEYswKM2QDG7ABjDoDRAjBqAKM/wGgFGAMAxkCAMQhgDAYYbQBjCMCYE2DMBTDmBhjzAIx5AcZ8AGN+gLEAwFgQYCwEMBYGGIsAjEUBxmIAY3GAsQTAWBJgLAUwlgYYywCMZQHGcgBjeYCxAsBYEWCsBDBWBhirAIxVAcZqAGN1gLEGwFgTYKwFMNYGGOsAjHUBxnoAY32AMRRgDAMYGwCMDQHGcIAxAmBsBDA2BhibAIxNAcZmAGNzgLEFwNgSYGwFMLYGGNsAjG0BxnYAY3uAsQPA2BFg7AQwdgYYuwCMXQHGbgBjd4CxB8DYE2DsBTD2Bhj7AIx9AcZ+AGN/gHEAwDgQYBwEMA4GGIcAjEMBxmEA43CAcQTAOBJgHAUwjgYYxwCMYwHGcQDjeIBxAsA4EWCcBDBOBhinAIxTAcZpAON0gHEGwDgTYJwFMM4GGOcAjHMBxnkA43yAcQHAuBBgXAQwLgYYlwCMSwHGZQDjcoBxBcC4EmBcBTCuBhjXAIxrAcZ1AON6gHEDwLgRYNwEMG4GGLcAjFsBxm0A43aAcQfAuBNg3AUw7gYY9wCMewHGfQDjfoDxAMB4EGA8BDAeBhiPAIxHAcZjAONxgPEEwHgSYDwFMJ4GGM8AjGcBxnMA43mA8QLAeBFgvAQwXgYYrwCMVwHGawDjdYDxBsB4E2C8BTDeBhjvAIx3AcZ7AON9gPEBwPgQYHwEMD4GGJ8AjE8BxmcA43OA8QXA+BJgfAUwvgYY3wCMbwHGdwDje4DxA8D4EWD8BDB+Bhi/AIxfAcZvAON3gPEHwPgTYPwFMDrFcnxjNIDRGWB0ARhdAUY3gDE6wBgDYIwJMMYCGGMDjHEAxrgAYzyAMT7AmECh0cXpzyefl91p/7WA1x/7P17CagkKCAgP9g/XrFqoxT8kzBZoCQgMC7JpNi3QFtjQ32a1htsCbMEhYSHBlhAtwBquRQSGWCPs/8Z5vBT+IKg/w8VuNF7Cz/7732f5Tc4K2M+k3s14vrPiL76AlzpjQS/1F934OAvek799ViGFd87s3lj+7qMZ30khL/X3sbDC7zpyhgpHytD/9P1b/u6jFXTM79/iZn9XV6d/flTfi3xCWVXtzA9xFlCch6TOTqLf//fogP9wEGD8CTD+AhidYgD+w0GA0RlgdAEYXQFGN4AxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwugOMHgCjJ8DoBTB6A4w+AKMvwOgHMKYCGFMDjGkAxrQAYzqAMT3AmAFgzAgwZgIYMwOMWQDGrABjNoAxO8CYA2C0AIwawOgPMFoBxgCAMRBgDAIYgwFGG8AYAjDmBBhzAYy5AcY8AGNegDEfwJgfYCwAMBYEGAsBjIUBxiIAY1GAsRjAWBxgLAEwlgQYSwGMpQHGMgBjWYCxHMBYHmCsADBWBBgrAYyVAcYqAGNVgLEawFgdYKwBMNYEGGsBjLUBxjoAY12AsR7AWB9gDAUYwwDGBgBjQ4AxHGCMABgbAYyNAcYmAGNTgLEZwNgcYGwBMLYEGFsBjK0BxjYAY1uAsR3A2B5g7AAwdgQYOwGMnQHGLgBjV4CxG8DYHWDsATD2BBh7AYy9AcY+AGNfgLEfwNgfYBwAMA4EGAcBjIMBxiEA41CAcRjAOBxgHAEwjgQYRwGMowHGMQDjWIBxHMA4HmCcADBOBBgnAYyTAcYpAONUgHEawDgdYJwBMM4EGGcBjLMBxjkA41yAcR7AOB9gXAAwLgQYFwGMiwHGJQDjUoBxGcC4HGBcATCuBBhXAYyrAcY1AONagHEdwLgeYNwAMG4EGDcBjJsBxi0A41aAcRvAuB1g3AEw7gQYdwGMuwHGPQDjXoBxH8C4H2A8ADAeBBgPAYyHAcYjAONRgPEYwHgcYDwBMJ4EGE8BjKcBxjMA41mA8RzAeB5gvAAwXgQYLwGMlwHGKwDjVYDxGsB4HWC8ATDeBBhvAYy3AcY7AONdgPEewHgfYHwAMD4EGB8BjI8BxicA41OA8RnA+BxgfAEwvgQYXwGMrwHGNwDjW4DxHcD4HmD8ADB+BBg/AYyfAcYvAONXgPEbwPgdYPwBMP4EGH8BjE4xHd8YDWB0BhhdAEZXgNENYIwOMMYAGGMCjLEAxtgAYxyAMS7AGA9gjA8wJgAYEwKMiQDGxABjEoAxKcCYDGBMDjCmABhTAozuAKMHwOgJMHoBjN4Aow/A6Asw+gGMqQDG1ABjGoAxLcCYDmBMDzBmABgzAoyZAMbMAGMWgDErwJgNYMwOMOYAGC0AowYw+gOMVoAxAGAMBBiDAMZggNEGMIYAjDkBxlwAY26AMQ/AmBdgzAcw5gcYCwCMBQHGQgBjYYCxCMBYFGAsBjAWBxhLAIwlAcZSAGNpgLEMwFgWYCwHMJYHGCsAjBUBxkoAY2WAsQrAWBVgrAYwVgcYawCMNQHGWgBjbYCxDsBYF2CsBzDWBxhDAcYwgLEBwNgQYAwHGCMAxkYAY2OAsQnA2BRgbAYwNgcYWwCMLQHGVgBja4CxDcDYFmBsBzC2Bxg7AIwdAcZOAGNngLELwNgVYOwGMHYHGHsAjD0Bxl4AY2+AsQ/A2Bdg7Acw9gcYBwCMAwHGQQDjYIBxCMA4FGAcBjAOBxhHAIwjAcZRAONogHEMwDgWYBwHMI4HGCcAjBMBxkkA42SAcQrAOBVgnAYwTgcYZwCMMwHGWQDjbIBxDsA4F2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwCjUyzHN0YDGJ0BRheA0RVgdAMYowOMMQDGmABjLIAxNsAYB2CMCzDGAxjjA4wJFBqjRTL62X9fxMvJqag+xfQprk8JfUrqU0qf0vqU0aesPuX0Ka9PBX0q6lNJn8r6VNGnqj7V9KmuTw19aupTS5/a+tTRp64+9fSpr0+oPmH6NNCnodeffSlfXEEvtYtzsRuNhcW0//73WVGTs2ImZ8VNzkqYnJU0OStlclba5KyMyVlZk7NyJmflTc4qmJxVNDmrZHJW2eSsislZVZOzaiZn1U3Oapic1TQ5q2VyVtvkrI7JWV2Ts3omZ/VNzkJNzsJMzhqYnDW0n0X+uNh/zW//1fJ3H+2W559nWS1BAQHhwf7hmlULtfiHhNkCLQGBYUE2zaYF2gIb+tus1nBbgC04JCwk2BKiBVjDtYjAEGuE/WFFvNQ9K1xhft30Z8R1ilQ2kT6qe0elO7I3wksQHOGl/rmNFF4Gqfdu5PVnwYqea3GK9FEd1rsKw1pU4ffTGBrWxkJhbeIlCG4iENamDh5W472bwsL6QGFYiyn8fppBw9pMKKzNvQTBzQXC2sLBw2q8dwuhsEr8lNLU5Dv627229GKU1GOFJVVc4b1sBS2pVkIl1dpLENxaoKTaOHhJGe/dBlJSRpm2FCiptpCSeqawpEoovJftoCXVTqik2nsJgtsLlFQHBy8p4707QErKKNO2AiXVEVJSLxWWVEmF97ITtKQ6CZVUZy9BcGeBkuri4CVlvHcXSEkZZdpRoKS6QkrqjcKSKqXwXnaDllQ3oZLq7iUI7i5QUj0cvKSM9+4BKSmjTLsKlFRPSEm9V1hSpRXey17QkuolVFK9vQTBvQVKqo+Dl5Tx3n0gJWWUaU+BkuoLKalPCkuqjMJ72Q9aUv2ESqq/lyC4v0BJDXDwkjLeewCkpIwy7StQUgMhJfVVYUmVVXgvB0FLapBQSQ32EgQPFiipIQ5eUsZ7D4GUlFGmAwVKaiikpH4oLKlyCu/lMGhJDRMqqeFeguDhAiU1wsFLynjvEZCSMsp0qEBJjYSUlJPCu1Re4bNGQUtqlFBJjfYSBI8WKKkxDl5SxnuPgZSUUaYjBUpqLKSkXBTepQoKnzUOWlLjhEpqvJcgeLxASU1w8JIy3nsCpKSMMh0rUFITISUVXeFdqqjwWZOgJTVJqKQmewmCJwuU1BQHLynjvadASsoo04kCJTUVUlKxFN6lSgqfNQ1aUtOESmq6lyB4ukBJzXDwkjLeewakpIwynSpQUjMhJRVX4V2qrPBZs6AlNUuopGZ7CYJnC5TUHAcvKeO950BKyijTmQIlNRdSUgkU3qUqCp81D1pS84RKar6XIHi+QEktcPCSMt57AaSkjDKdK1BSCyEllVjhXaqq8FmLoCW1SKikFnsJghcLlNQSBy8p472XQErKKNOFAiW1FFJSyRTepWoKn7UMWlLLhEpquZcgeLlASa1w8JIy3nsFpKSMMl0qUFIrISWVUuFdqq7wWaugJbVKqKRWewmCVwuU1BoHLynjvddASsoo05UCJbUWUlKeCu9SDYXPWgctqXVCJbXeSxC8XqCkNjh4SRnvvQFSUkaZrhUoqY2QkvJReJdqKnzWJmhJbRIqqc1eguDNAiW1xcFLynjvLZCSMsp0o0BJbYWUVCqFd6mWwmdtg5bUNqGS2u4lCN4uUFI7HLykjPfeASkpo0y3CpTUTkhJpVV4l2orfNYuaEntEiqp3V6C4N0CJbXHwUvKeO89kJIyynSnQEnthZRUBoV3qY7CZ+2DltQ+oZLa7yUI3i9QUgccvKSM9z4AKSmjTPcKlNRBSEllVniX6ip81iFoSR0SKqnDXoLgwwIldcTBS8p47yOQkjLK9KBASR2FlFQ2hXepnsJnHYOW1DGhkjruJQg+LlBSJxy8pIz3PgEpKaNMjwqU1ElISVkU3qX6Cp91ClpSp4RK6rSXIPi0QEmdcfCSMt77DKSkjDI9KVBSZyElZVV4l0IVPusctKTOCZXUeS9B8HmBkrrg4CVlvPcFSEkZZXpWoKQuQkoqSOFdClP4rEvQkrokVFKXvQTBlwVK6oqDl5Tx3lcgJWWU6UWBkroKKakQhXepgcJnXYOW1DWhkrruJQi+LlBSNxy8pIz3vgEpKaNMrwqU1E1ISeVWeJcaKnzWLWhJ3RIqqdteguDbAiV1x8FLynjvO5CSMsr0pkBJ3fVy7Pc2vp+7Au99z8Hfu6Duuyfw3gUVl6rxh5Gr0z8/qveRT+gPU9XO/BBnAcV/SCV1dhL9/r9HV79X1cYfAONPgPEXwOgUw/GN0QBGZ4DRBWB0BRjdAMboAGMMgDEmwBgLYIwNMMYBGOMCjPEAxvgAYwKAMSHAmAhgTAwwJgEYkwKMyQDG5ABjCoAxJcDoDjB6AIyeAKMXwOgNMPoAjL4Aox/AmApgTA0wpgEY0wKM6QDG9ABjBoAxI8CYCWDMDDBmARizAozZAMbsAGMOgNECMGoAoz/AaAUYAwDGQIAxCGAMBhhtAGMIwJgTYMwFMOYGGPMAjHkBxnwAY36AsQDAWBBgLAQwFgYYiwCMRQHGYgBjcYCxBMBYEmAsBTCWBhjLAIxlAcZyAGN5gLECwFgRYKwEMFYGGKsAjFUBxmoAY3WAsQbAWBNgrAUw1gYY6wCMdQHGegBjfYAxFGAMAxgbAIwNAcZwgDECYGwEMDYGGJsAjE0BxmYAY3OAsQXA2BJgbAUwtgYY2wCMbQHGdgBje4CxA8DYEWDsBDB2Bhi7AIxdAcZuAGN3gLEHwNgTYOwFMPYGGPsAjH0Bxn4AY3+AcQDAOBBgHAQwDgYYhwCMQwHGYQDjcIBxBMA4EmAcBTCOBhjHAIxjAcZxAON4gHECwDgRYJwEME4GGKcAjFMBxmkA43SAcQbAOBNgnAUwzgYY5wCMcwHGeQDjfIBxAcC4EGBcBDAuBhiXAIxLAcZlAONygHEFwLgSYFwFMK4GGNcAjGsBxnUA43qAcQPAuBFg3AQwbgYYtwCMWwHGbQDjdoBxB8C4E2DcBTDuBhj3AIx7AcZ9AON+gPEAwHgQYDwEMB4GGI8AjEcBxmMA43GA8QTAeBJgPAUwngYYzwCMZwHGcwDjeYDxAsB4EWC8BDBeBhivAIxXAcZrAON1gPEGwHgTYLwFMN4GGO8AjHcBxnsA432A8QHA+BBgfAQwPgYYnwCMTwHGZwDjc4DxBcD4EmB8BTC+BhjfAIxvAcZ3AON7gPEDwPgRYPwEMH4GGL8AjF8Bxm8A43eA8QfA+BNg/AUwOsV0fGM0gNEZYHQBGF0BRjeAMTrAGANgjAkwxgIYYwOMcQDGuABjPIAxPsCYAGBMCDAmAhgTA4xJAMakAGMygDE5wJgCYEwJMLoDjB4AoyfA6AUwegOMPgCjL8DoBzCmAhhTA4xpAMa0AGM6gDE9wJgBYMwIMGYCGDMDjFkAxqwAYzaAMTvAmANgtACMGsDoDzBaAcYAgDEQYAwCGIMBRhvAGAIw5gQYcwGMuQHGPABjXoAxH8CYH2AsADAWBBgLAYyFAcYiAGNRgLEYwFgcYCwBMJYEGEsBjKUBxjIAY1mAsRzAWB5grAAwVgQYKwGMlQHGKgBjVYCxGsBYHWCsATDWBBhrAYy1AcY6AGNdgLEewFgfYAwFGMMAxgYAY0OAMRxgjAAYGwGMjQHGJgBjU4CxGcDYHGBsATC2BBhbAYytAcY2AGNbgLEdwNgeYOwAMHYEGDsBjJ0Bxi4AY1eAsRvA2B1g7AEw9gQYewGMvQHGPgBjX4CxH8DYH2AcADAOBBgHAYyDAcYhAONQgHEYwDgcYBwBMI4EGEcBjKMBxjEA41iAcRzAOB5gnAAwTgQYJwGMkwHGKQDjVIBxGsA4HWCcATDOBBhnAYyzAcY5AONcgHEewDgfYFwAMC4EGBcBjIsBxiUA41KAcRnAuBxgXAEwrgQYVwGMqwHGNQDjWoBxHcC4HmDcADBuBBg3AYybAcYtAONWgHEbwLgdYNwBMO4EGHcBjLsBxj0A416AcR/AuB9gPAAwHgQYDwGMhwHGIwDjUYDxGMB4HGA8ATCeBBhPAYynAcYzAONZgPEcwHgeYLwAMF4EGC8BjJcBxisA41WA8RrAeB1gvAEw3gQYbwGMtwHGOwDjXYDxHsB4H2B8ADA+BBgfAYyPAcYnAONTgPEZwPgcYHwBML4EGF8BjK8BxjcA41uA8R3A+B5g/AAwfgQYPwGMnwHGLwDjV4DxG8D4HWD8ATD+BBh/AYxOsRzfGA1gdAYYXQBGV4DRDWCMDjDGABhjAoyxAMbYAGMcgDEuwBgPYIwPMCZQaHSOZLTaf3/fy8npgT4P9Xmkz2N9nujzVJ9n+jzX54U+L/V5pc9rfd7o81afd/q81+eDPh/1+aTPZ32+6PNVn2/6fNfnhz4/9fmlj5O3/u+vj7M+Lvq46uOmT3R9YugTU59Y+sTWJ44+cfWJp098fRLok1CfRPok1ieJPkn1SaZPcu9/vU8K7z/fgfIvo6CXui/DsLnYjcaX4Gf//e+zByZnD03OHpmcPTY5e2Jy9tTk7JnJ2XOTsxcmZy9Nzl6ZnL02OXtjcvbW5Oydydl7k7MPJmcfTc4+mZx9Njn7YnL21eTsm8nZd5OzHyZnP03OfpmcGSH697NoJmfOJmcuJmeuJmduJmfRTc5imJzFNDmLZXIW2+QsjslZXJOzeCZn8U3OEpicJTQ5S2RyltjkLInJWVKTs2QmZ8lNzlLYz1yd/vXr/63FHPnz+w+i/PZfrZaggIDwYP9wzaqFWvxDwmyBloDAsCCbZtMCbYEN/W1Wa7gtwBYcEhYSbAnRAqzhWkRgiDXC3qXGDlU9K6W3qo7XNDfj7jpF+gMp0ifav+3A8ncfTZ37X382/f64ewuC3b3VP9dD4WWQem+PSKFQ9FwRq/EDj4fJd/S3e/X0duz3vu7p5OQp8N5eCt/b+APEw+mfH5V7lditl7fjG71VG1X/ifc7mKpe2Ljsxks7K15k5L8x/e07+zh4aRjv6iNQGr7eMn/r9LX/5Gn8lBIv0h2N/JH8Sc3ydx9NwX3Qfv/G5NWVPTvyXv3sf/Cn8nb6738N8LNfnMhnqexfUOSPK+QL+V+6/O0uzU/hT3GpFF8U1QE3isOP8ROhVarkUguVXOpIGaLsIo3inxJ/v3/kj6rnO8nsVkvj7fjGtKqNUhfUkX+qSycU/HRREHxH3mv6/18iWnpAiWRw8BL5r0uZQeBPuYyAv85lFHjvTEKFl8nkbwuq/voWHmF8wlX+A1BN5fdv/BXWNdL7/tc/lHH+77tQfT++R3f8cvkBMP4EGH8BjE4xAP8tXoDRGWB0ARhdAUY3gDE6wBgDYIwJMMYCGGMDjHEAxrgAYzyAMT7AmABgTAgwJgIYEwOMSQDGpABjMoAxOcCYAmBMCTC6A4weAKMnwOgFMHoDjD4Aoy/A6AcwpgIYUwOMaQDGtABjOoAxPcCYAWDMCDBmAhgzA4xZAMasAGM2gDE7wJgDYLQAjBrA6A8wWgHGAIAxEGAMAhiDAUYbwBgCMOYEGHMBjLkBxjwAY16AMR/AmB9gLAAwFgQYCwGMhQHGIgBjUYCxGMBYHGAsATCWBBhLAYylAcYyAGNZgLEcwFgeYKwAMFYEGCsBjJUBxioAY1WAsRrAWB1grAEw1gQYawGMtQHGOgBjXYCxHsBYH2AMBRjDAMYGAGNDgDEcYIwAGBsBjI0BxiYAY1OAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswHGOQDjXIBxHsA4H2BcADAuBBgXAYyLAcYlAONSgHEZwLgcYFwBMK4EGFcBjKsBxjUA41qAcR3AuB5g3AAwbgQYNwGMmwHGLQDjVoBxG8C4HWDcATDuBBh3AYy7AcY9AONegHEfwLgfYDwAMB4EGA8BjIcBxiMA41GA8RjAeBxgPAEwngQYTwGMpwHGMwDjWYDxHMB4HmC8ADBeBBgvAYyXAcYrAONVgPEawHgdYLwBMN4EGG8BjLcBxjsA412A8R7AeB9gfAAwPgQYHwGMjwHGJwDjU4DxGcD4HGB8ATC+BBhfAYyvAcY3AONbgPEdwPgeYPwAMH4EGD8BjJ8Bxi8A41eA8RvA+B1g/AEw/gQYfwGMTjEd3xgNYHQGGF0ARleA0Q1gjA4wxgAYYwKMsQDG2ABjHIAxLsAYD2CMDzAmABgTAoyJAMbEAGMSgDEpwJgMYEwOMKYAGFMCjO4AowfA6AkwegGM3gCjD8DoCzD6AYypAMbUAGMagDEtwJgOYEwPMGYAGDMCjJkAxswAYxaAMSvAmA1gzA4w5gAYLQCjBjD6A4xWgDEAYAwEGIMAxmCA0QYwhgCMOQHGXABjboAxD8CYF2DMBzDmBxgLAIwFAcZCAGNhgLEIwFgUYCwGMBYHGEsAjCUBxlIAY2mAsQzAWBZgLAcwlgcYKwCMFQHGSgBjZYCxCsBYFWCsBjBWBxhrAIw1AcZaAGNtgLEOwFgXYKwHMNYHGEMBxjCAsQHA2BBgDAcYIwDGRgBjY4CxCcDYFGBsBjA2BxhbAIwtAcZWAGNrgLENwNgWYGwHMLYHGDsAjB0Bxk4AY2eAsQvA2BVg7AYwdgcYewCMPQHGXgBjb4CxD8DYF2DsBzD2BxgHAIwDAcZBAONggHEIwDgUYBwGMA4HGEcAjCMBxlEA42iAcQzAOBZgHAcwjgcYJwCMEwHGSQDjZIBxCsA4FWCcBjBOBxhnAIwzAcZZAONsgHEOwDgXYJwHMM4HGBcAjAsBxkUA42KAcQnAuBRgXAYwLgcYVwCMKwHGVQDjaoBxDcC4FmBcBzCuBxg3AIwbAcZNAONmgHELwLgVYNwGMG4HGHcAjDsBxl0A426AcQ/AuBdg3Acw7gcYDwCMBwHGQwDjYYDxCMB4FGA8BjAeBxhPAIwnAcZTAONpgPEMwHgWYDwHMJ4HGC8AjBcBxksA42WA8QrAeBVgvAYwXgcYbwCMNwHGWwDjbYDxDsB4F2C8BzDeBxgfAIwPAcZHAONjgPEJwPgUYHwGMD4HGF8AjC8BxlcA42uA8Q3A+BZgfAcwvgcYPwCMHwHGTwDjZ4DxC8D4FWD8BjB+Bxh/AIw/AcZfAKNTLMc3RgMYnQFGF4DRFWB0AxijA4wxAMaYAGMsgDE2wBgHYIwLMMYDGOMDjAkEjBLOtN7qnNEiGf3sv8+sPz+LPln1yaZPdn1y6GPRR9PHXx+rPgH6BOoTpE+wPjZ9QvTJqU8ufXLrk0efvPrkM8z6FNCnoD6F9CmsTxF9iupTTJ/i+pTw/rMv5Ysr6KV2cS52o7GwmPbf/z7LYnKW1eQsm8lZdpOzHCZnFpMzzeTM3+TManIWYHIWaHIWZHIWbHJmMzkLMTnLaXKWy+Qst8lZHpOzvCZn+UzO8pucFTA5K2hyVsjkrLDJWRGTs6ImZ8VMzoqbnJWwnzk5CfyXtTz1d9Uz4qz4uZFzZ7UEBQSEB/uHa1Yt1OIfEmYLtAQEhgXZNJsWaAts6G+zWsNtAbbgkLCQYEuIFmAN1yICQ6wR9oeV9JbJsPFcv/+H91pKaK+l/sNe/9YstVfjuaqMpYX2WjrSXn9/XBTvQeGd0CLv4W93WkZop2UEO8C4p5m91WegrNAuyv6HP2f+1nxLKLe3FOa2nNBey0Xaq1RuFd4JrZzC3JYX2ml5wZ+JjHuaRSC3FYR2UUEwt3eFcntXYW4rCu21YhTkVuGd0CoqzG0loZ1WEs5tVoHcVhbaRWXB3D4Qyu0DhbmtIrTXKlGQW4V3QquiMLdVhXZaVTi32QRyW01oF9UEc/tYKLePFea2utBeq0dBbhXeCa26wtzWENppDeHcZhfIbU2hXdQUzO0zodw+U5jbWkJ7rRUFuVV4J7RaCnNbW2intYVzm0Mgt3WEdlFHMLcvhXL7UmFu6wrttW4U5FbhndDqKsxtPaGd1hPOrUUgt/WFdlFfMLdvhHL7RmFuQ4X2GhoFuVV4J7RQhbkNE9ppmHBuNYHcNhDaRQPB3L4Xyu17hbltKLTXhlGQW4V3QmuoMLfhQjsNF86tv0BuI4R2ESGY209Cuf2kMLeNhPbaKApyq/BOaI0U5rax0E4bC+fWKpDbJkK7aCKY269Cuf2qMLdNhfbaNApyq/BOaE0V5raZ0E6bCec2QCC3zYV20Vwwtz+EcvtDYW5bCO21RRTkVuGd0FoozG1LoZ22FM5toEBuWwntopVgbp28ZHLrpPC/991aaK+toyC3Cu+E1lphbtsI7bSNcG6DBHLbVmgXbQVz6yKUWxeFuW0ntNd2UZBbhXdCa6cwt+2FdtpeOLfBArntILSLDoK5jS6U2+gKc9tRaK8doyC3Cu+E1lFhbjsJ7bSTcG5tArntLLSLzoK5jSWU21gKc9tFaK9doiC3Cu+E1kVhbrsK7bSrcG5DBHLbTWgX3QRzG1cot3EV5ra70F67R0FuFd4JrbvC3PYQ2mkP4dzmFMhtT6Fd9BTMbQKh3CZQmNteQnvtFQW5VXgntF4Kc9tbaKe9hXObSyC3fYR20Ucwt4mFcptYYW77Cu21bxTkVuGd0PoqzG0/oZ32E85tboHc9hfaRX/B3CYTym0yhbkdILTXAVGQW4V3QhugMLcDhXY6UDi3eQRyO0hoF4MEc5tSKLcpFeZ2sNBeB0dBbhXeCW2wwtwOEdrpEOHc5hXI7VChXQwVzK2nUG49FeZ2mNBeh0VBbhXeCW2YwtwOF9rpcOHc5hPI7QihXYwQzK2PUG59FOZ2pNBeR0ZBbhXeCW2kwtyOEtrpKOHc5hfI7WihXYwWzG0qodymUpjbMUJ7HRMFuVV4J7QxCnM7VminY4VzW0Agt+OEdjFOMLdphXKbVmFuxwvtdXwU5FbhndDGK8ztBKGdThDObUGB3E4U2sVEwdxmEMptBoW5nSS010lRkFuFd0KbpDC3k4V2Olk4t4UEcjtFaBdTBHObWSi3mRXmdqrQXqdGQW4V3gltqsLcThPa6TTh3BYWyO10oV1MF8xtNqHcZlOY2xlCe50RBblVeCe0GQpzO1NopzOFc1tEILezhHYxSzC3FqHcWhTmdrbQXmdHQW4V3glttsLczhHa6Rzh3BYVyO1coV3MFcytVSi3VoW5nSe013lRkFuFd0KbpzC384V2Ol84t8UEcrtAaBcLBHMbJJTbIIW5XSi014VRkFuFd0JbqDC3i4R2ukg4t8UFcrtYaBeLBXMbIpTbEIW5XSK01yVRkFuFd0JbojC3S4V2ulQ4tyUEcrtMaBfLBHObWyi3uRXmdrnQXpdHQW4V3gltucLcrhDa6Qr7Tt30ief0515F/qi+w29S/PW7aPZfA0y4qp5tibyLld7/+nWVt30hvxe40l5Mkc+Mf5Hfv6FcBJf4v3yWv/1Z2kqFF3WVt7ov183pz25/X8Skzv/5clr+7qMljKUuaFLGRABjYoAxCcCYFGBMBjAmBxhTAIwpAUZ3gNEDYPQEGL0ARm+A0Qdg9AUY/QDGVABjaoAxDcCYFmBMBzCmBxgzAIwZAcZMAGNmgDELwJgVYMwGMGYHGHMAjBaAUQMY/QFGK8AYADAGAoxBAGMwwGgDGEMAxpwAYy6AMTfAmAdgzAsw5gMY8wOMBQDGggBjIYCxMMBYBGAsCjAWAxiLA4wlAMaSAGMpgLE0wFgGYCwLMJYDGMsDjBUAxooAYyWAsTLAWAVgrAowVgMYqwOMNQDGmgBjLYCxNsBYB2CsCzDWAxjrA4yhAGMYwNgAYGwIMIYDjBEAYyOAsTHA2ARgbAowNgMYmwOMLQDGlgBjK4CxNcDYBmBsCzC2AxjbA4wdAMaOAGMngLEzwNgFYOwKMHYDGLsDjD0Axp4AYy+AsTfA2Adg7Asw9gMY+wOMAwDGgQDjIIBxMMA4BGAcCjAOAxiHA4wjAMaRAOMogHE0wDgGYBwLMI4DGMcDjBMAxokA4ySAcTLAOAVgnAowTgMYpwOMMwDGmQDjLIBxNsA4B2CcCzDOAxjnA4wLAMaFAOMigHExwLgEYFwKMC4DGJcDjCsAxpUA4yqAcTXAuAZgXAswrgMY1wOMGwDGjQDjJoBxM8C4BWDcCjBuAxi3A4w7AMadAOMugHE3wLgHYNwLMO4DGPcDjAcAxoMA4yGA8TDAeARgPAowHgMYjwOMJwDGkwDjKYDxNMB4BmA8CzCeAxjPA4wXAMaLAOMlgPEywHgFYLwKMF4DGK8DjDcAxpsA4y2A8TbAeAdgvAsw3gMY7wOMDwDGhwDjI4DxMcD4BGB8CjA+AxifA4wvAMaXAOMrgPE1wPgGYHwLML4DGN8DjB8Axo8A4yeA8TPA+AVg/AowfgMYvwOMPwDGnwDjL4DRKbbjG6MBjM4AowvA6AowugGM0QHGGABjTIAxFsAYG2CMAzDGBRjjAYzxAcYEAGNCgDERwJgYYEwCMCYFGJMBjMkBxhQAY0qA0R1g9AAYPQFGL4DRG2D0ARh9AUY/gDEVwJgaYEwDMKYFGNMBjOkBxgwAY0aAMRPAmBlgzAIwZgUYswGM2QHGHACjBWDUAEZ/gNEKMAYAjIEAYxDAGAww2gDGEIAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYyjAGAYwNgAYGwKM4QBjBMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPgIYHwMMD4BGJ8CjM8AxucA4wuA8SXA+ApgfA0wvgEY3wKM7wDG9wDjB4DxI8D4CWD8DDB+ARi/AozfAMbvAOMPgPEnwPgLYHSK4/jGaACjM8DoAjC6AoxuAGN0gDEGwBgTYIwFMMYGGOMAjHEBxngAY3yAMQHAmBBgTAQwJgYYkwCMSQHGZABjcoAxBcCYEmB0Bxg9AEZPgNELYPQGGH0ARl+A0Q9gTAUwpgYY0yg0ujj9+az2/teva+y/rvX+Y//HS1gtQQEB4cH+4ZpVC7X4h4TZAi0BgWFBNs2mBdoCG/rbrNZwW4AtOCQsJNgSogVYw7WIwBBrhP3feKW3wv9gW3+Gi91ovISf/fe/z9aYnK21n0m9m/F8Z8Vf/FpvdcZ13uovuvFxFrwnf/us9QrvnNm9sfzdRzO+k/Xe6u/jBoXfdeQMbYiUof/p+7f83Udb55jfv8XN/q6uTv/8qL4Xq4Wyqtq5BuJcqzgPSZ2dRL//hLEA/+EgwJgYYEwCMCYFGJMBjMkBxhQAY0qA0R1g9AAYPQFGL4DRG2D0ARh9AUY/gDEVwJgaYEwDMKYFGNMBjOkBxgwAY0aAMRPAmBlgzAIwZgUYswGM2QHGHACjBWDUAEZ/gNEKMAYAjIEAYxDAGAww2gDGEIAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYyjAGAYwNgAYGwKM4QBjBMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPgIYHwMMD4BGJ8CjM8AxucA4wuA8SXA+ApgfA0wvgEY3wKM7wDG9wDjB4DxI8D4CWD8DDB+ARi/AozfAMbvAOMPgPEnwPgLYHSK7fjGaACjM8DoAjC6AoxuAGN0gDEGwBgTYIwFMMYGGOMAjHEBxngAY3yAMQHAmBBgTAQwJgYYkwCMSQHGZABjcoAxBcCYEmB0Bxg9AEZPgNELYPQGGH0ARl+A0Q9gTAUwpgYY0wCMaQHGdABjeoAxA8CYEWDMBDBmBhizAIxZAcZsAGN2gDEHwGgBGDWA0R9gtAKMAQBjIMAYBDAGA4w2gDEEYMwJMOYCGHMDjHkAxrwAYz6AMT/AWABgLAgwFgIYCwOMRQDGogBjMYCxOMBYAmAsCTCWAhhLA4xlAMayAGM5gLE8wFgBYKwIMFYCGCsDjFUAxqoAYzWAsTrAWANgrAkw1gIYawOMdQDGugBjPYCxPsAYCjCGAYwNAMaGAGM4wBgBMDYCGBsDjE0AxqYAYzOAsTnA2AJgbAkwtgIYWwOMbQDGtgBjO4CxPcDYAWDsCDB2Ahg7A4xdAMauAGM3gLE7wNgDYOwJMPYCGHsDjH0Axr4AYz+AsT/AOABgHAgwDgIYBwOMQwDGoQDjMIBxOMA4AmAcCTCOAhhHA4xjAMaxAOM4gHE8wDgBYJwIME4CGCcDjFMAxqkA4zSAcTrAOANgnAkwzgIYZwOMcwDGuQDjPIBxPsC4AGBcCDAuAhgXA4xLAMalAOMygHE5wLgCYFwJMK4CGFcDjGsAxrUA4zqAcT3AuAFg3AgwbgIYNwOMWwDGrQDjNoBxO8C4A2DcCTDuAhh3A4x7AMa9AOM+gHE/wHgAYDwIMB4CGA8DjEcAxqMA4zGA8TjAeAJgPAkwngIYTwOMZwDGswDjOYDxPMB4AWC8CDBeAhgvA4xXAMarAOM1gPE6wHgDYLwJMN4CGG8DjHcAxrsA4z2A8T7A+ABgfAgwPgIYHwOMTwDGpwDjM4DxOcD4AmB8CTC+AhhfA4xvAMa3AOM7gPE9wPgBYPwIMH4CGD8DjF8Axq8A4zeA8TvA+ANg/Akw/gIYneI4vjEawOgMMLoAjK4AoxvAGB1gjAEwxgQYYwGMsQHGOABjXIAxHsAYH2BMADAmBBgTAYyJAcYkAGNSgDEZwJgcYEwBMKYEGN0BRg+A0RNg9AIYvQFGH4DRF2D0AxhTAYypAcY0Co3RIhn97L/f6O3ktEmfzfps0WerPtv02a7PDn126rNLn9367NFnrz779NmvzwF9DupzSJ/D+hzR56g+x/Q5rs8JfU7qc0qf0/qc0eesPuf0Oa/PBe8/+1K+uHXeahfnYjcaC4tp//3vs00mZ5tNzraYnG01Odtmcrbd5GyHydlOk7NdJme7Tc72mJztNTnbZ3K23+TsgMnZQZOzQyZnh03OjpicHTU5O2Zydtzk7ITJ2UmTs1MmZ6dNzs6YnJ01OTtncnbe5OyC/Szyx8X+a377r5a/+2jlI+XEagkKCAgP9g/XrFqoxT8kzBZoCQgMC7JpNi3QFtjQ32a1htsCbMEhYSHBlhAtwBquRQSGWCPsD9uo8FkXFebXTX9GXKdIZRPpo7p3VLojey95C4Iveat/7mWFl0HqvS97/1mwoudanCJ9VIe1ksKdblL4rCvQsF4RCutVb0HwVYGwXnPwsBrvfQ0W1qoKd7pZ4bOuQ8N6XSisN7wFwTcEwnrTwcNqvPdNobBK/JRyzeQ7+tu93vJmlFQNhXdpi8Jn3YaW1G2hkrrjLQi+I1BSdx28pIz3vgspKaNMbwmU1D1ISdVWeJe2KnzWfWhJ3RcqqQfeguAHAiX10MFLynjvh5CSMsr0nkBJPYKUVD2Fd2mbwmc9hpbUY6GSeuItCH4iUFJPHbykjPd+Cikpo0wfCZTUM0hJhSm8S9sVPus5tKSeC5XUC29B8AuBknrp4CVlvPdLSEkZZfpMoKReQUoqXOFd2qHwWa+hJfVaqKTeeAuC3wiU1FsHLynjvd9CSsoo01cCJfUOUlKNFd6lnQqf9R5aUu+FSuqDtyD4g0BJfXTwkjLe+yOkpIwyfSdQUp8gJdVM4V3apfBZn6El9VmopL54C4K/CJTUVwcvKeO9v0JKyijTTwIl9Q1SUi0V3qXdCp/1HVpS34VK6oe3IPiHQEn9dPCSMt77J6SkjDL9JlBSvyAl1UbhXdqj8l76MEtKpTuyN5qPINh4uOrnOvs4dkkZ7+3s82fBip4rYjXK9JdASbn4MEqqvcJi2avwWa7QknIVKik3H0Gwm0BJRXfwkjLeOzqkpIwydfFRX1IxICXVSWGx7FP4rJjQkoopVFKxfATBsQRKKraDl5Tx3rEhJWWUaQyBkooDKamuCotlv8JnxYWWVFyhkornIwiOJ1BS8R28pIz3jg8pKaNM4wiUVAJISfVQWCwHFD4rIbSkEgqVVCIfQXAigZJK7OAlZbx3YkhJGWWaQKCkkkBKqrfCYjmo8FlJoSWVVKikkvkIgpMJlFRyBy8p472TQ0rKKNMkAiWVAlJS/RQWyyGFz0oJLamUQiXl7iMIdhcoKQ8HLynjvT0gJWWUaQqBkvKElNRAhcVyWOGzvKAl5SVUUt4+gmBvgZLycfCSMt7bB1JSRpl6CpSUL6SkhigsliMKn+UHLSk/oZJK5SMITiVQUqkdvKSM904NKSmjTH0FSioNpKSGKyyWowqflRZaUmmFSiqdjyA4nUBJpXfwkjLeOz2kpIwyTSNQUhkgJTVKYbEcU/isjNCSyihUUpl8BMGZBEoqs4OXlPHemSElZZRpBoGSygIpqbEKi+W4wmdlhZZUVqGSyuYjCM4mUFLZHbykjPfODikpo0yzCJRUDkhJTVBYLCcUPssCLSmLUElpPoJgTaCk/B28pIz39oeUlFGmOQRKygopqckKi+WkwmcFQEsqQKikAn0EwYECJRXk4CVlvHcQpKSMMrUKlFQwpKSmKSyWUwqfZYOWlE2opEJ8BMEhAiWV08FLynjvnJCSMso0WKCkckFKaqbCYjmt8Fm5oSWVW6ik8vgIgvMIlFReBy8p473zQkrKKNNcAiWVD1JScxQWyxmFz8oPLan8QiVVwEcQXECgpAo6eEkZ710QUlJGmeYTKKlCkJKar7BYzip8VmFoSRUWKqkiPoLgIgIlVdTBS8p476KQkjLKtJBASRWDlNQihcVyTuGzikNLqrhQSZXwEQSXECipkg5eUsZ7l4SUlFGmxQRKqhSkpJYqLJbzCp9VGlpSpYVKqoyPILiMQEmVdfCSMt67LKSkjDItJVBS5SAltUJhsVxQ+Kzy0JIqL1RSFXwEwRUESqqig5eU8d4VISVllGk5gZKq5OPY7218P5UE3ruyg7/3Or1IKwu89zrF/+s2xh9Grk7//Kjex2qh/8EQ1c41EOdaxf9rQUmdnUS//4Sx1O9VtTERwJgYYEwCMCYFGJMBjMkBxhQAY0qA0R1g9AAYPQFGL4DRG2D0ARh9AUY/gDEVwJgaYEwDMKYFGNMBjOkBxgwAY0aAMRPAmBlgzAIwZgUYswGM2QHGHACjBWDUAEZ/gNEKMAYAjIEAYxDAGAww2gDGEIAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYyjAGAYwNgAYGwKM4QBjBMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPgIYHwMMD4BGJ8CjM8AxucA4wuA8SXA+ApgfA0wvgEY3wKM7wDG9wDjB4DxI8D4CWD8DDB+ARi/AozfAMbvAOMPgPEnwPgLYHSK7fjGaACjM8DoAjC6AoxuAGN0gDEGwBgTYIwFMMYGGOMAjHEBxngAY3yAMQHAmBBgTAQwJgYYkwCMSQHGZABjcoAxBcCYEmB0Bxg9AEZPgNELYPQGGH0ARl+A0Q9gTAUwpgYY0wCMaQHGdABjeoAxA8CYEWDMBDBmBhizAIxZAcZsAGN2gDEHwGgBGDWA0R9gtAKMAQBjIMAYBDAGA4w2gDEEYMwJMOYCGHMDjHkAxrwAYz6AMT/AWABgLAgwFgIYCwOMRQDGogBjMYCxOMBYAmAsCTCWAhhLA4xlAMayAGM5gLE8wFgBYKwIMFYCGCsDjFUAxqoAYzWAsTrAWANgrAkw1gIYawOMdQDGugBjPYCxPsAYCjCGAYwNAMaGAGM4wBgBMDYCGBsDjE0AxqYAYzOAsTnA2AJgbAkwtgIYWwOMbQDGtgBjO4CxPcDYAWDsCDB2Ahg7A4xdAMauAGM3gLE7wNgDYOwJMPYCGHsDjH0Axr4AYz+AsT/AOABgHAgwDgIYBwOMQwDGoQDjMIBxOMA4AmAcCTCOAhhHA4xjAMaxAOM4gHE8wDgBYJwIME4CGCcDjFMAxqkA4zSAcTrAOANgnAkwzgIYZwOMcwDGuQDjPIBxPsC4AGBcCDAuAhgXA4xLAMalAOMygHE5wLgCYFwJMK4CGFcDjGsAxrUA4zqAcT3AuAFg3AgwbgIYNwOMWwDGrQDjNoBxO8C4A2DcCTDuAhh3A4x7AMa9AOM+gHE/wHgAYDwIMB4CGA8DjEcAxqMA4zGA8TjAeAJgPAkwngIYTwOMZwDGswDjOYDxPMB4AWC8CDBeAhgvA4xXAMarAOM1gPE6wHgDYLwJMN4CGG8DjHcAxrsA4z2A8T7A+ABgfAgwPgIYHwOMTwDGpwDjM4DxOcD4AmB8CTC+AhhfA4xvAMa3AOM7gPE9wPgBYPwIMH4CGD8DjF8Axq8A4zeA8TvA+ANg/Akw/gIYneI4vjEawOgMMLoAjK4AoxvAGB1gjAEwxgQYYwGMsQHGOABjXIAxHsAYH2BMADAmBBgTAYyJAcYkAGNSgDEZwJgcYEwBMKYEGN0BRg+A0RNg9AIYvQFGH4DRF2D0AxhTAYypAcY0Co3OkYxW+++r+Dg5VdWnmj7V9amhT019aulTW586+tTVp54+9fUJ1SdMnwb6NNQnXJ8IfRrp01ifJvo01aeZPs31aaFPS31a6dNanzb6tNWnnT7t9emgT0d9OunTWZ8u+nTVp5s+3fXpoU9PfXrp01ufPvr01aefPv31GaDPQH0G+fzrfQb7/PkO1P9/puSt7sswbC52o/El+Nl///usqslZNZOz6iZnNUzOapqc1TI5q21yVsfkrK7JWT2Ts/omZ6EmZ2EmZw1MzhqanIWbnEWYnDUyOWtsctbE5KypyVkzk7PmJmctTM5ampy1MjlrbXLWxuSsrclZO5Oz9iZnHUzOOpqcdTI562xy1sXkrKvJWTeTs+4mZz1MznqanPUyOettctbH5KyvyVk/k7P+JmcDTM4GmpwNMjkbbD9z1SeN0/+9xRz58/sPovz2X62WoICA8GD/cM2qhVr8Q8JsgZaAwLAgm2bTAm2BDf1tVmu4LcAWHBIWEmwJ0QKs4VpEYIg1wt6lxg5VPWuIj6qO1zQ3/RlxnSL9gRTpE+3fdmD5u4+mzv2vP5t+f4b6CIKH+qh/7jCFl0HqvYdFCoWi54pYjR94hpl8R3+71+E+jv3eZfT3Hi7w3iMUvrfxB4iH0z8/KvcqsdsRPo5vHKnaqPpPvN/BVPXCxmU3XtpZ8SIj/43pb995lIOXhvGuowRKY7SPzN86R9t/8jR+SokX6Y5G/kj+pGb5u4+m4D5ov39j8urKnh15r2Psf/CP9XH6738NGGO/OJHPxtq/oMgfV8gX8r90+dtd2hiFP8WNVXxRVAfcKI4xjJ8IrVIlN06o5MZFyhBlF+MV/5SYxumfH1XPd5LZrTbex/GNE1QbpS6oI/9UN1Eo+BOjIPiOvNdJ/79EtEmAEpns4CXyX5dyssCfclMAf52bIvDeU4UKb6rJ3xZU/fUtPML4hKv8B6Cayu/f+Cusa6T3NfaR1Pm/70L1/UgYy/HLJRHAmBhgTAIwJgUYkwGMyQHGFABjSoDRHWD0ABg9AUYvgNEbYPQBGH0BRj+AMRXAmBpgTAMwpgUY0wGM6QHGDABjRoAxE8CYGWDMAjBmBRizAYzZAcYcAKMFYNQARn+A0QowBgCMgQBjEMAYDDDaAMYQgDEnwJgLYMwNMOYBGPMCjPkAxvwAYwGAsSDAWAhgLAwwFgEYiwKMxQDG4gBjCYCxJMBYCmAsDTCWARjLAozlAMbyAGMFgLEiwFgJYKwMMFYBGKsCjNUAxuoAYw2AsSbAWAtgrA0w1gEY6wKM9QDG+gBjKMAYBjA2ABgbAozhAGMEwNgIYGwMMDYBGJsCjM0AxuYAYwuAsSXA2ApgbA0wtgEY2wKM7QDG9gBjB4CxI8DYCWDsDDB2ARi7AozdAMbuAGMPgLEnwNgLYOwNMPYBGPsCjP0Axv4A4wCAcSDAOAhgHAwwDgEYhwKMwwDG4QDjCIBxJMA4CmAcDTCOARjHAozjAMbxAOMEgHEiwDgJYJwMME4BGKcCjNMAxukA4wyAcSbAOAtgnA0wzgEY5wKM8wDG+QDjAoBxIcC4CGBcDDAuARiXAozLAMblAOMKgHElwLgKYFwNMK4BGNcCjOsAxvUA4waAcSPAuAlg3AwwbgEYtwKM2wDG7QDjDoBxJ8C4C2DcDTDuARj3Aoz7AMb9AOMBgPEgwHgIYDwMMB4BGI8CjMcAxuMA4wmA8STAeApgPA0wngEYzwKM5wDG8wDjBYDxIsB4CWC8DDBeARivAozXAMbrAOMNgPEmwHgLYLwNMN4BGO8CjPcAxvsA4wOA8SHA+AhgfAwwPgEYnwKMzwDG5wDjC4DxJcD4CmB8DTC+ARjfAozvAMb3AOMHgPEjwPgJYPwMMH4BGL8CjN8Axu8A4w+A8SfA+AtgdIrt+MZoAKMzwOgCMLoCjG4AY3SAMQbAGBNgjAUwxgYY4wCMcQHGeABjfIAxAcCYEGBMBDAmBhiTAIxJAcZkAGNygDEFwJgSYHQHGD0ARk+A0Qtg9AYYfQBGX4DRD2BMBTCmBhjTAIxpAcZ0AGN6gDEDwJgRYMwEMGYGGLMAjFkBxmwAY3aAMQfAaAEYNYDRH2C0AowBAGMgwBgEMAYDjDaAMQRgzAkw5gIYcwOMeQDGvABjPoAxP8BYAGAsCDAWAhgLA4xFAMaiAGMxgLE4wFgCYCwJMJYCGEsDjGUAxrIAYzmAsTzAWAFgrAgwVgIYKwOMVQDGqgBjNYCxOsBYA2CsCTDWAhhrA4x1AMa6AGM9gLE+wBgKMIYBjA0AxoYAYzjAGAEwNgIYGwOMTQDGpgBjM4CxOcDYAmBsCTC2AhhbA4xtAMa2AGM7gLE9wNgBYOwIMHYCGDsDjF0Axq4AYzeAsTvA2ANg7Akw9gIYewOMfQDGvgBjP4CxP8A4AGAcCDAOAhgHA4xDAMahAOMwgHE4wDgCYBwJMI4CGEcDjGMAxrEA4ziAcTzAOAFgnAgwTgIYJwOMUwDGqQDjNIBxOsA4A2CcCTDOAhhnA4xzAMa5AOM8gHE+wLgAYFwIMC4CGBcDjEsAxqUA4zKAcTnAuAJgXAkwrgIYVwOMawDGtQDjOoBxPcC4AWDcCDBuAhg3A4xbAMatAOM2gHE7wLgDYNwJMO4CGHcDjHsAxr0A4z6AcT/AeABgPAgwHgIYDwOMRwDGowDjMYDxOMB4AmA8CTCeAhhPA4xnAMazAOM5gPE8wHgBYLwIMF4CGC8DjFcAxqsA4zWA8TrAeANgvAkw3gIYbwOMdwDGuwDjPYDxPsD4AGB8CDA+AhgfA4xPAManAOMzgPE5wPgCYHwJML4CGF8DjG8AxrcA4zuA8T3A+AFg/AgwfgIYPwOMXwDGrwDjN4DxO8D4A2D8CTD+Ahid4ji+MRrA6AwwugCMrgCjG8AYHWCMATDGBBhjAYyxAcY4AGNcgDEewBgfYEwAMCYEGBMBjIkBxiQAY1KAMRnAmBxgTAEwpgQY3QFGD4DRE2D0Ahi9AUYfgNEXYPQDGFMBjKkBxjQCRgnnBB91zmiRjH7230/Tnz9dnxn6zNRnlj6z9Zmjz1x95ukzX58F+izUZ5E+i/VZos9SfZbps1yfFfqs1GeVPqv1WaPPWn3W6bNenw36bNRnkz6b9dmiz1afP/tS//9Bk7faxbnYjcbCYtp///tsusnZDJOzmSZns0zOZpuczTE5m2tyNs/kbL7J2QKTs4UmZ4tMzhabnC0xOVtqcrbM5Gy5ydkKk7OVJmerTM5Wm5ytMTlba3K2zuRsvcnZBpOzjSZnm0zONpucbTE522o/c3JSn48yej6MjDgrfm7k3FktQQEB4cH+4ZpVC7X4h4TZAi0BgWFBNs2mBdoCG/rbrNZwW4AtOCQsJNgSogVYw7WIwBBrhP1h23xkMmw81+//4b1uF9rr9v+w1781S+21jMK97hDa645Ie/39cVG8B4V3Qou8h7/d6U6hne4U7ADjnk7zUZ+BXUK72PUf/pz5W3N5odyWV5jb3UJ73R1pr1K5VXgntN0Kc7tHaKd7BH8mMu7pdIHc7hXaxV7B3FYSym0lhbndJ7TXfVGQW4V3QtunMLf7hXa6Xzi3MwRye0BoFwcEc1tVKLdVFeb2oNBeD0ZBbhXeCe2gwtweEtrpIeHczhTI7WGhXRwWzG0NodzWUJjbI0J7PRIFuVV4J7QjCnN7VGinR4VzO0sgt8eEdnFMMLe1hXJbW2Fujwvt9XgU5FbhndCOK8ztCaGdnhDO7WyB3J4U2sVJwdzWE8ptPYW5PSW011NRkFuFd0I7pTC3p4V2elo4t3MEcntGaBdnBHMbJpTbMIW5PSu017NRkFuFd0I7qzC354R2ek44t3MFcnteaBfnBXMbLpTbcIW5vSC01wtRkFuFd0K7oDC3F4V2elE4t/MEcntJaBeXBHPbWCi3jRXm9rLQXi9HQW4V3gntssLcXhHa6RXh3M4XyO1VoV1cFcxtM6HcNlOY22tCe70WBblVeCe0awpze11op9eFc7tAILc3hHZxQzC3LYVy21Jhbm8K7fVmFORW4Z3QbirM7S2hnd4Szu1CgdzeFtrFbcHcthHKbRuFub0jtNc7UZBbhXdCu6Mwt3eFdnpXOLeLBHJ7T2gX9wRz214ot+0V5va+0F7vR0FuFd4J7b7C3D4Q2ukD4dwuFsjtQ6FdPBTMbSeh3HZSmNtHQnt9FAW5VXgntEcKc/tYaKePhXO7RCC3T4R28UQwt12FcttVYW6fCu31aRTkVuGd0J4qzO0zoZ0+E87tUoHcPhfaxXPB3PYQym0Phbl9IbTXF1GQW4V3QnuhMLcvhXb6Uji3ywRy+0poF68Ec9tbKLe9Feb2tdBeX0dBbhXeCe21wty+EdrpG+HcLhfI7VuhXbwVzG0/odz2U5jbd0J7fRcFuVV4J7R3CnP7Xmin74Vzu0Igtx+EdvFBMLcDhXI7UGFuPwrt9WMU5FbhndA+KsztJ6GdfhLO7UqB3H4W2sVnwdwOEcrtEIW5/SK01y9RkFuFd0L7ojC3X4V2+lU4t6sEcvtNaBffBHM7XCi3wxXm9rvQXr9HQW4V3gntu8Lc/hDa6Q/h3K4WyO1PoV38FMztKKHcjlKY219Ce/0VBblVeCe0Xwpz6+Qrs1PjuZK5XSOQ22hCu4jmK5fbsUK5Haswt85Ce3X2lc+twjuhRd7D3+7URWinLsK5XSuQW1ehXbgK5naCUG4nKMytm9Be3aIgtwrvhOamMLfRhXYaXTi36wRyG0NoFzEEcztZKLeTFeY2ptBeY0ZBbhXeCS2mwtzGEtppLOHcrhfIbWyhXcQWzO00odxOU5jbOEJ7jRMFuVV4J7Q4CnMbV2incYVzu0Egt/GEdhFPMLczhXI7U2Fu4wvtNX4U5FbhndDiK8xtAqGdJhDO7UaB3CYU2kVCwdzOEcrtHIW5TSS010RRkFuFd0JLpDC3iYV2mlg4t5sEcptEaBdJBHM7Xyi38xXmNqnQXpNGQW4V3gktqcLcJhPaaTLh3G4WyG1yoV0kF8ztIqHcLlKY2xRCe00RBblVeCe0FApzm1JopymFc7tFILfuQrtwF8ztUqHcLlWYWw+hvXpEQW4V3gnNQ2FuPYV26imc260CufUS2oWXYG5XCOV2hcLcegvt1TsKcqvwTmjeCnPrI7RTH/tO3fSJ5/TnXkX+qL7Db1L89bto9l8DTbiqnm2JvAtf33/96udrX8jvBRr/h2j/dmb8i/z+DeUiuMT/5bP87c/SfBVeVD9fdV+um9Of3f6+iEmd//PltPzdR0sbR13QpIzpAMb0AGMGgDEjwJgJYMwMMGYBGLMCjNkAxuwAYw6A0QIwagCjP8BoBRgDAMZAgDEIYAwGGG0AYwjAmBNgzAUw5gYY8wCMeQHGfABjfoCxAMBYEGAsBDAWBhiLAIxFAcZiAGNxgLEEwFgSYCwFMJYGGMsAjGUBxnIAY3mAsQLAWBFgrAQwVgYYqwCMVQHGagBjdYCxBsBYE2CsBTDWBhjrAIx1AcZ6AGN9gDEUYAwDGBsAjA0BxnCAMQJgbAQwNgYYmwCMTQHGZgBjc4CxBcDYEmBsBTC2BhjbAIxtAcZ2AGN7gLEDwNgRYOwEMHYGGLsAjF0Bxm4AY3eAsQfA2BNg7AUw9gYY+wCMfQHGfgBjf4BxAMA4EGAcBDAOBhiHAIxDAcZhAONwgHEEwDgSYBwFMI4GGMcAjGMBxnEA43iAcQLAOBFgnAQwTgYYpwCMUwHGaQDjdIBxBsA4E2CcBTDOBhjnAIxzAcZ5AON8gHEBwLgQYFwEMC4GGJcAjEsBxmUA43KAcQXAuBJgXAUwrgYY1wCMawHGdQDjeoBxA8C4EWDcBDBuBhi3AIxbAcZtAON2gHEHwLgTYNwFMO4GGPcAjHsBxn0A436A8QDAeBBgPAQwHgYYjwCMRwHGYwDjcYDxBMB4EmA8BTCeBhjPAIxnAcZzAON5gPECwHgRYLwEMF4GGK8AjFcBxmsA43WA8QbAeBNgvAUw3gYY7wCMdwHGewDjfYDxAcD4EGB8BDA+BhifAIxPAcZnAONzgPEFwPgSYHwFML4GGN8AjG8BxncA43uA8QPA+BFg/AQwfgYYvwCMXwHGbwDjd4DxB8D4E2D8BTA6xXV8YzSA0RlgdAEYXQFGN4AxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwugOMHgCjJ8DoBTB6A4w+AKMvwOgHMKYCGFMDjGkAxrQAYzqAMT3AmAFgzAgwZgIYMwOMWQDGrABjNoAxO8CYA2C0AIwawOgPMFoBxgCAMRBgDAIYgwFGG8AYAjDmBBhzAYy5AcY8AGNegDEfwJgfYCwAMBYEGAsBjIUBxiIAY1GAsRjAWBxgLAEwlgQYSwGMpQHGMgBjWYCxHMBYHmCsADBWBBgrAYyVAcYqAGNVgLEawFgdYKwBMNYEGGsBjLUBxjoAY12AsR7AWB9gDAUYwwDGBgBjQ4AxHGCMABgbAYyNAcYmAGNTgLEZwNgcYGwBMLYEGFsBjK0BxjYAY1uAsR3A2B5g7AAwdgQYOwGMnQHGLgBjV4CxG8DYHWDsATD2BBh7AYy9AcY+AGNfgLEfwNgfYBwAMA4EGAcBjIMBxiEA41CAcRjAOBxgHAEwjgQYRwGMowHGMQDjWIBxHMA4HmCcADBOBBgnAYyTAcYpAONUgHEawDgdYJwBMM4EGGcBjLMBxjkA41yAcR7AOB9gXAAwLgQYFwGMiwHGJQDjUoBxGcC4HGBcATCuBBhXAYyrAcY1AONagHEdwLgeYNwAMG4EGDcBjJsBxi0A41aAcRvAuB1g3AEw7gQYdwGMuwHGPQDjXoBxH8C4H2A8ADAeBBgPAYyHAcYjAONRgPEYwHgcYDwBMJ4EGE8BjKcBxjMA41mA8RzAeB5gvAAwXgQYLwGMlwHGKwDjVYDxGsB4HWC8ATDeBBhvAYy3AcY7AONdgPEewHgfYHwAMD4EGB8BjI8BxicA41OA8RnA+BxgfAEwvgQYXwGMrwHGNwDjW4DxHcD4HmD8ADB+BBg/AYyfAcYvAONXgPEbwPgdYPwBMP4EGH8BjE7xHN8YDWB0BhhdAEZXgNENYIwOMMYAGGMCjLEAxtgAYxyAMS7AGA9gjA8wJgAYEwKMiQDGxABjEoAxKcCYDGBMDjCmABhTAozuAKMHwOgJMHoBjN4Aow/A6Asw+gGMqQDG1ABjGoAxLcCYDmBMDzBmABgzAoyZAMbMAGMWgDErwJgNYMwOMOYAGC0AowYw+gOMVoAxAGAMBBiDAMZghUYXpz+fVL7/+jW1/dc0vn/s/3gJqyUoICA82D9cs2qhFv+QMFugJSAwLMim2bRAW2BDf5vVGm4LsAWHhIUEW0K0AGu4FhEYYo2w/xv7+ir8L+roz3CxG42X8LP//vdZapOzNPYzqXcznu+s+ItP46vOmNZX/UU3Ps6C9+Rvn5VO4Z0zuzeWv/toxneSzlf9fUyv8LuOnKH0kTL0P33/lr/7aGkd8/u3uNnf1dXpnx/l/0GgUFaV/4eBEGcaxXlI6uwk+v2njQP4DwcBxvQAYwaAMSPAmAlgzAwwZgEYswKM2QDG7ABjDoDRAjBqAKM/wGgFGAMAxkCAMQhgDAYYbQBjCMCYE2DMBTDmBhjzAIx5AcZ8AGN+gLEAwFgQYCwEMBYGGIsAjEUBxmIAY3GAsQTAWBJgLAUwlgYYywCMZQHGcgBjeYCxAsBYEWCsBDBWBhirAIxVAcZqAGN1gLEGwFgTYKwFMNYGGOsAjHUBxnoAY32AMRRgDAMYGwCMDQHGcIAxAmBsBDA2BhibAIxNAcZmAGNzgLEFwNgSYGwFMLYGGNsAjG0BxnYAY3uAsQPA2BFg7AQwdgYYuwCMXQHGbgBjd4CxB8DYE2DsBTD2Bhj7AIx9AcZ+AGN/gHEAwDgQYBwEMA4GGIcAjEMBxmEA43CAcQTAOBJgHAUwjgYYxwCMYwHGcQDjeIBxAsA4EWCcBDBOBhinAIxTAcZpAON0gHEGwDgTYJwFMM4GGOcAjHMBxnkA43yAcQHAuBBgXAQwLgYYlwCMSwHGZQDjcoBxBcC4EmBcBTCuBhjXAIxrAcZ1AON6gHEDwLgRYNwEMG4GGLcAjFsBxm0A43aAcQfAuBNg3AUw7gYY9wCMewHGfQDjfoDxAMB4EGA8BDAeBhiPAIxHAcZjAONxgPEEwHgSYDwFMJ4GGM8AjGcBxnMA43mA8QLAeBFgvAQwXgYYrwCMVwHGawDjdYDxBsB4E2C8BTDeBhjvAIx3AcZ7AON9gPEBwPgQYHwEMD4GGJ8AjE8BxmcA43OA8QXA+BJgfAUwvgYY3wCMbwHGdwDje4DxA8D4EWD8BDB+Bhi/AIxfAcZvAON3gPEHwPgTYPwFMDrFdXxjNIDRGWB0ARhdAUY3gDE6wBgDYIwJMMYCGGMDjHEAxrgAYzyAMT7AmABgTAgwJgIYEwOMSQDGpABjMoAxOcCYAmBMCTC6A4weAKMnwOgFMHoDjD4Aoy/A6AcwpgIYUwOMaQDGtABjOoAxPcCYAWDMCDBmAhgzA4xZAMasAGM2gDE7wJgDYLQAjBrA6A8wWgHGAIAxEGAMAhiDAUYbwBgCMOYEGHMBjLkBxjwAY16AMR/AmB9gLAAwFgQYCwGMhQHGIgBjUYCxGMBYHGAsATCWBBhLAYylAcYyAGNZgLEcwFgeYKwAMFYEGCsBjJUBxioAY1WAsRrAWB1grAEw1gQYawGMtQHGOgBjXYCxHsBYH2AMBRjDAMYGAGNDgDEcYIwAGBsBjI0BxiYAY1OAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswHGOQDjXIBxHsA4H2BcADAuBBgXAYyLAcYlAONSgHEZwLgcYFwBMK4EGFcBjKsBxjUA41qAcR3AuB5g3AAwbgQYNwGMmwHGLQDjVoBxG8C4HWDcATDuBBh3AYy7AcY9AONegHEfwLgfYDwAMB4EGA8BjIcBxiMA41GA8RjAeBxgPAEwngQYTwGMpwHGMwDjWYDxHMB4HmC8ADBeBBgvAYyXAcYrAONVgPEawHgdYLwBMN4EGG8BjLcBxjsA412A8R7AeB9gfAAwPgQYHwGMjwHGJwDjU4DxGcD4HGB8ATC+BBhfAYyvAcY3AONbgPEdwPgeYPwAMH4EGD8BjJ8Bxi8A41eA8RvA+B1g/AEw/gQYfwGMTvEc3xgNYHQGGF0ARleA0Q1gjA4wxgAYYwKMsQDG2ABjHIAxLsAYD2CMDzAmABgTAoyJAMbEAGMSgDEpwJgMYEwOMKYAGFMCjO4AowfA6AkwegGM3gCjD8DoCzD6AYypAMbUAGMagDEtwJgOYEwPMGYAGDMCjJkAxswAYxaAMSvAmA1gzA4w5gAYLQCjBjD6A4xWgDEAYAwEGIMAxmCFxmiRjH7232fwdXLKqE8mfTLrk0WfrPpk0ye7Pjn0seij6eOvj1WfAH0C9QnSJ1gfmz4h+uTUJ5c+ufXJo09effLpk1+fAvoU1KeQPoX1KaJPUd8/+1L/lyxftYtzsRuNhcW0//73WUaTs0wmZ5lNzrKYnGU1Octmcpbd5CyHyZnF5EwzOfM3ObOanAWYnAWanAWZnAWbnNlMzkJMznKanOUyOcttcpbH5CyvyVk+k7P8JmcFTM4KmpwVMjkrbHJWxOSsqP0s8sfF/mt++6+Wv/toe3z+PMtqCQoICA/2D9esWqjFPyTMFmgJCAwLsmk2LdAW2NDfZrWG2wJswSFhIcGWEC3AGq5FBIZYI+wPy+Cr7lnFFObXTX9GXKdIZRPpo7p3VLoje4v7CoKL+6p/bgmFl0HqvUv4/lmwoudanCJ9VId1v8KwZlT4/ZSEhrWkUFhL+QqCSwmEtbSDh9V479KwsB5SGNZMCr+fMtCwlhEKa1lfQXBZgbCWc/CwGu9dTiisEj+llDb5jv52r+V9GSV1VGFJZVZ4LytAS6qCUElV9BUEVxQoqUoOXlLGe1eClJRRpuUFSqoypKROKCypLArvZRVoSVURKqmqvoLgqgIlVc3BS8p472qQkjLKtLJASVWHlNRphSWVVeG9rAEtqRpCJVXTVxBcU6Ckajl4SRnvXQtSUkaZVhcoqdqQkjqnsKSyKbyXdaAlVUeopOr6CoLrCpRUPQcvKeO960FKyijT2gIlVR9SUhcVllR2hfcyFFpSoUIlFeYrCA4TKKkGDl5Sxns3gJSUUab1BUqqIaSkrigsqRwK72U4tKTChUoqwlcQHCFQUo0cvKSM924EKSmjTBsKlFRjSEldV1hSFoX3sgm0pJoIlVRTX0FwU4GSaubgJWW8dzNISRll2ligpJpDSuqWwpLSFN7LFtCSaiFUUi19BcEtBUqqlYOXlPHerSAlZZRpc4GSag0pqbsKS8pf4b1sAy2pNkIl1dZXENxWoKTaOXhJGe/dDlJSRpm2Fiip9pCSeqCwpKwK72UHaEl1ECqpjr6C4I4CJdXJwUvKeO9OkJIyyrS9QEl1hpTUY4UlFaDwXnaBllQXoZLq6isI7ipQUt0cvKSM9+4GKSmjTDsLlFR3SEk9U1hSgQrvZQ9oSfUQKqmevoLgngIl1cvBS8p4716QkjLKtLtASfWGlNRLhSUVpPBe9oGWVB+hkurrKwjuK1BS/Ry8pIz37gcpKaNMewuUVH9ISb1RWFLBCu/lAGhJDRAqqYG+guCBAiU1yMFLynjvQZCSMsq0v0BJDYaU1HuFJWVTeC+HQEtqiFBJDfUVBA8VKKlhDl5SxnsPg5SUUaaDBUpqOKSkPiksqRCF93IEtKRGCJXUSF9B8EiBkhrl4CVlvPcoSEkZZTpcoKRGQ0rqq8KSyqnwXo6BltQYoZIa6ysIHitQUuMcvKSM9x4HKSmjTEcLlNR4SEn9UFhSuRTeywnQkpogVFITfQXBEwVKapKDl5Tx3pMgJWWU6XiBkpoMKSknhXcpt8JnTYGW1BShkprqKwieKlBS0xy8pIz3ngYpKaNMJwuU1HRISbkovEt5FD5rBrSkZgiV1ExfQfBMgZKa5eAlZbz3LEhJGWU6XaCkZkNKKrrCu5RX4bPmQEtqjlBJzfUVBM8VKKl5Dl5SxnvPg5SUUaazBUpqPqSkYim8S/kUPmsBtKQWCJXUQl9B8EKBklrk4CVlvPciSEkZZTpfoKQWQ0oqrsK7lF/hs5ZAS2qJUEkt9RUELxUoqWUOXlLGey+DlJRRposFSmo5pKQSKLxLBRQ+awW0pFYIldRKX0HwSoGSWuXgJWW89ypISRllulygpFZDSiqxwrtUUOGz1kBLao1QSa31FQSvFSipdQ5eUsZ7r4OUlFGmqwVKaj2kpJIpvEuFFD5rw/9h7z3Aq6q2tu3QQXqTDguS0Et2QiCh9947AlJD77333qtUpXcEpEtHULoiCIpUERDFhqIoCv7Pes/2d5uzzvk+Z8bYrOd7k+vcF17rONe8x1hzzKw5TDakm9RupU1qTw5F4T0Km9Rel29Sdtx7STYpezPdpbBJ7SPZpDIKrqVKgvd6m3STeltpk9qfQ1F4v8ImdcDlm5Qd9wGSTcreTPcpbFIHSTapLIJrqbLgvQ6RblKHlDapwzkUhQ8rbFJHXL5J2XEfIdmk7M30oMImdZRkk8ouuJaqCN7rGOkmdUxpk3onh6LwOwqb1HGXb1J23MdJNil7Mz2qsEmdyOHuuO3nc0Ih7nddHncQ/N5ViDtIeFO1vxnFD/j3L+l85FT6ZirtmYvEM1D4m1S6uAGqzz8oqXxepR2DCRxzEzjmIXDMS+CYj8AxP4FjAQLHggSOhQgcCxM4FiFwDCFw9BA4hhI4hhE4FiVwDCdwLEbgWJzAMYLAMZLAsQSBY0kCx1IEjqUJHMsQOJYlcCxH4FiewLECgWNFAsdKBI6VCRyrEDhWJXCsRuBYncCxBoFjTQLHWgSOtQkc6xA41iVwrEfgWJ/AsQGBY0MCx0YEjo0JHJsQODYlcGxG4NicwPEVAscWBI4tCRxbETi+SuDYmsCxDYFjWwLHdgSO7QkcOxA4RhE4diRw7ETg2JnAsQuBY1cCx24Ejt0JHHsQOPYkcOxF4NibwLEPgWNfAsd+BI79CRwHEDgOJHAcROA4mMBxCIHjUALHYQSOwwkcRxA4jiRwHEXgOJrAcQyB41gCx3EEjuMJHCcQOE4kcJxE4DiZwHEKgeNUAsdpBI7TCRxnEDjOJHCcReA4m8BxDoHjXALHeQSO8wkcFxA4vkbguJDAcRGB42ICxyUEjksJHJcROL5O4PgGgeNyAscVBI4rCRxXETiuJnBcQ+C4lsBxHYHjegLHDQSOGwkcNxE4biZw3ELg+CaB41YCx20EjtsJHN8icNxB4LiTwHEXgeNuAsc9BI57CRz3ETi+TeC4n8DxAIHjQQLHQwSOhwkcjxA4HiVwPEbg+A6B43ECxxMEju8SOL5H4HiSwPEUgeNpAsczBI5nCRzPETieJ3B8n8DxAwLHCwSOHxI4XiRwvETg+BGB42UCxysEjh8TOH5C4HiVwPFTAsdrBI7XCRxvEDjeJHC8ReB4m8DxMwLHOwSOnxM43iVwvEfgeJ/A8QsCxwcEjl8SOH5F4PiQwPFrAsdvCBy/JXD8jsDxewLHRwSOPxA4/kjg+JjA8ScCx58JHJ8QOP5C4PgrgeNTAsffCBx/J3B8RuD4nMDxDwLHgGTud4xD4BiXwDEegWN8AscEBI4JCRwTETgmJnBMQuD4EoFjUgLHZASOyQkcUxA4piRwTEXgmJrAMQ2BY1oCx3QEjukJHF8mcMxA4JiRwDETgWNmAscsBI5ZCRyzEThmJ3DMQeBoETjmJHDMReAYSOAYROAYTOCYm8AxD4FjXgLHfASO+QkcCxA4FiRwLETgWJjAsQiBYwiBo4fAMZTAMYzAsSiBYziBYzECx+IEjhEEjpEEjiUIHEsSOJYicCxN4FiGwLEsgWM5AsfyBI4VCBwrEjhWInCsTOBYhcCxKoFjNQLH6gSONQgcaxI41iJwrE3gWIfAsS6BYz0Cx/oEjg0IHBsSODYicGxM4NiEwLEpgWMzAsfmBI6vEDi2IHBsSeDYisDxVQLH1gSObQgc2xI4tiNwbE/g2IHAMYrAsSOBYycCx84Ejl0IHLsSOHYjcOxO4NiDwLEngWMvAsfeBI59CBz7Ejj2I3DsT+A4gMBxIIHjIALHwQSOQwgchxI4DiNwHE7gOILAcSSB4ygCx9EEjmMIHMcSOI4jcBxP4DiBwHEigeMkAsfJBI5TCBynEjhOI3CcTuA4g8BxJoHjLALH2QSOcwgc5xI4ziNwnE/guIDA8TUCx4UEjosIHBcTOC4hcFxK4LiMwPF1Asc3CByXEziuIHBcSeC4isBxNYHjGgLHtQSO6wgc1xM4biBw3EjguInAcTOB4xYCxzcJHLcSOG4jcNxO4PgWgeMOAsedBI67CBx3EzjuIXDcS+C4j8DxbQLH/QSOBwgcDxI4HiJwPEzgeITA8SiB4zECx3cIHI8TOJ4gcHyXwPE9AseTBI6nCBxPEzieIXA8S+B4jsDxPIHj+wSOHxA4XiBw/JDA8SKB4yUCx48IHC8TOF4hcPyYwPETAserBI6fEjheI3C8TuB4g8DxJoHjLQLH2wSOnxE43iFw/JzA8S6B4z0Cx/sEjl8QOD4gcPySwPErAseHBI5fEzh+Q+D4LYHjdwSO3xM4PiJw/IHA8UcCx8cEjj8ROP5M4PiEwPEXAsdfCRyfEjj+RuD4O4HjMwLH5wSOfxA4BiR3v2McAse4BI7xCBzjEzgmIHBMSOCYiMAxMYFjEgLHlwgckxI4JiNwTE7gmILAMSWBYyoCx9QEjmkIHNMSOKYjcExP4PgygWMGAseMBI6ZCBwzEzhmIXDMSuCYjcAxO4FjDgJHi8AxJ4FjLgLHQALHIALHYALH3ASOeQgc8xI45iNwzE/gWIDAsSCBYyECx8IEjkUIHEMIHD0EjqEEjmEEjkUJHMMJHIsROBYXdIzr4xjm/ef3cgQEnASnwGlwBpwF58B58D74AFwAH4KL4BL4CFwGV8DH4BNwFXwKroHr4Aa4CW6B2+AzcAd8Du6Ce+A++AI8AF+Cr8BD8DX4BnwLvgPfg0fgB/AjeAx+Aj+DJ+CXHP+K59ccfz0D+YNbDrmHYbvF8zraD8Hy/vOf1046XDvlcO20w7UzDtfOOlw753DtvMO19x2ufeBw7YLDtQ8drl10uHbJ4dpHDtcuO1y74nDtY4drnzhcu+pw7VOHa9ccrl13uHbD4dpNh2u3HK7ddrj2mcO1Ow7XPne4dtfh2j2Ha/cdrn3hcO2Bw7UvHa595XDtocO1rx2ufeNw7VuHa985XPve4dojh2s/OFz70eHaY4drPzlc+9nh2hOHa784XPvVey0+yB3w/+7G7Pv15zeict4/w0KKFS0aVTw0yhPmaRsSGtkuIjykaHi7YhGeCE94RHiH0IiwsKiIohHFI9tFFg+J9BQNi/J0DI8M6+jdS3/NIXevp2J7vMeTAPdIFuDzDcnnK060HITE7Msj5/2v701/fv2WQ1H4txzy9/1dcDFoxf27T1EI3VfFNcjrGv2+Mc3rsxzujvtw9oCAZwpxPxeM2/4Gkjng378k86qR2+c53O/4h7Sj9He8PwtTKmB7sdtBxxVOZJDkZmy5f7O0HaU3jTiWzqnTvi/+F2C/pST3WaO+X5pvaiEx+/IIrAfPn//gELrYvX3zGtf615/xrIC/HwPieheO77V43gfk+xWf5IEYeoV6vTxxLbkY4wkvFOkCtzeOuJbYwgv5b64hMfsK09rk4ls6m1x8nxpiyUUCwVzYecgd8O9fUvcP0MmtRzIHWo4JpR21Fqib3+oSWTqFb9/X0nnwFHlNbMVuIpI50HJMYrl7E/mfRWlLSn+Xe8ly9ZvO/8T9kkLcSS2dDc++rxXw9y+p41tUR/srSvI/gHokn799hI3vE6+dj3Rx/54L8fWR1P2bSzCBY24CxzwEjnkJHPMROOYncCxA4FiQwLEQgWNhAsciBI4hBI4eAsdQAscwAseiBI7hBI7FCByLEzhGEDhGEjiWIHAsSeBYisCxNIFjGQLHsgSO5QgcyxM4ViBwrEjgWInAsTKBYxUCx6oEjtUIHKsTONYgcKxJ4FiLwLE2gWMdAse6BI71CBzrEzg2IHBsSODYiMCxMYFjEwLHpgSOzQgcmxM4vkLg2ILAsSWBYysCx1cJHFsTOLYhcGxL4NiOwLE9gWMHAscoAseOBI6dCBw7Ezh2IXDsSuDYjcCxO4FjDwLHngSOvQgcexM49iFw7Evg2I/AsT+B4wACx4EEjoMIHAcTOA4hcBxK4DiMwHE4geMIAseRBI6jCBxHEziOIXAcS+A4jsBxPIHjBALHiQSOkwgcJxM4TiFwnErgOI3AcTqB4wwCx5kEjrMIHGcTOM4hcJxL4DiPwHE+geMCAsfXCBwXEjguInBcTOC4hMBxKYHjMgLH1wkc3yBwXE7guILAcSWB4yoCx9UEjmsIHNcSOK4jcFxP4LiBwHEjgeMmAsfNBI5bCBzfJHDcSuC4jcBxO4HjWwSOOwgcdxI47iJw3E3guIfAcS+B4z4Cx7cJHPcTOB4gcDxI4HiIwPEwgeMRAsejBI7HCBzfIXA8TuB4gsDxXQLH9wgcTxI4niJwPE3geIbA8SyB4zkCx/MEju8TOH5A4HiBwPFDAseLBI6XCBw/InC8TOB4hcDxYwLHTwgcrxI4fkrgeI3A8TqB4w0Cx5sEjrcIHG8TOH5G4HiHwPFzAse7BI73CBzvEzh+QeD4gMDxSwLHrwgcHxI4fk3g+A2B47cEjt8ROH5P4PiIwPEHAscfCRwfEzj+ROD4M4HjEwLHXwgcfyVwfErg+BuB4+8Ejs8IHJ8TOP5B4BiQzP2OcQgc4xI4xiNwjE/gmIDAMSGBYyICx8QEjkkIHF8icExK4JiMwDE5gWMKAseUBI6pCBxTEzimIXBMS+CYjsAxPYHjywSOGQgcMxI4ZiJwzEzgmIXAMSuBYzYCx+wEjjkIHC0Cx5wEjrkIHAMJHIMIHIMJHHMTOOYhcMxL4JiPwDE/gWMBAseCBI6FCBwLEzgWIXAMIXD0EDiGEjiGETgWJXAMJ3AsRuBYnMAxgsAxksCxBIFjSQLHUgSOpQkcyxA4liVwLEfgWJ7AsQKBY0UCx0oEjpUJHKsQOFYlcKxG4FidwLEGgWNNAsdaBI61CRzrEDjWJXCsR+BYn8CxAYFjQwLHRgSOjQkcmxA4NiVwbEbg2JzA8RUCxxYEji0JHFsROL5K4NiawLENgWNbAsd2BI7tCRw7EDhGETh2JHDsRODYmcCxC4FjVwLHbgSO3QkcexA49iRw7EXg2JvAsQ+BY18Cx34Ejv0JHAcQOA4kcBxE4DiYwHEIgeNQAsdhBI7DCRxHEDiOJHAcReA4msBxDIHjWALHcQSO4wkcJxA4TiRwnETgOJnAcQqB41QCx2kEjtMJHGcQOM4kcJxF4DibwHEOgeNcAsd5BI7zCRwXEDi+RuC4kMBxEYHjYgLHJQSOSwkclxE4vk7g+AaB43ICxxUEjisJHFcROK4mcFxD4LiWwHEdgeN6AscNBI4bCRw3EThuJnDcQuD4JoHjVgLHbQSO2wkc3yJw3EHguJPAcReB424Cxz0EjnsJHPcROL5N4LifwPEAgeNBAsdDBI6HCRyPEDgeJXA8RuD4DoHjcQLHEwSO7xI4vkfgeJLA8RSB42kCxzMEjmcJHM8ROJ4ncHyfwPEDAscLBI4fEjheJHC8ROD4EYHjZQLHKwSOHxM4fkLgeJXA8VMCx2sEjtcJHG8QON4kcLxF4HibwPEzAsc7BI6fEzjeJXC8R+B4n8DxCwLHBwSOXxI4fkXg+JDA8WsCx28IHL8lcPyOwPF7AsdHBI4/EDj+SOD4mMDxJwLHnwkcnxA4/kLg+CuB41MCx98IHH8ncHxG4PicwPEPAseA5O53jEPgGJfAMR6BY3wCxwQEjgkJHBMROCYmcExC4PgSgWNSAsdkBI7JCRxTEDimJHBMReCYmsAxDYFjWgLHdASO6QkcXyZwzEDgmJHAMROBY2YCxywEjlkJHLMROGYncMxB4GgROOYkcMxF4BhI4BhE4BhM4JibwDEPgWNeAsd8BI75CRwLEDgWJHAsROBYmMCxCIFjCIGjh8AxlMAxjMCxKIFjOIFjMQLH4gqOGp4JLTnPOD6Olvefk+EfkoMUICVIBVKDNCAtSAfSg5dBBpARZAKZQRaQFWQD2UEOYIGcIBcIBEEgGOQGeUBekA/kBwWsv/IlfxjMIZu4eF5HO2GJvf/857XkDtdSOFxL6XAtlcO11A7X0jhcS+twLZ3DtfQO1152uJbB4VpGh2uZHK5ldriWxeFaVodr2RyuZXe4lsPhmuVwLafDtVwO1wIdrgU5XAt2uJbb4Voeh2t5Ha7lc7iW3+FaAe+1gAD5+jicHbGiRuIK39e37sJCihUtGlU8NMoT5mkbEhrZLiI8pGh4u2IRnghPeER4h9CIsLCoiKIRxSPbRRYPifQUDYvydAyPDOvovVlBS6eG7fta/4vzWkgpr4X+S15j6qyVV/u+Uo6FlfJa2Cevf37FE86D4Jrw+OYhpjktopTTIpbeHmCvU/s9QboGQpRyYd/3P32fianzMaW6PSZYtx6lvHp88vrnl3TdCq4Jj28eYprTUKWchlp670T2OrXf5aVrIEwpF2GWXt2eUKrbE4J1W1Qpr0Ut/boVXBMe3zzENKfhSjkNt3Tr1j5vS9dAMaVcFLP06vakUt2eFKzb4kp5LW7p163gmvD45iGmOY1QymmEpVu3dk9MugYilXIRaenV7Rmluj0jWLcllPJawtKvW8E14fHNQ0xzWlIppyUt3bq1+9bSNVBKKRelLL26Pa9Ut+cF67a0Ul5LW/p1K7gmPL55iGlOyyjltIylW7f2f1uSroGySrkoa+nV7QWlur0gWLfllPJaztKvW8E14fHNQ0xzWl4pp+Ut3bq1//uvdA1UUMpFBUuvbi8p1e0lwbqtqJTXipZ+3QquCY9vHmKa00pKOa1k6dat/TMa0jVQWSkXlS29ur2iVLdXBOu2ilJeq1j6dSu4Jjy+eYhpTqsq5bSqpVu39s9RSddANaVcVLP06vaqUt1eFazb6kp5rW7p163gmvD45iGmOa2hlNMalm7d2j/rKF0DNZVyUdPSq9vrSnV7XbBuaynltZalX7eCa8Ljm4eY5rS2Uk5rW7p1a/88snQN1FHKRR1Lr25vKdXtLcG6rauU17qWft0KrgmPbx5imtN6SjmtZ+nWrf07A9I1UF8pF/Utvbq9o1S3dwTrtoFSXhtY+nUruCY8vnmIaU4bKuW0oaVbt/bv9UjXQCOlXDSy9Or2nlLd3hOs28ZKeW1s6det4Jrw+OYhpjltopTTJpZu3dq/eyddA02VctHU0qvbB0p1+0Cwbpsp5bWZpV+3gmvC45uHmOa0uVJOm1u6dWv/fqx0DbyilItXLL26fahUtw8F67aFUl5bWPp1K7gmPL55iGlOWyrltKWlW7f277BL10ArpVy0svTq9luluv1WsG5fVcrrq5Z+3QquCY9vHmKa09ZKOW1t6dat/TkT0jXQRikXbSy9un2kVLePBOu2rVJe21r6dSu4Jjy+eYhpTtsp5bSdpVu39mfBSNdAe6VctLf06vaxUt0+FqzbDkp57WDp163gmvD45iGmOY1SymmUpVu39uc1SddAR6VcdLT06vaJUt0+EazbTkp57WTp163gmvD45iGmOe2slNPOlm7d2p+pJl0DXZRy0cXSq9unSnX7VLBuuyrltaulX7eCa8Ljm4eY5rSbUk67Wbp1a1nyNdBdKRfdLb26faZUt88E67aHUl57WPp1K7gmPL55iGlOeyrltKelW7c5Lfka6KWUi16WXt0G5NCp2wDBz8nsrZTX3pZ+3QquCY9vHmKa0z5KOe1j6dat/fnB0jXQVykXfS29uo2nVLfxBOu2n1Je+1n6dSu4Jjy+eYhpTvsr5bS/pVu3gZZ8DQxQysUAS69uEyrVbULBuh2olNeBln7dCq4Jj28eYprTQUo5HWTp1q39OfzSNTBYKReDLb26TaJUt0kE63aIUl6HWPp1K7gmPL55iGlOhyrldKilW7f235UhXQPDlHIxzNKr22RKdZtMsG6HK+V1uKVft4JrwuObh5jmdIRSTkdYunVr/3020jUwUikXIy29uk2pVLcpBet2lFJeR1n6dSu4Jjy+eYhpTkcr5XS0pVu39t85JV0DY5RyMcbSq9s0SnWbRrBuxyrldaylX7eCa8Ljm4eY5nScUk7HWbp1a/+9cNI1MF4pF+MtvbpNr1S36QXrdoJSXidY+nUruCY8vnmIaU4nKuV0oqVbt/bf3ShdA5OUcjHJ0qvbjEp1m1Gwbicr5XWypV+3gmvC45uHmOZ0ilJOp1i6dWv//arSNTBVKRdTLb26zaJUt1kE63aaUl6nWfp1K7gmPL55iGlOpyvldLqlW7e+f0m4VC5mKOVihqVXt9mV6ja7YN3OVMrrTEu/bgXXhMc3DzHN6SylnM7y5jQBSB7w17ry/ZJew48yxDgWj/fPYg66UvcO8c3FbOtff86xvAn5M4H2/xEn2jX7X7KiScVTTKLhvUK99/LYMUh5zbHkHm6CgL9y++dCTBdthUp/s4lILldoWo6RBI4lCBxLEjiWInAsTeBYhsCxLIFjOQLH8gSOFQgcKxI4ViJwrEzgWIXAsSqBYzUCx+oEjjUIHGsSONYicKxN4FiHwLEugWM9Asf6BI4NCBwbEjg2InBsTODYhMCxKYFjMwLH5gSOrxA4tiBwbEng2IrA8VUCx9YEjm0IHNsSOLYjcGxP4NiBwDGKwLEjgWMnAsfOBI5dCBy7Ejh2I3DsTuDYg8CxJ4FjLwLH3gSOfQgc+xI49iNw7E/gOIDAcSCB4yACx8EEjkMIHIcSOA4jcBxO4DiCwHEkgeMoAsfRBI5jCBzHEjiOI3AcT+A4gcBxIoHjJALHyQSOUwgcpxI4TiNwnE7gOIPAcSaB4ywCx9kEjnMIHOcSOM4jcJxP4LiAwPE1AseFBI6LCBwXEzguIXBcSuC4jMDxdQLHNwgclxM4riBwXEnguIrAcTWB4xoCx7UEjusIHNcTOG4gcNxI4LiJwHEzgeMWAsc3CRy3EjhuI3DcTuD4FoHjDgLHnQSOuwgcdxM47iFw3EvguI/A8W0Cx/0EjgcIHA8SOB4icDxM4HiEwPEogeMxAsd3CByPEzieIHB8l8DxPQLHkwSOpwgcTxM4niFwPEvgeI7A8TyB4/sEjh8QOF4gcPyQwPEigeMlAsePCBwvEzheIXD8mMDxEwLHqwSOnxI4XiNwvE7geIPA8SaB4y0Cx9sEjp8RON4hcPycwPEugeM9Asf7BI5fEDg+IHD8ksDxKwLHhwSOXxM4fkPg+C2B43cEjt8TOD4icPyBwPFHAsfHBI4/ETj+TOD4hMDxFwLHXwkcnxI4/kbg+DuB4zMCx+cEjn8QOAakcL9jHALHuASO8Qgc4xM4JiBwTEjgmIjAMTGBYxICx5cIHJMSOCYjcExO4JiCwDElgWMqAsfUBI5pCBzTEjimI3BMT+D4MoFjBgLHjASOmQgcMxM4ZiFwzErgmI3AMTuBYw4CR4vAMSeBYy4Cx0ACxyACx2ACx9wEjnkIHPMSOOYjcMxP4FiAwLEggWMhAsfCBI5FCBxDCBw9BI6hBI5hBI5FCRzDCRyLETgWJ3CMIHCMJHAsQeBYksCxFIFjaQLHMgSOZQkcyxE4lidwrEDgWJHAsRKBY2UCxyoEjlUJHKsROFYncKxB4FiTwLEWgWNtAsc6BI51CRzrETjWJ3BsQODYkMCxEYFjYwLHJgSOTQkcmxE4NidwfIXAsQWBY0sCx1YEjq8SOLYmcGxD4NiWwLEdgWN7AscOBI5RBI4dCRw7ETh2JnDsQuDYlcCxG4FjdwLHHgSOPQkcexE49iZw7EPg2JfAsR+BY38CxwEEjgMJHAcROA4mcBxC4DiUwHEYgeNwAscRBI4jCRxHETiOJnAcQ+A4lsBxHIHjeALHCQSOEwkcJxE4TiZwnELgOJXAcRqB43QCxxkEjjMJHGcROM4mcJxD4DiXwHEegeN8AscFBI6vETguJHBcROC4mMBxCYHjUgLHZQSOrxM4vkHguJzAcQWB40oCx1UEjqsJHNcQOK4lcFxH4LiewHEDgeNGAsdNBI6bCRy3EDi+SeC4lcBxG4HjdgLHtwgcdxA47iRw3EXguJvAcQ+B414Cx30Ejm8TOO4ncDxA4HiQwPEQgeNhAscjBI5HCRyPETi+Q+B4nMDxBIHjuwSO7xE4niRwPEXgeJrA8QyB41kCx3MEjucJHN8ncPyAwPECgeOHBI4XCRwvETh+ROB4mcDxCoHjxwSOnxA4XiVw/JTA8RqB43UCxxsEjjcJHG8RON4mcPyMwPEOgePnBI53CRzvETjeJ3D8gsDxAYHjlwSOXxE4PiRw/JrA8RsCx28JHL8jcPyewPERgeMPBI4/Ejg+JnD8icDxZwLHJwSOvxA4/krg+JTA8TcCx98JHJ8ROD4ncPyDwDEgpfsd4xA4xiVwjEfgGJ/AMQGBY0ICx0QEjokJHJMQOL5E4JiUwDEZgWNyAscUBI4pCRxTETimJnBMQ+CYlsAxHYFjegLHlwkcMxA4ZiRwzETgmJnAMQuBY1YCx2wEjtkJHHMQOFoEjjkJHHMROAYSOAYROAYTOOYmcMxD4JiXwDEfgWN+AscCBI4FCRwLETgWJnAsQuAYQuDoIXAMJXAMI3AsSuAYTuBYjMCxOIFjBIFjJIFjCQLHkgSOpQgcSxM4liFwLEvgWI7AsTyBYwUCx4oEjpUIHCsTOFYhcKxK4FiNwLE6gWMNAseago7xAv76mmv968953j/nW3+5/1sQYSHFihaNKh4a5QnztA0JjWwXER5SNLxdsQhPhCc8IrxDaERYWFRE0Yjike0ii4dEeoqGRXk6hkeGdfROPNuSS4jtFs/raAdhef/5z2vzHK7N917Tis2+f1zhBz/fknNcYMkvdPsrruI6iem9XhNcc07rJiRmXx77mdiO0utxoeCz9q2hhT419J+ef0jMvjwL3Pn8QxJ4Y40f8O9f0utirqVTq9Ke80g851uy9ZAuboDq849ITtAcJHAsQeBYksCxFIFjaQLHMgSOZQkcyxE4lidwrEDgWJHAsRKBY2UCxyoEjlUJHKsROFYncKxB4FiTwLEWgWNtAsc6BI51CRzrETjWJ3BsQODYkMCxEYFjYwLHJgSOTQkcmxE4NidwfIXAsQWBY0sCx1YEjq8SOLYmcGxD4NiWwLEdgWN7AscOBI5RBI4dCRw7ETh2JnDsQuDYlcCxG4FjdwLHHgSOPQkcexE49iZw7EPg2JfAsR+BY38CxwEEjgMJHAcROA4mcBxC4DiUwHEYgeNwAscRBI4jCRxHETiOJnAcQ+A4lsBxHIHjeALHCQSOEwkcJxE4TiZwnELgOJXAcRqB43QCxxkEjjMJHGcROM4mcJxD4DiXwHEegeN8AscFBI6vETguJHBcROC4mMBxCYHjUgLHZQSOrxM4vkHguJzAcQWB40oCx1UEjqsJHNcQOK4lcFxH4LiewHEDgeNGAsdNBI6bCRy3EDi+SeC4lcBxG4HjdgLHtwgcdxA47iRw3EXguJvAcQ+B414Cx30Ejm8TOO4ncDxA4HiQwPEQgeNhAscjBI5HCRyPETi+Q+B4nMDxBIHjuwSO7xE4niRwPEXgeJrA8QyB41kCx3MEjucJHN8ncPyAwPECgeOHBI4XCRwvETh+ROB4mcDxCoHjxwSOnxA4XiVw/JTA8RqB43UCxxsEjjcJHG8RON4mcPyMwPEOgePnBI53CRzvETjeJ3D8gsDxAYHjlwSOXxE4PiRw/JrA8RsCx28JHL8jcPyewPERgeMPBI4/Ejg+JnD8icDxZwLHJwSOvxA4/krg+JTA8TcCx98JHJ8ROD4ncPyDwDEghfsd4xA4xiVwjEfgGJ/AMQGBY0ICx0QEjokJHJMQOL5E4JiUwDEZgWNyAscUBI4pCRxTETimJnBMQ+CYlsAxHYFjegLHlwkcMxA4ZiRwzETgmJnAMQuBY1YCx2wEjtkJHHMQOFoEjjkJHHMROAYSOAYROAYTOOYmcMxD4JiXwDEfgWN+AscCBI4FCRwLETgWJnAsQuAYQuDoIXAMJXAMI3AsSuAYTuBYjMCxOIFjBIFjJIFjCQLHkgSOpQgcSxM4liFwLEvgWI7AsTyBYwUCx4oEjpUIHCsTOFYhcKxK4FiNwLE6gWMNAseaBI61CBxrEzjWIXCsS+BYj8CxPoFjAwLHhgSOjQgcGxM4NiFwbErg2IzAsTmB4ysEji0IHFsSOLYicHyVwLE1gWMbAse2BI7tCBzbEzh2IHCMInDsSODYicCxM4FjFwLHrgSO3QgcuxM49iBw7Eng2IvAsTeBYx8Cx74Ejv0IHPsTOA4gcBxI4DiIwHEwgeMQAsehBI7DCByHEziOIHAcSeA4isBxNIHjGALHsQSO4wgcxxM4TiBwnEjgOInAcTKB4xQCx6kEjtMIHKcTOM4gcJxJ4DiLwHE2geMcAse5BI7zCBznEzguIHB8jcBxIYHjIgLHxQSOSwgclxI4LiNwfJ3A8Q0Cx+UEjisIHFcSOK4icFxN4LiGwHEtgeM6Asf1BI4bCBw3EjhuInDcTOC4hcDxTQLHrQSO2wgctxM4vkXguIPAcSeB4y4Cx90EjnsIHPcSOO4jcHybwHE/geMBAseDBI6HCBwPEzgeIXA8SuB4jMDxHQLH4wSOJwgc3yVwfI/A8SSB4ykCx9MEjmcIHM8SOJ4jcDxP4Pg+geMHBI4XCBw/JHC8SOB4icDxIwLHywSOVwgcPyZw/ITA8SqB46cEjtcIHK8TON4gcLxJ4HiLwPE2geNnBI53CBw/J3C8S+B4j8DxPoHjFwSODwgcvyRw/IrA8SGB49cEjt8QOH5L4PgdgeP3BI6PCBx/IHD8kcDxMYHjTwSOPxM4PiFw/IXA8VcCx6cEjr8ROP5O4PiMwPE5geMfBI4BKd3vGIfAMS6BYzwCx/gEjgkIHBMSOCYicExM4JiEwPElAsekBI7JCByTEzimIHBMSeCYisAxNYFjGgLHtASO6Qgc0xM4vkzgmIHAMSOBYyYCx8wEjlkIHLMSOGYjcMxO4JiDwNEicMxJ4JiLwDGQwDGIwDGYwDE3gWMeAse8BI75CBzzEzgWIHAsSOBYiMCxMIFjEQLHEAJHD4FjKIFjGIFjUQLHcALHYgSOxQkcIwgcIwkcSxA4liRwLEXgWJrAsQyBY1kCx3IEjuUJHCsQOFYkcKxE4FiZwLEKgWNVAsdqBI7VCRxrEDjWFHSM4+Noef95Ef5hMVgCloJl4HXwBlgOVoCVYBVYDdaAtWAdWA82gI1gE9gMtoA3wVawDWwHb4EdYCfYBXaDPWCv9Ve+xBO3wJJNXDyvo52wxN5//vPaYodrSxyuLXW4tszh2usO195wuLbc4doKh2srHa6tcri22uHaGodrax2urXO4tt7h2gaHaxsdrm1yuLbZ4doWh2tvOlzb6nBtm8O17Q7X3nK4tsPh2k6Ha7scru12uLbH4dpe7zXfr3jeP8t5/wyJ2Zcn1PrrXmEhxYoWjSoeGuUJ87QNCY1sFxEeUjS8XbEIT4QnPCK8Q2hEWFhURNGI4pHtIouHRHqKhkV5OoZHhnX03myR4L32WXL1mwD3SBbgs9n4fEnvO5Levr5vW4rC9s2l77tfcDFoxb3f+ivBQvcNCfD5ki7WcEsup4sF73XA4ixWSW9f34OWorB9c+n7HrLcXax23IesvxIsdF/VYo2w5HK6RPBehy3OYpX09vU9YikK2zeXvu9Ry93Fasd91PorwUL3VXG13wAOOTyjmOb1mMWxSZW05GJeKnivdyzOTUrS29f3uKUofNySv+8Jy92blB33CeuvBAvdV8XV3kyPWfKb1LsWxyZVxpKLeZngvd6zODcpSW9f35OWovBJS/6+pyx3b1J23KesvxIsdF8VV3szfdeS36ROWxybVHlLLubXBe91xuLcpCS9fX3PWorCZy35+56z3L1J2XGfs/5KsNB9VVztzfS0Jb9Jnbc4NqlKllzMbwje632Lc5OS9Pb1/cBSFP7Akr/vBcvdm5Qd9wXrrwQL3VfF1d5Mz1vym9SHFscmVdWSi3m54L0uWpyblKS3r+8lS1H4kiV/348sd29SdtwfWX8lWOi+Kq72ZvqhJb9JXbY4NqkallzMKwTvdcXi3KQkvX19P7YUhT+25O/7ieXuTcqO+xPrrwQL3VfF1d5ML1vym9RVi2OTqm3JxbxS8F6fWpyblKS3r+81S1H4miV/3+uWuzcpO+7r1l8JFrqviqu9mV615DepGxbHJlXPkot5leC9blqcm5Skt6/vLUtR+JYlf9/blrs3KTvu29ZfCRa6r4qrvZnesOQ3qc8sjk2qoSUX82rBe92xODcpSW9f388tReHPLfn73rXcvUnZcd+1/kqw0H1VXO3N9DNLfpO6Z3FsUk0suZjXCN7rvsW5SUl6+/p+YSkKf2HJ3/eB5e5Nyo77gfVXgoXuq+Jqb6b3LPlN6kuLY5NqbsnFvFbwXl9ZnJuUpLev70NLUfihJX/fry13b1J23F9bfyVY6L4qrvZm+qUlv0l9Y3FsUi0tuZjXCd7rW4tzk5L09vX9zlIU/s6Sv+/3lrs3KTvu762/Eix0XxVXezP9xpLfpB5ZHJtUa0su5vWC9/rB4tykJL19fX+0FIV/tOTv+9hy9yZlx/3Y+ivBQvdVcbU300eW/Cb1k8WxSbWz5GLeIHivny3OTUrS29f3iaUo/MSSv+8vlrs3KTvuX6y/Eix0XxVXezP9yZLfpH61ODapKEsu5o2C93pqcW5Skt6+vr9ZisK/WfL3/d1y9yZlx/279VeChe6r4mpvpr9a8pvUM4tjk+psycW8SfBezy3OTUrS29f3D0tR+A9L/r4BOd29Sdlx244BsvdVcbU302eW/CYVJyfHJtXNkot5s+C94ubk3KQkvX194+VUFLZvLn3f+C7fpOy445NsUvZmGien/CaVgGST6mnJxbxF8F4JSTephEqbVKKcisKJFDapxC7fpOy4E5NsUvZmmkBhk0pCskn1seRiflPwXi+RblIvKW1SSXMqCidV2KSSuXyTsuNORrJJ2ZtpEoVNKjnJJtXfkot5q+C9UpBuUimUNqmUORWFUypsUqlcvknZcaci2aTszTS5wiaVmmSTGmTJxbxN8F5pSDepNEqbVNqcisJpFTapdC7fpOy405FsUvZmmlphk0pPskkNteRi3i54r5dJN6mXlTapDDkVhTMobFIZXb5J2XFnJNmk7M00vcImlYlkkxphycX8luC9MpNuUpmVNqksORWFsyhsUlldvknZcWcl2aTszTSTwiaVjWSTGm3JxbxD8F7ZSTep7EqbVI6cisI5FDYpy+WblB23RbJJ2ZtpNoVNKifJJjXOkot5p+C9cpFuUrmUNqnAnIrCgQqbVJDLNyk77iCSTcreTHMqbFLBJJvUREsu5l2C98pNuknlVtqk8uRUFM6jsEnldfkmZcedl2STsjfTYIVNKh/JJjXFkot5t+C98pNuUvmVNqkCORWFCyhsUgVdvknZcRck2aTszTSfwiZViGSTmm7JxbxH8F6FSTepwkqbVJGcisJFFDapEJdvUnbcISSblL2ZFlLYpDwkm9QsSy7mvYL3CiXdpEKVNqmwnIrCYQqbVFGXb1J23EVJNil7M/UobFLhOd0dt/18whXiLubyuBdYAQHFFOK27ysVt72p2t+M4gf8+5d0PuZaOt9MpT3nkXjOt2S/SaWLG6D6/COSy+dV2jGSwLEEgWNJAsdSBI6lCRzLEDiWJXAsR+BYnsCxAoFjRQLHSgSOlQkcqxA4ViVwrEbgWJ3AsQaBY00Cx1oEjrUJHOsQONYlcKxH4FifwLEBgWNDAsdGBI6NCRybEDg2JXBsRuDYnMDxFQLHFgSOLQkcWxE4vkrg2JrAsQ2BY1sCx3YEju0JHDsQOEYROHYkcOxE4NiZwLELgWNXAsduBI7dCRx7EDj2JHDsReDYm8CxD4FjXwLHfgSO/QkcBxA4DiRwHETgOJjAcQiB41ACx2EEjsMJHEcQOI4kcBxF4DiawHEMgeNYAsdxBI7jCRwnEDhOJHCcROA4mcBxCoHjVALHaQSO0wkcZxA4ziRwnEXgOJvAcQ6B41wCx3kEjvMJHBcQOL5G4LiQwHERgeNiAsclBI5LCRyXETi+TuD4BoHjcgLHFQSOKwkcVxE4riZwXEPguJbAcR2B43oCxw0EjhsJHDcROG4mcNxC4PgmgeNWAsdtBI7bCRzfInDcQeC4k8BxF4HjbgLHPQSOewkc9xE4vk3guJ/A8QCB40ECx0MEjocJHI8QOB4lcDxG4PgOgeNxAscTBI7vEji+R+B4ksDxFIHjaQLHMwSOZwkczxE4nidwfJ/A8QMCxwsEjh8SOF4kcLxE4PgRgeNlAscrBI4fEzh+QuB4lcDxUwLHawSO1wkcbxA43iRwvEXgeJvA8TMCxzsEjp8TON4lcLxH4HifwPELAscHBI5fEjh+ReD4kMDxawLHbwgcvyVw/I7A8XsCx0cEjj8QOP5I4PiYwPEnAsefCRyfEDj+QuD4K4HjUwLH3wgcfydwfEbg+JzA8Q8Cx4AU7neMQ+AYl8AxHoFjfALHBASOCQkcExE4JiZwTELg+BKBY1ICx2QEjskJHFMQOKYkcExF4JiawDENgWNaAsd0BI7pCRxfJnDMQOCYkcAxE4FjZgLHLASOWQkcsxE4ZidwzEHgaBE45iRwzEXgGEjgGETgGEzgmJvAMQ+BY14Cx3wEjvkJHAsQOBYkcCxE4FiYwLEIgWMIgaOHwDGUwDGMwLEogWM4gWMxAsfiBI4RBI6RBI4lCBxLEjiWInAsTeBYhsCxLIFjOQLH8gSOFQgcKxI4ViJwrEzgWIXAsSqBYzUCx+oEjjUIHGsSONYicKxN4FiHwLEugWM9Asf6BI4NCBwbEjg2InBsTODYhMCxKYFjMwLH5gSOrxA4tiBwbEng2IrA8VUCx9YEjm0IHNsSOLYjcGxP4NiBwDGKwLEjgWMnAsfOBI5dCBy7Ejh2I3DsTuDYg8CxJ4FjLwLH3gSOfQgc+xI49iNw7E/gOIDAcSCB4yACx8EEjkMIHIcSOA4jcBxO4DiCwHEkgeMoAsfRBI5jCBzHEjiOI3AcT+A4gcBxIoHjJALHyQSOUwgcpxI4TiNwnE7gOIPAcSaB4ywCx9kEjnMIHOcSOM4jcJxP4LiAwPE1AseFBI6LCBwXEzguIXBcSuC4jMDxdQLHNwgclxM4riBwXEnguIrAcTWB4xoCx7UEjusIHNcTOG4gcNxI4LiJwHEzgeMWAsc3CRy3EjhuI3DcTuD4FoHjDgLHnQSOuwgcdxM47iFw3EvguI/A8W0Cx/0EjgcIHA8SOB4icDxM4HiEwPEogeMxAsd3CByPEzieIHB8l8DxPQLHkwSOpwgcTxM4niFwPEvgeI7A8TyB4/sEjh8QOF4gcPyQwPEigeMlAsePCBwvEzheIXD8mMDxEwLHqwSOnxI4XiNwvE7geIPA8SaB4y0Cx9sEjp8RON4hcPycwPEugeM9Asf7BI5fEDg+IHD8ksDxKwLHhwSOXxM4fkPg+C2B43cEjt8TOD4icPyBwPFHAsfHBI4/ETj+TOD4hMDxFwLHXwkcnxI4/kbg+DuB4zMCx+cEjn8QOAakdL9jHALHuASO8Qgc4xM4JiBwTEjgmIjAMTGBYxICx5cIHJMSOCYjcExO4JiCwDElgWMqAsfUBI5pCBzTEjimI3BMT+D4MoFjBgLHjASOmQgcMxM4ZiFwzErgmI3AMTuBYw4CR4vAMSeBYy4Cx0ACxyACx2ACx9wEjnkIHPMSOOYjcMxP4FiAwLEggWMhAsfCBI5FCBxDCBw9BI6hBI5hBI5FCRzDCRyLETgWJ3CMIHCMJHAsQeBYksCxFIFjaQLHMgSOZQkcyxE4lidwrEDgWJHAsRKBY2UCxyoEjlUJHKsROFYncKxB4FhT0DGuj2OY95+L5wwIiACRoAQoCUqB0qAMKAvKgfKgAqgIKoHKoAqoCqqB6qAGqAlqgdqgDqgL6oH6oAFoCBqBxqAJaAqagebgFdACtAStwKugNWgD2oJ2oD3oAKJAR9AJdAZdcv4rnq45/3oG4g9jgSX3MGy3eF5H+yFY3n/+81qEw7VIh2slHK6VdLhWyuFaaYdrZRyulXW4Vs7hWnmHaxUcrlV0uFbJ4Vplh2tVHK5VdbhWzeFadYdrNRyu1XS4VsvhWm2Ha3UcrtV1uFbP4Vp9h2sNHK41dLjWyOFaY4drTRyuNXW41szhWnOHa684XGvhcK2lw7VWDtdedbjW2uFaG4drbR2utXO41t7hWgeHa1EO1zo6XOvkcK2zw7UuDte6eq/FB/kC/t/dmH2//vxGVM77Z1hIsaJFo4qHRnnCPG1DQiPbRYSHFA1vVyzCE+EJjwjvEBoRFhYVUTSieGS7yOIhkZ6iYVGejuGRYR29e6mdQ6l7dcsptcd7PAlwj2QBPt+QfL7iRMtBSMy+PHLe//re9OdX95yKwvbNpe/bQ3AxaMXdw6cohO6r4mq/8PRweEYxzWvPnO6Ouwji7qkQdy/BuO1vIJkD/v1LMq8aue2V0/2OvaUdpb/j/VmYUgHbi90OOq5wIn1PTDGNuY/LNw071j4Km0Zf4e/sf7559vW+edpvKcl91qjvl+abWkjMvjwC68Hz5z84hC52b9+89vN+4++fM+Dvx4B+3oXje62/9wH5fsUneSCGXqFeL08/wbe4/sILRbrA7Y2jH8cbYZjWJjdAaZMb4FNDLLkYKPyWmC/g37+k7h+gk1uPZA60HAdJO2otUDe/1Q1WKvzBfih8N+d1SOwm4hlCsIkMdfkm8j+LcqjCd7lhBMe5YQpxD1fa8IY7nBakjm9RHe2vKMn/AOqRfP72ETa+T7x2PtLF/XsupNdHRHL3by6RBI4lCBxLEjiWInAsTeBYhsCxLIFjOQLH8gSOFQgcKxI4ViJwrEzgWIXAsSqBYzUCx+oEjjUIHGsSONYicKxN4FiHwLEugWM9Asf6BI4NCBwbEjg2InBsTODYhMCxKYFjMwLH5gSOrxA4tiBwbEng2IrA8VUCx9YEjm0IHNsSOLYjcGxP4NiBwDGKwLEjgWMnAsfOBI5dCBy7Ejh2I3DsTuDYg8CxJ4FjLwLH3gSOfQgc+xI49iNw7E/gOIDAcSCB4yACx8EEjkMIHIcSOA4jcBxO4DiCwHEkgeMoAsfRBI5jCBzHEjiOI3AcT+A4gcBxIoHjJALHyQSOUwgcpxI4TiNwnE7gOIPAcSaB4ywCx9kEjnMIHOcSOM4jcJxP4LiAwPE1AseFBI6LCBwXEzguIXBcSuC4jMDxdQLHNwgclxM4riBwXEnguIrAcTWB4xoCx7UEjusIHNcTOG4gcNxI4LiJwHEzgeMWAsc3CRy3EjhuI3DcTuD4FoHjDgLHnQSOuwgcdxM47iFw3EvguI/A8W0Cx/0EjgcIHA8SOB4icDxM4HiEwPEogeMxAsd3CByPEzieIHB8l8DxPQLHkwSOpwgcTxM4niFwPEvgeI7A8TyB4/sEjh8QOF4gcPyQwPEigeMlAsePCBwvEzheIXD8mMDxEwLHqwSOnxI4XiNwvE7geIPA8SaB4y0Cx9sEjp8RON4hcPycwPEugeM9Asf7BI5fEDg+IHD8ksDxKwLHhwSOXxM4fkPg+C2B43cEjt8TOD4icPyBwPFHAsfHBI4/ETj+TOD4hMDxFwLHXwkcnxI4/kbg+DuB4zMCx+cEjn8QOAakcL9jHALHuASO8Qgc4xM4JiBwTEjgmIjAMTGBYxICx5cIHJMSOCYjcExO4JiCwDElgWMqAsfUBI5pCBzTEjimI3BMT+D4MoFjBgLHjASOmQgcMxM4ZiFwzErgmI3AMTuBYw4CR4vAMSeBYy4Cx0ACxyACx2ACx9wEjnkIHPMSOOYjcMxP4FiAwLEggWMhAsfCBI5FCBxDCBw9BI6hBI5hBI5FCRzDCRyLETgWJ3CMIHCMJHAsQeBYksCxFIFjaQLHMgSOZQkcyxE4lidwrEDgWJHAsRKBY2UCxyoEjlUJHKsROFYncKxB4FiTwLEWgWNtAsc6BI51CRzrETjWJ3BsQODYkMCxEYFjYwLHJgSOTQkcmxE4NidwfIXAsQWBY0sCx1YEjq8SOLYmcGxD4NiWwLEdgWN7AscOBI5RBI4dCRw7ETh2JnDsQuDYlcCxG4FjdwLHHgSOPQkcexE49iZw7EPg2JfAsR+BY38CxwEEjgMJHAcROA4mcBxC4DiUwHEYgeNwAscRBI4jCRxHETiOJnAcQ+A4lsBxHIHjeALHCQSOEwkcJxE4TiZwnELgOJXAcRqB43QCxxkEjjMJHGcROM4mcJxD4DiXwHEegeN8AscFBI6vETguJHBcROC4mMBxCYHjUgLHZQSOrxM4vkHguJzAcQWB40oCx1UEjqsJHNcQOK4lcFxH4LiewHEDgeNGAsdNBI6bCRy3EDi+SeC4lcBxG4HjdgLHtwgcdxA47iRw3EXguJvAcQ+B414Cx30Ejm8TOO4ncDxA4HiQwPEQgeNhAscjBI5HCRyPETi+Q+B4nMDxBIHjuwSO7xE4niRwPEXgeJrA8QyB41kCx3MEjucJHN8ncPyAwPECgeOHBI4XCRwvETh+ROB4mcDxCoHjxwSOnxA4XiVw/JTA8RqB43UCxxsEjjcJHG8RON4mcPyMwPEOgePnBI53CRzvETjeJ3D8gsDxAYHjlwSOXxE4PiRw/JrA8RsCx28JHL8jcPyewPERgeMPBI4/Ejg+JnD8icDxZwLHJwSOvxA4/krg+JTA8TcCx98JHJ8ROD4ncPyDwDEgpfsd4xA4xiVwjEfgGJ/AMQGBY0ICx0QEjokJHJMQOL5E4JiUwDEZgWNyAscUBI4pCRxTETimJnBMQ+CYlsAxHYFjegLHlwkcMxA4ZiRwzETgmJnAMQuBY1YCx2wEjtkJHHMQOFoEjjkJHHMROAYSOAYROAYTOOYmcMxD4JiXwDEfgWN+AscCBI4FCRwLETgWJnAsQuAYQuDoIXAMJXAMI3AsSuAYTuBYjMCxOIFjBIFjJIFjCQLHkgSOpQgcSxM4liFwLEvgWI7AsTyBYwUCx4oEjpUIHCsTOFYhcKxK4FiNwLE6gWMNAseaCo4anoNyynnG8XG0vP88AvcfCUaB0WAMGAvGgfFgApgIJoHJYAqYCqaB6WAGmAlmgdlgDpgL5oH5YAF4DSwEi8BisAQsBcty/pUv8cQtsGQTF8/raCcssfef/7w20uHaKIdrox2ujXG4Ntbh2jiHa+Mdrk1wuDbR4dokh2uTHa5Ncbg21eHaNIdr0x2uzXC4NtPh2iyHa7Mdrs1xuDbX4do8h2vzHa4tcLj2msO1hQ7XFjlcW+xwbYnDtaUO15Z5rwUEKDS8LcQK4grf17fuwkKKFS0aVTw0yhPmaRsSGtkuIjykaHi7YhGeCE94RHiH0IiwsKiIohHFI9tFFg+J9BQNi/J0DI8M6+i92es5dWrYvq/1vzivbyjl9Y3/kteYOmvltYhgXpcr5XW5T17//IonnAfBNeHxzUNMc7pCKacrFPcAe52OyClfAyuVcrHyv3yfialzqKVTt/Z9pRxXKeV1lU9eA5TqVnBNeFYJ1u1qpZyuVnwnstfpSIW6XaOUizWKdRtu6dStfV8px7VKeV3rh7oVXBOetYJ1u04pp+uU63aUQt2uV8rFesW6jbB06ta+r5TjBqW8bvBD3QquCc8GwbrdqJTTjcp1O1qhbjcp5WKTYt2WtHTq1r6vlONmpbxu9kPdCq4Jz2bBut2ilNMtynU7RqFu31TKxZuKdVvG0qlb+75SjluV8rrVD3UruCY8WwXrdptSTrcp1+1YhbrdrpSL7Yp1W97SqVv7vlKObynl9S0/1K3gmvC8JVi3O5RyukO5bscp1O1OpVzsVKzbSpZO3dr3lXLcpZTXXX6oW8E14dklWLe7lXK6W7luxyvU7R6lXOxRrNuqlk7d2veVctyrlNe9fqhbwTXh2StYt/uUcrpPuW4nKNTt20q5eFuxbmtYOnVr31fKcb9SXvf7oW4F14Rnv2DdHlDK6QHlup2oULcHlXJxULFua1s6dWvfV8rxkFJeD/mhbgXXhOeQYN0eVsrpYeW6naRQt0eUcnFEsW7rWTp1a99XyvGoUl6P+qFuBdeE56hg3R5Tyukx5bqdrFC37yjl4h3Fum1o6dStfV8px+NKeT3uh7oVXBOe44J1e0IppyeU63aKQt2+q5SLdxXrtomlU7f2faUc31PK63t+qFvBNeF5T7BuTyrl9KRy3U5VqNtTSrk4pVi3zS2durXvK+V4Wimvp/1Qt4JrwnNasG7PKOX0jHLdTlOo27NKuTirWLctLZ26te8r5XhOKa/n/FC3gmvCc06wbs8r5fS8ct1OV6jb95Vy8b5i3ba2dOrWvq+U4wdKef3AD3UruCY8HwjW7QWlnF5QrtsZCnX7oVIuPlSs23aWTt3a95VyvKiU14t+qFvBNeG5KFi3l5Ryekm5bmcq1O1HSrn4SLFuoyydurXvK+V4WSmvl/1Qt4JrwnNZsG6vKOX0inLdzlKo24+VcvGxYt12tnTq1r6vlOMnSnn9xA91K7gmPJ8I1u1VpZxeVa7b2Qp1+6lSLj5VrNtulk7d2veVcrymlNdrfqhbwTXhuSZYt9eVcnpduW7nKNTtDaVc3FCs256WTt3a95VyvKmU15t+qFvBNeG5KVi3t5Ryeku5bucq1O1tpVzcVqzbPpZO3dr3lXL8TCmvn/mhbgXXhOczwbq9o5TTO8p1O0+hbj9XysXninXb39KpW/u+Uo53lfJ61w91K7gmPHcF6/aeUk7vKdftfIW6va+Ui/uKdTvI0qlb+75Sjl8o5fULP9St4JrwfCFYtw+UcvpAuW4XKNTtl0q5+FKxbodaOnVr31fK8SulvH7lh7oVXBOerwTr9qFSTh8q1+1rCnX7tVIuvlas2xGWTt3a95Vy/EYpr9/4oW4F14TnG8G6/VYpp98q1+1Chbr9TikX3ynW7WhLp27t+0o5fq+U1+/9ULeCa8LzvWDdPlLK6SPlul2kULc/KOXiB8W6HWfp1K19XynHH5Xy+qMf6lZwTXh+FKzbx0o5faxct4sV6vYnpVz8pFi3Ey2durXvK+X4s1Jef/ZD3QquCc/PgnX7RCmnT5TrdolC3f6ilItfFOt2iqVTt/Z9pRx/Vcrrr36oW8E14flVsG6fKuX0qXLdLlWo29+UcvGbYt1Ot3Tq1r6vlOPvSnn93Q91K7gmPL8L1u0zpZw+U67bZQp1+1wpF88V63aWpVO39n2lHP9QyusffqhbwTXh+UOwbgNy6eTUvq+d0wRe4vis28rRci1d17VSysWk5VibwLEOgWNdAsd6BI71CRwbEDg2JHBsRODYmMCxCYFjUwLHZgSOzQkcXyFwbEHg2JLAsRWB46sEjq0JHNsQOLYlcGxH4NiewLEDgWMUgWNHAsdOBI6dCRy7EDh2JXDsRuDYncCxB4FjTwLHXgSOvQkc+xA49iVw7Efg2J/AcQCB40ACx0EEjoMJHIcQOA4lcBxG4DicwHEEgeNIAsdRBI6jCRzHEDiOJXAcR+A4nsBxAoHjRALHSQSOkwkcpxA4TiVwnEbgOJ3AcQaB40wCx1kEjrMFHf/8uez/8cz1rz/jev+Ml8sr/+cPIdv/ghXtWlzvNd8v6YBtkT/vFdMf0LZ/eDohiB/w71/S3nFyyS8mDc+4Sp4B0vkMiP1h95DYH3YXc4z9YXcZx9gfdpdxjP1hdxnH2B92l3GM/WF3GcfYH3aXcYz9YXcZx9gfdpdxjP1hdxnH2B92l3GM/WF3GcfYH3aXcYz9YXcZx9gfdpdxjP1hdxnH2B92l3GM/WF3GcfYH3aXcYz9YXcZx9gfdpdxjP1hdxnH2B92l3GM/WF3GcfYH3aXcYz9YXcZx9gfdpdxjP1hdxnH2B92l3GM/WF3GcfYH3aXcYz9YXcZx9gfdpdx/N/2w+5xfBwt7z/HzxUQkAAkBIlAYpAEvASSgmQgOUgBUoJUIDVIA9KCdCA9eBlkABlBJpAZZAFZQTaQHeQAFsgJcoHAXAF//2F6WyZxtGsJHK4ldLiWyOFaYodrSRyuveRwLanDtWQO15I7XEvhcC2lw7VUDtdSO1xL43AtrcO1dA7X0jtce9nhWgaHaxkdrmVyuJbZ4VoWh2tZHa5lc7iW3eFaDodrlsO1nA7XcjlcC8z175/SH9f7ZznvnzH9ZYvVOeU2Ars2hO4VohnzOsGYE5DEvFEw5oQkMW8RjDkRSczbBGNOTBLzDsGYk5DEvFsw5pdIYt4nGHNSkpgPCMacjCTmw4IxJyeJ+ZhgzClIYj4hGHNKkphPCsaciiTmM4IxpyaJ+bxgzGlIYr4gGHNakpgvCcacjiTmK4IxpyeJ+apgzC+TxHxdMOYMJDHfEow5I0nMdwRjzkQS8z3BmDOTxPxAMOYsJDE/FIw5K0nM3wrGnI0k5keCMWcnifmxYMw5SGJ+IhizRRLzU8GYc5LE/Eww5lwkMQv+zeSeQMGY7Q/kSxQQ+4F8vp6xH8j31xyxH8gn4xj7gXwyjrEfyCfjGPuBfDKOsR/IJ+MY+4F8Mo6xH8gn4xj7gXwyjrEfyCfjGPuBfDKOsR/IJ+MY+4F8Mo6xH8gn4xj7gXwyjrEfyCfjGPuBfDKOsR/IJ+MY+4F8Mo6xH8gn4xj7gXwyjrEfyCfjGPuBfDKOsR/IJ+MY+4F8Mo6xH8gn4xj7gXwyjrEfyCfjGPuBfDKOsR/IJ+MY+4F8Mo6xH8gn4xj7gXwyjrEfyCfjGPuBfDKOkh/IF9fHMaH3n4NyBQQEg9wgD8gL8uX61/+XP1fA3z/EzP6XrWjXgh2u5Xa4lsfhWl6Ha/m813y/pJNqB/bnvUx/0D+q47++4vkk0/dLyFVtYQXlcr9jAUlH+zcfkgf89ZsemgusgEJy5ReXJ8Q3FwW9VV8oetXb/0f8aNcK5fr3XyGJp5jEGFapp6DAvf781Z5CSg83brT8xdRTMubCcjGH2oWYLOCvovP9ki5EQe8QX98iuRSF7ZtL3zdEcDFoxR2S668EC92XpsA8cgs1zJ8F5lEqsNBcisKhCgUW5vICs+MOUyqw6K4xjT/E6xpXOAchudz5vO2CtT8c2veAFvuLnrG/6CnlGPuLnjKOsb/oKeMY+4ueMo6xv+gp4xj7i54yjrG/6CnjGPuLnjKOsb/oKeMY+4ueMo6xv+gp4xj7i54yjrG/6CnjGPuLnjKOsb/oKeMY+4ueMo6xv+gp4xj7i54yjrG/6CnjGPuLnjKOsb/oKeMY+4ueMo6xv+gp4xj7i54yjrG/6CnjGPuLnjKOsb/oKeMY+4ueMo6xv+gp4xj7i54yjrG/6CnjGPuLnjKOsb/oKeP4v+0XPQN8vtz8e4NxfBwt7z8Xxf3DQTFQHESASFAClASlQGlQBpS1XUB5UAFUBJVAZVAFVAXVQHVQA9QEtUBtUAfUBfVAfdAANMwV8Pdfc7NlEke7Fu5wrZjDteIO1yIcrkU6XCvhcK2kw7VSDtdKO1wr43CtrMO1cg7Xyjtcq+BwraLDtUoO1yo7XKvicK2qw7VqDteqO1yr4XCtpsO1Wg7Xajtcq+Nwra7DtXoO1+o7XGvgcK2h95o/f0+1aC6dTSdA1PPvv6faKNe//mwcvVjt/yP676k2zqX/e6q+SYzp76k2ErjXn79V0ljp4cYVfriSMTcR/u705zpq4i1Ot68jpzzE9F5NlXLa9AVseOGEG14z74bXPPqG18xhw2vuhw0vXHDDaya4UJuTbHiSMb+iVJyv+GHDC1fKQ0zv1UIppy1ewIZXjHDDa+nd8FpF3/BaOmx4rfyw4RUT3PBaCi7UViQbnmTMryoV56t+2PCKKeUhpvdqrZTT1i9gwytOuOG18W54baNveG0cNry2ftjwigtueG0EF2pbkg1PMuZ2SsXZzg8bXnGlPMT0Xu2Vctr+BWx4EYQbXgfvhhcVfcPr4LDhRflhw4sQ3PA6CC7UKJINTzLmjkrF2dEPG16EUh5ieq9OSjnt9AI2vEjCDa+zd8PrEn3D6+yw4XXxw4YXKbjhdRZcqF1INjzJmLsqFWdXP2x4kUp5iOm9uinltNsL2PBKEG543b0bXo/oG153hw2vhx82vBKCG153wYXag2TDk4y5p1Jx9vTDhldCKQ8xvVcvpZz2egEbXknCDa+3d8PrE33D6+2w4fXxw4ZXUnDD6y24UPuQbHiSMfdVKs6+ftjwSirlIab36qeU034vYMMrRbjh9fdueAOib3j9HTa8AX7Y8EoJbnj9BRfqAJINTzLmgUrFOdAPG14ppTzE9F6DlHI66AVseKUJN7zB3g1vSPQNb7DDhjfEDxteacENb7DgQh1CsuFJxjxUqTiH+mHDK62Uh5jea5hSToe9gA2vDOGGN9y74Y2IvuENd9jwRvhhwysjuOENF1yoI0g2PMmYRyoV50g/bHhllPIQ03uNUsrpqBew4ZUl3PBGeze8MdE3vNEOG94YP2x4ZQU3vNGCC3UMyYYnGfNYpeIc64cNr6xSHmJ6r3FKOR33Aja8coQb3njvhjch+oY33mHDm+CHDa+c4IY3XnChTiDZ8CRjnqhUnBP9sOGVU8pDTO81SSmnk17AhleecMOb7N3wpkTf8CY7bHhT/LDhlRfc8CYLLtQpJBueZMxTlYpzqh82vPJKeYjpvaYp5XTaC9jwKhBueNO9G96M6BvedIcNb4YfNrwKghvedMGFOoNkw5OMeaZScc70w4ZXQSkPMb3XLKWcznoBG15Fwg1vtnfDmxN9w5vtsOHN8cOGV1Fww5stuFDnkGx4kjHPVSrOuX7Y8Coq5SGm95qnlNN5L2DDq0S44c33bngLom948x02vAV+2PAqCW548wUX6gKSDU8y5teUivM1P2x4lZTyENN7LVTK6cIXsOFVJtzwFnk3vMXRN7xFDhveYj9seJUFN7xFggt1McmGJxnzEqXiXOKHDa+yUh5ieq+lSjld+gI2vCqEG94y74b3evQNb5nDhve6Hza8KoIb3jLBhfo6yYYnGfMbSsX5hh82vCpKeYjpvZYr5XT5C9jwqhJueCu8G97K6BveCocNb6UfNryqghveCsGFupJkw5OMeZVSca7yw4ZXVSkPMb3XaqWcrn4BG141wg1vjXfDWxt9w1vjsOGt9cOGV01ww1sjuFDXkmx4kjGvUyrOdX7Y8Kop5SGm91qvlNP1L2DDq0644W3wbngbo294Gxw2vI1+2PCqC254GwQX6kaSDU8y5k1KxbnJDxtedaU8xPRem5VyuvkFbHg1CDe8Ld4N783oG94Whw3vTT9seDUEN7wtggv1TZINTzLmrUrFudUPG14NpTzE9F7blHK67QVseDUJN7zt3g3vregb3naHDe8tP2x4NQU3vO2CC/Utkg1PMuYdSsW5ww8bXk2lPMT0XjuVcrrzBWx4tQg3vF3eDW939A1vl8OGt9sPG14twQ1vl+BC3U2y4UnGvEepOPf4YcOrpZSHmN5rr1JO976ADa824Ya3z7vhvR19w9vnsOG97YcNr7bghrdPcKG+TbLhSca8X6k49/thw6utlIeY3uuAUk4PvIANrw7hhnfQu+Edir7hHXTY8A75YcOrI7jhHRRcqIdINjzJmA8rFedhP2x4dZTyENN7HVHK6ZEXsOHVJdzwjno3vGPRN7yjDhveMT9seHUFN7yjggv1GMmGJxnzO0rF+Y4fNry6SnmI6b2OK+X0+AvY8OoRbngnvBveu9E3vBMOG967ftjw6glueCcEF+q7JBueZMzvKRXne37Y8Oop5SGm9zqplNOTL2DDq0+44Z3ybnino294pxw2vNN+2PDqC254pwQX6mmSDU8y5jNKxXnGDxtefaU8xPReZ5VyevYFbHgNCDe8c94N73z0De+cw4Z33g8bXgPBDe+c4EI9L/hw/bkoG1EsypBQ31y8712UH0RflPb/kSjaNftfihOguygbyS3Kju8LLsoPhBdlsoB/z6XGopT09vW9kEtR+EIu+ft+KLgYtOL+MNdfCRa6r4prU69r9PvGNK8Xc7k7bjvmiwpxX1J6Nbvk8LornRPpZ/bnV1zhHEvW/0diMYd19H1e9n0tpefUTKlmLyut3cs+a1fa+c/9S/YI/K99UcrxilJer/jhCCy4JjxXBHP6sVJOP/4vazUkZl+eFkp1+4lSLj5RrNtmSnXbTHCNXVXK61U/1K3gmvBcFczpp0o5/VSxblsq1e01pVxcU6zbFkp120JwjV1Xyut1P9St4JrwXBfM6Q2lnN5QrNvWSnV7UykXNxXrtqVS3bYUXGO3lPJ6yw91K7gmPLcEc3pbKae3Feu2jVLdfqaUi88U67a1Ut22Flxjd5TyescPdSu4Jjx3BHP6uVJOP1es2/ZKdXtXKRd3Feu2jVLdthFcY/eU8nrPD3UruCY89wRzel8pp/cV67aDUt1+oZSLLxTrtr1S3bYXXGMPlPL6wA91K7gmPA8Ec/qlUk6/VKzbTkp1+5VSLr5SrNsOSnXbQXCNPVTK60M/1K3gmvA8FMzp10o5/Vqxbjsr1e03Srn4RrFuOynVbSfBNfatUl6/9UPdCq4Jz7eCOf1OKaffKdZtN6W6/V4pF98r1m1npbrtLLjGHinl9ZEf6lZwTXgeCeb0B6Wc/qBYt92V6vZHpVz8qFi33ZTqtpvgGnuslNfHfqhbwTXheSyY05+UcvqTYt32Uqrbn5Vy8bNi3XZXqtvugmvsiVJen/ihbgXXhOeJYE5/UcrpL4p121upbn9VysWvinXbS6luewmusadKeX3qh7oVXBOep4I5/U0pp78p1m0/pbr9XSkXvyvWbW+luu0tuMaeKeX1mR/qVnBNeJ4J5vS5Uk6fK9Ztf6W6/UMpF38o1m0/pbrtJ7jGAgJ18mrfV7tuBdeExzcPMc1pHKWcxgnUq9tBSnUbVykXcQP16ra/Ut32F6zbeEp5jeeHuhVcE554gnUbXymn8RXrdrBS3SZQykUCxbodpFS3gwTrNqFSXhP6oW4F14QnoWDdJlLKaSLFuh2mVLeJlXKRWLFuByvV7WDBuk2ilNckfqhbwTXhSSJYty8p5fQlxbodrlS3SZVykVSxbocp1e0wwbpNppTXZH6oW8E14UkmWLfJlXKaXLFuRynVbQqlXKRQrNvhSnU7XLBuUyrlNaUf6lZwTXhSCtZtKqWcplKs29FKdZtaKRepFet2lFLdjhKs2zRKeU3jh7oVXBOeNIJ1m1Ypp2kV63acUt2mU8pFOsW6Ha1Ut6MF6za9Ul7T+6FuBdeEJ71g3b6slNOXFet2vFLdZlDKRQbFuh2nVLfjBOs2o1JeM/qhbgXXhCejYN1mUsppJsW6naRUt5mVcpFZsW7HK9XteMG6zaKU1yx+qFvBNeHJIli3WZVymlWxbicr1W02pVxkU6zbSUp1O0mwbrMr5TW7H+pWcE14sgvWbQ6lnOZQrNtpSnVrKeXCUqzbyUp1O1mwbnMq5TWnH+pWcE14cgrWbS6lnOZSrNvpSnUbqJSLQMW6naZUt9ME6zZIKa9BfqhbwTXhCRKs22ClnAYr1u0spbrNrZSL3Ip1O12pbqcL1m0epbzm8UPdCq4JTx7Bus2rlNO8inU7W6lu8ynlIp9i3c5SqttZgnWbXymv+f1Qt4JrwpNfsG4LKOW0gGLdzlOq24JKuSioWLezlep2tmDdFlLKayE/1K3gmvAUEqzbwko5LaxYt/OV6raIUi6KKNbtPKW6nSdYtyFKeQ3xQ90KrglPiGDdepRy6lGs24VKdRuqlItQxbqdr1S38wXrNkwpr2F+qFvBNeEJE6zboko5LapYt4uU6jZcKRfhinW7UKluFwrWbTGlvBbzQ90KrglPMcG6La6U0+KKdbtUqW4jlHIRoVi3i5TqdpFg3UYq5TXSD3UruCY8kYJ1W0IppyUU63aZUt2WVMpFScW6XapUt0sF67aUUl5L+aFuBdeEp5Rg3ZZWymlpxbpdrlS3ZZRyUUaxbpcp1e0ywbotq5TXsn6oW8E14SkrWLfllHJaTrFuVyjVbXmlXJRXrNvlSnW7XLBuKyjltYIf6lZwTXgqCNZtRaWcVlSs29VKdVtJKReVFOt2hVLdrhCs28pKea3sh7oVXBOeyoJ1W0Upp1UU63aNUt1WVcpFVcW6Xa1Ut6sF67aaUl6r+aFuBdeEp5pg3VZXyml1xbpdr1S3NZRyUUOxbtco1e0awbqtqZTXmn6oW8E14akpWLe1lHJaS7FuNyjVbW2lXNRWrNv1SnW7XrBu6yjltY4f6lZwTXjqCNZtXaWc1lWs281KdVtPKRf1FOt2g1LdbhCs2/pKea3vh7oVXBOe+oJ120Appw0U63aLUt02VMpFQ8W63axUt5sF67aRUl4b+aFuBdeEp5Fg3TZWymljxbrdplS3TZRy0USxbrco1e0WwbptqpTXpn6oW8E14WkqWLfNlHLaTLFutyvVbXOlXDRXrNttSnW7TbBuX1HK6yt+qFvBNeF5RbBuWyjltIVi3e5UqtuWSrloqVi325Xqdrtg3bZSymsrP9St4JrwtBKs21eVcvqqYt3uUqrb1kq5aK1YtzuV6nanYN22UcprGz/UreCa8LQRrNu2Sjltq1i3e5Xqtp1SLtop1u0upbrdJVi37ZXy2t4PdSu4JjztBeu2g1JOOyjW7T6luo1SykWUYt3uVarbvYJ121Eprx39ULeCa8LTUbBuOynltJNi3R5QqtvOSrnorFi3+5Tqdp9g3XZRymsXP9St4JrwdBGs265KOe2qWLcHleq2m1IuuinW7QGluj0gWLfdlfLa3Q91K7gmPN0F67aHUk57KNbtEaW67amUi56KdXtQqW4PCtZtL6W89vJD3QquCU8vwbrtrZTT3op1e1Spbvso5aKPYt0eUarbI4J121cpr339ULeCa8LTV7Bu+ynltJ9i3R5Xqtv+Srnor1i3R5Xq9qhg3Q5QyusAP9St4JrwDBCs24FKOR2oWLcnlOp2kFIuBinW7XGluj0uWLeDlfI62A91K7gmPIMF63aIUk6HKNbtSaW6HaqUi6GKdXtCqW5PCNbtMKW8DvND3QquCc8wwbodrpTT4Yp1e0qpbkco5WKEYt2eVKrbk4J1O1IpryP9ULeCa8IzUrBuRynldJRi3Z5VqtvRSrkYrVi3p5Tq9pRg3Y5RyusYP9St4JrwjBGs27FKOR2rWLfnlOp2nFIuxinW7Vmluj0rWLfjlfI63g91K7gmPOMF63aCUk4neHOaACQP+Gtd+X5Jr+GPcsU4Fs+f/+CgK3Zv31xMDPzXn5MCvQn5M4H2/xEn2jX7X7KiScVTTKLhvUK99/JMFFyokwLlHsA/WZQhMfvyrMgZ83t1/J+v9n5blJO9i3JK9EU52WFRTvm/WJQhMfv6WxJjuignCy7KKYE6Dzf6d+GYekoW4lTB72QBAfIFZ8dqP2PpjVEyh5JrcJrLn4e9XqYFyn+3F4w7RCNue8/SiHu6YNx2jWQO+Pcvybxq5HZ6oPsdZ0g7Sgt+nEtngc50eWHaMc9UiHuW0lFqlmILxM7FDIVczCZYA7MV4p6jtAbmOLQopFs1MwPd+fxJWwgeB12V09pc72ltXvTT2lyH09o8shbCXMFFOS9Q5+FKF6LAaff/j3m+4OnAdx3N964jf7ZSJGLxdytlgbc4X4tenAscivM1P7RS5gfKFecCweJ8jaSVIrkhLXT50d2OdYFCK0Uyh5JrcJHLn4e9XhYpvLUKxq3ytj5fKe7Fsa0Uz+JA9zsucXsr5dNcOgt0qcsL0455qULcy5SO0csUWyl2LpYo5OJ1gjXwukLcbyitgTf80EpZGujO50/aSgl10FU5rS33ntZWRD+tLXc4ra0ga6UsF1yUKwJ1Hq6bWykr5Qox1HcdrXwBrRSJWPzdSlnlLc7V0YtzlUNxrvZDK2WlYCtllWBxriZppUhuSGtcfnS3Y12l0EqRzKHkGlzr8udhr5e1Cm+tgnGrvK2vVIp7XWwrxbMu0P2O693eSrmRS2eBbnB5Ydoxb1CIe6PSMXqjYivFzsV6hVxsIlgDmxTi3qy0Bjb7oZWyIdCdz5+0lRLmoKtyWtviPa29Gf20tsXhtPYmWStli+CifDNQ5+G6uZWyVa4Qw3zX0dYX0EqRiMXfrZRt3uLcHr04tzkU53Y/tFK2CrZStgkW53aSVorkhvSWy4/udqzbFFopkjmUXIM7XP487PWyQ+GtVTBulbf1rUpx74xtpXh2BrrfcZfbWym3c+ks0N0uL0w75t0Kce9ROkbvUWyl2LnYpZCLvQRrYK9C3PuU1sA+P7RSdge68/mTtlKKOuiqnNbe9p7W9kc/rb3tcFrbT9ZKeVtwUe4P1Hm4bm6lHJArxKK+6+jAC2ilSMTi71bKQW9xHopenAcdivOQH1opBwRbKQcFi/MQSStFckM67PKjux3rQYVWimQOJdfgEZc/D3u9HFF4axWMW+Vt/YBS3EdjWymeo4Hudzzm9lbK57l0Fug7Li9MO+Z3FOI+rnSMPq7YSrFzcUwhFycI1sAJhbjfVVoD7/qhlfJOoDufP2krJdxBV+W09p73tHYy+mntPYfT2kmyVsp7govyZKDOw3VzK+WUXCGG+66jUy+glSIRi79bKae9xXkmenGedijOM35opZwSbKWcFizOMyStFMkN6azLj+52rKcVWimSOZRcg+dc/jzs9XJO4a1VMG6Vt/VTSnGfj22leM4Hut/xfbe3Uu7n0lmgH7i8MO2YP1CI+4LSMfqCYivFzsX7Crn4kGANfKgQ90WlNXDRD62UDwLd+fxJWynFHHRVTmuXvKe1j6Kf1i45nNY+ImulXBJclB8F6jxcN7dSLssVYjHfdXT5BbRSJGLxdyvlirc4P45enFccivNjP7RSLgu2Uq4IFufHJK0UyQ3pE5cf3e1Yryi0UiRzKLkGr7r8edjr5arCW6tg3Cpv65eV4v40tpXi+TTQ/Y7X3N5K+TKXzgK97vLCtGO+rhD3DaVj9A3FVoqdi2sKubhJsAZuKsR9S2kN3PJDK+V6oDufP2krpbiDrspp7bb3tPZZ9NPabYfT2mdkrZTbgovys0Cdh+vmVsoduUIs7ruO7ryAVopELP5upXzuLc670Yvzc4fivOuHVsodwVbK54LFeZeklSK5Id1z+dHdjvVzhVaKZA4l1+B9lz8Pe73cV3hrFYxb5W39jlLcX8S2UjxfBLrf8YHbWylf59JZoF+6vDDtmL9UiPsrpWP0V4qtFDsXDxRy8ZBgDTxUiPtrpTXwtR9aKV8GuvP5k7ZSIhx0VU5r33hPa99GP61943Ba+5aslfKN4KL8NlDn4bq5lfKdXCFG+K6j715AK0UiFn+3Ur73Fuej6MX5vUNxPvJDK+U7wVbK94LF+YiklSK5If3g8qO7Hev3Cq0UyRxKrsEfXf487PXyo8Jbq2DcKm/r3ynF/Ti2leJ5HOh+x5/c3kr5LpfOAv3Z5YVpx/yzQtxPlI7RTxRbKXYuflLIxS8Ea+AXhbh/VVoDv/qhlfJzoDufP2krJdJBV+W09tR7Wvst+mntqcNp7TeyVspTwUX5W6DOw3VzK+V3uUKM9F1Hv7+AVopELP5upTzzFufz6MX5zKE4n/uhlfK7YCvlmWBxPidppUhuSH+4/Ohux/pMoZUimUPJNRgQ5O7nYa8X21H6rUcwbpW39d+V4o4jGDdrKyVOkPsd40o7ivc4c+ks0HguL0w75ngKcccXjNv3Bcu+r1Yrxc5FXIVcJCBYAwkU4k6otAYSBum3Unzr1k3Pn7SV0tZBV+W0lijoX38mDgr4+8ksUdC/n9bsf8mKJuXmVkoiwUWZOEjn4bq5lZJErhDb+q6jJEH+b6VIxOLvVspL3uJMGr04X3IozqT/F8UZErOvvyUxpsX5kmBxJlV6uNKtFMkNKZnLj+52rPYzlv4GIZlDyTWY3OXPw14vyRXeWgXjVnlbT6IUd4rYVoonRZD7HVO6vZXyUy6dBZrK5YVpx5xKIe7USsfo1IqtFDsXKRVykYZgDaRRiDut0hpI64dWSqogdz5/0lZKOwddldNaOu9pLX3001o6h9NaerJWSjrBRZk+SOfhurmV8rJcIbbzXUcvv4BWikQs/m6lZPAWZ8boxZnBoTgz+qGV8rJgKyWDYHFmJGmlSG5ImVx+dLdjzaDQSpHMoeQazOzy52Gvl8wKb62Ccau8rb+sFHeW2FaKJ0uQ+x2zur2V8ksunQWazeWFacecTSHu7ErH6OyKrRQ7F1kVcpGDYA3kUIjbUloDlh9aKdmC3Pn8SVsp7R10VU5rOb2ntVzRT2s5HU5ruchaKTkFF2WuIJ2H6+ZWSqBcIbb3XUeBL6CVIhGLv1spQd7iDI5enEEOxRnsh1ZKoGArJUiwOINJWimSG1Julx/d7ViDFFopkjmUXIN5XP487PWSR+GtVTBulbf1QKW488a2Ujx5g9zvmM/trZTfcuks0PwuL0w75vwKcRdQOkYXUGyl2LnIp5CLggRroKBC3IWU1kAhP7RS8ge58/mTtlI6OOiqnNYKe09rRaKf1go7nNaKkLVSCgsuyiJBOg/Xza2UELlC7OC7jkJeQCtFIhZ/t1I83uIMjV6cHofiDPVDKyVEsJXiESzOUJJWiuSGFObyo7sdq0ehlSKZQ8k1WNTlz8NeL0UV3loF41Z5Ww9Rijs8tpXiCQ9yv2Mxt7dSnufSWaDFXV6YdszFFeKOUDpGRyi2UuxcFFPIRSTBGohUiLuE0hoo4YdWSvEgdz5/0lZKlIOuymmtpPe0Vir6aa2kw2mtFFkrpaTgoiwVpPNw3dxKKS1XiFG+66j0C2ilSMTi71ZKGW9xlo1enGUcirOsH1oppQVbKWUEi7MsSStFckMq5/Kjux1rGYVWimQOJddgeZc/D3u9lFd4axWMW+VtvbRS3BViWymeCkHud6zo9lZKnECdBVrJ5YVpx1xJIe7KSsfoyoqtFDsXFRVyUYVgDVRRiLuq0hqo6odWSqUgdz5/0lZKRwddldNaNe9prXr001o1h9NadbJWSjXBRVk9SOfhurmVUkOuEDv6rqMaL6CVIhGLv1spNb3FWSt6cdZ0KM5afmil1BBspdQULM5aJK0UyQ2ptsuP7nasNRVaKZI5lFyDdVz+POz1UkfhrVUwbpW39RpKcdeNbaV46ga537Ge21sp8QN1Fmh9lxemHXN9hbgbKB2jGyi2Uuxc1FPIRUOCNdBQIe5GSmugkR9aKfWD3Pn8OVspHr+d1hp7T2tNop/WGjuc1pqQtVIaCy7KJkE6D9fNrZSmYoXo+duG1PQFtFIkYvF3K6WZtzibRy/OZg7F2dwPrZSmgq2UZoLF2ZyklSK5Ib3i8qO7HWszhVaKZA4l12ALlz8Pe720UHhrFYxb5W29qVLcLWNbKZ6WQe53bOX2VkqiQJ0F+qrLC9OO+VWFuFsrHaNbK7ZS7Fy0UshFG4I10EYh7rZKa6CtH1oprwa58/mTtlI8Droqp7V23tNa++intXYOp7X2ZK2UdoKLsn2QzsN1cyulg1wrxeO7jjq8gFaKRCz+bqVEeYuzY/TijHIozo5+aKV0EGylRAkWZ0eSVorkhtTJ5Ud3O9YohVaKZA4l12Bnlz8Pe710VnhrFYxb5W29g1LcXWJbKZ4uQe537Or2VspLgToLtJvLC9OOuZtC3N2VjtHdFVspdi66KuSiB8Ea6KEQd0+lNdDTD62UbkHufP6krZRQB12V01ov72mtd/TTWi+H01pvslZKL8FF2TtI5+G6uZXSR66VEuq7jvq8gFaKRCz+bqX09RZnv+jF2dehOPv5oZXSR7CV0lewOPuRtFIkN6T+Lj+627H2VWilSOZQcg0OcPnzsNfLAIW3VsG4Vd7W+yjFPTC2leIZGOR+x0Fub6UkD9RZoINdXph2zIMV4h6idIweothKsXMxSCEXQwnWwFCFuIcprYFhfmilDA5y5/MnbaWEOeiqnNaGe09rI6Kf1oY7nNZGkLVShgsuyhFBOg/Xza2UkXKtlDDfdTTyBbRSJGLxdytllLc4R0cvzlEOxTnaD62UkYKtlFGCxTmapJUiuSGNcfnR3Y51lEIrRTKHkmtwrMufh71exiq8tQrGrfK2PlIp7nGxrRTPuCD3O453eyslVaDOAp3g8sK0Y56gEPdEpWP0RMVWip2L8Qq5mESwBiYpxD1ZaQ1M9kMrZUKQO58/aSulqIOuymltive0NjX6aW2Kw2ltKlkrZYrgopwapPNw3dxKmSbXSinqu46mvYBWikQs/m6lTPcW54zoxTndoThn+KGVMk2wlTJdsDhnkLRSJDekmS4/utuxTldopUjmUHINznL587DXyyyFt1bBuFXe1qcpxT07tpXimR3kfsc5bm+lpA3UWaBzXV6YdsxzFeKep3SMnqfYSrFzMUchF/MJ1sB8hbgXKK2BBX5opcwNcufzJ22lhDvoqpzWXvOe1hZGP6295nBaW0jWSnlNcFEuDNJ5uG5upSySa6WE+66jRS+glSIRi79bKYu9xbkkenEudijOJX5opSwSbKUsFizOJSStFMkNaanLj+52rIsVWimSOZRcg8tc/jzs9bJM4a1VMG6Vt/VFSnG/HttK8bwe5H7HN9zeSnk5UGeBLnd5YdoxL1eIe4XSMXqFYivFzsUbCrlYSbAGVirEvUppDazyQytleZA7nz9pK6WYg67KaW2197S2JvppbbXDaW0NWStlteCiXBOk83Dd3EpZK9dKKea7jta+gFaKRCz+bqWs8xbn+ujFuc6hONf7oZWyVrCVsk6wONeTtFIkN6QNLj+627GuU2ilSOZQcg1udPnzsNfLRoW3VsG4Vd7W1yrFvSm2leLZFOR+x81ub6VkCtRZoFtcXph2zFsU4n5T6Rj9pmIrxc7FZoVcbCVYA1sV4t6mtAa2+aGVsiXInc+ftJVS3EFX5bS23Xtaeyv6aW27w2ntLbJWynbBRflWkM7DdXMrZYdcK6W47zra8QJaKRKx+LuVstNbnLuiF+dOh+Lc5YdWyg7BVspOweLcRdJKkdyQdrv86G7HulOhlSKZQ8k1uMflz8NeL3sU3loF41Z5W9+hFPfe2FaKZ2+Q+x33ub2VkjVQZ4G+7fLCtGN+WyHu/UrH6P2KrRQ7F/sUcnGAYA0cUIj7oNIaOOiHVsrbQe58/qStlAgHXZXT2iHvae1w9NPaIYfT2mGyVsohwUV5OEjn4bq5lXJErpUS4buOjryAVopELP5upRz1Fuex6MV51KE4j/mhlXJEsJVyVLA4j5G0UiQ3pHdcfnS3Yz2q0EqRzKHkGjzu8udhr5fjCm+tgnGrvK0fUYr7RGwrxXMiyP2O77q9lZIjUGeBvufywrRjfk8h7pNKx+iTiq0UOxfvKuTiFMEaOKUQ92mlNXDaD62U94Lc+fxJWymRDroqp7Uz3tPa2eintTMOp7WzZK2UM4KL8myQzsN1cyvlnFwrJdJ3HZ17Aa0UiVj83Uo57y3O96MX53mH4nzfD62Uc4KtlPOCxfk+SStFckP6wOVHdzvW8wqtFMkcSq7BCy5/HvZ6uaDw1ioYt8rb+jmluD+MbaV4Pgxyv+NFt7dScgXqLNBLLi9MO+ZLCnF/pHSM/kixlWLn4qJCLi4TrIHLCnFfUVoDV/zQSrkU5M7nT9pKaeugq3Ja+9h7Wvsk+mntY4fT2idkrZSPBRflJ0E6D9fNrZSrcq2Utr7r6OoLaKVIxOLvVsqn3uK8Fr04P3Uozmt+aKVcFWylfCpYnNdIWimSG9J1lx/d7Vg/VWilSOZQcg3ecPnzsNfLDYW3VsG4Vd7WryrFfTO2leK5GeR+x1tub6UEB+os0NsuL0w75tsKcX+mdIz+TLGVYufilkIu7hCsgTsKcX+utAY+90Mr5XaQO58/aSulnYOuymntrve0di/6ae2uw2ntHlkr5a7gorwXpPNw3dxKuS/XSmnnu47uv4BWikQs/m6lfOEtzgfRi/MLh+J84IdWyn3BVsoXgsX5gKSVIrkhfenyo7sd6xcKrRTJHEquwa9c/jzs9fKVwlurYNwqb+v3leJ+GNtK8TwMcr/j125vpeQN1Fmg37i8MO2Yv1GI+1ulY/S3iq0UOxdfK+TiO4I18J1C3N8rrYHv/dBK+SbInc+ftJXS3kFX5bT2yHta+yH6ae2Rw2ntB7JWyiPBRflDkM7DdXMr5Ue5Vkp733X04wtopUjE4u9WymNvcf4UvTgfOxTnT35opfwo2Ep5LFicP5G0UiQ3pJ9dfnS3Y32s0EqRzKHkGnzi8udhr5cnCm+tgnGrvK3/qBT3L7GtFM8vQe53/NXtrZQCgToL9KnLC9OO+alC3L8pHaN/U2yl2Ln4VSEXvxOsgd8V4n6mtAae+aGV8jTInc+ftJXSwUFX5bT23Hta+yP6ae25w2ntD7JWynPBRflHkM7DdXMrJSBYrJXSwXcd2fe1AvzbSpGIxd+tlDjB3jUSHPD3QrT/j+jFGTdYv5Xim8SYFmecYLmFGlfp4Uq3UiQ3pHjBgs81QL7g/ucbSLD8NwjJHEquwfgufx72eokfLP/WIxi3ytt6gFLcCQTjZm2lJAh2v2NCaUdpwcKBOgs0kcsL0445kULciQXj9n3Bsu+r1Uqxc5FQIRdJCNZAEoW4X1JaAy8F67dSEgW78/mTtlKiHHRVTmtJvae1ZNFPa0kdTmvJgrlaKUkFF2WyYJ2H6+ZWSnK5VkqU7zpK/gJaKRKx+LuVksJbnCmjF2cKh+JM6YdWSnLBVkoKweJMSdJKkdyQUrn86G7HmkKhlSKZQ8k1mNrlz8NeL6kV3loF41Z5W0+uFHea2FaKJ02w+x3Tur2V4gnUWaDpXF6YdszpFOJOr3SMTq/YSrFzkVYhFy8TrIGXFeLOoLQGMvihlZIu2J3Pn7SV0tFBV+W0ltF7WssU/bSW0eG0lomslZJRcFFmCtZ5uG5upWSWa6V09F1HmV9AK0UiFn+3UrJ4izNr9OLM4lCcWf3QSsks2ErJIlicWUlaKZIbUjaXH93tWLMotFIkcyi5BrO7/HnY6yW7wlurYNwqb+uZleLOEdtK8eQIdr+j5fZWStFAnQWa0+WFacecUyHuXErH6FyKrRQ7F5ZCLgIJ1kCgQtxBSmsgyA+tlJzB7nz+nK2UUL+d1oK9p7Xc0U9rwQ6ntdxkrZRgwUWZO1jn4bq5lZJHrBBD/7Yh5XkBrRSJWPzdSsnrLc580Yszr0Nx5vNDKyWPYCslr2Bx5iNppUhuSPldfnS3Y82r0EqRzKHkGizg8udhr5cCCm+tgnGrvK3nUYq7YGwrxVMw2P2OhdzeSikeqLNAC7u8MO2YCyvEXUTpGF1EsZVi56KQQi5CCNZAiELcHqU14PFDK6VwsDufP2krxeOgq3JaC/We1sKin9ZCHU5rYWStlFDBRRkWrPNw3dxKKSrXSvH4rqOiL6CVIhGLv1sp4d7iLBa9OMMdirOYH1opRQVbKeGCxVmMpJUiuSEVd/nR3Y41XKGVIplDyTUY4fLnYa+XCIW3VsG4Vd7WiyrFHRnbSvFEBrvfsYTbWyklAnUWaEmXF6Ydc0mFuEspHaNLKbZS7FyUUMhFaYI1UFoh7jJKa6CMH1opJYPd+fxJWymhDroqp7Wy3tNaueintbIOp7VyZK2UsoKLslywzsN1cyulvFwrJdR3HZV/Aa0UiVj83Uqp4C3OitGLs4JDcVb0QyulvGArpYJgcVYkaaVIbkiVXH50t2OtoNBKkcyh5Bqs7PLnYa+XygpvrYJxq7ytl1eKu0psK8VTJdj9jlXd3kopHaizQKu5vDDtmKspxF1d6RhdXbGVYueiqkIuahCsgRoKcddUWgM1/dBKqRbszudP2koJc9BVOa3V8p7Wakc/rdVyOK3VJmul1BJclLWDdR6um1spdeRaKWG+66jOC2ilSMTi71ZKXW9x1otenHUdirOeH1opdQRbKXUFi7MeSStFckOq7/Kjux1rXYVWimQOJddgA5c/D3u9NFB4axWMW+VtvY5S3A1jWymehsHud2zk9lZKuUCdBdrY5YVpx9xYIe4mSsfoJoqtFDsXjRRy0ZRgDTRViLuZ0hpo5odWSuNgdz5/0lZKUQddldNac+9p7ZXop7XmDqe1V8haKc0FF+UrwToP182tlBZyrZSivuuoxQtopUjE4u9WSktvcbaKXpwtHYqzlR9aKS0EWyktBYuzFUkrRXJDetXlR3c71pYKrRTJHEquwdYufx72emmt8NYqGLfK23oLpbjbxLZSPG2C3e/Y1u2tlIqBOgu0ncsL0465nULc7ZWO0e0VWyl2Ltoq5KIDwRrooBB3lNIaiPJDK6VdsDufP2krJdxBV+W01tF7WusU/bTW0eG01omsldJRcFF2CtZ5uG5upXSWa6WE+66jzi+glSIRi79bKV28xdk1enF2cSjOrn5opXQWbKV0ESzOriStFMkNqZvLj+52rF0UWimSOZRcg91d/jzs9dJd4a1VMG6Vt/XOSnH3iG2leHoEu9+xp9tbKVUCdRZoL5cXph1zL4W4eysdo3srtlLsXPRUyEUfgjXQRyHuvkproK8fWim9gt35/ElbKcUcdFVOa/28p7X+0U9r/RxOa/3JWin9BBdl/2Cdh+vmVsoAuVZKMd91NOAFtFIkYvF3K2WgtzgHRS/OgQ7FOcgPrZQBgq2UgYLFOYiklSK5IQ12+dHdjnWgQitFMoeSa3CIy5+HvV6GKLy1Csat8rY+QCnuobGtFM/QYPc7DnN7K6V6oM4CHe7ywrRjHq4Q9wilY/QIxVaKnYthCrkYSbAGRirEPUppDYzyQytleLA7nz9pK6W4g67KaW2097Q2JvppbbTDaW0MWStltOCiHBOs83Dd3EoZK9dKKe67jsa+gFaKRCz+bqWM8xbn+OjFOc6hOMf7oZUyVrCVMk6wOMeTtFIkN6QJLj+627GOU2ilSOZQcg1OdPnzsNfLRIW3VsG4Vd7WxyrFPSm2leKZFOx+x8lub6XUCtRZoFNcXph2zFMU4p6qdIyeqthKsXMxWSEX0wjWwDSFuKcrrYHpfmilTAl25/MnbaVEOOiqnNZmeE9rM6Of1mY4nNZmkrVSZgguypnBOg/Xza2UWXKtlAjfdTTrBbRSJGLxdytltrc450QvztkOxTnHD62UWYKtlNmCxTmHpJUiuSHNdfnR3Y51tkIrRTKHkmtwnsufh71e5im8tQrGrfK2Pksp7vmxrRTP/GD3Oy5weyulbqDOAn3N5YVpx/yaQtwLlY7RCxVbKXYuFijkYhHBGlikEPdipTWw2A+tlNeC3fn8SVspkQ66Kqe1Jd7T2tLop7UlDqe1pWStlCWCi3JpsM7DdXMrZZlcKyXSdx0tewGtFIlY/N1Ked1bnG9EL87XHYrzDT+0UpYJtlJeFyzON0haKZIb0nKXH93tWF9XaKVI5lByDa5w+fOw18sKhbdWwbhV3taXKcW9MraV4lkZ7H7HVW5vpTQI1Fmgq11emHbMqxXiXqN0jF6j2Eqxc7FKIRdrCdbAWoW41ymtgXV+aKWsDnbn8ydtpbR10FU5ra33ntY2RD+trXc4rW0ga6WsF1yUG4J1Hq6bWykb5VopbX3X0cYX0EqRiMXfrZRN3uLcHL04NzkU52Y/tFI2CrZSNgkW52aSVorkhrTF5Ud3O9ZNCq0UyRxKrsE3Xf487PXypsJbq2DcKm/rG5Xi3hrbSvFsDXa/4za3t1IaB+os0O0uL0w75u0Kcb+ldIx+S7GVYudim0IudhCsgR0Kce9UWgM7/dBK2R7szudP2kpp56Crclrb5T2t7Y5+WtvlcFrbTdZK2SW4KHcH6zxcN7dS9si1Utr5rqM9L6CVIhGLv1spe73FuS96ce51KM59fmil7BFspewVLM59JK0UyQ3pbZcf3e1Y9yq0UiRzKLkG97v8edjrZb/CW6tg3Cpv63uU4j4Q20rxHAh2v+NBt7dSmgXqLNBDLi9MO+ZDCnEfVjpGH1Zspdi5OKiQiyMEa+CIQtxHldbAUT+0Ug4Fu/P5k7ZS2jvoqpzWjnlPa+9EP60dczitvUPWSjkmuCjfCdZ5uG5upRyXa6W0911Hx19AK0UiFn+3Uk54i/Pd6MV5wqE43/VDK+W4YCvlhGBxvkvSSpHckN5z+dHdjvWEQitFMoeSa/Cky5+HvV5OKry1Csat8rZ+XCnuU7GtFM+pYPc7nnZ7K6VFoM4CPePywrRjPqMQ91mlY/RZxVaKnYvTCrk4R7AGzinEfV5pDZz3QyvlTLA7nz9pK6WDg67Kae1972ntg+intfcdTmsfkLVS3hdclB8E6zxcN7dSLsi1Ujr4rqMLL6CVIhGLv1spH3qL82L04vzQoTgv+qGVckGwlfKhYHFeJGmlSG5Il1x+dLdj/VChlSKZQ8k1+JHLn4e9Xj5SeGsVjFvlbf2CUtyXY1spnsvB7ne84vZWyquBOgv0Y5cXph3zxwpxf6J0jP5EsZVi5+KKQi6uEqyBqwpxf6q0Bj71Qyvl42B3Pn/SVkqUg67Kae2a97R2Pfpp7ZrDae06WSvlmuCivB6s83Dd3Eq5IddKifJdRzdeQCtFIhZ/t1JueovzVvTivOlQnLf80Eq5IdhKuSlYnLdIWimSG9Jtlx/d7VhvKrRSJHMouQY/c/nzsNfLZwpvrYJxq7yt31CK+05sK8VzJ9j9jp+7vZXSNlBngd51eWHaMd9ViPue0jH6nmIrxc7F5wq5uE+wBu4rxP2F0hr4wg+tlLvB7nz+pK2Ujg66Kqe1B97T2pfRT2sPHE5rX5K1Uh4ILsovg3UerptbKV/JtVI6+q6jr15AK0UiFn+3Uh56i/Pr6MX50KE4v/ZDK+UrwVbKQ8Hi/JqklSK5IX3j8qO7HetDhVaKZA4l1+C3Ln8e9nr5VuGtVTBulbf1r5Ti/i62leL5Ltj9jt+7vZXSIVBngT5yeWHaMT9SiPsHpWP0D4qtFDsX3yvk4keCNfCjQtyPldbAYz+0Uh4Fu/P5c7ZSwvx2WvvJe1r7Ofpp7SeH09rPZK2UnwQX5c/BOg/Xza2UJ2KFGPa3DenJC2ilSMTi71bKL97i/DV6cf7iUJy/+qGV8kSwlfKLYHH+StJKkdyQnrr86G7H+otCK0Uyh5Jr8DeXPw97vfym8NYqGLfK2/oTpbh/j22leH4Pdr/jM7e3UjoF6izQ5y4vTDvm5wpx/6F0jP5DsZVi5+KZQi4Ccrt/DdiO0nHHya2zBuz7ardSnge78/mTtlI8Droqp7W4uf/1Z7zcAX8/mcXN/e+nNftfsqJJubmVEje3nFe83DoP182tlPhihRjm8V1H8XP7v5UiEYu/WykJvMWZMHpxJnAozoT/F8UZErOvvyUxpsWZQLA4Eyo9XOlWiuSGlEjuu6TK0d2O1X7G0t8gJHMouQYTu/x52OslscJbq2DcKm/r8ZXiTiIYN2srJUlu9zu+JO0oLdg1UGeBJnV5YdoxJ1WIO5nSMTpZbr1Wip2LlxRykZxgDSRXiDuF0hpI4YdWStLc7nz+pK2UUAddldNaSu9pLVX001pKh9NaKrJWSkrBRZkqt87DdXMrJbVcKyXUdx2lfgGtFIlY/N1KSeMtzrTRizONQ3Gm9UMrJbVgKyWNYHGmJWmlSG5I6Vx+dLdjTaPQSpHMoeQaTO/y52Gvl/QKb62Ccau8radWivvl2FaK5+Xc7nfM4PZWSo9AnQWa0eWFacecUSHuTErH6EyKrRQ7FxkUcpGZYA1kVog7i9IayOKHVkrG3O58/qStlDAHXZXTWlbvaS1b9NNaVofTWjayVkpWwUWZLbfOw3VzKyW7XCslzHcdZX8BrRSJWPzdSsnhLU4renHmcChOyw+tlOyCrZQcgsVpkbRSJDeknC4/utux5lBopUjmUHIN5nL587DXSy6Ft1bBuFXe1rMrxR0Y20rxBOZ2v2OQ21spvQN1FmiwywvTjjlYIe7cSsfo3IqtFDsXQQq5yEOwBvIoxJ1XaQ3k9UMrJTi3O58/aSulqIOuymktn/e0lj/6aS2fw2ktP1krJZ/gosyfW+fhurmVUkCulVLUdx0VeAGtFIlY/N1KKegtzkLRi7OgQ3EW8kMrpYBgK6WgYHEWImmlSG5IhV1+dLdjLajQSpHMoeQaLOLy52GvlyIKb62Ccau8rRdQijsktpXiCcntfkeP21sp/QJ1FmioywvTjjlUIe4wpWN0mGIrxc6FRyEXRQnWQFGFuMOV1kC4H1opobnd+fxJWynhDroqp7Vi3tNa8eintWIOp7XiZK2UYoKLsnhunYfr5lZKhFwrJdx3HUW8gFaKRCz+bqVEeouzRPTijHQozhJ+aKVECLZSIgWLswRJK0VyQyrp8qO7HWukQitFMoeSa7CUy5+HvV5KKby1Csat8rYeoRR36dhWiqd0bvc7lnF7K2VgoM4CLevywrRjLqsQdzmlY3Q5xVaKnYsyCrkoT7AGyivEXUFpDVTwQyulbG53Pn/SVkoxB12V01pF72mtUvTTWkWH01olslZKRcFFWSm3zsN1cyulslwrpZjvOqr8AlopErH4u5VSxVucVaMXZxWH4qzqh1ZKZcFWShXB4qxK0kqR3JCqufzobsdaRaGVIplDyTVY3eXPw14v1RXeWgXjVnlbr6wUd43YVoqnRm73O9Z0eytlSKDOAq3l8sK0Y66lEHdtpWN0bcVWip2Lmgq5qEOwBuooxF1XaQ3U9UMrpVZudz5/0lZKcQddldNaPe9prX7001o9h9NafbJWSj3BRVk/t87DdXMrpYFcK6W47zpq8AJaKRKx+LuV0tBbnI2iF2dDh+Js5IdWSgPBVkpDweJsRNJKkdyQGrv86G7H2lChlSKZQ8k12MTlz8NeL00U3loF41Z5W2+gFHfT2FaKp2lu9zs2c3srZXigzgJt7vLCtGNurhD3K0rH6FcUWyl2Lpop5KIFwRpooRB3S6U10NIPrZTmud35/ElbKREOuiqntVbe09qr0U9rrRxOa6+StVJaCS7KV3PrPFw3t1Jay7VSInzXUesX0EqRiMXfrZQ23uJsG7042zgUZ1s/tFJaC7ZS2ggWZ1uSVorkhtTO5Ud3O9Y2Cq0UyRxKrsH2Ln8e9nppr/DWKhi3ytt6a6W4O8S2UjwdcrvfMcrtrZRRgToLtKPLC9OOuaNC3J2UjtGdFFspdi6iFHLRmWANdFaIu4vSGujih1ZKx9zufP6krZRIB12V01pX72mtW/TTWleH01o3slZKV8FF2S23zsN1cyulu1wrJdJ3HXV/Aa0UiVj83Urp4S3OntGLs4dDcfb0Qyulu2ArpYdgcfYkaaVIbki9XH50t2PtodBKkcyh5Brs7fLnYa+X3gpvrYJxq7ytd1eKu09sK8XTJ7f7Hfu6vZUyNlBngfZzeWHaMfdTiLu/0jG6v2Irxc5FX4VcDCBYAwMU4h6otAYG+qGV0i+3O58/aSulrYOuymltkPe0Njj6aW2Qw2ltMFkrZZDgohycW+fhurmVMkSuldLWdx0NeQGtFIlY/N1KGeotzmHRi3OoQ3EO80MrZYhgK2WoYHEOI2mlSG5Iw11+dLdjHarQSpHMoeQaHOHy52GvlxEKb62Ccau8rQ9RintkbCvFMzK3+x1Hub2VMiFQZ4GOdnlh2jGPVoh7jNIxeoxiK8XOxSiFXIwlWANjFeIep7QGxvmhlTI6t3uf/59f0gcL31NrSMy+PAIdhP8/f+OV1tH4F3ACHq90SAqQ8XQ8AU/wnoAnRj8BT/TDaXe84Gl3gmBRT1R6kNKb8ATBE5H9bBMGiC+6///rP+UgJGZfnjy53O84SembhHj7xJPB/UFLvw3kEfxuNlmwIH0348nezZi1SCfndr/jFJYiDc3g/qDdXKRT5WIO9S3SqeRFOpWgSKexFGlYBvcH7eYinS4Xc5hvkU4nL9LpBEU6g6VIi2Zwf9BuLtKZcjEX9S3SmeRFOpOgSGexFGl4BvcH7eYinS0X89/+auvZ5EU6m6BI57AUabEM7g/azUU6Vy7mv/2laXPJi3QuQZHOYynS4hncH7Sbi3S+XMx/+zj++eRFOp+gSBewFGlEBvcH7eYifU0u5r990ONr5EX6GkGRLmQp0sgM7g/azUW6SC7mv32EyCLyIl1EUKSLWYq0RAb3B+3mIl0iF/PffjltCXmRLiEo0qUsRVoyg/uDdnORLpOLuZ1vkS4jL9JlBEX6OkuRlsrg/qDdXKRvyMXc3rdI3yAv0jcIinQ5S5GWzuD+oN1cpCvkYu7gW6QryIt0BUGRrmQp0jIZ3B+0m4t0lVzMUb5Fuoq8SFcRFOlqliItm8H9Qbu5SNfIxdzRt0jXkBfpGoIiXctSpOUyuD9oNxfpOrGYPX/7xet15EW6jqBI17MUafkM7g/azUW6Qa5I//b7pBvIi3QDQZFuZCnSChncH7Sbi3STXJH+7fdJN5EX6SaCIt3MUqQVM7g/aDcX6Ra5Iv3b75NuIS/SLQRF+iZLkVbK4P6g3VykW+WK9G+/T7qVvEi3EhTpNpYirZzB/UG7uUi3yxXp336fdDt5kW4nKNK3WIq0Sgb3B+3mIt0hV6R/+33SHeRFuoOgSHeyFGnVDO4P2s1FukuuSP/2+6S7yIt0F0GR7mYp0moZ3B+0m4t0j1yR/u33SfeQF+kegiLdy1Kk1TO4P2g3F+k+uSL92++T7iMv0n0ERfo2S5HWyOD+oN1cpPvlivRvv0+6n7xI9xMU6QGWIq2Zwf1Bu7lID8oV6d9+n/QgeZEeJCjSQyxFWiuD+4N2c5EelivSv/0+6WHyIj1MUKRHWIq0dgb3B+3mIj0qV6R/+33So+RFepSgSI+xFGmdDO4P2s1F+o5ckf7t90nfIS/SdwiK9DhLkdbN4P6g3VykJ+SK9G+/T3qCvEhPEBTpuyxFWi+D+4OW/vtX56aUy99CwXu9J5g/+y8ATuazsH2/pBe7pLev78ncisL2zaXveyq33GLQivtU7r8SLHTf/1lsSQL887dN+xZcSAy/ND3nptQpitM+6/bfpGO66E7JVfLffvH2T2l7obwU4J9dSfIB+C7sM94COmvHpPEATivsTKeFvzVrxR1XMe6YOp5TzmFIzL489sI8l1v+2ZwX/vb+56Zg33e0977SuTirlIv3lXLx/n/JRUydtdZF0rwvdE9p/3/wU1sDyfK6ex+wv/GdU9hLBZ+3RzKH9ktF0gDnt8+Af5iD/9Oa8r2nxv4tlRPfF6wP/tsbY0jMvjznlDZEX+l/6Oz5P81jO3+gsDGkEt4Y/vyK/w+f2T95kYlpzBdyu3ODkXwWvuvygs83atPn83/KueTz+dDnXp6wMNRGh+Kejh06hoUXjwxt5ykWVqxYx6IdixeLKNqhY3jRth2KR3mKtg0LjYwqHtLRExEVVTw8rH3xYh0jO7Qv1tF30/Z0CAsr2iGyXXtPeGixtu1CIjqEtQ3pWLR4WGhI2w5hxTt0CIsoVqxtWFiHYhEdIyIjQkPbdgyLCAkvXjwypFhoWGSo1vP50Pt8/HnSXKh00rzoPWleYtnAtfwuKmzWHyl94/pI8VRj5+KSQi4uK+XisuKpRmtdpHX5qUZrDaRz+almodKpRvB5e9LFnmqif3kuKp1qrjCeaq4on2quKGwMGf8Xnmo+zu3ODSaj0lvzx2Snmk8ETzXpBE81Ws/nE59TzX/6puDmdpSmp9Y3mKuM32CuKn+DuarwDSaz0jeYBMKekhvYp4L3kmybSX6zyqy0GX76f/HNKqY5vZZb7pvC39pmLvpmpfV8rv0/1IK77m3B3XD6YY+QmH15/tMPPUj+FE9M7yX4gyMejQf/Zw7jkeQwpve66fLnYRfMTYWXhFtKL0y3FNu1N5RycVspF7cV27Va6yKHy9u1WmvAImjX3lRo1wo+b48V266N/vU/+7dUTnxf/D7TPE3fVNoQP1M8TdvOnylsDEEk7dqbgi9Fd3K7c4MJUjph3fFDu1by+Xwu2K61BE/AWs/n8xdwAtb6dYe73hPwPZYNXMvvrsJmfV/pG9d9xVONnYt7Crn4QikXXyiearTWRR6Xn2q01kBegh+t1zjVCD5vT97YU030L89dpVPNA8ZTzQPlU80DhY2h4P/CU82Xud25wRRUemv+kuxU85XgqSav4KlG6/l89QJ+COV6bp26Z/kG85DxG8xD5W8wDxW+wRQm+SEUyQ3sa8F7SbbNJL9ZFVbaDL/2ww+hfCP4QyhWXnd+s9J6Pt8onvpP/Yf/phcSsy/xLtifX9I/XyL4wzaeRSk5Yp4nGPNikpjnC8a8hCTmBYIxLyWJ+TXBmJeRxLwiQC7m10liXikY8xskMa8SjHk5ScyrBWNeQRLzGsGYV5LEvFYw5lUkMa8TjHk1SczrBWNeQxLzBsGY15LEvFEw5nUkMW8SjHk9ScybBWPeQBLzFsGYN5LE/KZgzJtIYt4qGPNmkpi3Cca8hSTm7YIxv0kS81uCMW8liXmHYMzbSGLeKRjzdpKYdwnG/BZJzLsFY95BEvMewZh3ksS8VzDmXSQx7xOMeTdJzG8LxryHJOb9gjHvJYn5gGDM+0hiPigY89skMR8SjHk/ScyHBWM+QBLzEcGYDwr/tUt//kyX/XMqf37F8eYgnvf/t3/GLyFIBBIH/OuvwrJ/7c/+IVn772BLDlIA+xapQGqQBqQF6UB68DLIADKCTCAzyAKygmwgO8gBLJAT5AKBIAgEA/u39PKAvCAfyA8KgIKgECgMitg5AfavWoTazw0UBeGgGCgOIkAkKAFKglKgNCgDynqfU3lQAVQElUBlUAVUBdVAdVAD1AS1QG1QB9QF9UB90AA0BI1AY9AENAXNQHPwCmgBWoJW4FXQGrQBbUE70B50AFGgI+gEOoMuoCvoBrqDHqAn6AV6gz6gL+gH+oMBYCAYBAaDIWAoGAaGgxFgJBgV8K+fKRsDxoJxYDyYACaCSWAymAKmgmlgOpgBZoJZYDaYA+aCeWA+WABeAwvBIrAYLAFLwTLwOngDLAcrgP3f8VcB+7/z2v/d0/7vgPZ/F7P/O5H9303s/45g99XtPrPdd7X7kHZfzu5T2X0bu49hn+vtc6597rPPQfa5wH5Ptt8b7fco+73C/j5rf9+x92F7X7Lr9Cg4Bt4Bx8EJ8C54D5wEp8BpcAacBefAefA++ABcAB+Ci+AS+AhcBlfAx+ATcBV8Cq6B6+AGuAlugdvgM3AHfA7ugnvgPvgCPABfgq/AQ/A1+AZ8C74D34NH4AfwI3gMfgI/gyfgF/AreAp+A7+DZ+A5+APYxW9/EFRcEA/EBwlAQpAIJAZJwEsgKUgGkoMUICVIBVKDNCAtSAfSg5dBBpARZAKZQRaQFWQD2UEOYIGcIBcIBEEgGOQGeUBekA/kBwVAQVAIFAZFgL2p2X81WygIA0VBOCgGioMIEAlKgJKgFCgNyoCyoBwoDyqAiqASqAyqgKqgGqgOaoCaoBaoDeqAuqAeqA8agIagEWgMmoCmoBloDl4BLUBL0Aq8ClqDNqAtaAfaA/vviLf/Cmr7b7jtBDqDLqAr6Aa6gx6gJ+gFeoM+oC/oB/qDAWAgGAQGgyFgKBgGhoMRYCQYBUaDMWAsGAfGgwlgIpgEJoMpYCqYBqaDGWAmmAVmgzlgLpgH5oMF4DWwECwCi8ESsBQsA6+DN8BysAKsBKvAarAGrAXrwHqwAWwEm8BmsAW8CbaCbWA7eAvsADvBLrAb7AF7wT7wNtgPDoCD4BA4DI6Ao+AYeAccByfAu+A9cBKcAqfBGXAWnAPnwfvgA3ABfAgugkvgI3AZXAEfg0/AVfApuAaugxvgJrgFboPPwB3wObgL7oH74AvwAHwJvgIPwdfgG/At+A58Dx6BH8CP4DH4CfwMnoBfwK/gKfgN/A6egefgD2B/448D4oJ4ID5IABKCRCAxSAJeAklBMpAcpAApQSqQGqQBaUE6kB68DDKAjCATyAyygKwgG8gOcgAL5AS5QCAIAsEgN8gD8oJ8ID8oAAqCQqAwKALs3+33gFAQBoqCcFAMFAcRIBKUACVBKVAalAFlQTlQHlQAFUElUBlUAVVBNVAd1AA1QS1QG9QBdUE9UB80AA1BI9AYNAFNQTPQHLwCWoCWoBV4FbQGbUBb0A60Bx1AFOgIOoHOoAvoCrqB7qAH6Al6gd6gD+gL+oH+YAAYCAaBwWAIGAqGgeFgBBgJRoHRYAwYC8aB8WACmAgmgclgCpgKpoHpYAaYCWaB2WAOmAvmgflgAXgNLASLwGKwBCwFy8Dr4A2wHKwAK8EqsBqsAWvBOrAebAAbwSawGWwBb4KtYBvYDt4CO8BOsAvsBnvAXrAPvA32gwPgIDgEDoMj4Cg4Bt4Bx8EJ8C54D5wEp8BpcAacBefAefA++ABcAB+Ci+AS+AhcBlfAx+ATcBV8Cq6B6+AGuAlugdvgM3AHfA7ugnvgPvgCPABfgq/AQ/A1+AZ8C74D34NH4AfwI3gMfgI/gyfgF/AreAp+A7+DZ+A5+APYL/1xQFwQD8QHCUBCkAgkBknASyApSAaSgxQgJUgFUoM0IC1IB9KDl0EGkBFkAplBFpAVZAPZQQ5ggZwgFwgEQSAY5AZ5QF6QD+QHBUBBUAgUBkVACPCAUBAGioJwUAwUBxEgEpQAJUEpUBqUAWVBOVAeVAAVQSVQGVQBVUE1UB3UADVBLVAb1AF1QT1QHzQADUEj0Bg0AU1BM9AcvAJagJagFXgVtAZtQFvQDrQHHUAU6Ag6gc6gC+gKuoHuoAfoCXqB3qAP6Av6gf5gABgIBoHBYAgYCoaB4WAEGAlGgdFgDBgLxoHxYAKYCCaByWAKmAqmgelgBpgJZoHZYA6YC+aB+WABeA0sBIvAYrAELAXLwOvgDbAcrAArwSqwGqwBa8E6sB5sABvBJrAZbAFvgq1gG9gO3gI7wE6wC+wGe8BesA+8DfaDA+AgOAQOgyPgKDgG3gHHwQnwLngPnASnwGlwBpwF58B58D74AFwAH4KL4BL4CFwGV8DH4BNwFXwKroHr4Aa4CW6B2+AzcAd8Du6Ce+A++AI8AF+Cr8BD8DX4BnwLvgPfg0fgB/AjeAx+Aj+DJ+AX8Ct4Cn4Dv4Nn4Dn4A9gH/jggLogH4oMEICFIBBKDJOAlkBQkA8lBCpASpAKpQRqQFqQD6cHLIAPICDKBzCALyAqygewgB7BATpALBIIgEAxygzwgL8gH8oMCoCAoBAqDIiAEeEAoCANFQTgoBoqDCBAJSoCSoBQoDcqAsqAcKA8qgIqgEqgMqoCqoBqoDmqAmqAWqA3qgLqgHqgPGoCGoBFoDJqApqAZaA5eAS1AS9AKvApagzagLWgH2oMOIAp0BJ1AZ9AFdAXdQHfQA/QEvUBv0Af0Bf1AfzAADASDwGAwBAwFw8BwMAKMBKPAaDAGjAXjwHgwAUwEk8BkMAVMBdPAdDADzASzwGwwB8wF88B8sAC8BhaCRWAxWAKWgmXgdfAGWA5WgJVgFVgN1oC1YB1YDzaAjWAT2Ay2gDfBVrANbAdvgR1gJ9gFdoM9YC/YB94G+8EBcBAcAofBEXAUHAPvgOPgBHgXvAdOglPgNDgDzoJz4Dx4H3wALoAPwUVwCXwELoMr4GPwCbgKPgXXwHVwA9wEt8Bt8Bm4Az4Hd8E9cB98AR6AL8FX4CH4GnwDvgXfge/BI/AD+BE8Bj+Bn8ET8Av4FTwFv4HfwTPwHPwB7GZfHBAXxAPxQQKQECQCiUES8BJICpKB5CAFSAlSgdQgDUgL0oH04GWQAWQEmUBmkAVkBdlAdpADWCAnyAUCQRAIBrlBHpAX5AP5QQFQEBQChUERYH+kiweEgjBQFISDYqA4iACRoAQoCUqB0qAMKAvKgfKgAqgIKoHKoAqoCqqB6qAGqAlqgdqgDqgL6oH6oAFoCBqBxqAJaAqagebgFdACtAStwKugNWgD2oJ2oD3oAKJAR9AJdAZdQFfQDXQHPUBP0Av0Bn1AX9AP9AcDwEAwCAwGQ8BQMAwMByPASDAKjAZjwFgwDowHE8BEMAlMBlPAVDANTAczwEwwC8wGc8BcMA/MBwvAa2AhWAQWgyVgKVgGXgdvgOVgBVgJVoHVYA1YC9aB9WAD2Ag2gc1gC3gTbAXbwHbwFtgBdoJdYDfYA/aCfeBtsB8cAAfBIXAYHAFHwTHwDjgOToB3wXvgJDgFToMz4Cw4B86D98EH4AL4EFwEl8BH4DK4Aj4Gn4Cr4FNwDVwHN8BNcAvcBp+BO+BzcBfcA/fBF+AB+BJ8BR6Cr8E34FvwHfgePAI/gB/BY/AT+Bk8Ab+AX8FT8Bv4HTwDz8EfwG70xwFxQTwQHyQACUEikBgkAS+BpCAZSA5SgJQgFUgN0oC0IB1ID14GGUBGkAlkBllAVpANZAc5gAVyglwgEASBYJAb5AF5QT6QHxQABUEhUBgUASHAA0JBGCgKwkExUBxEgEhQApQEpUBpUAaUBeVAeVABVASVQGVQBVQF1UB1UAPUBLVAbVAH1AX1QH3QADQEjUBj0AQ0Bc1Ac/AKaAFaglbgVdAatAFtQTvQHnQAUaAj6AQ6gy6gK+gGuoMeoCfoBXqDPqAv6Af6gwFgIBgEBoMhYCgYBoaDEWAkGAVGgzFgLBgHxoMJYCKYBCaDKWAqmAamgxlgJpgFZoM5YC6YB+aDBeA1sBAsAovBErAULAOvgzfAcrACrASrwGqwBqwF68B6sAFsBJvAZrAFvAm2gm1gO3gL7AA7wS6wG+wBe8E+8DbYDw6Ag+AQOAyOgKPgGHgHHAcnwLvgPXASnAKnwRlwFpwD58H74ANwAXwILoJL4CNwGVwBH4NPwFXwKbgGroMb4Ca4BW6Dz8Ad8Dm4C+6B++AL8AB8Cb4CD8HX4BvwLfgOfA8egR/Aj+Ax+An8DJ6AX8Cv4Cn4DfwOnoHn4A9g/0e+OCAuiAfigwQgIUgEEoMk4CWQFCQDyUEKkBKkAqlBGpAWpAPpwcsgA8gIMoHMIAvICrKB7CAHsEBOkAsEgiAQDHKDPCAvyAfygwKgICgECoMiIAR4QCgIA0VBOCgGioMIEAlKgJKgFCgNyoCyoBwoDyqAiqASqAyqgKqgGqgOaoCaoBaoDeqAuqAeqA8agIagEWgMmoCmoBloDl4BLUBL0Aq8ClqDNqAtaAfagw4gCnQEnUBn0AV0Bd1Ad9AD9AS9QG/QB/QF/UB/MAAMBIPAYDAEDAXDwHAwAowEo8BoMAaMBePAeDABTASTwGQwBUwF08B0MAPMBLPAbDAHzAXzwHywALwGFoJFYDFYApaCZeB18AZYDlaAlWAVWA3WgLVgHVgPNoCNYBPYDLaAN8FWsA1sB2+BHWAn2AV2gz1gL9gH3gb7wQFwEBwCh8ERcBQcA++A4+AEeBe8B06CU+A0OAPOgnPgPHgffAAugA/BRXAJfAQugyvgY/AJuAo+BdfAdXAD3AS3wG3wGbgDPgd3wT1wH3wBHoAvwVfgIfgafAO+Bd+B78Ej8AP4ETwGP4GfwRPwC/gVPAW/gd/BM/Ac/AHs/8AfB8QF8UB8kAAkBIlAYpAEvASSgmQgOUgBUoJUIDVIA9KCdCA9eBlkABlBJpAZZAFZQTaQHeQAFsgJcoFAEASCQW6QB+QF+UB+UAAUBIVAYVAEhAAPCAVhoCgIB8VAcRABIkEJUBKUAqVBGVAWlAPlQQVQEVQClUEVUBVUA9VBDVAT1AK1QR1QF9QD9UED0BA0Ao1BE9AUNAPNwSugBWgJWoFXQWvQBrQF7UB70AFEgY6gE+gMuoCuoBvoDnqAnqAX6A36gL6gH+gPBoCBYBAYDIaAoWAYGA5GgJFgFBgNxoCxYBwYDyaAiWASmAymgKlgGpgOZoCZYBaYDeaAuWAemA8WgNfAQrAILAZLwFKwDLwO3gDLwQqwEqwCq8EasBasA+vBBrARbAKbwRbwJtgKtoHt4C2wA+wEu8BusAfsBfvA22A/OAAOgkPgMDgCjoJj4B1wHJwA74L3wElwCpwGZ8BZcA6cB++DD8AF8CG4CC6Bj8BlcAV8DD4BV8Gn4Bq4Dm6Am+AWuA0+A3fA5+AuuAfugy/AA/Al+Ao8BF+Db8C34DvwPXgEfgA/gsfgJ/AzeAJ+Ab+Cp+A38Dt4Bp6DP4D9wz1xQFwQD8QHCUBCkAgkBknASyApSAaSgxQgJUgFUoM0IC1IB9KDl0EGkBFkAplBFpAVZAPZQQ5ggZwgFwgEQSAY5AZ5QF6QD+QHBUBBUAgUBkVACPCAUBAGioJwUAwUBxEgEpQAJUEpUBqUAWVBOVAeVAAVQSVQGVQBVUE1UB3UADVBLVAb1AF1QT1QHzQADUEj0Bg0AU1BM9AcvAJagJagFXgVtAZtQFvQDrQHHUAU6Ag6gc6gC+gKuoHuoAfoCXqB3qAP6Av6gf5gABgIBoHBYAgYCoaB4WAEGAlGgdFgDBgLxoHxYAKYCCaByWAKmAqmgelgBpgJZoHZYA6YC+aB+WABeA0sBIvAYrAELAXLwOvgDbAcrAArwSqwGqwBa8E6sB5sABvBJrAZbAFvgq1gG9gO3gI7wE6wC+wGe8BesA+8DfaDA+AgOAQOgyPgKDgG3gHHwQnwLngPnASnwGlwBpwF58B58D74AFwAH4KL4BL4CFwGV8DH4BNwFXwKroHr4Aa4CW6B2+AzcAd8Du6Ce+A++AI8AF+Cr8BD8DX4BnwLvgPfg0fgB/AjeAx+Aj+DJ+AX8Ct4Cn4Dv4Nn4Dn4A9g/2BcHxAXxQHyQACQEiUBikAS8BJKCZCA5SAFSglQgNUgD0oJ0ID14GWQAGUEmkBlkAVlBNpAd5AAWyAlygUAQBIJBbpAH5AX5QH5QABQEhUBhUASEAA8IBWGgKAgHxUBxEAEiQQlQEpQCpUEZUBaUA+VBBVARVAKVQRVQFVQD1UENUBPUArVBHVAX1AP1QQPQEDQCjUET0BQ0A83BK6AFaAlagVdBa9AGtAXtQHvQAUSBjqAT6Ay6gK6gG+gOeoCeoBfoDfqAvqAf6A8GgIFgEBgMhoChYBgYDkaAkWAUGA3GgLFgHBgPJoCJYBKYDKaAqWAamA5mgJlgFpgN5oC5YB6YDxaA18BCsAgsBkvAUrAMvA7eAMvBCrASrAKrwRqwFqwD68EGsBFsApvBFvAm2Aq2ge3gLbAD7AS7wG6wB+wF+8DbYD84AA6CQ+AwOAKOgmPgHXAcnADvgvfASXAKnAZnwFlwDpwH74MPwAXwIbgILoGPwGVwBXwMPgFXwafgGrgOboCb4Ba4DT4Dd8Dn4C64B+6DL8AD8CX4CjwEX4NvwLfgO/A9eAR+AD+Cx+An8DN4An4Bv4Kn4DfwO3gGnoM/gP1DvXFAXBAPxAcJQEKQCCQGScBLIClIBpKDFCAlSAVSgzQgLUgH0oOXQQaQEWQCmUEWkBVkA9lBDmCBnCAXCARBIBjkBnlAXpAP5AcFQEFQCBQGRUAI8IBQEAaKgnBQDBQHESASlAAlQSlQGpQBZUE5UB5UABVBJVAZVAFVQTVQHdQANUEtUBvUAXVBPVAfNAANQSPQGDQBTUEz0By8AlqAlqAVeBW0Bm1AW9AOtAcdQBToCDqBzqAL6Aq6ge6gB+gJeoHeoA/oC/qB/mAAGAgGgcFgCBgKhoHhYAQYCUaB0WAMGAvGgfFgApgIJoHJYAqYCqaB6WAGmAlmgdlgDpgL5oH5YAF4DSwEi8BisAQsBcvA6+ANsBysACvBKrAarAFrwTqwHmwAG8EmsBlsAW+CrWAb2A7eAjvATrAL7AZ7wF6wD7wN9oMD4CA4BA6DI+AoOAbeAcfBCfAueA+cBKfAaXAGnAXnwHnwPvgAXAAfgovgEvgIXAZXwMfgE3AVfAqugevgBrgJboHb4DNwB3wO7oJ74D74AjwAX4KvwEPwNfgGfAu+A9+DR+AH8CN4DH4CP4Mn4BfwK3gKfgO/g2fgOfgD2D/QHwfEBfFAfJAAJASJQGKQBLwEkoJkIDlIAVKCVCA1SAPSgnQgPXgZZAAZQSaQGWQBWUE2kB3kABbICXKBQBAEgkFukAfkBflAflAAFASFQGFQBIQADwgFYaAoCAfFQHEQASJBCVASlAKlQRlQFpQD5UEFUBFUApVBFVAVVAPVQQ1QE9QCtUEdUBfUA/VBA9AQNAKNQRPQFDQDzcEroAVoCVqBV0Fr0Aa0Be1Ae9ABRIGOoBPoDLqArqAb6A56gJ6gF+gN+oC+oB/oDwaAgWAQGAyGgKFgGBgORoCRYBQYDcaAsWAcGA8mgIlgEpgMpoCpYBqYDmaAmWAWmA3mgLlgHpgPFoDXwEKwCCwGS8BSsAy8Dt4Ay8EKsBKsAqvBGrAWrAPrwQawEWwCm8EW8CbYCraB7eAtsAPsBLvAbrAH7AX7wNtgPzgADoJD4DA4Ao6CY+AdcBycAO+C98BJcAqcBmfAWXAOnAfvgw/ABfAhuAgugY/AZXAFfAw+AVfBp+AauA5ugJvgFrgNPgN3wOfgLrgH7oMvwAPwJfgKPARfg2/At+A78D14BH4AP4LH4CfwM3gCfgG/gqfgN/A7eAaegz+A/cs8cUBcEA/EBwlAQpAIJAZJwEsgKUgGkoMUICVIBVKDNCAtSAfSg5dBBpARZAKZQRaQFWQD2UEOYIGcIBcIBEEgGOQGeUBekA/kBwVAQVAIFAZFQAjwgFAQBoqCcFAMFAcRIBKUACVBKVAalAFlQTlQHlQAFUElUBlUAVVBNVAd1AA1QS1QG9QBdUE9UB80AA1BI9AYNAFNQTPQHLwCWoCWoBV4FbQGbUBb0A60Bx1AFOgIOoHOoAvoCrqB7qAH6Al6gd6gD+gL+oH+YAAYCAaBwWAIGAqGgeFgBBgJRoHRYAwYC8aB8WACmAgmgclgCpgKpoHpYAaYCWaB2WAOmAvmgflgAXgNLASLwGKwBCwFy8Dr4A2wHKwAK8EqsBqsAWvBOrAebAAbwSawGWwBb4KtYBvYDt4CO8BOsAvsBnvAXrAPvA32gwPgIDgEDoMj4Cg4Bt4Bx8EJ8C54D5wEp8BpcAacBefAefA++ABcAB+Ci+AS+AhcBlfAx+ATcBV8Cq6B6+AGuAlugdvgM3AHfA7ugnvgPvgCPABfgq/AQ/A1+AZ8C74D34NH4AfwI3gMfgI/gyfgF/AreAp+A7+DZ+A5+APYv8gXB8QF8UB8kAAkBIlAYpAEvASSgmQgOUgBUoJUIDVIA9KCdCA9eBlkABlBJpAZZAFZQTaQHeQAFsgJcoFAEASCQW6QB+QF+UB+UAAUBIVAYVAEhAAPCAVhoCgIB8VAcRABIkEJUBKUAqVBGVAWlAPlQQVQEVQClUEVUBVUA9VBDVAT1AK1QR1QF9QD9UED0BA0Ao1BE9AUNAPNwSugBWgJWoFXQWvQBrQF7UB70AFEgY6gE+gMuoCuoBvoDnqAnqAX6A36gL6gH+gPBoCBYBAYDIaAoWAYGA5GgJFgFBgNxoCxYBwYDyaAiWASmAymgKlgGpgOZoCZYBaYDeaAuWAemA8WgNfAQrAILAZLwFKwDLwO3gDLwQqwEqwCq8EasBasA+vBBrARbAKbwRbwJtgKtoHt4C2wA+wEu8BusAfsBfvA22A/OAAOgkPgMDgCjoJj4B1wHJwA74L3wElwCpwGZ8BZcA6cB++DD8AF8CG4CC6Bj8BlcAV8DD4BV8Gn4Bq4Dm6Am+AWuA0+A3fA5+AuuAfugy/AA/Al+Ao8BF+Db8C34DvwPXgEfgA/gsfgJ/AzeAJ+Ab+Cp+A38Dt4Bp6DP4D9S7xxQFwQD8QHCUBCkAgkBknASyApSAaSgxQgJUgFUoM0IC1IB9KDl0EGkBFkAplBFpAVZAPZQQ5ggZwgFwgEQSAY5AZ5QF6QD+QHBUBBUAgUBkVACPCAUBAGioJwUAwUBxEgEpQAJUEpUBqUAWXt360G5UEFUBFUApVBFVAVVAPVQQ1QE9QCtUEdUBfUA/VBA9AQNAKNQRPQFDQDzcEroAVoCVqBV0Fr0Aa0Be1Ae9ABRIGOoBPoDLqArqAb6A56gJ6gF+gN+oC+oB/oDwaAgWAQGAyGgKFgGBgORoCRYBQYDcaAsWAcGA8mgIlgEpgMpoCpYBqYDmaAmWAWmA3mAPtvErT/TgH7M/btz5y3P4Pd/nsV/vwK9v5p/965/fcF2J+fb3+evP356vbnjdufv21/HrX9+cz25xXbn99rf56t/fmu9ued2p//aX8epv35kPbnJdqfH2h/np79+XL2563Znz9mfx6X/flU9uc12Z9fZH+ej/35Nvbnvdiff2J/Hoj9+Rj250XYn59gf56A/fv19n/L+fPrvI9zVu+fbfv3j+rRu7/Vv5fVtkMHa1CX/p2tXgOj+nbs3sv+FeuADwzG3DIY85nBmEcGY340GBMv1T8fk8BgTHqDMRkMxuQxGJPPYEykwZiSBmNqGoypbTCmlcGY1gZjehmM6WMwZozBmHEGY+YZjFlgMGatwZj1BmP2Gox522DMaYMxZw3GXDMYc8NgzDcGY74zGPOHwZg4qf/5mNQGY9IajAk0GBNsMCbcYExxgzFVDcZUNxjT3GBMC4Mx3QzG9DAYM8JgzCiDMbMMxswxGLPSYMxqgzE7DcbsNhhz2GDMSYMxH/iMyfnvY3oM6N6/S+/uQ/594GWDyaan+edjZhqMecNgzAqDMdsNxuwwGPOOwZgTBmM+MhhzxWDMfYMxDwzG/GIw5qnBmJfS/vMxyQzGZDUYk91gTGGDMSEGY8oZjKlgMKaBwZhGBmM6GIzpaDBmoMGYwQZjJhuMmWowZonBmGUGY7YYjNlqMOawwZijBmMuGIy5aDDmjsGYuwZjHhuM+dlgTMJ0/3xMYoMxGQ3GZDYYk99gTEGDMaUMxpQxGFPHYEw9gzFtDMa0MxjT12BMf4MxIwzGTDQYM9NnzD86NMw3mKxG+n8+ppbBmJYGY141GNPTYExvgzGjDcaMNRgz12DMfIMxawzGrDMYs8dgzD6DMacMxpwxGPOpwZjrBmO+NhjzrcGY5wZj/udjtv/hmFQGY9IYjMllMCbIYExRgzHFDMZUMRhTzWBMM4MxrxiM6WowprvBmOEGY0YajJlpMGa2wZgVBmNWGYzZYTBml8GYEwZj3jMYc8VgzCcGYx4YjPnKYMxTgzG/G4xJluGfj0lhMCa7wRjLYEyIwZhQgzElDcZUMhhT12fMPzo0NDaYrIPBmB6mgr0MJhtsOtlQg8nGmU42wWCymaaTzTaYbLHpZEsNJltjOtk6g8m2mU72lsFk+00nO2gw2bumk500mOyC6WQXDSa7ZjrZDYPJ7ptO9sBgskemk/1oMNnvppM9N5gsUUbDyZJk/OeTpTGdLJ3BZNlMJ8thMFle08nyG0wWZjpZuMFkZUwnK2cwWXXTyWoaTNbIdLImBpO1Np2srcFkXU0n624w2QDTyQYZTDbadLKxBpNNNp1sqsFks00nm2sw2SLTyZYYTLbsv0/Wb0C7/n3btu//7wM3GUy2zzSyowaTvWc62fsGk10yneyawWS3TSd7YDDZN6aT/WQw2VPTyeJm+ueTJcpkOFlKg8nSmU6W1WCynKaT5TOYrLDpZMUMJitpOllFg8mqmU5Wz2CyxqaTtTKYrJ3pZF0NJutlOtkgg8mGm0423mCyKaaTzTGY7DXTyd4wmGy16WSbDSbbbjrZPoPJDplO9q7BZGdMJ7toMNnHppPdMpjsrulkXxtM9sh0sl8NJntuOlnCzP98sqSZDSdLazBZRtPJLIPJgk0nK2QwWajpZCUMJitrOllVg8lq+Yz586dJq/fsEDXY6jWgv9Wro9Wu14CeHey/NTyg9v/9v1rXNIT6pgMbGsTe2HSypqYDm5sObGE6sJXpwNamA9uaDmxvOjDKdGAn04FdTAd2Mx3Yw3RgL9OBfUwH9jMdOMB04CDTgUNMBw4zHTjCdOAo04FjTAeOMx04wXTgJNOBU0wHTjMdOMN04CzTgXNMB+4zHbj/vw/8z73bo6YzvmM64ynTGc+YznjBdMaLpjN+Yjrjp6Yz3jad8Y7pjA9MZ/zKdMbvTWf8wXTGX0xnfGo6Y0AWwxnjZjGcMbHpjC+ZzpjKdMY0pjNmNJ0xs+mMlumMuUxnzGs6Y37TGUNMZww1nTHCdMYSpjOWM52xgumM1UxnrGE6Yz3TGRuYztjMdMZXTGdsYzpjO9MZO5vO2NV0xt6mM/Y1nXGw6YxDTWccbTrjWNMZJ5vOONV0xtmmM841nXGR6YxLTGdcYTrjKtMZN5jOuMl0xu2mM+4wnXGX6cCjpqrHfAb++VFL1XsObNu9SwerQ9v+ba3+Q3pH2RfHZv3rX0wW7V/s3LZf5/+x8Pl3/q9/TNtnTF7vn+X/NSaqgz2qb1TbDlbvtv36W1E9O9i97wp27zuqQ5Oo9va/ezKrYeRnDWQvmE72oc/AFNGy1z2qZ6f+/5O/x6a3/9l04C8GSXhqOtnvpgOfG1gGZDOcLK7pwPjZ/rllQtPJEpsOfMnAMpnpZClMB6YysExjOlk604EvG1hmNJ0ss+nArAaW2U0ns0wH5jKwDDKdLLfpwLwGlvlNJytoOrCwgWWI6WShpgOLGlgWM50swnRgCQPLUqaTlTEdWM7AsoLpZJVMB1YxsKxmOlkN04G1DCzrmE5Wz3RgAwPLRqaTNTEd2MzA8hXTyVqaDnzVwLKN6WTtTAd2MLDsaDpZZ9OBXQ0su5tO1tN0YG8Dy76mk/U3HTjQwHKw6WRDTQcON7AcaTrZaNOBYw0sx5tONtF04GQDy6mmk003HTjTwHK26WRzTQfON7B8zXSyRaYDlxhYLjOd7A3TgSsMLFeZTrbGdOA6A8sNppNtMh24xcByq+lk200H7jCwPGw62RGfgf+1Cz06+1//4n/qQh/L/s/N3/MZY9KFPpXdMPJzBrIfmk520Wfgf+5C/2R6+ycGsfxqOtlvpgOfGVj+YTpZnByGA+Pl+OeWCUwnS2Q6MImBZVLTyZKbDkxpYJnadLK0pgPTG1hmMJ0sk+nALAaW2Uwny2E6MKeBZaDpZMGmA/MYWOYznayA6cBCBpZFTCfzmA4MM7AMN52suOnASAPLkqaTlTYdWNbAsrzpZBVNB1Y2sKxqOll104E1DSxrm05W13RgfQPLhqaTNTYd2NTAsrnpZC1MB7YysGxtOllb04HtDSyjTCfrZDqwi4FlN9PJepgO7GVg2cd0sn6mAwcYWA4ynWyI6cBhBpYjTCcbZTpwjIHlONPJJpgOnGRgOcV0smmmA2cYWM4ynWyO6cB5BpYLTCdbaDpwsYHlUtPJXjcduNzAcqXpZKtNB641sFxvOtlG04GbDSzfNJ1sm+nAtwwsd5pOttt04F4Dy+Omk53wGfhfW94TrL/+xf/U8n7X+ufmZ3zGmLS8z1mGkV8wkL1sOtkVn4H/ueX9q4HSb6ZKz0wH/mFgGSen4WTxTAcmyPnPLROZTpbEdGBSA8vkppOlNB2Y2sAyrelk6U0HZjCwzGQ6WRbTgdkMLHOYTpbTdGCggWWw6WR5TAfmM7AsYDpZIdOBRQwsPaaThZkODDewLG46WaTpwJIGlqVNJytrOrC8gWVF08kqmw6samBZ3XSymqYDaxtY1jWdrL7pwIYGlo1NJ2tqOrC5gWUL08lamQ5sbWDZ1nSy9qYDowwsO5lO1sV0YDcDyx6mk/UyHdjHwLKf6WQDTAcOMrAcYjrZMNOBIwwsR5lONsZ04DgDywmmk00yHTjFwHKa6WQzTAfOMrCcYzrZPNOBCwwsF5pOtth04FIDy9dNJ1tuOnClgeVq08nWmg5cb2C50XSyzaYD3zSw3GY62VumA3caWO42nWyv6cC3DSwPmE52yHTgEQPLs6aTnfMZ+F/76zNy/fUv/qf++vlc/9z8os8Yk/76R7kMI//EQPaG6WQ3fQb+5/56nMB/rhQv0FApgenARAaWSUwnS2o6MLmBZUrTyVKbDkxrYJnedLIMpgMzGVhmMZ0sm+nAHAaWOU0nCzQdGGxgmcd0snymAwsYWBYynayI6UCPgWWY6WThpgOLG1hGmk5W0nRgaQPLsqaTlTcdWNHAsrLpZFVNB1Y3sKxpOllt04F1DSzrm07W0HRgYwPLpqaTNTcd2MLAspXpZK1NB7Y1sGxvOlmU6cBOBpZdTCfrZjqwh4FlL9PJ+pgO7GdgOcB0skGmA4cYWA4znWyE6cBRBpZjTCcbZzpwgoHlJNPJppgOnGZgOcN0slmmA+cYWM4znWyB6cCFBpaLTSdbajrwdQPL5aaTrTQduNrAcq3pZOtNB240sNxsOtmbpgO3GVi+ZTrZTtOBuw0s95pO9rbpwAMGlodMJztiOvCYgeVx08neNR140sDykulkH/kM/K/99QVBf/2L/6m/fjnon5t/6jPGpL9+Pcgw8tsGsvdMJ7vvM/A/99eTBP9zpaTBhkrJTQemNLBMbTpZWtOB6Q0sM5hOlsl0YBYDy2ymk+UwHZjTwDLQdLJg04F5DCzzmU5WwHRgIQPLIqaTeUwHhhlYhptOVtx0YKSBZUnTyUqbDixrYFnedLKKpgMrG1hWNZ2suunAmgaWtU0nq2s6sL6BZUPTyf6/9s4DPIrq+/uz2XQSkhA6qNixJ6EFKyrFLiqKWFBAQFSwgL3FXlGxYMfesPfeUVTE3rGCCjZQVOz6urg3+92T893MnMmQ/N/fzvPk2cnM55R75tYp9+5sFRxq8HKY1djuVsE9DV7uZTU2wio4yuDlaKuxsVbBcQYv97caG28VPNDg5cFWYxOtgocavDzcauxIq+DRBi+PtRo73ip4gsHLk6zGTrEKnmbw8gyrsbOsgpMNXp5rNTbFKniBwcuLrMYutgpeavDycquxK62CVxm8vMZq7Dqr4A0GL2+yGrvFKnirwcvbrcbutArebfDyXqux+62CDxq8fNhq7FGr4OMGL5+0GnvaKviswcvnrMZmWgVfNHg5y2pstlXwVYOXc6zGPgTBjPfXr1wtBbL76x+tFtzzuSBjub/++WrGlC8wOPud1dhCEOT31ytWD+5S5epGl9pZBTsYvOxkNdbFKricwcsVrMZWtAqubPByVaux1a2Caxi8XMtqbB2r4HoGL6utxnpYBXsZvOxjNdbXKriBwcuNrMY2sQpuavByc6uxAVbBQQYvt7Qa29oquK3By+2txnawCu5k8HJnq7GhVsFhBi93txrb0yq4l8HLEVZjo6yCow1ejrUaG2cV3N/g5XirsQOtggcbvJxoNXaoVfBwg5dHWo0dbRU81uDl8VZjJ1gFTzJ4eYrV2GlWwTMMXp5lNTbZKniuwcspVmMXWAUvMnh5sdXYpVbByw1eXmk1dpVV8BqDl9dZjd1gFbzJ4OUtVmO3WgVvN3h5p9XY3VbBew1e3m819qBV8GGDl49ajT1uFXzS4OXTVmPPWgWfM3g502rsRavgLIOXs63GXrUKvm7w8k2rsbetgu8avJxnNfY5CGa8v35D9xTI7q9/0T2451+DjOX++rfdjSn/3uDsz1ZjS0CQ31/vtEZwl7qsYXRpOavgCgYvV7QaW9kquKrBy9WtxtawCq5l8HIdq7H1rILVBi97WI31sgr2MXjZ12psA6vgRgYvN7Ea29QquLnBywFWY4OsglsavNzaamxbq+D2Bi93sBrbySq4s8HLoVZjw6yCuxu83NNqbC+r4AiDl6OsxkZbBccavBxnNba/VXC8wcsDrcYOtgpONHh5qNXY4VbBIw1eHm01dqxV8HiDlydYjZ1kFTzF4OVpVmNnWAXPMng52WrsXKvgFIOXF1iNXWQVvNjg5aVWY5dbBa80eHmV1dg1VsHrDF7eYDV2k1XwFoOXt1qN3W4VvNPg5d1WY/daBe83ePmg1djDVsFHDV4+bjX2pFXwaYOXz1qNPWcVnGnw8kWrsVlWwdkGL1+1GnvdKvimwcu3rcbetQq+b/ByjtXYR1bBTwxezgOZjLfJ89ZMgew2eb4PpsAHU+iDKfLBFPtgWvlgSnwwpT6Y1j6YMh9MuQ+mwgfTxgdT6YNp64Np54Np74Pp4IPp6IPp5IPp7IPp4oPp6oNZzgezvA9mBR9MNx/Mij6YlXwwK/tgVvHBrA0Mf9C0PlCu7txm9Igx/z5nO2TcpCO7HXTI6DHjjvi3Dv33qdvI0d1quh14SLceCWiEIuir0h2VWXDioSMnHTJi1CTljpPV4v5WiwdbLU60WjzSavFoq8UTrBZPslo8w2rxLKvFKVaLF1gtXmq1eLnV4jVWi9dZLd5itXir1eLdVov3Wi0+bLX4qNXi01aLz1otvmi1OMtq8XWrxTetFt+3WpxjtfiZ1eI8q8WvrBa/sVr8wWrxR6vF36wW/7BajK1ltBhfy2ixyGqxldVihdVipdViJ6vFLlaLK1otrmy1uIbV4lpWi9VWiz2sFvtaLW5gtbip1eLmVotbWi1ubbU4zGpxNxDskPwdrA7kqhKn9gDc7/2v4Vbf9rYKjjR4uY/V2Bir4L4GL/ezGjvAKjjB4OVBVmOHWAUnGbw8zGrsCKvgUQYvj7EaO84qWGfw8kSrsZOtgqcavDzdauxMq+DZBi/PsRo7zyp4vsHLC63GploFLzF4eZnV2BVWwWkGL6+2GrvWKni9wcsbrcZutgpON3h5m9XYHVbBuwxe3mM1dp9V8AGDlw9ZjT1iFXzM4OUTVmNPWQWfMXg5w2rseavgCwYvX7Iae9kq+IrBy9esxt6wCr5l8PIdq7H3rIIfGLz80GrsY6vgpwYv51qNfW4V/NLg5QKrsa+tgt8avFxoNfa9VXCxwcufrMaWWAV/NXj5u9XYn1bBvw1eemsbjeVYBXPXDu5lvtVYoVWw2OBlidVYa6tgucHLNlZjba2C7Q1edrQa62wV7GrwcnmrsW5WwZUMXq5iNbaaVbC7wcs1rcbWtgqua/CyymqsxirY0+Blb6uxWqvg+gYvN7Qa29gq2M/g5WZWY/2tggMNXm5hNbaVVXAbg5fbWY0NtgruaPByiNXYLlbBXQ1e7mY1todVcLjBy72txkZaBfcxeDnGamxfq+B+Bi8PsBqbYBU8yODlIVZjk6yChxm8PMJq7Cir4DEGL4+zGquzCp5o8PJkq7FTrYKnG7w802rsbKvgOQYvz7MaO98qeKHBy6lWY5dYBS8zeHmF1dg0q+DVBi+vtRq73ip4o8HLm63GplsFbzN4eYfV2F1WwXsMXt5nNfaAVfAhg5ePWI09ZhV8wuDliyBTmfzdcsI+o4/oduChkxLT+o1MTOs3MXH4Fatfr1sF3wDBjsnfrUcf2W38uInjR0watW+3cRO6Tdp3dLcDRo8Ykzj3niEAn/gPwOfWdMy3Ci4IGICFhgD87D8Av1vT8ZdV8O+AAchdJ3gAWq3jOwDl6xjTUWkVbLtOsAB0NgRgRf8BWM2ajjWsgmsGDECVIQB9/AdgQ2s6NrEK9gsYgIGGAGzrPwA7WtOxs1Vwl4AB2MMQgFH+A7CvNR37WwUPCBiAQwwBONJ/AI6zpuMEq+CJAQNwuiEA5/oPwIXWdFxsFbwkYACmGQJwg/8ATLem43ar4B0BA3CfIQCP+g/AU9Z0PGsVnBEwAC8ZAvC6/wC8Y03H+1bBDwIG4FNDAOb7D8C31nQssgp+HzAASwwB+Mt/AHLWNaYjzyqYv26wAJSsGzwAlev6DkBHazq6WAW7BgzASoYArOE/AOta01FtFawJGIBaQwA28R+A/tZ0DLIKbhEwANsZArCz/wDsZk3HnlbB4QEDsI8hAPv7D8BB1nRMtApOChiAowwBOMF/AE61puMMq+CZAQNwniEAF/sPwBXWdFxlFbw6YABuNATgdv8BuMeajvutgg8EDMBjhgA86z8AL1jTMcsq+HLAALxhCMD7/gPwsTUdn1kF5wYMwAJDABb5D8BP1nT8YhX8NWAA/jYEIG893wEoXs+YjlKrYOv1ggWg7XrBA9DFfwC6WdOxslVwlYABWNMQgGr/AehtTUdfq+D6AQPQzxCAQf4DsI01HdtbBQcHDMAuhgDs6T8AI63pGG0VHBMwAAcYAjDRfwCOsKbjaKvgMQEDcKIhAGf4D8A51nRMsQqeHzAAlxgCcJX/AFxvTcdNVsGbAwbgDkMA7vcfgEes6XjcKvhEwADMMARglv8AvGZNx5tWwbcCBuADQwA+8x+AL63p+Moq+HXAAHxvCMAv/gPwpzUd/1gFvapgAcivCh6A0irfAWhTZUxHO6tg+4AB6GoIwMr+A9Ddmo61rIJrBwxAjSEAff0HYGNrOja1Cm4WMABbGAKwvf8ADLGmY6hVcNeAARhuCMBo/wHYz5qO8VbBCQEDMMkQgKP9B6DOmo6TrIInBwzAmYYATPEfgKnWdFxqFbwsYACuNgTgJv8BuM2ajjutgncFDMADhgA87j8Az1jT8ZxV8PmAAXjZEIA3/QfgPWs65lgFPwwYgLmGAHzlPwALren4wSq4OGAAfjUE4B//AcitNqajwCpYWB0sAK2rgwegXbXvAHS2pmM5q+DyAQOwiiEAa/kPQJU1HT2sgj0DBmB9QwA29R+AgdZ0bGkV3CpgAAYbAjDUfwD2sKZjL6vg3gEDMMYQgPH+A3CINR2HWgUPCxiAYwwBOMl/AE63puMsq+DZAQNwviEAl/oPwDRrOq6xCl4bMAA3GwJwp/8A3GdNx4NWwYcCBuAJQwCe8x+Al6zpmG0VfCVgAF4zBOAtkFk5+TvgiINGj5o0ep+E0KgDJ0w8dPzobiMOOKDb/v/anjBu5MgDRv/3+jyItk7+7jLigENH1zuYOPKewakPfGn+0KD5Y1+aPzVonutL8+cGzV/60rzAoPlrX5q/NWhe6Evz9wbNi31p/smgeYkvzb8aNP/uS/OfBs1/+9Ls1QTXnFPjR3OuQXO+L82FBs3FvjSXGDS39qW53KC5jS/NbQ2a2/vS3NGgubMvzV0Nmpf3pbmbQfNKvjSvYtC8mi/N3Q2a1/SleW2D5nV9aa4yaK7xpbmnQXNvX5prDZrX96V5Q4PmjX1p7mfQvJkvzf0Nmgf60ryFQfNWvjRvY9C8nS/Ngw2ad/SleQ+guiR/RyX6zAm1EyeOPmTSXuNHHLHXyHGT9po47qjRidPDg4uMCS6yb3CR/YOLjA8ucmhwkcODixwTXOS44CInBhc5ObjI2cFFzgkuMiW4yAXBRS4PLnJlcJFrg4tcH1zkBhBZKfm7aapW+bcuGTfmyH/3Duy277ix+3YbOeKAERNGjY79S53f+T/6jZQCr5PTcMghI478d4Tf4F4ECn4Ngn4qNJRdArK+b0uggj9CGPdixhQXWgXbxezerm412jMWMsZ9Q3i9sdXrQVbBnUJ4Oz6E7GFWh4+zCp4ZwtupYTPFrVavHwzh9TMhZGdaHX4nhNGPrUa/tAouDuHt7yDrupk7TRoxav+lDcc+o0cflAAeTjZJ43OCW3Ky54FshlveKDI1J2BEnOANIBgoqzsF00Mk9O4QsjNDyC4MHuCfrAGOx0MGuDBuT2hZCNl1QJbn92eS9ADD5XCyE0LIHmHNv07B8UEvrBM8K7NlfaVvVDDFanmxVbDYkB2cbHtrPnYKuoQw3i1uTHF3q2CvEN4OshodEjbGw0J4Pdzq9Vir4MQQ3k4OITvV6vA0q+D0EN4+EDZTzLJ6/W4Ir+eGkJ1vdXhJCKN/W43m5xoF2+Tave0MsrxxPimpdqChgXWydUEbGyd4ZQij14Jsm+TvQYdO3Jdbu8PaD3AK7rWm88kQ6ZxhNTo7hNE3rEbnhDA6L4TsghCyi0LILgFZXsjeSNIjDJac7Jigl8QJTrAKHhXC2xN9xeXB5f47YxkJO9kAI2EnEngk7ATNI2GnYHqIhN4dQnZmCNmFwQP8kzXA5pGwU2AZCTvZshCy/kbCTyVpy0jYyU4IIWseCTsFgUfCTtA8EnYKplgtL7YKWkbCTtY8EnYKuoQwHngk7AS7WwV7hfB2kNXokLAxHhbC6+FWr8daBSeG8HZyCNmpVoenWQWnh/D2gbCZYpbV63dDeD03hOx8q8NLQhj922o08EjYCVpGwk7W30j4hOX/O2MZCTvZwCNhJ3hlCKP+R8JOwjwSdgrutabzyRDpnGE1OjuE0TesRueEMDovhOyCELKLQsj6Gwm/maQtI2EnG3gk7AQnWAWPCuGtv5HwYyv8d8YyEnayAUbCTiTwSNgJmkfCTsH0EAm9O4TszBCyC4MH+CdrgM0jYafAMhJ2smUhZP2NhJ9L0paRsJOdEELWPBJ2CgKPhJ2geSTsFEyxWl5sFbSMhJ2seSTsFHQJYTzwSNgJdrcK9grh7SCr0SFhYzwshNfDrV6PtQpODOHt5BCyU60OT7MKTg/h7QNhM8Usq9fvhvB6bgjZ+VaHl4Qw+rfVaOCRsBO0jISdrL+R8Knd/jtjGQk72cAjYSd4ZQij/kfCTsI8EnYK7rWm88kQ6ZxhNTo7hNE3rEbnhDA6L4TsghCyi0LI+hsJv5ukLSNhJxt4JOwEJ1gFjwrhrb+R8IxkMbSMhJ1sgJGwEwk8EnaC5pGwUzA9RELvDiE7M4TswuAB/skaYPNI2CmwjISdbFkIWX8j4dlJ2jISdrITQsiaR8JOQeCRsBM0j4SdgilWy4utgpaRsJM1j4Sdgi4hjAceCTvB7lbBXiG8HWQ1OiRsjIeF8Hq41euxVsGJIbydHEJ2qtXhaVbB6SG8fSBspphl9frdEF7PDSE73+rwkhBG/7YaDTwSdoKWkbCT9TcSPmel/85YRsJONvBI2AleGcKo/5GwkzCPhJ2Ce63pfDJEOmdYjc4OYfQNq9E5IYzOCyG7IITsohCy/kbCnyRpy0jYyQYeCTvBCVbBo0J4628k/PLK/52xjISdbICRsBMJPBJ2guaRsFMwPURC7w4hOzOE7MLgAf7JGmDzSNgpsIyEnWxZCFl/I+G3k7RlJOxkJ4SQNY+EnYLAI2EnaB4JOwVTrJYXWwUtI2Enax4JOwVdQhgPPBJ2gt2tgr1CeDvIanRI2BgPC+H1cKvXY62CE0N4OzmE7FSrw9OsgtNDePtA2Ewxy+r1uyG8nhtCdr7V4SUhjP5tNRp4JOwELSNhJ+tvJDx1lf/OWEbCTjbwSNgJXhnCqP+RsJMwj4Sdgnut6XwyRDpnWI3ODmH0DavROSGMzgshuyCE7KIQsv5GwvOTtGUk7GQDj4Sd4ASr4FEhvPU3En5r1f/OWEbCTjbASNiJBB4JO0HzSNgpmB4ioXeHkJ0ZQnZh8AD/ZA2weSTsFFhGwk62LISsv5HwR0naMhJ2shNCyJpHwk5B4JGwEzSPhJ2CKVbLi62ClpGwkzWPhJ2CLiGMBx4JO8HuVsFeIbwdZDU6JGyMh4XwerjV67FWwYkhvJ0cQnaq1eFpVsHpIbx9IGymmGX1+t0QXs8NITvf6vCSEEb/thoNPBJ2gpaRsJP1NxKettp/ZywjYScbeCTsBK8MYdT/SNhJmEfCTsG91nQ+GSKdM6xGZ4cw+obV6JwQRueFkF0QQnZRCFl/I+FFSdoyEnaygUfCTnCCVfCoEN76Gwl/uPp/ZywjYScbYCTsRAKPhJ2geSTsFEwPkdC7Q8jODCG7MHiAf7IG2DwSdgosI2EnWxZC1t9I+IskbRkJO9kJIWTNI2GnIPBI2AmaR8JOwRSr5cVWQctI2MmaR8JOQZcQxgOPhJ1gd6tgrxDeDrIaHRI2xsNCeD3c6vVYq+DEEN5ODiE71erwNKvg9BDePhA2U8yyev1uCK/nhpCdb3V4SQijf1uNBh4JO0HLSNjJ+hsJ39j9vzOWkbCTDTwSdoJXhjDqfyTsJMwjYafgXms6nwyRzhlWo7NDGH3DanROCKPzQsguCCG7KISsv5HwL0naMhJ2soFHwk5wglXwqBDe+hsJf7rGf2emecEtOdmnQbaRgZoTmekFjIgTfAcEA9UgTsGcEAmdG0L21xCyK8QCB3jVmDHA5mX6nALLMn1Otl8I2eEgy/P750n6MC+4JSd7VQjZWzxjeJ2Cu0CBrwvrBB/LbJmPhJ2CZ6yWV4oZBdc3ZAcnO9Caj52CrUMYH2xN8a5WwdEhvD3cavTksDE+I4TX51i9vtgqeF0Ibx8PIfu81eFXrIIfhPD2y7CZ4g+r1wWG3pKTbRNCtkPQ7p0TXC2E0XWtRntbBTcL4e1Wvjqjq67535nDveCWnOwdXsDkOcFZIYy+BrKZR8JO4kOQCFRKnILPrOn8LkQ6F1uN/hHCaOD1sZ1gkaEWc7IVIWTbh5BdLoTsKr56wBsk6fO94Jac7MVewEviBK+yCt4awtt7PT9xGZpcur7SFz0sSS/nix6ZpFfyRY8LpPvgQLqPCEQfH8iT0wPpPjeQ7osD6Z7mm64/vEqyhSpK/u8arIS6xE3nfsn/q8Jt1UWgt6n111bV9ijy0rcm9n+p/lhk8ampKgKdEfhfVZDUs3ldSr9Miwe/jpMyyPYHpj9hBgAzgDADgRlImEHADCLMFsBsQZgtgdmSMFsBsxVhtgZma8JsA8w2hNkWmG0Jsx0w2xFme2C2J8xgYAYTZgdgdiDMjsDsSJidgNmJMEOAGUKYnYHZmTC7ALMLYYYCM5QwuwKzK2GGATOMMLsBsxthdgdmd8LsAcwehNkTmD0JMxyY4YTZC5i9CLM3MHsTZgQwIwgzEpiRgimCfc9r6naiZ49o69maqlIvvW71IC3Odm40tqtjwp4n0ukJ+8VelG1aVXVM2HP+yPi4/VLH1KX8iYlzuXUN0+HO5dWlpyOxFf77twFwMm/lADfQS7ebo/gdU/yOMk/VVvXuEXG+qdLiLq9Jbl26bTyHcc+FeLq4J4YWo5JMN0hDYitIHvdAbxyOOd3OViHy4lwRnEN/E1tx8v9csIO6nB95gh+Q/L8s+ZsPMk6+XLGfL+yn+a0cwzIodcWVY47P//dv4+R+K++/uC9JKnH5HV4eWUZ1UW1fa10UUf83Y12E8ZFlOg/8iTWdP/X9/fxo4l8bE/oxvflK/F1eKVDOOV2Fyf/zQBfy+RBD5HHfyeOxXZK/5YpOGf8Cr2F68BiWi8HJ/TJPz+uoV8sXuYreckVexhDlYuTX8xqWB82O5nPUfZho8+Z/9wLkdW7Ksa7sg6GtRJpGwHGWr7Wxscy378dSOvdJHivzGub9XHHdioT9fk0UV60dLwTbiS23LoqY1/ZN2PlTtDvFXmrDPkLirxWciyt8johRicK38tLTktjKBY/x1spN08W/tr7cFHqRxLhPVLErzBA77OvJvFss5HKVmPvpg0QTr+oav30QZ39Z9UEKhT+N9UEw5rle0/dBiqOJf316i5X0Fivxd3lFy5syL2NdjXwxxFDmZSwHeeLYScnfckWnrK+18ofHsA9ybHJfaxdkPaTli0JFr9YHkTFEubB9EM3naPsg1dUyb3pe0+f7VpH4XlXr9Jc0ve/1cSltat3VjfebzoPjiT/3DMlvv8nx50C/6YLksUx954jrqRF+2wlnv9hr2N5F0U5o9aY2JpH5rYnj0zdTP6JEiY+7lqXKuUx5B/kSSCPyuO/k8dg1yd9yRaesx0uV9OAxrMcvT+6XKemR4+RM7R3q1fpNMoYoF7Ye13xurMzfAsdRzt1HY7J5gu8IZf42YXvZ35+y3ytvafenouk711T56ZNo+ahIOZep74Z8IaRR1i2Z+m6PJH/LFZ3y/lGRkh48hmX+vuR+9v5RkJyc6l/lRaG/qqpnY3XWDDiO+Yr1U/LgPPKzQaf7cqdMkc8V52TewH0Zc1a+yxV5ORbHc06uFfihjdVl/zGqvkJjfcNSOI/8m8LPskj8rKpyr6t6oB9toY+el7mukGlGHuPseHd9sH5rTezIuq9UOSbbzGiubZXvZzrOfrGSzijaTO06YXxc3CuSfzK+ccX3+nbPBbV1NImo1W7aumPaw9fW4GBFToqTDTNWiPPgOCYeCyfKtoLzyH8HOr8UOrWOAhaQfOJDPuELiQ/fJH+jHfToFYSzVZrBX2yAtIpYdorcNc7x9BtassMXVYUoKzHs4Jcp/siK+xeRrork/3Evc2Xo+HLFbgUwMk+WC7suPm0iio+WH9qINDTWAMibmfUvFRC+tUiz4/8UaS5fhmkuF7Yjyo+1Ml+wuqpMxKg+FrF0PyuWYYzQFvroeZkbKJlm5DHOLv2ufsE8I69PNHkjNUB0acXr01rxJ0/wReL6NEe51dpefFiY2HLrIolftfbAFPNJHthtLE8kNpmHKhQe84K7RuVewzxbKs5hmyU7ydqAGsunbPed7nzCY98E+fYiv0TUH1Pzi7NVmsFfrZ9lvVk2NJbS2UXkkVxFPsG5L6hiShzjiqy8Oe/4FcF2N9jfM7mfaXCpDWzkwDOa65YaeJY1km7WpnYX+as52tRM/YhM7YXWvmCc5Q0KbC/KxDm8doXEL+yrag98oo6hTDeWr3LFH3mte4my0gZip8VP3tCpUOxi+yX7yBXCrotPZUTx0fJYpUiD3zwj2598wrN+2Poizc3RD4s2P6ZedND6Qthesr7QJi2gLySvs+f5q3sa62fI+gXzjOwnOzuJOOR6Deuq1l56nFpqW7JFC2hLmq9vWz1C69viTbo8sMvaO+1BbNC6q9xrWAZLhC6t/4rXWPZfnXw+4WX/1fFDRJ5ojv6r9iAY7zWytGD/srF+6DDRtlr7oQfFUjr3gH3ZD8308ByvbVIs6pclfL9M4uwXC1+bOD9Uy3zr/MHYJTZZxvw+/KjwGrYTnUBXqTimXTf5YkbQh6na/VUtr/uxE+aetdMn8/IEUfZbyj3rXEjPLcn9oOM7fME8wja5OmybfHgLaJMztXdRj+9aep/p+GyfqUGfKe2lF7AbZR7S+kylQlfQPpN2zy9Tn8nxZ7XQPpOsU1mfSfaFXEz9PuuLaqzs/GnsmZu8j+H4i0W63L0FvH+iPTN0fBvFLt6fkM/62gi7Lj5tI4qPlh+crVIRC3de+3Uxkcdk/wXrOtmHrWhCO3htZR7GsoX9+avEtXaxYc972LV7NJbSeW1yX7snIJ9tafdPtLyKHLsfqN2r0PQ7HdGWw1SfRotpjuK3jOltojw0x/1Erc3E+zSJLbcukvjVaG0mlkvZZma6V5XYWD2FvFY/lgte5iuMCerKNNbQ3g1AnvWjHhJ5ojnut2ofDmEfi6UFPzJx5b+NosOdq1Rsu3PYNsh72e281KbVA60F3x7803inL0/wz4pr0QFkor4Wzla0tlMTDXSEGMRFXNB+nuBfEDHqtAxjhLbQRw/S0BaOyfqho8JjnF36XZ5sD+c6EjvIeYou93I85v22gq0U/7dR9Gh9j0rhL8pVEBs5CivfH6hQ5DLVsVj+ZL3o5NlzKGxLkX9X5LPm7Dtq/mJfy88kAtF8DJd6rwf7cVr7Uyzi7PhPRJyb415XTPjoQRpicEyW50wf1mP6tXtkTjbaj0tT9a32MU2O4o98DjFfXJ+IXhZXr498r/l/caIK2WfUJqqIiZigrijeqf5R5ImIPoxW80QrEY9Mz3PY+9YjvJT/iS23run971P7332TxObyrSt7csuF88j/AXGOyk8tzmjLfSC0NHZ1qfNYFhNbQfJ/nDANebw3hLw7kbguOfB9wlK2rqG9BFeegYuR36U6lGO5denHtInUcII5x9d/tFLX0Ed3rhWcw3oisZUk/8d4oS7nR57gWyfT7q4JTgrn5MsV+4XCfprfyjEsO1JXXDmGH0K6FSbq23yw3ZTPKjEvJPJpfX0Wjb36CWJcetz9y8SWW1cfinr72iSEjqt/ThCNr1XyOmPdg3ncpSVH8HJfTnS4ck7Kb0yjSwceQ/2Z8hOWM+ejVve0qgumq1DoKgihy/mllbECo1+arnyhK8gEj+2gTLhVdIsE19RlEfsiTa2/tqbXCHyGFIH/0U7YXlPdM9oJcLITtjtmS2C2JEx2wvb0fclkJ2xP35dMdsL29H3JZJqw3TGjgBlFmH2A2Ycwo4EZTZgxwIwhzFhgxhJmX2D2Jcw4YMYRZj9g9iPM/sDsT5gDgDmAMOOBGU+YCcBMIMyBwBxImIOAOYgwBwNzMGEOAeYQwkwEZiJhJgEziTCHAnMoYQ4D5jDCHA7M4YQ5ApgjCHMkMEcS5ihgjiLM0cAcTZhjgDmGMMcCcyxhjgPmOMIcD8zxhKkDpo4wJwBzAmFOBOZEwpwEzEmEORmYkwlzCjCnEOZUYE4lzGnAnEaY04E5nTBnAHMGYc4E5kzCnAXMWYQ5G5izCTMZmMmEOQeYcwhzLjDnEuY8YM4jzBRgphDmfGDOJ8wFwFxAmAuBuZAwFwFzEWGmAjOVMBcDczFhLgHmEsJcCsylhLkMmMsIczkwlxPmCmCuIMyVwFxJmGnATCPMVcBcRZirgbmaMNcAcw1hrgXmWsJcB8x1hLkemOsJcwMwNxDmRmBuJMxNwNxEmJuBuZkwtwBzC2GmAzOdMLcCcythbgPmNsLcDszthLkDmDsIcycwdxLmLmDuIszdwNxNmHuAuYcw9wJzL2HuA+Y+wtwPzP2EeQCYBwjzIDAPEuYhYB4izMPAPEyYR4B5hDCPAvMoYR4D5jHCPA7M44R5ApgnCPMkME8S5ilgniLM08A8TZhngHmGMM8C8yxhZgAzgzDPAfMcYZ4H5nnCzARmJmFeAOYFwrwIzIuEeQmYlwgzC5hZhHkZmJcJMxuY2YR5BZhXCPMqMK8S5jVgXiPM68C8Tpg3gHmDMG8C8yZh3gLmLcK8DczbhHkHmHcI8y4w7xLmPWDeI8z7wLxPmA+A+YAwc4CZQ5gPgfmQMB8B8xFhPgbmY8J8AswnhPkUmE8J8xkwnxFmLjBzCTMPmHmE+RyYzwnzBTBfEOZLYL4kzHxg5hNmATALCPMVMF8R5mtgvibMN8B8Q5hvgfmWMN8B8x1hFgKzkDCLgFlEmO+B+Z4wPwDzA2EWA7OYMD8C8yNhfgLmJ8L8DMzPhFkCzBLC/ALML4T5FZhfCfMbML8R5ndgfifMH8D8QZg/gfmTMH8B8xdh/gbmb8L8A8w/hPFOSDFuXzIxYGKEyQEmhzBxYOKEyQUmlzB5wOQRJh+YfMIUAFNAmEJgCglTBEwRYYqBKSZMK2BaEaYEmBLClAJTSpjWwLQmTBkwZYQpB6acMBXAVBCmDTBtCFMJTCVh2gLTljDtgGlHmPbAtCdMB2A6EKYjMB0J0wmYToTpDExnwnQBpgthugLTlTDLAbMcYZYHZnnCrADMCoTpBkw3wqwIzIqEWQmYlQizMjArE2YVYFYhzKrArEqY1YBZjTCrA7M6YboD050wawCzBmHWBGZNwqwFzFqEWRuYtQmzDjDrEGZdYNYlzHrArEeYKmCqCFMNTDVhaoCpIUwPYHoQpicwPQnTC5hehOkNTG/C9AGmD2FqgaklTF9g+hJmfWDWJ8wGwGxAmA2B2ZAwGwGzEWE2BmZjwmwCzCaE6QdMP8JsCsymhNkMmM0IszkwmxOmPzD9CTMAmAGEGQjMQMIMAmYQYbYAZgvCbAnMloTZCpitCLM1MFsTZhtgtiHMtsBsS5jtgNmOMNsDsz1hBgMzmDA7ALMDYXYEZkfC7ATMToQZAswQwuwMzM6E2QWYXQgzFJihhNkVmF0JMwyYYYTZDZjdCLM7MLsTZg9g9iDMnsDsSZjhwAwnzF7A7EWYvYHZmzAjgBlBmJHAjCTMKGBGEWYfYPYhzGhgRhNmDDBjCDMWmLGE2ReYfQkzDphxhNkPmP0Isz8w+xPmAGAOIMx4YMYTZgIwEwhzIDAHEuYgYA4izMHAHEyYQ4A5hDATgZlImEnATCLMocAcSpjDgDmMMIcDczhhjgDmCMIcCcyRhDkKmKMIczQwRxPmGGCOIcyxwBxLmOOAOY4wxwNzPGHqgKkjzAnAnECYE4E5kTAnAXMSYU4G5mTCnALMKYQ5FZhTCXMaMKcR5nRgTifMGcCcQZgzgTmTMGcBcxZhzgbmbMJMBmYyYc4B5hzCnAvMuYQ5D5jzCDMFmCmEOR+Y8wlzATAXEOZCYC4kzEXAXESYqcBMJczFwFxMmEuAuYQwlwJzKWEuA+YywlwOzOWEuQKYKwhzJTBXEmYaMNMIcxUwVxHmamCuJsw1wFxDmGuBuZYw1wFzHWGuB+Z6wtwAzA2EuRGYGwlzEzA3EeZmYG4mzC3A3EKY6cBMJ8ytwNxKmNuAuY0wtwNzO2HuAOYOwtwJzJ2EuQuYuwhzNzB3E+YeYO4hzL3A3EuY+4C5jzD3A3M/YR4A5gHCPAjMg4R5CJiHCPMwMA8T5hFgHiHMo8A8SpjHgHmMMI8D8zhhngDmCcI8CcyThHkKmKcI8zQwTxPmGWCeIcyzwDxLmBnAzCDMc8A8R5jngXmeMDOBmUmYF4B5gTAvAvMiYV4C5iXCzAJmFmFeBuZlwswGZjZhXgHmFcK8CsyrhHkNmNcI8zowrxPmDWDeIMybwLxJmLeAeYswbwPzNmHeAeYdwrwLzLuEeQ+Y9wjzPjDvE+YDYD4gzBxg5hDmQ2A+JMxHwHxEmI+B+ZgwnwDzCWE+BeZTwnwGzGeEmQvMXMLMA2YeYT4H5nPCfAHMF4T5EpgvCTMfmPmEWQDMAsJ8BcxXhPkamK8J8w0w3xDmW2C+Jcx3wHxHmIXALCTMImAWEeZ7YL4nzA/A/ECYxcAsJsyPwPxImJ+A+YkwPwPzM2GWALOEML8A8wthfgXmV8L8BsxvhPkdmN8J8wcwfxDmT2D+JMxfwPxFmL+B+Zsw/wDzD2G8E1OM25dMDJgYYXKAySFMHJg4YXKBySVMHjB5hMkHJp8wBcAUEKYQmELCFAFTRJhiYIoJ0wqYVoQpAaaEMKXAlBKmNTCtCVMGTBlhyoEpJ0wFMBWEaQNMG8JUAlNJmLbAtCVMO2DaEaY9MO0J0wGYDoTpCExHwnQCphNhOgPTmTBdgOlCmK7AdCXMcsAsR5jlgVmeMCsAswJhugHTjTArArMiYVYCZiXCrAzMyoRZBZhVCLMqMKsSZjVgViPM6sCsTpjuwHQnzBrArEGYNYFZkzBrAbMWYdYGZm3CrAPMOoRZF5h1CbMeMOsRpgqYKsJUA1NNmBpgagjTA5gehOkJTE/C9AKmF2F6A9ObMH2A6UOYWmBqCdMXmL6EWR+Y9QmzATAbEGZDYDYkzEbAbESYjYHZmDCbALMJYfoB048wmwKzKWE2A2YzwmwOzOaE6Q9Mf8IMAGYAYQYCM5Awg4AZRJgtgNmCMFsCsyVhtgJmK8JsDczWhNkGmG0Isy0w2xJmO2C2I8z2wGxPmMHADCbMDsDsQJgdgdmRMDsBsxNhhgAzhDA7A7MzYXYBZhfBFMG+B3L9kv9Xhdhqq3r2iHTerprqnnKuUg/S4mznRmO7V0zY80Q6PWG/WPjapP7A2nOZ1lnzYF+bFzgmzuXWNUyHnDcUr29inti1clKczFs5wPXOSdc3VORNPLfriQ11uHPDTmzoRyXok9ekoM6r3+rHs3DMpUubf1LOUYpzCObWpdtxcz3iHKWoy/kh54bslUygNnejnPMQ7ecL+2l+K8cwH0pdceWY4xNzJK6b/CcxR2LiWq6RFHBlrgB0N2V5d3kjD/yMC5voq/MnovUeezh/tLmjMQbOvisT+cDHyK/TJc85W8VCV1T1iZa2fCXW2jokGAOmqzCgrua8phhrOX+4tk5bTElbpnXvtHq3UJzDetfFBOvdKNt0LIOyjLP0RjzPef310tYfwOvl7GvrPeDc50vl61Ln8iEdiS23LpJ0VCf8WS+e8kPmKXfdtesbazI/auvXpHDpzvMall+0H2l++3eLdg2Oquo8kd4Vk9cg8f+uokyVRBLzkfXrTNSXcRLzEk/3x/PvS3Vj3sh1IdtAPPYU8SiPJB6j6vNgRSPxqO8HKf4EiEljW7XT3yaS9Kb0R7KmXHWqDEW0Dk9Nnrhez+ak8sxokWc6RBLDMeraWFqeYWtj3Qc+j8tJ9xHXnoopeUHWi26tq3zCSx8dP0HEqjPINGWdqq0N4mzFM/jrkWOSl/UU2uvXJGkY08cTsZPXCu3GlXhKubgi3xn8jityyMaJDuxHasckXyLOyTanMEP62mSQi2eQRx3aeuNOvtTT/dd+nU55LFMf33HOTgflXKJM1Yny6c7h+kwo2xbOI386lPmTYNwdE+kpFH7hGmudxLl2GdKDa9IVQ3qeDJgeeW3bNMLLcZjLbzniuKfoQ34yxOv2gD4XCJ2OnyLqPMzDUdd5sj3XygP2wV28tDX7pK6OjcSDxfjiFtAGFHl6/dZEtnv4ibe0j/8jj3F38dXKcMcMcjGRzkx1gFaG4gpfKWLZxYsklvV9ZXftcD3mLoo/eYK/UZTj5SBOWnsm15TsqthdTjBot6uw6+KzfETx0fL58sK/GJzP1P+Rsc73MucnGetbRZqjyhNamp2tTO1upnodY4P1WLHQ00aJTYcMsXH8PSI2EdU9amycLb/9Dq28a/28AvE/8rKPjHHu1yRpHVUlfYsJv9Cudt9aymnpxjTGM+h38lofSq492E7R77cP5Thca7NC6MA1YduJc7jWNK5FPVeUC1zXWuZ9LXaoS+PZutYvZBg/R10unK14Bn89ckzy0Y8JR9aPCTGPyPwkx0wYTykXV+S1davbKzFw8poOP2PCdkrs5P8xr2Fe+/99TFihnEuUqQ9E+dTGRCgrx4SO/xLGOB+JMaFWN2r1TXtxDusbWZ+VkfTMFfVZHnClQgc+52gtzuFzlzLQv1w83W5j8ZJ5p10jvGwDXLnBMWem+s/x38D1aBXQZznmdPwiUafKMtsv+X9VyE2rU+X9Aawz/Yw522XQ1aGReLAY/9wC+l4Rt289/MRb2mf1PcbdxVe7J9Ahg5y8z6HJFxJfcMyJvBxzdoomlvVjTnftcOzXSfFH3uPIFeW4C8RJa5flmLOxsa68t9JZ2HXx6RpRfLR83lWkQWtntX6GjHW+lzk/yVgXiTRHlSe0NDtbWruO40RWr2NstPGCLNP5hJexcXy5iE1z9K1LM/iL/ZpM4zOPHJO87IPj2K1fk6S1tn7MKd+P0d7l0fqfUq6xdMcz6HfyWh9KjjnzFf1aHyqW3Mc+lHwPFW2Vgh+esOXO4TuqrUD/qhn0xzLoL86gP5ZBfwy4HI/bjmew7WzhmuK5demy/ZLHq0JsfWpT63S793VwnW7ccuE88utC+Y/Kz8TWJoNPiThp73riO0iJTVtzHt9bxX5iYiuAc8U+dBVn0FWYQVeRT10xRT6u+Jpbl867db3xPdp8RX+e4PvCeyubxtN15tU19DmewYfG1md3fLHQ38T5qNr5U1LX0H9ME46nJS+vn6arxKcuF4Ol70qJslQKdpq6H8/8xnzn7Mv3Jp1P2i/qwmPO1v/a9XW6mvOaYrrRPv6PfKZ38ssUvlRJr8sz5Yptd64CzpUIO22S/2OdhbqcH3mCH5qEXb3bGmScfLliv7Wwj7Y0+7JOrlD4CoVPlPPBUK+6Mp9ow/onG/4ixUZTlhHsHza1/tqaPiPw3ksE/td/E5UXhf6a6j5Of0TfBVS5vvXmdSn9mBZnNy44KRMHpj8w/QkzAJgBhBkIzEBgsN0eBMwgwmwBzBaE2RKYLQmzFTBbEWZrYLYmzDbAbEOYbYHZljDbAbMdYbYHZnvCDAZmMGF2AGYHwuwIzI6E2QmYnQgzBJghhNkZmJ0JswswuxBmKDBDCbMrMLsSZhgwwwizGzC7EWZ3YHYnzB7A7EGYPYHZkzDDgRlOmL2A2YswewOzN2FGADOCMCOBGUmYUcCMIsw+wOxDmNHAjCbMGGDGEGYsMGMJsy8w+xJmHDDjCLMfMPsRZn9g9ifMAcAcQJjxwIwnzARgJhDmQGAOJMxBwBxEmIOBOZgwhwBzCGEmAjORMJOAmUSYQ4E5lDCHAXMYYQ4H5nDCHAHMEYQ5EpgjCXMUMEcR5mhgjibMMcAcQ5hjgTmWMMcBcxxhjgfmeMLUAVNHmBOAOYEwJwJzImFOAuYkwpwMzMmEOQWYUwhzKjCnEuY0YE4jzOnAnE6YM4A5gzBnAnMmYc4C5izCnA3M2YSZDMxkwpwDzDmEOReYcwlzHjDnEWYKMFMIcz4w5xPmAmAuIMyFwFxImIuAuYgwU4GZSpiLgbmYMJcAcwlhLgXmUsJcBsxlhLkcmMsJcwUwVxDmSmCuJMw0YKYR5ipgriLM1cBcTZhrgLmGMNcCcy1hrgPmOsJcD8z1hLkBmBsIcyMwNxLmJmBuIszNwNxMmFuAuYUw04GZTphbgbmVMLcBcxthbgfmdsLcAcwdhLkTmDsJcxcwdxHmbmDuJsw9wNxDmHuBuZcw9wFzH2HuB+Z+wjwAzAOEeRCYBwnzEDAPEeZhYB4mzCPAPEKYR4F5lDCPAfMYYR4H5nHCPAHME4R5EpgnCfMUME8R5mlgnibMM8A8Q5hngXmWMDOAmUGY54B5jjDPA/M8YWYCM5MwLwDzAmFeBOZFwrwEzEuEmQXMLMK8DMzLhJkNzGzCvALMK4R5FZhXCfMaMK8R5nVgXifMG8C8QZg3gXmTMG8B8xZh3gbmbcK8A8w7hHkXmHcJ8x4w7xHmfWDeJ8wHwHxAmDnAzCHMh8B8SJiPgPmIMB8D8zFhPgHmE8J8CsynhPkMmM8IMxeYuYSZB8w8wnwOzOeE+QKYLwjzJTBfEmY+MPMJswCYBYT5CpivCPM1MF8T5htgviHMt8B8S5jvgPmOMAuBWUiYRcAsIsz3wHxPmB+A+YEwi4FZTJgfgfmRMD8B8xNhfgbmZ8IsAWYJYX4B5hfC/ArMr4T5DZjfCPM7ML8T5g9g/iDMn8D8SZi/gPmLMH8D8zdh/gHmH8J4J6QYty+ZGDAxwuQAk0OYODBxwuQCk0uYPGDyCJMPTD5hCoApIEwhMIWEKQKmiDDFwBQTphUwrQhTAkwJYUqBKSVMa2BaE6YMmDLClANTTpgKYCoI0waYNoSpBKaSMG2BaUuYdsC0I0x7YNoTpgMwHQjTEZiOhOkETCfCdAamM2G6ANOFMF2B6UqY5YBZjjDLA7M8YVYAZgXCdAOmG2FWBGZFwqwEzEqEWRmYlQmzCjCrEGZVYFYlzGrArEaY1YFZnTDdgelOmDWAWYMwawKzJmHWAmYtwqwNzNqEWQeYdQizLjDrEmY9YNYjTBUwVYSpBqaaMDXA1BCmBzA9CNMTmJ6E6QVML8L0BqY3YfoA04cwtcDUEqYvMH0Jsz4w6xNmA2A2IMyGwGxImI2A2YgwGwOzMWE2AWYTwvQDph9hNgVmU8JsBsxmhNkcmM0J0x+Y/oQZAMwAwgwEZiBhBgEziDBbALMFYbYEZkvCbAXMVoTZGpitCbMNMNsQZltgtiXMdsBsR5jtgdmeMIOBGUyYHYDZgTA7ArMjYXYCZifCDAFmCGF2BmZnwuwCzC6EGQrMUMLsCsyuhBkGzDDC7AbMboTZHZjdCbMHMHsQZk9g9iTMcGCGE2YvYPYizN7A7E2YEcCMIMxIYEYSZhQwowizDzD7EGY0MKMJMwaYMYQZC8xYwuwLzL6EGQfMOMLsB8x+hNkfmP0JcwAwBxBmPDDjCTMBmAmEORCYAwlzEDAHEeZgYA4mzCHAHEKYicBMJMwkYCYR5lBgDiXMYcAcRpjDgTmcMEcAcwRhjgTmSMIcBcxRhDkamKMJcwwwxxDmWGCOJcxxwBxHmOOBOZ4wdcDUEeYEYE4gzInAnEiYk4A5iTAnA3MyYU4B5hTCnArMqYQ5DZjTCHM6MKcT5gxgziDMmcCcSZizgDmLMGcDczZhJgMzmTDnAHMOYc4F5lzCnAfMeYSZAswUwpwPzPmEuQCYCwhzITAXEuYiYC4izFRgphLmYmAuJswlwFxCmEuBuZQwlwFzGWEuB+ZywlwBzBWEuRKYKwkzDZhphLkKmKsIczUwVxPmGmCuIcy1wFxLmOuAuY4w1wNzPWFuAOYGwtwIzI2EuQmYmwhzMzA3E+YWYG4hzHRgphPmVmBuJcxtwNxGmNuBuZ0wdwBzB2HuBOZOwtwFzF2EuRuYuwlzDzD3EOZeYO4lzH3A3EeY+4G5nzAPAPMAYR4E5kHCPATMQ4R5GJiHCfMIMI8Q5lFgHiXMY8A8RpjHgXmcME8A8wRhngTmScI8BcxThHkamKcJ8wwwzxDmWWCeJcwMYGYQ5jlgniPM88A8T5iZwMwkzAvAvECYF4F5kTAvAfMSYWYBM4swLwPzMmFmAzObMK8A8wphXgXmVcK8BsxrhHkdmNcJ8wYwbxDmTWDeJMxbwLxFmLeBeZsw7wDzDmHeBeZdwrwHzHuEeR+Y9wnzATAfEGYOMHMI8yEwHxLmI2A+IszHwHxMmE+A+YQwnwLzKWE+A+YzwswFZi5h5gEzjzCfA/M5Yb4A5gvCfAnMl4SZD8x8wiwAZgFhvgLmK8J8DczXhPkGmG8I8y0w3xLmO2C+I8xCYBYSZhEwiwjzPTDfE+YHYH4gzGJgFhPmR2B+JMxPwPxEmJ+B+ZkwS4BZQphfgPmFML8C8ythfgPmN8L8DszvhPkDmD8I8ycwfxLmL2D+IszfwPxNmH+A+Ycw3okpxu1LJgZMjDA5wOQQJg5MnDC5wOQSJg+YPMLkA5NPmAJgCghTCEwhYYqAKSJMMTDFhGkFTCvClABTQphSYEoJ0xqY1oQpA6aMMOXAlBOmApgKwrQBpg1hKoGpJExbYNoSph0w7QjTHpj2hOkATAfCdASmI2E6AdOJMJ2B6UyYLsB0IUxXYLoSZjlgliPM8sAsT5gVgFmBMN2A6UaYFYFZkTArAbMSYVYGZmXCrALMKoRZFZhVCbMaMKsRZnVgVidMd2C6E2YNYNYgzJrArEmYtYBZizBrA7M2YdYBZh3CrAvMuoRZD5j1CFMFTBVhqoGpJkwNMDWE6QFMD8L0BKYnYXoB04swvYHpTZg+wPQhTC0wtYTpC0xfwqwPzPqE2QCYDQizITAbEmYjYDYizMbAbEyYTYDZhDD9gOlHmE2B2ZQwmwGzGWE2B2ZzwvQHpj9hBgAzgDADgRlImEHADCLMFsBsQZgtgdmSMFsBsxVhtgZma8JsA8w2hNkWmG0Jsx0w2xFme2C2J8xgYAYTZgdgdiDMjsDsSJidgNmJMEOAGUKYnYHZmTC7ALMLYYYCM5QwuwKzK2GGATNMMHI+1sTm5s6S87Emtv7iXBzODUiec/OC4VywCa5f8v+qEFttVc/ekc47VlPdU87h62xg2iJad75XTNjzPBgnwq+zXyx8bVJ/YG12be0djI/LI9q61rniXG5dw3Roa46765uYI7lXToqTeSsPuH45qeMy78a9hnndnXfXFWPdZHm2pteIKMvEvxmnSou7vCa5dem28RzGPRfi6eKemBd/t2Td0Q3SkNgKkrIe6MU5bp1uZwvns42Lc5nm1HRzZuJcl6jL+ZEn+E2SadDmPnby5Yr9fGE/zW/lmIt3TNEVV445PpHPa5P/JOa3TMS9fW5KF5YFpyvm8TU1sVzlE16uue74gUnI5Ve5Bk+/5P9VITdtnnpnK9J13v+t32XdgGuYxJQYaf54TRgLec2wjtCusbxm27aAa6b1I2SbmROFXzU11X7bTGe/2Iswf0GbGbTtkesYNZE/VZHmi5qa+vzb2FoJ2B7FvPT1F2Q+r5//GnQhXwgxRB73nTwe2yNpqFzRKeNfpKRHWy8pUU/sAm1MY3Wzli9yFL3liryMIcrFyK+zI49JO5rPkdbFyTmWo6yztPU4nK3EdRsj+ov1z0C8hv1crd10/G/xlM5xoj6Ops9XWxsT/nngM46N5JocRZB+jc8TaXT8gSJdxZGkS29nikka4p5+nWSa3bkcT69PHO/S1iqitMn6DdeVaqX4I+uvI0V+re/3+4xDiWIX1xMsEnZLhF0Xn9YRxUe79s5WmZIm2YbKfNKvafyqr6dKokg3tKH14zFPL5sl4vo4vq4FXJ9MY/9I1735tw+YqNO75qb8wPK0NF5gF+PoeQ3LX2KTbWGpwmNecNeo3GtYpmSelO2BLLOyv+B0Y32NjKyvHX92C6ivi0j6msZ2bVWkaYNyieUurlzHYnENHH++uAalUfhZpV+DUhFz7Bf7yfNaGcE4u/SXew3Lg1yTDOuwVkJOuy8h7/O584kt0nUtqnr6vgdbf5/Ji7KflxpPav08jI9sC2UfsIn8ibbMVfXsmSm/Fivx19bOk/WNVn6RL4YYyryM5UCW7xvFeBJ15gsfWinp0cpfQu5qMZ7007dFvdq9+XJFXsZQe+bhpzxodjSf5ZgosfVL/laF26plvmwy3dWpPB/NuKBnT9m/bMK4VEXc9tRqazPiGPteMWZx/UUsiyjbCs4jfweMsR8Qz4PwOaRsJ6Kpl6tH+G0nnP1iJa1RtBO5wh8Zn0xjpiaMT1+/9Tg+H5RljI1fm7oenxFRPf6EqMdlXkS92nXT2vdyRV7GUOs3Wetxzecon5f+m3eqtbVgsU6ZLeoUvC+nPe+S9zUcXwt1ymsB6pRo+p7+n2XIvmfUdYrWx8hUp0SzJlxqPKY9D9XuYWrPGmTfsLFnDfmQRll3ZXrW8HFEzxrey9A3lHVK0L4hyi+rvuGyqVOqekaaN6tTzxpYnbVA1FkuD7A6C59FIP9dTkrnNyIvaHVEKzi/7O95p/oBJY2kV/b7HP9jC7i3mant18qpTDPyGGfHu+uDdUsJsSPrnVLlmGyvInqe0ddve+XsFyvpjKK90q4TxsfFvSL5x+p81FX/fDvShwHJAdVSx+saOqG9zFUCDlaLm+DY0GBlFI+njssOUlyRxQcTyJdCBypf6NReGsz0YFx7MIl8AfGhVdJuc97oLs3gL1b+WkUsOyTuWuPDShy8y85WVBWirMTwoWFrxR9ZcXcQ+cG9ZIcPK7XK0PFlit1yYGSeLBN2XXwqIoqPlh8qRBoaawBkR9DFNZ/w8gGg47uKNJctwzQ7WxHnx1qZL1hd1VrEyPErihiVL8MYoS300fMyN1AyzchjnF36Xf2CeUZen2jyRmpw5tKK16dE8SdP8Gu0gHKrtb1FEL/EllsXSfzUh9iYT/LAbmN5IrHJPFSu8JgX3DUq9xrmWfnQDtss2UnWBrOynsN9pzuf8PLmjeN7i/wSUX9MzS/OVmkGf7V+lutYYpumDRjljarDoZ+1QTzddr4inzi2kbCt3eiQg2G07fhNwXY/2D82ua8NXtzgUquP5MAzmvYiNfAsayTdrL3YooW3F5ke3jfWXrj0u+uj1c/atcsjfmFfVbuJEXUM/fYZZR53/M6irLSB2GnxkzfaKhS7bYCRfeQKYdfFpzKi+Gh5rFKkwW+eke1JPuFZO79bC2jno82PqZcYKiAGWptbLmLk+L1EjNoswxihLfTR8/zVPRUKj3GW9QvmGTl+cnYSccj1GtZVrb30OLXUtmTfFtCWaH1bfFEvseXWRRK/EVrfNu2BLNhl7R3y1vau3GtYBlsJXdoDa1n34b7Wf0Vevhzo+EkiTzTHjW3tIa/s22ppwf5lY/3QI5uoH3oe9D2PydAP1T5+aL6b5P5fFGkJN8nxwWqQF0KRr/AathOdQFeJOKZdN/nSdKYHvmi7XJGXZT83oJ1M96yxPGi8/GDI8eeIsh/VByda2cdnCcxffMki6PjOjRGirddSfSxrm3zx//j4rqX3ma7K9pkCfdQSVR7S+kwlQlfQPpOT99tncvytLbTPJOtU1meSfSEXU/asT94/iWqs7Pxx+R7vY1Qo/sgx/YMiXe7eAt4/KVP0OL6NYhfvT8hnfW2EXRefthHFR8sPzlapiIU7r/26mMhjsv+CdZ3sj1c0oR28trKvjGUL+/NPkntlWL+jLLt2c6AP/4zow6O860+4c9r9Ey2vlom0afcitHsVmn6nI9pymOrTaDGNK37LmL7cAu4nam0m3qdJbLl1kcSvl9ZmYrmUbWame1WJTbaZbRReqx/LBS/zFcYEdcl6EffrJzAiPOtHvdcC7rdqzw2xj8XSgh+QuPLfRtHhzlUqtt05bBvkdW3npTatHpDPONuDfxrv9OUJfp64Fh1AJupr4WxFahs+mu0IMYiLuKD9PMEvEDHqtAxjhLbQRw/S0BaOyXzUUeExzi79Lk+2h3MdiR3kPEWXezEd835bwVaK/9soerS+R6XwF+UqiI0chS0WNioUuUx1rCx/uO/k2XMobEuR/6UF9R01f7GvVQZ+OW6ZfMgFE6bhC9ouzlifs/vc/4g4N8d7GjHhowdp0D6ykmlGXvsIWXuvE59d4f9R1bfaC/Z5ij9yTF2Qm+5nc0xSoPUZceyb2HLrIomf+t5V2oc9YLexPJHYgn4E4K6RNpFCkdAVV3TJdzJwX3unWvv4Rr5TXSnyRHPcn9YmiJDvW2tpwYm9osw7fWr/u2+S2Fy+zfPSr5En7OcJvgvEOSo/tTijLfeB0NLY1aXOY1lMbAXJ/3ECVuTxHRfkuyXTmLguK0E5W8oq9hJcVQYuRn6X6lCO5dalH9MmZsUJax3vbBfXNfTRnWsF57CeSGwlyf8xXqjL+ZEn+HWTaXfXBCeZdfLliv1CYT/Nb+UYliupK64cw48QV0/6WN/mg+2mfFaJeSGRT+vrs2js1cREetz9y8SWW1cfinr72qTGjqt/bzgaX6vkdca6B/O4S0uO4OV+nji2OUxCjGnEujbTBMhafsJy5nzU6p5WdcF0FQpdBSF0Ob+0MlZg9EvTlS90BZkwuheUiVLoXyPX1GUR+yJNrb+2pnY0vjcegf89Iv14v6a6T7Qfv1dVuXfM3QINMi3OblxwUgbrtP7A9CfMAGAGEGYgMAOBwbpiEDCDCLMFMFsQZktgtiTMVsBsRZitgdmaMNsAsw1htgVmW8JsB8x2hNkemO0JMxiYwYTZAZgdCLMjMDsSZidgdiLMEGCGEGZnYHYmzC7A7EKYocAMJcyuwOxKmGHADCPMbsDsRpjdgdmdMHsAswdh9gRmT8IMB2Y4YfYCZi/C7A3M3oQZAcwIwowEZiRhRgEzijD7ALMPYUYDM5owY4AZQ5ixwIwlzL7A7EuYccCMI8x+wOxHmP2B2Z8wBwBzAGHGAzOeMBOAmUCYA4E5kDAHAXMQYQ4G5mDCHALMIYSZCMxEwkwCZhJhDgXmUMIcBsxhhDkcmMMJcwQwRxDmSGCOJMxRwBxFmKOBOZowxwBzDGGOBeZYwhwHzHGEOR6Y4wlTB0wdYU4A5gTCnAjMiYQ5CZiTCHMyMCcT5hRgTiHMqcCcSpjTgDmNMKcDczphzgDmDMKcCcyZhDkLmLMIczYwZxNmMjCTCXMOMOcQ5lxgziXMecCcR5gpwEwhzPnAnE+YC4C5gDAXAnMhYS4C5iLCTAVmKmEuBuZiwlwCzCWEuRSYSwlzGTCXEeZyYC4nzBXAXEGYK4G5kjDTgJlGmKuAuYowVwNzNWGuAeYawlwLzLWEuQ6Y6whzPTDXE+YGYG4gzI3A3EiYm4C5iTA3A3MzYW4B5hbCTAdmOmFuBeZWwtwGzG2EuR2Y2wlzBzB3EOZOYO4kzF3A3EWYu4G5mzD3AHMPYe4F5l7C3AfMfYS5H5j7CfMAMA8Q5kFgHiTMQ8A8RJiHgXmYMI8A8whhHgXmUcI8BsxjhHkcmMcJ8wQwTxDmSWCeJMxTwDxFmKeBeZowzwDzDGGeBeZZwswAZgZhngPmOcI8D8zzhJkJzEzCvADMC4R5EZgXCfMSMC8RZhYwswjzMjAvE2Y2MLMJ8wowrxDmVWBeJcxrwLxGmNeBeZ0wbwDzBmHeBOZNwrwFzFuEeRuYtwnzDjDvEOZdYN4lzHvAvEeY94F5nzAfAPMBYeYAM4cwHwLzIWE+AuYjwnwMzMeE+QSYTwjzKTCfEuYzYD4jzFxg5hJmHjDzCPM5MJ8T5gtgviDMl8B8SZj5wMwnzAJgFhDmK2C+IszXwHxNmG+A+YYw3wLzLWG+A+Y7wiwEZiFhFgGziDDfA/M9YX4A5gfCLAZmMWF+BOZHwvwEzE+E+RmYnwmzBJglhPkFmF8I8yswvxLmN2B+I8zvwPxOmD+A+YMwfwLzJ2H+AuYvwvwNzN+E+QeYfwjjnZBi3L5kYsDECJMDTA5h4sDECZMLTC5h8oDJI0w+MPmEKQCmgDCFwBQSpgiYIsIUA1NMmFbAtCJMCTAlhCkFppQwrYFpTZgyYMoIUw5MOWEqgKkgTBtg2hCmEphKwrQFpi1h2gHTjjDtgWlPmA7AdCBMR2A6EqYTMJ0I0xmYzoTpAkwXwnQFpithlgNmOcIsD8zyhFkBmBUI0w2YboRZEZgVCbMSMCsRZmVgVibMKsCsQphVgVmVMKsBsxphVgdmdcJ0B6Y7YdYAZg3CrAnMmoRZC5i1CLM2MGsTZh1g1iHMusCsS5j1gFmPMFXAVBGmGphqwtQAU0OYHsD0IExPYHoSphcwvQjTG5jehOkDTB/C1AJTS5i+wPQlzPrArE+YDYDZgDAbArMhYTYCZiPCbAzMxoTZBJhNCNMPmH6E2RSYTQmzGTCbEWZzYDYnTH9g+hNmADADCDMQmIGEGQTMIMJsAcwWhNkSmC0JsxUwWxFma2C2Jsw2wGxDmG2B2ZYw2wGzHWG2B2Z7wgwGZjBhdgBmB8LsCMyOhNkJmJ0IMwSYIYTZGZidCbMLMLsQZigwQwmzKzC7EmYYMMMIsxswuxFmd2B2J8wewOxBmD2B2ZMww4EZTpi9gNmLMHsDszdhRgAzgjAjgRlJmFHAjCLMPsDsQ5jRwIwmzBhgxhBmLDBjCbMvMPsSZhww4wizHzD7EWZ/YPYnzAHAHECY8cCMJ8wEYCYQ5kBgDiTMQcAcRJiDgTmYMIcAcwhhJgIzkTCTgJlEmEOBOZQwhwFzGGEOB+ZwwhwBzBGEORKYIwlzFDBHEeZoYI4mzDHAHEOYY4E5ljDHAXMcYY4H5njC1AFTR5gTgDmBMCcCcyJhTgLmJMKcDMzJhDkFmFMIcyowpxLmNGBOI8zpwJxOmDOAOYMwZwJzJmHOAuYswpwNzNmEmQzMZMKcA8w5hDkXmHMJcx4w5xFmCjBTCHM+MOcT5gJgLiDMhcBcSJiLgLmIMFOBmUqYi4G5mDCXAHMJYS4F5lLCXAbMZYS5HJjLCXMFMFcQ5kpgriTMNGCmEeYqYK4izNXAXE2Ya4C5hjDXAnMtYa4D5jrCXA/M9YS5AZgbCHMjMDcS5iZgbiLMzcDcTJhbgLmFMNOBmU6YW4G5lTC3AXMbYW4H5nbC3AHMHYS5E5g7CXMXMHcR5m5g7ibMPcDcQ5h7gbmXMPcBcx9h7gfmfsI8AMwDhHkQmAcJ8xAwDxHmYWAeJswjwDxCmEeBeZQwjwHzGGEeB+ZxwjwBzBOEeRKYJwnzFDBPEeZpYJ4mzDPAPEOYZ4F5ljAzgJlBmOeAeY4wzwPzPGFmAjOTMC8A8wJhXgTmRcK8BMxLhJkFzCzCvAzMy4SZDcxswrwCzCuEeRWYVwnzGjCvEeZ1YF4nzBvAvEGYN4F5kzBvAfMWYd4G5m3CvAPMO4R5F5h3CfMeMO8R5n1g3ifMB8B8QJg5wMwhzIfAfEiYj4D5iDAfA/MxYT4B5hPCfArMp4T5DJjPCDMXmLmEmQfMPMJ8DsznhPkCmC8I8yUwXxJmPjDzCbMAmAWE+QqYrwjzNTBfE+YbYL4hzLfAfEuY74D5jjALgVlImEXALCLM98B8T5gfgPmBMIuBWUyYH4H5kTA/AfMTYX4G5mfCLAFmCWF+AeYXwvwKzK+E+Q2Y3wjzOzC/E+YPYP4gzJ/A/EmYv4D5izB/A/M3Yf4B5h/CeCemGLcvmRgwMcLkAJNDmDgwccLkApNLmDxg8giTD0w+YQqAKSBMITCFhCkCpogwxcAUE6YVMK0IUwJMCWFKgSklTGtgWhOmDJgywpQDU06YCmAqCNMGmDaEqQSmkjBtgWlLmHbAtCNMe2DaE6YDMB0I0xGYjoTpBEwnwnQGpjNhugDThTBdgelKmOWAWY4wywOzPGFWAGYFwnQDphthVgRmRcKsBMxKhFkZmJUJswowqxBmVWBWJcxqwKxGmNWBWZ0w3YHpTpg1gFmDMGsCsyZh1gJmLcKsDczahFkHmHUIsy4w6xJmPWDWI0wVMFWEqQammjA1wNQQpgcwPQjTE5iehOkFTC/C9AamN2H6ANOHMLXA1BKmLzB9CbM+MOsTZgNgNiDMhsBsSJiNgNmIMBsDszFhNgFmE8L0A6YfYTYFZlPCbAbMZoTZHJjNCdMfmP6EGQDMAMIMBGYgYQYBM4gwWwCzBWG2BGZLwmwFzFaE2RqYrQmzDTDbEGZbYLYlzHbAbEeY7YHZnjCDgRlMmB2A2YEwOwKzI2F2AmYnwgwBZghhdgZmZ8LsAswuhBkKzFDC7ArMroQZBswwwZTCvtvc3FlyvazE1l+ci8O5Aclzbl4wXC8mwfVL/l8VYqut6tk70nnHaqp7yrlWnQ1MW0E0tnvFhD3Pg3Ei/Dr7xcLXJvUH1s4rEP7I+Lg8os1rnCvO5dY1TIec9xSvb2K+4t45KU7mrTzgNs1JHZf5M+41zOvO70jzbE2vEZHOxVfVo0em+aS1uMtrgnHHeGLcE9tkqD9c7BLzy++WPN4T0pfYCuq8+i0ufES72ryicu5ZnBsS05LY3ByeOPcs6nJ+yDk/+yUToc3JKeeyRPv5wn6a38oxF6uYoiuuHHN8ogz0Tf6TmPsycU0WizwedA3HAtCt8XINR8cPSkIuLxeCTBPWOeoc2c5WkeJvU9ou9RrWd7LujybdPXr6rfud/WIvwrYI6v5C4Y+Mj6xDi6KJT4+Y0I/+FCnxiXSdiH8dkus6y7zh+leJDdco0Oa7zxE87jt5PLaHaA9xvnqnv1w5J+sFbW5/bQ3FZa1LW0MA44ZrDO4Adbi8BgVCr5aXCzP4iPKOK1XkYuTX2ZHHpB3N50x1kdUOpidH2ClqQjtyHQfPS5VHqbNf8rcq3FYty3vT6a6tinjN7OqI14qplmudBIhNdWPKI16btH4ea7meXFNdW21tDex/HUzGFH7XnXH84TkpnZNEnaW172Vew7rRld9Wnr5Gkix35YqvyMu+nuOPBl+/Eb6WK/bcNcI1sJpyTO7SU6mkB/1ha1+dIPquzbH2VUz46EEaMq3JVKnwmdYEzLTWWLmIj+TLxHnHnwH54TTR98D8hOscn5WBy1E4GR+/Pjp+Kvh4TnJfixeu46Ydk3xphnPSN9f2OLuVRC4OjHa9GvPd6ZBrfiKfiMMl4hpo6+wip+UhWaf4XRNU5t98wrMyO60FlFktHgUkfXkkfa1I+q4T6WuOdUq19Mn2p1JJu7bGqIwLrtcYV3hcIzfxf1Rrgzp/3JqSuDZyB8UfuYbpnaJ+cmtmYhlup+hxfEfFLq672VbY7Sjsuvh0jig+Wv5wtopELJrWdmpMj2ujajFtL2Lk+PtEjDouwxg5W9q91wqIX2LLrYskfj0TZfVXUcfjWqh5YBfj6HkNy2Rik30PbT1YzAtyLVUsT6ydRF14jeXaldiOaTxbE/wpkSeiybt6nnC2ihR/oyg3WC60toety/yciFFzrMss2wnP85cntTys5Ytyr+H1l2twYx6V/fS2ih2MbQlJB+vnyHre8a/8j+dXjDvLr2+28PyKckHzq0u/ll/lPTqt3xxTfNDGHzK/Orv5XubxSp7gPxTXIpo8o18L2d7gfVNZ7guUtFjHN+Uijchr4xs/9yQ+b0H3JOJKmjPltXIlzdoYUN5H+EqkuXIZptnZ0u5RxyE935D7fRgbvN9X4iM2eT5i830LGA82ts7wweBjYsuta3ofm2Kd4V+WgZ9aLNFW1OsM/wn3u/6GMcBSVrGX4ErinIuR36U6lGO5denHWvo6w8VJuCWvMxxPAstinWGXFxL59FJRXiJ6vyLiNVX71C6rNVXjUeivqe4V5XtoiU1bUxXT4uzGBSdlUK4/MP0JMwCYAYQZCMxAwgwCZhBhsmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r5ksmuqpu9LJrumavq+ZLJrqqbvSya7pmr6vmSya6qm70smu6Zq+r47r61PlDjeL/l/VYittqpnj0jn9oJ1S+OpJNanJdL1JwOsW1q//qLwtUn9gbXr8oQ/Mj45yV9tDveYOJdb1zAd2vqZ7vom5qatzklxWt7Cc86XxObyZkLHhjnpPuUoaYopaYpyrrraml610c5VV1OlXRN5vXLr0m3jucauSWI+WLdmcjdIQ2IrSMp6oLclrVu6QTINLXnd0p7Jf9y6pccl/9fyTeKvX/L/qpCbn/WbI1k7+t+K0G896Owvq/WbtTVitfWbI13f+t8yHRP60Z8CJT5yrUV57WJeas5SnFNeW08xR/C47+Tx2DbJoGhzjcu863ddyYTvA6HsyvTkCb3adctX9JYr8jKGKBcjv86OPCbtaD5HPHdpdaR9mH/zZrR5P1UvYXxxLeahop1359jafXlwHnm3NmxC524ir2l1EK4lqJXBTHk8R8QK+SJIm8YXCv8dP1K0ExGt36vOg+5sRWob1jPEtcG0uqtYxMjxY0WMIlo3VI2RnO8e11vN1B+VaUYe4yzXH8P62slGmzdS7ZR2fTCfs+tzYAu4Plr/uQDil9hy6yKJX3XiGp4sxj5Yf2DfnOUhrf30m4fcNdLWmpbrfWh9EbzGsq3X6jWtTpf12tEtoF7T2m+5rnVj7VNLX/vhpGXgpxZntBX12g+nQxt/JpSzpaxiT64FKrmg/cHcuvRjLX3th6livNwS1344N/nPslj74RIYm5+ZdPb/9NoPVbUjl9XaD9HEp2evSNeWqNLXftD673HBSRlk+wPTnzADgBlAmIHADCTMIGAGESa79kP6vmSyaz+k70smu/ZD+r5ksms/pO9LJrv2Q/q+ZLJrP6TvSya79kP6vmSyaz+k7ztmWb27EE3ftGcv7Rm4S0u0zxV69o4Je55IpyfsFwtfm9af1DO7XOGPjI/13YVccS6vLj0diS1xT2gP4GTeygFurNAn1xzBc7jWiPT/TMWPStAnr4m7F4LnWtIz+jHJ/1vyM/q9kvvuGf1uSSXRPgvr2cvljTzwMy5soq/On6JI/KmqX59ce8aFMXD2wz5TRVvFQldU9YmWtkzPkrVn6Jl0FQbU1ZzXFGMtnwcUKXxMSZtW7xaJc7lwrlCcw3rXxQTr3SjbdCyDsoyz9Dp/WkXiT+p6ac+C8Ho5+2Vew7xVLGKM1yYf0pHYcusiScfSZ197x1J+yDzlrrt2fWNN5kdt/TNMl+48r2H5RfvR5reqqoife1XnifTumExI4v8zRBpLIon5yFqnr76Mk5iXEH88/75UN+ZNnvBlc4jHOcJ+eSTxGFWfBysaiUd5Bn8CxKSxrf4dojaRpDelvxL0N1ker06VobZR6P/3wX2euF4/eak8M1Vcow6RxHBMfRnq2Eie6SDOO/4L8Pky4aNj8BjmBVkvdgJdGi99dPxVIladQaYp61TtWb+zFc/gr0eOSV7WU2ivX5OkYUwfT8ROXiu0G1fiKeXiinxn8DuuyCEbJzqwH6kdk3yJOCfbnMIM6WuTQS6eQR51lCh+OvlS4r/263TKY5n6+I5zdjoo5xJl6m5x3J3D961Qti2cR/5h0Hlfcl9751G+61IB5zqJc+08np72cK4YbH8fMD3y2rZphJfjMJff5PtRnqIP+SfA548D+izfb3L8M8lfrY2Nus6T7blWHrAP7uJVpshLXR0biQeL8QsiHs3RBhR5ev3WRLZ7+Im3tI//I49xd/HVynDHDHIxkc5MdYBWhuIKXyli2cWLJJb1fWV37XLBny6KP3mCf1ekazmIk9aeVQq+q2J3OcGg3a7CrovP8hHFR8vnywv/YnA+U/9Hxjrfy5yfZKw/FGmOKk9oaXa2MrW7mep1jA3WY8WCb6PEpkOG2Dh+nohNRHWPGhtny2+/QyvvWj+vQPyPvOwjY5z7NUlaR1VJ32LCL7Sr3beWclq6G/smS9atWh8K778l/m+n6Pfbh3JcKXAV4lxrONdOnCuDc+1Bf2UsPU1ODo9lGhOiLo13+vIE/1vyVxs/R10unK14Bn89ckzy0Y8JR9aPCTGPyPwkx0wYTykXV+Q7gN9xRQ7ZONHhZ0zYTomd/D/mNcxr/7+PCSuUc4ky1UqUT21MhLJyTOj4DrGUztbJfe07NzkmxPqmvTiH9Y2sz8pIelx9I79LRlvyeSLacufwuUsZ6N8uYLxk3mnXCC/bAFducMyZqf5zfFe4HhsG9FmOOR3fLamnyNPLbL/k/1UhN61OlfcHsM70M+Zsl0FXh0biwWK8mohHc/S9Im7feviJt7SP/yOPcXfx1e4JdMggJ+9zaPKFxBcccyIvx5ydooll/ZjTXTsc+3VS/JH3OHqJctwF4qS1y3LM2dhYV95b6Szsuvh0jSg+Wj7vKtKgtbNaP0PGOt/LnJ9krNcXaY4qT2hpdra0dh3Hiaxex9ho4wVZpvMJL2Pj+E1FbJqjb12awV/s12Qan3nkmORlHxzHbv2aJK219WNO+X6M9i6P1v+Uco2lO55Bv5PX+lByzJnp29ZWwifPS+9DyfdQ0Zb2faycYwPfUW0F+nfJoD+WQX9xBv2xDPpjwOV43HY8g21nK5GOlv7N715Q/qPyM7E1xTe/2jek+N4q9hMTG77nWuxDV3EGXYUZdBX51BVT5OOKr7l16bz77tXvt86O3y+pIJHPD4ml68yra+hzPIMPhYrPhQof9Te4zp8SxX9ME46nJS+vn6arxKcuF4Ol70qJslRaF0kMemTyG/Ods98U3607W/9r19fpas5riulG+/g/8pneyS9T+FIlvS7PlCu23bkKOFci7LRJ/o91FupyfuQJ/vSkAlfvtgYZJ1+u2G8t7KMtzb6skysUvkLhE+X8BKhXXZlPtGGTxPwZ/zfnAxixzOYDiGY+sp610c5VqM8HoM0fFxeclIkD0x+Y/oQZAMwAwmTnA0jfl0x2PoD0fclk5wNI35dMdj6A9H3JZOcDSN+XTHY+gPR9yWTnA0jfl0x2PoD0fcmEnQ/AMacDczphzgDmDMKcCcyZgpH3HBOb6x9q3/X3F+ficG5A8lyU3/zXVvXsHW3fOjWfQaY5yCP6ttr3fAbO/rKag1x7v0ybg1z7dlPOWZBb1zAd2ne17vomngOMAU7mrTzgDobjMu/GvYZ5XX4fi7Fuujz73/x2UZWJKNdbcHFPPPs9K8l0gzQkNrxvrN3Hdbqbay6Hg5L/t+S5HMYl991cDm6eeZdf8Vt/l4/ZdyNYrtj83fK7Yscf7vxMHpfvmfVL/l8VctOexRYK27FIbKe+ncdnFnHFZn4Gf7wmjIW8ZlhHaNdYXrPjvOa/Zlo/QraZ0dyLrO3rt8109ou9KPNXqs0M2vbId/WayJ+qaPNFbf03v429DyCfZRcp55wunJs9rvCFEEPkcd/J47HJyd9yRaeMvzaXiPZOYKKeOC25X+Y1Xjdr+SJH0VuuyLP3ATyvYf2UqTxodjSfI55XojrqOkt758TZSly3i0WaXZww32n31fMEv0ZOSudlInbR9PlS5U5bJw3HRn7mwNfWhJFz4F8t0tUcc+DLNMQ9/TrJNLtz+M5mkcJHPE9Olazf8N3JVoo/sv6aLtJV3+/3GYcSxS6+M18k7JYIuy4+rSOKj3btna0yJU2yDZX5pF/T+FWtzT0TRVnGuWe0slkiro/j724B1yfT2D/ad7tq+ybqdLfml3xfcGm8wC7G0fMalr/EJtvCUoXHvOCuUbnXsEzJPCnbA1lmZX/B6cb6GhlZXzv+8eRvc9bXRSR9TWO7NuJ5qVLlEstdXLmOci0hxz8r4lAaiZ/6NSgVMdfmZsuU57UygnF26S/3GpYH+d6tNgec1u9k7+S684kt2nc3qmtiwp5LPx5D+8VelP28zOvhYnxkWyj7gE3kT8Rlrro6U34tVuKvvR8u6xut/CJfDDGUeRnLgSzfbv4Eba0quQaftu6VVv4Scq8n98s8/31b1Kvdmy9X5GUMtWcefsqDZkfzWY6JElu/5G9VuK1a5ssm0w1zt0UzLqiuDjGXYKNbxG1Prfb9AY6xP4fj2F9k6/Lhun3IfxxL6ZyfPKY9h5TtRDT1cvUIv+2EnHs8imdMVY3MPY7xyTRmasL49PVbj+PzQVn3yrpOyzvIy3ocx0GtwQ+Zt35O/mp9GVmPa/0iPIb1+KLkvjZ2jQu92nXT2vdyRV7GUOs3WetxzWfteyQs83/BcZTD64ay8r6D4/eFMu+c9FPmI1pn2Pca4bJvGHWZ1/oAmcp8RGuoN5i3GP3R7jFqzwJk362xZwH5kEZZt2R6FuDmlWjqZwGFSb1a302W+aB9N5RfVn23+mfXXqR5uWekebM69SyA1VkdY6njmAdYnYV1GvLLQZ3VReQFrY7ANbyX/T3pVDtd0kh6Zb/M8SvH0v1sjnuPMeGj52UupzLNyGOcHe+uD9YtJcSOrHdKlWOyvYroeYPvZ+POfrGSzijaq0xrQCc2F/eK5B+r81FX/fPnaG/W/zfgWep4XUMntJetSsDBEeImtfZBfSJxPURlhB2kuCIrJ613/EZQGfUmFZzn+XupSHtwiDxbPHsDUUE0x43o0gz+YuWvVcSyQ+KuNT5MxMG17GxFVSHKSgwf6rVW/JEV9yCRH9xLcPgwUasMHV+m2MXJ/2WeLBN2XXwqIoqPlh/kxGWNNQCyI+jimk94+YDO8duINJctwzQ7WxHnx1qZL1hd1VrEyPE7iBiVL8MYyUU08GZBpgZKphl5bcI5V79oE8JFmzdSgzOXVnYTBa8f8sNaQLnNtHBTtA+Za6q1h8xpN5XAbmN5IrHJPFSu8JgX3DUq9xrmWflQDdss2UnWBrNssljUnU94efPG8WNEfomoP6bmF2erNIO/Wj/LdY6xTdMGjPJG1U2xlM79Y+m22Y3x8cI2vlzm58a44w8G2wfB/u2iT6O9FKYNbOTAM5r2IjXwLGsk3ay9OOL/4/bCpd9dH61+1q5dHvEL+6raoD7qGMp0sz6jzOOOP0WUFZxgV4ufnCysQrGLkzbKPnKFsOviE8niUCSPyQkX/eYZ2Z7kE56182e2gHY+2vyYeskAFzfT2txyESPHnyti1JwLpmj9hkx1T4XCY5xl/YJ5Ro6f8EWvXK9hXdXaS49TS21LLmkBbUnzLXxZPULr26a9+AJ2WXunPQQNWneVew3LoHyBUnu4JOs+3McFCjRevtTv+OtFnmiOG9vaQ1jZt9XSgv3Lxvqht4i21doPfSqW0nkb7Mt+aKYH13ht3XWM+EUF3y9yOPvLatFn7cWJOBzz8zBDWyS6wmvYTuCExCXimHbd5EsRcZ++lnt67PBcbkA7me5Zay9PZ3qI5/gnRNlvKfes45Ae95JF0PGdGyNE3CZXh22TZ7aANjlTexf1+K6l95lezfaZGvSZ0l44AbtR5iGtzyQXCgnaZ3LyfvtMjp/TQvtMsk5lfSbZF3IxZc/6nJ6ox8rOH5fv8T5GheKPHNPPF+ly9xbw/kmZosfxbRS7eH9CPutrI+y6+ES0+LWaH5ytUhELd177dTGRx2T/Bes62R+vaEI7eG1lXxnLFvbnF4lrrS3Qg7Ls2rWCj5oXJ3Vq9wRcf8Kd0+6faHm1TKRNuxeh3avQ9Dsd0ZbDVJ9Gi2lc8VvG9E9RHprjfqLWZuJ9msSWWxdJ/Gq0NhPLpWwzM92rSmyyzWxs0RLZZuK9NLkImNZeZ2ozcWGvIP2owmQimvN+q/bcEPtYLC34gYe2eFK5OFep2HbnsG2Q11VbMKpM8cfxuNCjxrOFHivFtWiOxWiitZ36qFVbHFtb/ChP8B1FjJpjMaOY8NGDNLSFYzIfaYtXY5xd+l2exEUlOxI7yHmKLvdiOub9toKtFP9ri/JpfY9K4S/KVRAbOQpbLGxUKHKZ6lhZ/nDfybPnUHJhKMevLvJZc/YdNX+xr6XdI1s2H1qlJjTD+7Iuzlify4/UHb+eiHNzvKcREz56kAbtIyiZZuS1e13ae53y2Xc0L2FnnkQgT/FHjqn7iOvTHJMIaH1GHPsmtty6SOLXN+h9Fr8vl8vrgrz2Mbn2cWCR0KXdn5bvZOC+9k619vGNfKd6c5EnopqwSMsTmSZwkPdZtLTgxFtR5p2mWJxsa4hzVH5qcUZbfhcnK0j+73eRLscPhnH+jlDOlrKKvQS3dwYuRn6X6lCO5dalH9MmTtUWBnO2ixUf3blWcA7ricTmFgzCeKEu50ee4Icn055pYbZyxT4uYCZtafaxXEldceUYfoQ4NPlP1ItlYV7AxQbzo7FXPzmLS4+7f5nYcuvqQ1FvX5t02HH17w1H42uVvM5Y92Aed2nJEbzczxPHJuak/MY0Yl2baYJiLT9hOXM+anVPq7pgugqFroIQupxfWhkrMPql6coXuoJM6DwaygR+/4RcU5dF7Is0tf7aqr41+N54BP5nF+UCnxzTH5j+hBkAzADCDARmIDBYVwwCZhBhsotype9LJrsoV/q+ZLKLcqXvSya7KFf6vmSyi3Kl70smuyhX+r5ksotype9LJrsoV/q+ZLKLcjXcsotypdv/X1mUayxwMm/lAXcIHJf5M+41zOvyuVk0eTa1KFdE16l3pmcmWtzlNcG4YzzHCm4KcC52uGAXloul/yePL/VN+Ih2m2vBLreIW0tesGu/5L5bsKtbLKULy4nTFfOiWbDrCOdn8nhzLtgV0X2tKvkNv7OxDNLdx2/d7+wXe1G2Ram6X1tsCeODdX/M89TFk7SJD2Ue9TvxYVZX0+ly7ypgnpbzc2RabEuzo80zVqrIxcivsyOPSTuaz5nKr9UOpofl9aawI5/ve16qzpE6+yV/q8Jt0U1kDgtmRPS+QE3E7xBVy3dgAsSmujHlEX+z0kOb3ynWhNdWe+cC+yxXCbsu//t9H8nxN4DOa5P72gSnheIc1pWu/OLkp1geZbnT5qxCXvaPHH8L+Noplu5PuWIv2vkcUu/qVSrpQX/YO5F3Cj+b453ImPDRgzRkelevUuEzvSue6R1UOS+H5NncJg8mfxP54f7kvvZ+O37/9nAGLkfhZHz8+uj4GaDzseS+Fi98v1c7JvnSDOekb8XCbiWRiwOjXa/GfHc65LcgyCfi8HxyX+NKFE7LQ7JO8futiMy/+YRnZfbl5G9zllktHgUkfXkkfa1I+l4X6WuO71e09Mn2p1JJu/btiYwLvscfV3g5x01U34w4f9y3BvjNXAfFH/lty0ciXe5bCizD7RQ9ju+o2MXvMdoKux2FXRefzhHFR8sfnYXt9tHY7h0T14F9U9NexMjxc4WfHZdhjJwt7X4lzseV2HLrIvGrT6KsrhZL+YH5aWm8wC7G0fMalsnEJvse2ndCmBfkNzZYnlg7ibrwGstvGrAd03j2rejC5G/EeVfNE+2F7XbR2O4trydre9j3ej8KP5vjez3ZTnievzyp5WEtX5R7Da+//DYT86jsp7dV7GBsS0g6WD9H1vOO/zP5+7+aXzHuLL/GYul+trT8inJB86tLv5Zf5T06rd8cU3zQxh8yvzq7+V7m8Uqe4IvFtYgoz6jXQrY3eN9UlvsCJS3W8Y2cowd5bXzj555EGxHH5rwnEVfSnCmvaXOk+plPpYNIc3PM46Ddo45Detz9rkyxwft9JT5ik+cjNsuL2DTXPPHMX7wX2tK/P1sVYhmVn1os0VbU35+tmVSQuC5rJ/cb+/5s/QxcjPwu1aEcy61LP9bSvz+rTSpoyd+fuZUSl8X3Zy4vJPLpS0m9/7e/tRnRd1l9axOPRH/qfcCIFkVXv7XBtDi7ccFJGZTrD0x/wgwAZgBhst/apO9LJvutTfq+ZLLf2qTvSyb7rU36vmSy39qk70sm+61N+r5kst/apO9LJvutTfq+ZKL+1iZxXnsHr+n63z17RNt/TX3PgvcCXFoi/g7e9/cs9e/lC1+b1p/gi9hrzylj4lxuXcN0aN9VuOubuP86Ejgtb+E550tic3kzoWO8l+5TjpKmmJKmKMdjtVW1faPNzzVV2jWR1yu3Lt02nmvsmiTuebpv6bpBGhKbu4/kefr9Gqe7ub5nOSD5f0v+nmV0ct99zyLfM8R8k/jrl/y/KuTm57u+aL4prKn2Ww86+8vquz7t2yHtu75ov3tMrRerfWdYoMRHfk8gr13M89R1zLVvBnIEj/tOHo8dm/zVnqfJvOv324mE74cn97U1VuS8ftp109bf0eZaljHU1kHyk181O5rPEd+fq462D1NTFW3eT9VLGF/8Ru90OI7n2PvpeXAe+cmg86zkvvYuvbuG+L68VgYz5XF5Lxx5bR5K5OW6t46/IPkrv1lp6uuRaZ2k5pxft1DxR86ve4nws6XNr6vVHTLNyGOc5Tu2mebXjeb6pNop7fpgPmfX52rhZ3OtU700xnWpcwXgV2LLrYskfkvXNZffQmD9gX1zloe09tNvHnLXqFzwMj9hTFAXXmPZ1mv1mlany3rttuRvc9ZrWvstv91srH1q6e833LcM/NTijLaifr/BfReUuC6PJvcbe7/hxQxc0P5gbl36sZb+fsPM5P8t+f2Gp5y+5C+mvSn70ZgXEvnUvTf4f/v9hv/eD8Ctif2P+P2G1HfOzf1+g3WuqEQ70gp0JLYBYMvpqxTHnSyuTYi+5XsNxy45xFeUw7mjc+vSz/dLHq8KsTVFW+XeNW3utmoF4Ue2DlC3HhHPS1MdcR2j1gHaGD5THaCV8/6gLybODVBsVYKMO5bQi98PyjhgnsHvBTX/PeVYzOP1iHz2l9j6JX+rgm0N5oRAnxtLm7w3K9uDXC/zvSBPORbz9HbFU2zEiaymNydDOhqT1erwHMWf/wt1+PLJ/5u7Du8u/MjW4eqW7cd50fbjlged6E+ex+vfPMG6diDR95Nrl0c5t2LMS39O4kEcEufkd/x4rlBJV0zRpbVROBfjKqBXctIfzGNybiwtTyTS1jW5r73vktj6JX+rwm3Vmh8xxY//6334lb1UPKPyM7E1Vv9rZa8px1DuN6Jv8erblai+mcT7vJ5IC9qV7afXhD44fS6+eYpP8p5f/XsZwr8m6KvKrdoTm3bvz21yfVHNx4jucdevGxPVGnVaXsFnFK3EOXfNchW5GPk/R/xmYmMZ9JYq53CcJY/9P8Hbj4XuIkYA","debug_symbols":"7f3britJkqQJv0td54Wrqpma2rzKoNHo0zQKKFQ1+vADPxr97sPI2ItrZ5CbPovkxyVG3zeJiAx3U3FfFBVzczHx//1P//m//Mf/9V///T//6//zb//jn/6v//t//9O//Nt/+g//85//7V9P//a//ylmjb//v//jv/2Hf/3j//gf//M//Pf/+U//V5/5t3/6L//6n//p/0rf/s/f/un/+ed/+S+nf57/528Xhzbv48exzUecD/a8cnBv28fAvXn7+eB/97c/0JQUmqmEZm5SaEwKjUuhCSk0TQpNl0KTUmikevGU6sVTqBe3bRPqxSc0Qr34hEaoF5/QCPXiExqhXnxCI9SLT2iEevEJjVAvPqER6sUnNFK92KR6sUn1YpPqxSbVi02qF5tULzapXmxSvdikerFJ9WKX6sX+cC/OrX2g+fngcwGnCwRdoNEFHu5r2fu5wLhSIOkCgy5QdIEJF4gN/hUFzeSgmRw0k6PRf2SayUEzOWgmB83koJncNrqA0QWcLhB0AZrJjWZyo5ncaCa3gtt1m3CBTmtypzW500zuNJM7zeROM7nTTO40kzutyZ3W5KQ1OWlNTprJSTM5aSYnzeRMuF3noAvQmpy0Jg+ayYNm8qCZPGgmD5rJg2byoDV50Jo8aE0etCYXzeSimVw0k4tmcjW4XVenC9CaXLQmF83kopk8aSZPmsmTZvKkmfy4RXWvAK3Jk9bkSWvypJk8YSbbttEFjC4Av4WyLegCjS7Q6QJJ/5EHXaDoAjSTjWay0Uw2pwsEXaDRBTpdgGay0Uw2mslGM9nht1BGe7yM9ngZ7fEyp5lMe7yM9ngZ7fEy2uNltMfLgtbkoDU5aE0OWpNpj5fRHi+jPV5Ge7ws4LdQFvBbKGu0Jjdak2mPl9EeL6M9XkZ7vIz2eBnt8bJGa3KjNbnTmtxpTaY9XkZ7vIz2eBnt8bIOv4WyPugCtCZ3WpNpj5fRHi+jPV5Ge7yM9ngZ7fGypDU5aU1OWpOT1mTa42W0x8toj5fRHi97gsfrdrse9FuoQWvyoDWZ9ngZ7fEy2uNltMfLaI+X0R4ve4LHa6cArclFa3LRmkx7vIz2eBnt8TLa42WTfgs16bdQT/B47RSgNZn2eBnt8TLa42W0x8tpj5fTHi/fnC4QdIFGF+h0gaQLDLpA0QVoJhv8FsrN6AJOFwi6AM1k2uPltMfLaY+X0x4vpz1e7rQmO63JTmuy05pMe7yc9ng57fFy2uPlDr+FcoffQjmd4+V0jpfTHi+nPV5Oe7yc9ng57fFy2uPldI6X0zleTud4OZ3j5bTHy2mPl9MeL6c9Xt7gt1DeBl2A1mQ6x8tpj5fTHi+nPV5Oe7yc9ng57fFyOsfL6Rwvp3O8nM7xctrj5bTHy2mPl9MeL3+Cx+t2u85OF6A1mc7xctrj5bTHy2mPl9MeL6c9Xk57vJzO8XI6x8vpHC+nc7yc9ng57fFy2uPltMfLi34LVfRbKDrHy+kcL6c9Xk57vJz2eDnt8XLa4+W0x8vpHC+nc7yczvFyOsfLaY+X0x4vpz1eTnu8YoPfQsVmdAGnCwRdoNF/5E4XSLrAoAsUXYBmMp3jFXSOV9A5XkHneAXt8Qra4xW0xytoj1cY/BYqDH4LFXSOV9A5XkF7vIL2eAXt8Qra4xW0xytoj1fQOV5B53gFneMVdI5X0B6voD1eQXu8gvZ4RcBvoSIGXYDWZDrHK2iPV9Aer6A9XkF7vIL2eAXt8Qo6xyvoHK+gc7yCzvEK2uMVtMcraI9X0B6veILH63a77p0uQGsyneMVtMcraI9X0B6voD1eQXu8gvZ4BZ3jFXSOV9A5XkHneAXt8Qra4xW0xytoj1cM+i3UoN9C0TleQed4Be3xCtrjFbTHK2iPV9Aer6A9XkHneAWd4xV0jlfQOV5Be7yC9ngF7fEK2uMVk34LNem3UHSOV9A5XkF7vIL2eAXt8Qra4xW0xytoj1ejc7wanePV6ByvRud4ta3RBTpdIOkCgy4Av4VqG/wWqtE5Xo3O8Wq0x6vRHq9Ge7wa7fFqtMer0R6vRud4NTrHq9E5Xo3O8Wq0x6vRHq9Ge7wa7fFqDr+Faj7oArQm0zlejfZ4Ndrj1WiPV6M9Xo32eDXa49XoHK9G53g1Oser0TlejfZ4Ndrj1WiPV6M9Xu0JHq/b7bp1ugCtyXSOV6M9Xo32eDXa49Voj1ejPV6N9ng1Oser0Tlejc7xanSOV6M9Xo32eDXa49Voj1dL+C1Uy6AL0JpM53g12uPVaI9Xoz1ejfZ4Ndrj1WiPV6NzvBqd49XoHK9G53g12uPVaI9Xoz1ejfZ4taLfQhX9ForO8Wp0jlejPV6N9ng12uPVaI9Xoz1ejfZ4NTrHq9E5Xo3O8Wp0jlejPV6N9ng12uPVaI9Xm/RbqAm/hep0jlenc7w67fHqtMerb40u0OkCSRcYdIGiC8Ca3Okcr07neHXa49Vpj1enPV6d9nh1g99CdRt0gaIL0JpMe7w67fHqtMer0x6vTnu8Ou3x6nSOV6dzvDqd49XpHK9Oe7w67fHqtMer0x6v/gSP1+12HZ0uQGsy7fHqtMer0x6vTnu8Ou3x6rTHqzd47brTHq9Oe7w6nePV6RyvTnu8Ou3x6rTHq9Mer97ht1C900ymc7w6nePVaY9Xpz1enfZ4ddrj1WmPV6c9Xp3O8ep0jlenc7w6nePVH/d4jbKPAqPissBVJmduP04aPm4X8PbRirzX+dDhVw6d82NU28b8PDZ+QKnnQan+M5Q/h58PDh9b/Dg03G5fqXn4x6V69p8v9cq4ZR9/zqj8BOF1beSy+hi54hPGCfzfr/K6Ie3trtIOcZV+iKuMQ1xlO8RV9kNcZR7iKschrrIOcZWHmPvUIeY+dYi5Tx1i7lOHmPvUIeY+dYi5Tx1i7lOHmPvUIeY+dYi5zzzE3GceYu4zDzH3mYeY+8xDzH3mIeY+8xBzn3mIuc88xNxnHmHuk9sR5j65HWHuk9sR5j65HWHuk1s7xFUeYe6T2xHmPrkdYe6T2xHmPrkdYu5jh5j72CHmPnaIuY8dYu5jh5j72CHmPnaIuY8dYu5jh5j72CHmPn6IuY8fYu7jh5j7+CHmPn6IuY8fYu7jh5j7+CHmPn6IuY8fYu4Th5j7xCHmPnGIuU8cYu4Th5j7xCHmPnGIuU8cYu4Th5j7xCHmPu0Qc592iLlPO8Tcpx1i7tMOMfdph5j7tEPMfdoh5j7tEHOf9hZzH6/+cbDXaBdX2d9i7hNhH4AjPH++yiu3ZMZHRpbP/tMfPq8c3Ldz3lXf5vz54D/v31vMqr7x/r3FfO0b799bzAS/8f613/fvofv3FrPXb7x/bzEv/sb79xYz7m+8f28xl//G+/cWTwnfd//y9/PHY/fv9/PHY/fv9/PHY/fv9/PHY/ev/b5/D92/388fj92/388fj92/388fj92/388fj92/388fD92/9/i+wTfev9/PH4/dv9/PH4/dv9/PH4/dv/b7/j10/34/fzx2/34/fzx2/34/fzx2/34/fzx2/34/fzx0/97jGyPfeP9+P388dv9+P388dv9+P388dv/a7/v30P37/fzx2P37/fzx2P37/fzx2P37/fzx2P37/fzx0P3b/c5PzNv3r3kfP45tPmIHTds+bkpv3i7RmBQal0ITUmiaFJouhSal0AwpNCWFZgqhGZtSLx6bUi8em1IvHptSLx6bUi8em1IvHptSLx6bUi8em1IvHptULzapXmxSvdikerFJ9WKT6sUm1YtNqhebVC82qV5sUr3YpXqxS/Vil+rFLtWL/eFenFv7QJO+XRbodIGkCwy6wMN9LXs/FxhXCky4QGx0AaMLOF0g4F9R0EwOmslBMzkG/UemmRw0kxvN5EYzudFMbkEXaHSBThdIugDN5EYzudFM7jSTu8HtujtdgNbk3ugCNJM7zeROM7nTTO40k5NmctKanLQmJ63J2egCNJOTZnLSTE6ayTnhdj02ugCtyYPW5EEzedBMHjSTB83kQTN50EwetCYXrclFa3LRmlw0k4tmctFMLprJRa9dV9EFaE2etCZPmsmTZvKkmTxpJk+ayZNm8qQ1edKaPGFNrm2jCxhdwOkCQRdodAH4LVRtSRcYdIGiC9BMNprJRjPZaCYbzWSjmWydLpB0gUEXKLoAzWSnmew0k51mssNvoYr2eBXt8Sra41VOM5n2eBXt8Sra41W0x6toj1cFrclP8HjtFKA1OWhNpj1eRXu8ivZ4Fe3xqga/harmdAFak5/g8dopQDOZ9ngV7fEq2uNVtMeraI9XdVqTO63JndbkJ3i8dgrQTKY9XkV7vIr2eFWH30JVbnQBWpOT1mTa41W0x6toj1fRHq+iPV5Fe7wqaU0etCYPWpMHrcm0x6toj1fRHq+iPV416LdQg34LNWhNLlqTaY9X0R6voj1eRXu8ivZ4Fe3xqqI1uWhNLlqTJ63JtMeraI9X0R6voj1eNem3UJN+CzVpTZ60JtMer0l7vCbt8Zq0x2vSHq+5NbpApwskXWDQBYouQDOZ9nhN2uM1aY/XNPgt1HyCx2unQKcLJF2AZjLt8Zq0x2vSHq9Je7wm7fGaTmvyEzxeOwVoTXZak2mP16Q9XpP2eE3a4zUDfgs1w+kCtCbTOV6T9nhN2uM1aY/XpD1ek/Z4TdrjNekcr0nneE06x2vSOV6T9nhN2uM1aY/XpD1es8FvoWbf6AK0JtM5XpP2eE3a4zVpj9ekPV6T9nhN2uM16RyvSed4TTrHa9I5XpP2eE3a4zVpj9ekPV4z4bdQM4suQGsyneM1aY/XpD1ek/Z4TdrjNWmP16Q9XpPO8Zp0jtekc7wmneM1aY/XpD1ek/Z4TdrjNYt+C1X0Wyg6x2vSOV6T9nhN2uM1aY/XpD1ek/Z4TdrjNekcr0nneE06x2vSOV4T9nj1DfZ4nQoYXcDpAuxbqFOBRhfodIGkCwz6j1x0AZrJRjPZaCYbzWQ4x+tUoNEFOl0g6QI0k41mstFMdprJzr6FOhVwugCtyXCO16kAzWSnmew0k51mstNMDprJQWty0JoctCbDOV6nAjSTg2Zy0EwOmsnBvoXqW9voArQmN1qTG83kRjO50UxuNJMbzeRGM7nRmtxpTe60JndakzvN5E4zudNM7jSTO/sW6lSg6AK0JietyUkzOWkmJ83kpJmcNJOTZnLSmpy0JietyYPW5EEzedBMHjSTB83kQb+FGvRbqEFr8qA1edBMLprJRTO5aCYXzeSimVy0JhetyUVrctGaXDSTJ83kSTN50kye9FuoJ3i8dgrQmjxpTZ40kyfNZNrjZbTHy2iPl9EeL4NzvE4FGl2g0wWSLjDoAkUXoJlMe7zM4LdQZk4XCLpAowvQTKY9XkZ7vIz2eBnt8TLa42VOa7LTmuy0JsM5XqcCNJNpj5fRHi+jPV7m8Fsoi40uQGty0JpMe7yM9ngZ7fEy2uNltMfLaI+XBa3JjdbkRmtyozWZ9ngZ7fEy2uNltMfLGvwWylrRBWhN7rQm0x4voz1eRnu8jPZ4Ge3xMtrjZZ3W5E5rcqc1OWlNpj1eRnu8jPZ4Ge3xsoTfQlkmXYDW5KQ1mfZ4Ge3xMtrjZbTHy2iPl9EeLxu0Jg9akwetyYPWZNrjZbTHy2iPl9EeLyv6LdQTPF47BWhNLlqTaY+X0R4voz1eRnu8jPZ4Ge3xsklrMpzjdSpAa/KkNZn2eBnt8TLa4+W0x8s3+C2Ub04XCLpAowt0+o+cdIFBFyi6AM1k2uPldI6X0zleTud4OZ3j5bTHy2mPl9MeL6c9Xm7wWyj3jS5AazKd4+W0x8tpj5fTHi+nPV5Oe7yc9ng5nePldI6X0zleTud4Oe3xctrj5bTHy2mPlwf8Fsqj6AK0JtMeL6c9Xk57vJz2eDnt8XLa4+Ut6Z8pzWTa4+V0jpfTOV5Oe7yc9ng57fFy2uPlHX4L5Z1mMp3j5XSOl9MeL6c9Xk57vJz2eDnt8XLa4+V0jpfTOV5O53g5nePlj3u8RtlHgVFxUeC6x2v0+nFSmd0uEFUfYGJun2iGXT3Y8uPgyvGJpq4cbGUfKKziE4aPH9BtXei+LvRYF3pbF3pfF3quC32sC73WhT6XhV7rqmmtq6a1rprWumpa66ppraumta6a1rpqWuuqaa2rpnNdNZ3rqulcV03numo611XTua6aznXVdK6rpnNdNZ3Lqmlsy6ppbMuqaWzLqmlsy6ppbMuqaWzLqmlsy6ppbMuqaWzLqmls66qpraumtq6a2rpqauuqqa2rpraumtq6amrrqqmtq6a2rpr6umrq66qpr6umvq6a+rpq6uuqqa+rpr6umvq6aurrqmmsq6axrprGumoa66pprKumsa6axrpqGuuqaayrprGumrZ11bStq6ZtXTVt66ppW1dN27pq2tZV07aumrZ11bStq6ZdV029+sfBXqNdQtdV09Nz83nk01LXz9CvXOeMjz3HPvtPf6K8cnDfzvuH//ju+c8H/3lTdHX6G2+K7gzgG29K+31TLm+K7qzlG2+K7nzoG2+K7kzrG2+K7hzuG2+K7uzw+25K6s47v/Gm/J7RXrkpv2e0V27K7xntlZvSft+Uy5vye0Z75ab8ntFeuSm/Z7RXbsrvGe2Vm/J7Rnt5U4ST+77xpvye0V65Kb9ntFduyu8Z7ZWb0n7flMub8ntGe+Wm/J7RXrkpv2e0V27K7xntlZvye0Z7eVOE0zO/8ab8ntFeuSm/Z7RXbsrvGe2Vm9J+35TLm/J7Rnvlpvye0V65Kb9ntFduyu8Z7ZWb8ntGe3lThBNsv/GmXJ3Rls+Pm5J1+6a0bRs/jm2bt9s3pXk/H+wjdqC37eMO9vbTyGfovi70WBd6Wxd6Xxd6rgt9rAu91oU+V4XermfjrgF9WTVt27Jq2rZl1bRty6pp25ZV07Ytq6ZtW1ZN27asmrZtXTW1ddXU1lVTW1dNbV01tXXV1NZVU1tXTW1dNbV11dTWVVNfV019XTX1ddXU11VTX1dNfV019deqaW7t4+D07RLNkEJTUmimEpp4rTJl72c04woak0LjUmhCCk2TQtOlOCXVi0OqF4dUL46p9CtuUr24SfXiJtWLm1QvblK9uHUpNCmFZkihKSk0Ur24S/XiLtWLu1Qv7qE0o+hNCo3UvLhLzYu7VC/uUr24S/XilOrFKdWLU6oXp9S8OKXmxSk1L06peXFK9eKU6sUp1YuHVC8epjSjGC6FRmpePKTmxUOqFw+pXjykevGQ6sVDqheXVC8uqXlxSc2LS2peXFLz4pLqxSXVi0uqF5dULy4pH8XcpNBIzYun1Lx4SvXiKdWLp1QvnlK9eEr14inVi6fSvLhvSvPivinNi/umNC/um1Iv7ptSL+6bUi/um1Iv7puSp61vSp62vinNi7spzYu7SfVik+rFJtWLTaoXm1QvNqlebErz4m5K8+JuUvNil5oXu1Qvdqle7FK92KV6sSt52rrUvrsute+uS+276y7Vi6X23XWpfXddat9dl9p316X23fWQmheH1Lw4pObFITUvltp316X23XWpfXddat9db0qetv7qfXc7aKTmxU1qXiy1765L7bvrUvvuutS+uy61765L7bvrXWpe/Op9dztopObFXWpeLLXvrkvtu+tS++661L67nkqetp5KnraeUvPiV++720Ej1Yul9t11qX13XWrfXZfad9el9t31ITUvHlLz4iE1L371vrsdNFK9WGrfXZfad9el9t31IeVpKylPW0nNi0tqXiy1765L7bvrUvvuutS+uy61765L7bvrJTUvnlLz4ik1L55S82KpfXddat9dl9p316X23fUp5WmbUp62qTQvzk1pXpxS++5Sat9dSu27O/0dpdAo9eKU2neXm9K8ODeleXFuSvPiNKV5cUrtu0upfXcpte8upfbdpSl52tKUPG1pSvPiNKV5cUrtu0upfXcpte8upfbdpdS+u5Tad5cuNS92qXmxS82LXWpeLLXvLqX23aXUvruU2neXoeRpy1fvu9tBIzUvlvreXUrtu0upfXcpte8upfbdpdS+u5Tad5dS37tLqe/dpdT37lLqe3cpte8upfbdpdS+u5Tad5ddydOWXcnTllLfu0up792l1L67lNp3l1L77lJq311K7btLqX13KfW9u5T63l1Kfe8upb53l1L77lJq311K7btLqX13mVKetiHlaZP63l1Kfe8upfbdpdS+u5Tad5dS++5Sat9dSu27S6nv3aXU9+5S6nt3KfW9u5Tad5dS++5Sat9dSu27y5LytJWUp03qe3cp9b27lNp3l1L77lJq311K7btLqX13KbXvLqW+d5dS37tLqe/dDanv3Q2pfXdDat/dkNp3NzalXjw2JU/b2JQ8bUPqe3dD6nt3Q2rf3ZDadzek9t0NqX13Q2rf3ZDadzekvnc3pL53N6S+dzekvnc3pPbdDal9d0Nq392Q2nc3XMnTNl69724HjdS8WOp7d0Nq392Q2nc3pPbdDal9d0Nq392Q2nc3pL53N6S+dzekvnc3pL53N6T23Q2pfXdDat/dkNp3N5qSp200JU/bkPre3ZD63t2Q2nc3pPbdDal9d0Nq392Q2nc3pPbdDanv3Q2p790Nqe/dDanv3Q2pfXdDat/dkNp3N6T23Y2u5GkbqeRpG1LfuxtS37sbUvvuhtS+uyG1725I7bsbUvvuhtS+uyH1vbsh9b27IfW9uyH1vbshte9uSO27G1L77obUvrsxpDxtQ8rTJvW9uyH1vbshte9uSO27G1L77obUvrshte9uSO27G1LfuxtS37sbUt+7G1LfuxtS++6G1L67IbXvbkjtuxtTytM2pTxtUt+7G1LfuxtS++5Kat9dSe27K6l9dyW17642pV5cUt+7K6nv3ZXU9+5K6nt3JbXvrqT23ZXUvruS2ndXpuRpq1fvu9tBozQvLqnv3ZXUvruS2ndXUvvuSmrfXUntuyupfXcl9b27kvreXUl9766kvndXUvvuSmrfXUntuyupfXcVSp62CiVPW0l9766kvndXUvvuSmrfXUntuyupfXclte+upPbdldT37krqe3cl9b27kvreXUntuyupfXclte+upPbdVVPytFVX8rSV1PfuSup7dyW1766k9t2V1L67ktp3V1L77kpq311Jfe+upL53V1Lfuyup792V1L67ktp3V1L77kpq312lkqetUsnTVlLfuyup792V1L67ktp3V1L77kpq311J7bsrqX13JfW9u5L63l1Jfe+upL53V1L77kpq311J7bsrqX13VVKetpLytEl9766kvndXUvvuSmrfXUntuyupfXclte+upPbdldT37krqe3cl9b27kvreXUntu5tS++6m1L67KbXvbm5Knra5NSk0SvPiKfW9uym1725K7bubUvvuptS+uym1725K7bubUt+7m1Lfu5tS37ubUt+7m1L77qbUvrspte9uSu27m67kaZuu5GmbUt+7m1Lfu5tS++6m1L67KbXvbkrtu5tS++6m1L67KfW9uyn1vbsp9b27KfW9uym1725K7bubUvvuptS+uxlKnrbZlDxtU+p7d1Nq392U2nc3pfbdTal9d1Nq392U2nc3m5KPYkrtu5tS++6m1PfuptT37qbUvrspte9uSu27m1L77mZX8rTNLtWLpb53N6W+dzel9t1NqX13U2rf3ZTadzel9t1NqX13U+p7d1Pqe3dT6nt3U+p7d1Nq392U2nc3pfbdzRfvuxtlHwePiks0j/fiVmc0o26j8Vnbj4N9Tv88uP9Ak1JohhSaei2atDOaE4QLNFMJzRP23T0TjUmhcaVf8RP23T0TTZNC8+JenD+hiUs0KYVmSKEpKTRSvXhK9eIp1YunVC+eUr14SvXiKdWLp1QvnlK9eEr14jl10OS2CfXiExqhXnxC41JohHrxCY1QLz6hEVqjOKER6sUnNEK9+IRGqBef0Ej1Ytuk0Ej1YpPqxRZSaJpS9zOpXmxC68UnNFK92KR6sUn1YpfqxW5SaKR6sUv1Ym9SaKR6sUv1Yhd6d3dCI9WLXaoXh1QvDqleHC6FRqoXh1Qvji6FRqoXh1QvjpJCI9WLm1QvblK9uEn14hZSaKR6cZPqxS2l0Ej14ibVi9tUQtOlenGX6sVdqhd3qV7cmxQaqV7cpXpxH1JopHpxl+rFuUmhkerFKdWLU6oXp1QvTiFP2wmNVC9OqV6cQns9TmikevGQ6sXDpNBI9eIh1YuHVC8eUr14SHnahlQvVtp3d0IjtNcjt5LqxSXVi5X23Z3QSPXikurFSvvuTmikerHSvrsTGqlerLTvLjelfXcnNFK9WGnf3QmN1F6PKdWLlfbdndBI9WKlfXcnNFKetqnUi01q351J7buzTakXm9S+O9uaFBqlXmxS++5Mat+dSe27M6l9d2ZSvVhq351J7bszk+rFUvvuTGrfnZlUL5bad2dS++5Mat+dSe27M5fqxVL77kxq3525VC+W2ndnUvvuzKV6sdS+O5Pad2dS++5Mat+dhVQvltp3Z1L77iykerHUvjuT2ndnIdWLpfbdmdS+O5Pad2dS++6sSfViqX13JrXvzppUL5bad2dS++6sSfViqX13JrXvzqT23ZnUvjvrUr1Yat+dSe27sy7Vi6X23ZnUvjtLqV4ste/OpPbdmdS+O5Pad2cp1Yul9t2Z1L47S6leLLXvzqT23dmQ6sVS++5Mat+dSe27M6l9dzakerHUvjuT2ndnQ6oXS+27M6l9d1ZSvVhq351J7bszqX13JrXvzkqqF0vtuzOpfXc2pXqx1L47k9p3Z1OqF0vtuzOpfXcmte/OpPbd2ZTqxVL77lxq351vSr3YpfbdudS+O9+UerFL7btzqX13LrXvzqX23fkm1Yul9t251L47N6leLLXvzqX23blJ9WKpfXcute/OpfbdudS+O3epXiy1786l9t25S/ViqX13LrXvzl2qF0vtu3OpfXcute/OpfbdeUj1Yql9dy61785DqhdL7btzqX13HlK9WGrfnUvtu3OpfXcute/Om1Qvltp351L77rxJ9WKpfXcute/Om1Qvltp351L77lxq351L7bvzLtWLpfbdudS+O+9SvVhq351L7bvzLtWLpfbdudS+O5fad+dS++48pXqx1L47l9p35ynVi6X23bnUvjsfUr1Yat+dS+27c6l9dy61786HVC+W2nfnUvvufEitUQypeXFJ9eKS6sVS++68pNYoXr7v7jYaqV4ste/Opb535yXVi0uqF0+pXjylfBRT6t3dlOrFUvvuXGrfnUvtu3OpfXcu9b07f+2+u/DtA0241V/RxGv33e2isdeiOQ8cp9fNl2hcCk1IoWlSaPpr0XQ/o8kraPLb0Ix2iWZIoSkpNFMJzWv33UX4x8ERLS7RmBQal0Lz2l7ctjOa5peq+dp9d7to+ovRjDOa6JdoUgrNkEJTUmhe24vbyDOay1l6vHbf3S4ak0LjUmhe24v7pzL0KzPR1+6720XTpdCkFJohhaak0Ej14pDqxSHVi0OqF8eLe3HE5684L9E0KTRdCk1KoZHqxSHVi1+7724PzWv33e2iMSk0LoUmlJThtfvudtF0KTQphWYoKUMrKTRTCU3fpNBI9eIu1Yu71BrFa/fd7aKRWqPoUr24Dyk0JYVGao0ipXpxmhQal0IjtUaRUr04pXpxSq0Xp9QaRUqtUaRULx5S68VDar14SK0XD6lePJoUGqn14iG1XjykevGQ6sVDar24pNaLS2qNoqR6cUmtF792390uGqn14pLqxSW1XlxS68UltV48pXrxlOrFU2q9eEqtF792390uGqlePKXWi6fUevGUWi+eSr24bUrrxW1TWi9um9J6cduUevFpLCk0SuvFbVNaL26b0hpF25R6cduU1oubKa0XN1NaL24m1YtNab24vXjf3R4apfXiZlK92KR6sSmtFzdTWi9urrRG0aT23TWpfXfNldaL24v33e2hkerFrrRe3Fxpvbi50npxc6leHFK9OJTWi1sorRe3kFqjCKleHErrxS2U1otbKK0Xt5DqxSG1Xtyk1oub1Hqx1L671qR68Yv33e2hkVovblJrFE2qFzep9eImtV7cpdaLu1Qv7lLrxV1qvfjV++520Ej14i7Vi7vUenGXWi/uUmsUKdWLU2q9OKXWi1NqvTilenFKrRen1HpxSq0XS+27aynVi4fUevGQWi8eUmsUQ6oXv3jf3R4aqfXiIbVePKR68ZBaLx5S68UltV4ste+ulVQvLqn14hfvu9tDI7VGUVK9uKTWi0tqvbik1ounVC+eUuvFU2q9eEqtF0vtu2tTqhdPqfXiKbVePKXWKKZSL+6b0npx35TWi/umtF7cN6Ve3LcmhUZpvbhvSuvFXWrfXd+UenHflNaLuymtF3dTWqPoJtWLTWm9uL/6e3c7aJTWi7tJ9WJTWi/uprRe3E1pvbhL7bvrLtWLXWm9uEt9765Lfe+uu1QvdqX14u5K68XdldaLu0v14lBaL+6htF7cQ2m9uEvtu+sh1YtDab24h9J6cZf63l0PqV4cUuvFTWq9uEmtFzepXtyk1otfve9uB43UerHUvrvepHpxk1ovblLrxV1qjaJL9eIutV7cpdaLX7zvbg+NVC/uUuvFXWq9uEutF0vtu+sp1YtTar04pdaLU2qNIqV6cUqtF6fUenFKrRenVC9OqfXiIbVePKTWi6X23fUh1Ytf/b27HTRS68VDao1iSPXiIbVePKTWi0tqvbikenFJrReX1Hrxq/fd7aCR6sUl1YtLar24pNaLS2qNYkr14im1Xjyl1oun1HrxlOrFU2q9eEqtF0+p9WKpfXd9KvXi3JTWi3NTWi/OTWmNIjelXpxbk0KjtF6cm9J6cW5KvTg3pfXi3JTWi9OU1otTat9dmlQvNqX14nz19+520CitUaRJ9WJTWi9OU1ovTlNaL06X6sWutF6crrRenK60XpxS++7SpXqxK60XpyutF6crrVGkS/XiUFovzlBaL85QWi/OkOrFr953t4NGab04Q2m9OKX23WVI9eKQWi9uUuvFTWqNokn14ia1XvzifXd7aKTWi5tUL25S68VNar24Sa0XS+27yy7Vi7vUenGXWi9+9ffudtBI9eIutV7cpdaLu9R6cZfqxSm1XpxS68UptV4ste8uU6oXp9R6cUqtF6fUGkVK9eKUWi8eUuvFQ2q9eEj14iG1XvzqfXc7aKTWi6X23eWQ6sVDar14SK0Xl9QaRUn14pJaLy6p9eIX77vbQyPVi0tqvbik1otLar1Yat9dTqlePKXWi6fUevGUWqOYUr14Sq0XT6n14im1XjylevFUWi8em9J68diU1ouH1L67sSn14rE1KTRK68VjU1qjGJtSLx6b0nrx2JTWi4cprRcPk+rFprRePExpvXi8et/dDhqpXmxSvdiU1ouHKa0XD1Naoxgu1Ytdab14uNJ68XCl9eLhUr3YldaLhyutFw9XWi8eUvvuhkv14lBaLx6htF48QmqN4tX77szPaLxfonltL47PexPtUhlevO9uD01KoRlSaEoKzVRCI7XvbkjtuxtNqhc3qfXiV3/vbgeN1BqF1PfuhtT37obU9+6G1PfuhtS+uyG1725I7bsbUvvuhtS+u9GlenGX6sVdqhd3qV4s9b27IfW9uyH1vbsh9b27IbXvbkjtuxtS++6G1L67IbXvbqRUL06pXjykevGQ6sVS37sbUt+7G1LfuxtS37sbUvvuhtS+uyG1725I7bsbUvvuRkn14pLqxSXVi0uqF0t9725Ife9uSH3vbkh9725I7bsbUvvuhtS+uyG1725I7bsbU6oXT6lePKV68ZTqxVLfuxtS37srqe/dldT37uoX++5G/3GSbRY7cMw+0Pg/gPlz/IDHb/D4HR4/4fEHPH7B4092/F/sA3ve+AaPD/PXYP4azF+D+Wswfw3mr8H8NZi/DvPXYf46zF+H+eswfx3mr8P8dZi/DvPXYf4GzN+A+RswfwPmb8D8jcf5+/m0M9rthx1rH3tULH961GnXnot8+3gs8vz50D9R55Kox5Koa0nUUxR1+3zcrwvUbVsStamibrdQ+5KoY0U2trYk6iW1sS2pjU1VG293PlVtvI1aVhtvdb4uq403Uatq4002dlVtvI16SW3sS2pjV9XGm52vq2rjbdSy2niz88lq403Uqtp4k42pqo23US+pjbmkNqaqNt7sfKmqjbdRy2rjrc6Xstp4E/WSa6q55JpqLqmNY0ltHLJrqrc635BdU72JWlYbb3W+IauNN1EvuaY6llxTHUtq41hSG8eS7xtryfeNteT7xlryfWMtuaZaS66p1pLaWEtqYy35vrGWfN9YS75vnEu+b5xLrqnOJddU55LaOJfUxrnk+8a55PvGueT7xrnk+8a54prq3FZcU53bito4txW1cW4rvm+cm6o23ka94vvGua34vnFuK66pzm3FNdW5LamNtqQ22orvG6et+L5x2orvG+cTkgC+A/WKa6rTVlxTnbakNtqS2mgrvm+cvuL7xukrvm+cvuL7xukrrqnOJ6RsfAfqJbXRl9RGX/F94/QV3zdOX/F944wV3zfOWHJNNZZcU40ltfEJCTbfgXrF941TNhfnNuoV3zdO2Vyc26iXXFOVzcW5jXpJbZTNxbmNesn3jbK5OLdRL/m+UTYX5zbqJddUZXNxbqNeUhtlc3Fuo17yfaNsLs5t1Eu+b5TNxbmNesk1VdlcnNuol9RG2Vyc26iXfN8om4tzG/WS7xtlc3Fuo15yTVU2F+c26iW1UTYX5zbqJd83yubi3Ea95PtG2Vyc26iXXFOVzcW5jXpJbZTNxbmNesn3jbK5OLdRL/m+UTYX5zbqJddUZXNxbqNeUhtlc3Fuo17yfaNsLs5t1Eu+b5TNxbmNesk1VdlcnNuol9RG2Vyc26iXfN8om4tzG/WS7xtlc3Fuo15yTVU2F+c26iW1UTYX5zbqBd83jk02F+c26gXfN55QL/i+8YR6wTXVE2pVbbyNekFtPKFeUBtPqBd833hCveD7xhPqBd83jk02F+c26gXXVE+oF1xTPaFeUhtlc3Fuo17wfeMJ9YLvG0+oF3zfeEK94PvGE+oF11THJpuLcxv1ktoom4tzG/WC7xtPqFW18TbqBd83nlAv+L7xhHrBNdUT6gXXVE+ol9RG2Vyc26gXfN94Qr3g+8YT6gXfN55Qy2rjTdRLrqnK5uLcRr2kNsrm4txGveT7RtlcnNuol3zfKJuLcxv1kmuqsrk4t1EvqY2yuTi3US/5vlE2F+c26iXfN8rm4txGveSaqmwuzm3US2qjbC7ObdRLvm+UzcW5jXrJ942yuTi3US+5piqbi3Mb9ZLaKJuLcxv1ku8bZXNxbqNe8n2jbC7ObdRLrqnK5uLcRr2kNsrm4txGveT7RtlcnNuol3zfKJuLcxv1kmuqsrk4t1EvqY2yuTi3US/5vlE2F+c26iXfN8rm4txGveSaqmwuzm3US2qjbC7ObdRLvm+UzcW5jXrJ942yuTi3UT+sjb0+ju3zH1D/Ob7D48fj49ut8Rs8fofHT3j8h/tizvhx7LC8HL/g8Sc6vj2eCLIz/sP8HTE+xh/zcnyHxw94/AaP3+HxH+Zvjfxx7NzG5fgDHr/g8Sc7/uOpBTvjGzy+w+MHPH6Dx+/w+DB/Deavwfw1mL8O89dh/jrMX4f56zB/Heavw/x1mL8O89dh/gbM34D5GzB/A+ZvwPwNmL8B8zdg/gbM38f3vU3/WLWafft5/CurVnObH+NO+3zYyWvHnh5NPo49qfhPx/4d9+M7374Jty2K2xfFHYvibovi7ovizkVxj0Vx16K4F9XLvqhe9pfqZc1P3D4vsCyqgX1RDXx8p9s34V5UA3sKcW1RXeuL6lpfVNdyUV1LIV3LRXUtF9W1x3epfRPuRXUthXQtF9W1XFTXclFdG4vq2hDStbGoro1Fde3xHWbfhHtRXRtCujYW1bWxqK6NRXWtFtW1EtK1WlTXalFde3x32DfhXlTXSkjXalFdq0V1rRbVtbmork0hXZuL6tpcVNce39v2TbgX1bUppGtzUV2bi+raXFPXfFtT13zT0TXf1tQ139bUNd/W1DXf1tQ133R0zbc1dc23NXXNt0V1zRbVNRPSNVtU12xRXXt8L/Q34V5U10xI12xRXbNFdc0W1TVfVNdcSNd8UV3zRXXt8YyAb8K9qK65kK75orrmi+qaL6prsaiuhZCuxaK6Fovq2uPZGd+Ee1FdCyFdi0V1LRbVtUVzTHzRHBNvQrq2aDaJL5pN4otmk/ii2STehHRt0bwRXzRvxBfNG/FF80ZcKG/EF80b8UXzRnzRvBFfNG/EhfJGfNG8EV80b8QXzRvxRfNGXChvxBfNG/FF80Z80bwRXzRvxIXyRnzRvBFfNG/EF80b8UXzRlwob8QXzRvxRfNGfNG8EV80b8SF8kZ80bwRXzRvxBfNG/FF80ZcKG/EF80b8UXzRnzRvBFfNG/EhfJGfNG8EV80b8QXzRvxRfNGXChvxBfNG/FF80Z80bwRXzRvxIXyRhzMG/lz/ILHf1gnbOt1/mNt9tcK8XjSxm4Fwys4XiHwCg2v0PEKiVcYeIXCK+CcNpzThnPacE4bzunHd87vVsA5bTinDee04Zw2nNOOc9pxTjvOacc57TinHee045x2nNOOc9pxTgfO6cA5HTinA+d04JwOnNOBczpwTgfO6cA53XBON5zTDed0wzndcE43nNMN53TDOd1wTjec0x3ndMc53XFOP77/xiy2c4XL1dB4fKfMboWOV0i8wuOctjwvqttslxUKrzDpCo/vqNit8DinfZxftJxeGf9c4fLg03Nj/jj49Pjlnwf/QONSaEIKTZNC06XQ5GvRnDB8oDnNsH5Cc3lsszPyZqNfIB/LIq9lkc9VkT++E+HbkNuyyH1Z5LEs8se17vTG5uPg05LNxbzn8X0GuxUSrzDwCo/3+Kj4OLjZ5XPA4975vQqPu9x3KxhewfEKgVdoeIWOV0i8wsAr4JwunNMT5/TEOT1xTk+c0xPn9MQ5PXFOT5zTE+f0pDndtg2vYHgFxysEXqHhFTpeIfEKA69QeAWc04Zz+nGPZy/7cWy/XB9vjzs8d8YPePwGj9/h8RMef8DjFzz+ZMd/3NG5Mz7MX4f56zB/Heavw/x1mL8O89dh/jrM34D5GzB/A+ZvwPwNmL8B8zdg/gbM34D5GzB/G8zfBvO3wfxtMH8bzN8G87fB/G0wfxvM3wbzt8P87TB/O8zfDvO3w/ztMH87zN8O87fD/O0wfxPmb8L8TZi/CfM3Yf4mzN+E+ZswfxPmb8L8HTB/B8zfAfN3wPwdMH8HzN8B83fA/B0wfwfM34L5WzB/C+ZvwfwtmL8F87dg/hbM34L5WzB/J8zfCfN3wvydMH8nzN8J83fC/J0wfyfM38nyt28bPL7B4zs8fsDjN3j8Do+f8PgDHr/g8WH+Gsxf2H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/lbD/KmH/VcL+q4T9V7k1ePwOj5/w+A/zN+dHwNOwvBy/4PEnO/7j/qud8R/m74iPCOAx5uX4Do8f8PgNHr/D4z/M3xofSdtzG5fjD3j8gsef7PiP+692xjd4fIfHD3j8Bo/f4fFh/jrMX4f56zB/A+ZvwPwNmL8B8zdg/gbM34D5GzB/A+ZvwPxtMH8bzN8G87fB/G0wfxvM3wbzt8H8bTB/H/dfTf/44Ob8x+88Xh5qczt/jHDa58NOXjvWtvOnacy3n479O+7HfV3fhNsWxe2L4o5FcbdFcfdFceeiuMeiuGtR3IvqZS6ql/lSvaz5idvnBZZFNTAX1cDHvaffhHtRDcwU4tqiupaL6louqmtjUV0bQro2FtW1saiuPe7J/ibci+raENK1saiujUV1bSyqa7WorpWQrtWiulaL6trjexW+CfeiulZCulaL6lotqmu1qK7NRXVtCunaXFTX5qK69vgenm/CvaiuTSFdm4vq2lxU1+aauja2NXVtbDq6NrY1dW1sa+ra2NbUtbGtqWtj09G1sa2pa2NbU9fGtqiu2aK6ZkK6Zovqmi2qa4/v+fwm3Ivqmgnpmi2qa7aortmiuuaL6poL6Zovqmu+qK49vhf6m3AvqmsupGu+qK75orrmi+paLKprIaRrsaiuxaK69nhGwDfhXlTXQkjXYlFdi0V1LRbVtbaorjUhXWuL6lpbVNcez874JtyL6loT0rW2qK61RXVt0RyTsWiOyehCurZoNslYNJtkLJpNMhbNJhldSNcWzRsZi+aNjEXzRsaieSNDKG9kLJo3MhbNGxmL5o2MRfNGhlDeyFg0b2QsmjcyFs0bGYvmjQyhvJGxaN7IWDRvZCyaNzIWzRsZQnkjY9G8kbFo3shYNG9kLJo3MoTyRsaieSNj0byRsWjeyFg0b2QI5Y2MRfNGxqJ5I2PRvJGxaN7IEMobGYvmjYxF80bGonkjY9G8kSGUNzIWzRsZi+aNjEXzRmrRvJESyhupRfNGatG8kdrW1LVaNG+khPJGCswb+XP8gsd/WCds63X+Y212UeHxpI3dCoZXcLxC4BUaXqHjFRKvMPAKhVfAOe04px3ntOOcdpzTjnPacU47zmnHOe04px3ndOCcDpzTgXM6cE4HzunAOR04pwPndOCcDpzTDed0wzndcE43nNMN53TDOd1wTjec0w3ndMM53XFOd5zTHed0xzndcU53nNMd53THOd1xTnec04lzOnFOJ87px/ffmMV2rnBlNfTxnTK7FTpeIfEKj3Pa8ryobjUuKxReYdIVHt9RsVvBnlphtssKjlcIvMLjnPZxfh3lNX+ucHlweM8fB4cP/zz4B5ouhSal0AwpNCWFZr4WzQnDB5po/Sc0l8c2OyNvNvpfkT/uwP825LYscl8WeSyLvC2LvC+LPJdF/rjWhZ2RR9TFvOdxR/5uhUlXeNzlvlvh8R4fFR8HN7t8WnrcZb5bIfAKDa/Q8QqJVxh4hcIrTLjC3Da8guEVHK8QeIWGV+h4hcQrDLxC4RVwThvOacM5bTinDee04Zw2nNOGc9pwThvOacM57TinHee045x2nNNP8Hg2b+cKl89A8wkez70KiVcYeIWHOd3LfhzbL99TzMcdnrfHf9zfuTO+weM7PH7A4zd4/A6Pn/D4Ax4f5m/A/G0wfxvM3wbzt8H8bTB/G8zfBvO3wfxtMH8bzN8O87fD/O0wfzvM3w7zt8P87TB/O8zfDvO3w/xNmL8J8zdh/ibM34T5mzB/E+ZvwvxNmL8J83fA/B0wfwfM3wHzd8D8HTB/B8zfAfN3wPwdMH8L5m/B/C2YvwXzt2D+FszfgvlbMH8L5m/B/J0wfyfM3wnzd8L8nTB/J8zfCfN3wvydMH8nyt/atg0e3+DxHR4/4PEbPH6Hx094/AGPX/D4MH8N5q/B/DWYvwbz12D+Gsxfg/lrMH8N5q/B/HWYvw7z12H+Osxfh/nrMH8d5q/D/HWYvw7zN2D+BszfgPkbMH8D5m/A/A2YvwHzN2D+BszfBvO3wfxtMH8bzN8G87fB/G0wfxvM3wbzt8H87TB/O8zfDvO3w/ztMH87zN8O87fD/O0wfzvM34T5mzB/E+ZvwvxNmL8J8zdh/ibM34T5mzB/B8zfAfN3wPwdMH8HzN8B83fA/B0wfwfM3wHzt2D+FszfgvlbMH8L5m/B/C2YvwXzt2D+FszfCfN3wvydMH8nzN8J83fC/J0wfyfM3wnzF/ZfGey/Mth/ZbD/ymD/lW0NHr/D4yc8/oDHL3h8mL+w/8pg/5XB/iuD/VcG+68M9l8Z7L8y2H9lsP/KYP+Vwf4rg/1XBvuvDPZf2eP+q5wfQVvD8nL8Do+f8PgDHv9h/o74iGIeY16OP9nxH/df7Yxv8PgOj/8wf2t8JJ7PbVyO3+DxOzx+wuMPePyCx5/s+I/7r3bGN3h8h8eH+dtg/jaYvw3mb4P522D+Npi/HeZvh/nbYf52mL8d5m+H+dth/naYvx3mb4f5mzB/E+ZvwvxNmL8J8zdh/j7uv5r+8XnY+Y9fJb081OZ2/ijktM+Hnbx27Gnp+uPY0yrPT8f+iXssirsWxT3XxP24v+2bcNuiuH1R3LEo7rYo7r4o7kX1ciyql+OlelnzE7fPCyyLamAtqoG1qAbWohpYocO1x32133QPF9W1WlTXalFdKyFdq0V1bS6qa3NRXZuL6toU0rXH/ebfdA8X1bW5qK7NRXVtCunaXFPXfFtT13xbU9d8W1PXfNPRNd/W1DXf1tQ139bUNd/W1DXfdHTNt0V1zRbVNVtU12xRXTMhXXt8f9I33cNFdc0W1TVbVNdMSNdsUV3zRXXNF9U1X1TXXEjXHt+39033cFFd80V1zRfVNRfSNV9U12JRXYtFdS0W1bUQ0rXH97N+0z1cVNdiUV2LRXUthHQtFtW1tqiutUV1rS2qa01I1x7f5/1N93BRXWuL6lpbVNeakK61RXWtL6prfVFd64vqWhfStcfzD77pHi6qa31RXeuL6loX0rW+qK7lorqWi+paLqprKaRrj+eCfNM9XFTXFs0x8UVzTDyFdG3RbBJfNJvEF80m8UWzSXwI6dqieSO+aN6IL5o34ovmjbhQ3ogvmjfii+aN+KJ5I75o3ogL5Y34onkjvmjeiC+aN+KL5o24UN6IL5o34ovmjfiieSO+aN6IC+WN+KJ5I75o3ogvmjfii+aNuFDeiC+aNxKL5o3EonkjsWjeSAjljcS2pq7FonkjsWjeSCyaNxJCeSOxaN5ILJo3EovmjcSieSMhlDcSi+aNxKJ5I7Fo3kgsmjcSQnkjsWjeSCyaNxKL5o3EonkjIZQ3EmDeyJ/jd3j8h3XCtl7nP9ZmlxUGXqHwCpOu8HgmxW4Fwys4XiHwCg2v0PEKOKcD53TgnA6c0w3ndMM53XBON5zTDed0wzndcE43nNMN53TDOd1xTnec0x3ndMc53XFOd5zTHed0xzndcU53nNOJczpxTifO6cQ5nTinE+d04pxOnNOJczpxTg+c0wPn9MA5PXBOD5zTA+f0wDk9cE4PnNMD5/Tj+2/MYjtXuLIa+vhOmd0KjlcIvMLjnLY8L6pbjcsKHa+QeIXx1AqzXVYovMKkKzy+98B8nF8Wec2fK1wefHqfkj8OPr2Y8M+Df6AxKTQuhSak0DQpNP21aE4YPtCc1h5/QnN5bLMz8majXyDPZZGPZZHXssjnosjbti2L3JZF7ssif1zrws7ITy8z/zrvaVvDK3S8QuIVHu/xp+ehj4ObbZcVCq8w6QqP+8F3KxhewfEKgVdoeIWOV0i8As5pwzltOKcd57TjnHac045z2nFOO85pxzntOKcd57TjnA6c04FzOnBOB87pwDkdOKcD53TgnA6c04Fz+gkez5PGnCtceQZ6gsdzr4LjFQKv0PAKHa+QeIWBV3iY073sx7H98n1Re9zheXv8x/2dO+MbPL7D4wc8foPH7/D4CY8/4PFh/naYvwnzN2H+JszfhPmbMH8T5m/C/E2YvwnzN2H+Dpi/A+bvgPk7YP4OmL8D5u+A+Ttg/g6YvwPmb8H8LZi/BfO3YP4WzN+C+Vswfwvmb8H8LZi/E+bvhPk7Yf5OmL8T5u+E+Tth/k6YvxPm72T527cNHt/g8R0eP+DxGzx+h8dPePwBj1/w+DB/Deavwfw1mL8G89dg/hrMX4P5azB/Deavwfx1mL8O89dh/jrMX4f56zB/Heavw/x1mL8O8zdg/gbM34D5GzB/A+ZvwPwNmL8B8zdg/gbM3wbzt8H8bTB/G8zfBvO3wfxtMH8bzF/Yf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/1WH/VYf9Vx32X3XYf9Vh/1WH/Vcd9l8l7L9K2H+VsP8qYf9Vbg0ev8PjJzz+gMcveHyYv7D/KmH/VcL+q4T9Vwn7rxL2XyXsv0rYf5Ww/yph/1XC/quE/VcJ+68S9l8l7L9K2H+VsP8qYf9Vwv6rhP1XCfuvEvZfJey/Sth/lbD/KmH/VcL+q4T9Vwn7rxL2XyXsv0rYf5Ww/yph/1U+7r/K+RF4Niwvx+/w+AmPP+DxH+bviI9I7DHm5fiTHf9x/9XO+AaP7/D4D/O3xkfy/NzG5fgNHr/D4yc8/oDHL3j8yY7/uP9qZ3yDx3d4fJi/CfM3Yf4mzN+E+ZswfxPm74D5O2D+Dpi/A+bvgPk7YP4OmL8D5u+A+Ttg/hbM34L5WzB/C+ZvwfwtmL+P+6+mf3xEd/7jt1svD7W5nT/OOe3zYSevHWvb+VNN5ttPx/6JeyyKuxbFPdfE/bi/7Ztw26K4fVHcsSjutijuvijuRfVyLqqX86V6WfMTt88LLGtq4NjW1MCxramBY1tTA8cWMlwb25q6NrY1dW1sa+ra2NbUtbHp6NrYFtU1W1TXbFFds0V1zYR07XG/+Tfdw0V1zRbVNVtU10xI12xRXfNFdc0X1TVfVNdcSNce34fxTfdwUV3zRXXNF9U1F9I1X1TXYlFdi0V1LRbVtRDStcf3J33TPVxU12JRXYtFdS2EdC0W1bW2qK61RXWtLaprTUjXHt+39033cFFda4vqWltU15qQrrVFda0vqmt9UV3ri+paF9K1x/ezftM9XFTX+qK61hfVtS6ka31RXctFdS0X1bVcVNdSSNce3+f9TfdwUV3LRXUtF9W1FNK1XFTXxqK6NhbVtbGorg0hXXs8/+Cb7uGiujYW1bWxqK4NIV0bi+paLaprtaiu1aK6VkK69nguyDfdw0V1bdEck7FojskoIV1bNJtkLJpNMhbNJhmLZpOMKaRri+aNjEXzRsaieSNj0byRIZQ3MhbNG6lF80Zq0byRWjRvpITyRmpbU9dq0byRWjRvpBbNGymhvJFaNG+kFs0bqUXzRmrRvJESyhupRfNGatG8kVo0b6QWzRspobyRWjRvpBbNG6lF80Zq0byREsobqUXzRmrRvJFaNG+kFs0bKaG8kVo0b6QWzRupRfNGatG8kRLKG6lF80Zq0byRWjRvpBbNGymhvJFaNG+kFs0bqUXzRmrRvJESyhspMG/kz/E7PP7DOmFbr/Mfa7PLCgOvUHiFSVd4PJNit4LhFRyvEHiFhlfoeAWc0x3ndMc53XFOJ87pxDmdOKcT53TinE6c04lzOnFOJ87pxDk9cE4PnNMD5/TAOT1wTg+c0wPn9MA5PXBOD5zThXO6cE4XzunCOV04pwvndOGcLpzThXO6cE5PnNMT5/TEOT1xTk+c0xPn9MQ5PXFOT5zTk+b0fHz/jVls5wqXq6Hz8Z0yuxUcrxB4hcc5bXleVLcalxU6XiHxCuOpFWa7rFB4hUlXeHzvgfk4vyzymj9XuDw4vOePg8OHfx78A41JoXEpNCGFpkmh6a9Fc8LwgSZa/wnN5bHNzsibjX6BPJdFPpZFXssin6si921Z5LYscl8W+eNaF3ZGHlEX857Hff67FTpeIfEKj/f4qPg4uNnls8zjfvTdCpOu8LgffLeC4RUcrxB4hYZX6HiFxCvgnA6c04FzuuGcbjinG87phnO64ZxuOKcbzumGc7rhnG44pzvO6Y5zuuOc7jinO87pjnO645zuOKc7zumOc/oJHs/m7VzhyjPQEzyeexUcrxB4hYZX6HiFxCsMvMLDnO5lP47tV94XPe7wvD3+4/7OnfENHt/h8QMev8Hjd3j8hMcf8PgwfwfM34L5WzB/C+ZvwfwtmL8F87dg/hbM34L5WzB/J8zfCfN3wvydMH8nzN8J83fC/J0wfyfM34nyd27bBo9v8PgOjx/w+A0ev8PjJzz+gMcveHyYvwbz12D+Gsxfg/lrMH8N5q/B/DWYvwbz12D+Osxfh/nrMH8d5q/D/HWYvw7z12H+Osxfh/kbMH8D5m/A/A2YvwHzN2D+BszfgPkbMH8D5m+D+dtg/jaYvw3mb4P522D+Npi/DeZvg/nbYP52mL8d5m+H+dth/naYvx3mb4f522H+dpi/HeZvwvxNmL8J8zdh/ibM34T5mzB/E+ZvwvxNmL8D5u+A+Ttg/g6YvwPm74D5O2D+Dpi/A+bvgPlbMH8L5m/B/C2YvwXzt2D+FszfgvlbMH8L5u+E+Tth/k6YvxPm74T5O2H+Tpi/E+bvhPkL+68M9l8Z7L8y2H9lsP/KtgaP3+HxEx5/wOMXPD7MX9h/ZbD/ymD/lcH+K4P9Vwb7rwz2XxnsvzLYf2Ww/8pg/5XB/iuD/VcG+68M9l8Z7L8y2H9lsP/KYP+Vwf4rg/1XBvuvDPZfGey/Mth/ZbD/ymD/lcH+K4P9Vwb7rwz2XxnsvzLYf2Ww/8pg/5XB/iuD/VcG+68M9l8Z7L8y2H9lsP/KYP+Vwf4rg/1XBvuvDPZfGey/Mth/ZbD/ymD/lcH+K4P9Vwb7r+xx/1XOj8CzYXk5fofHT3j8AY//MH9HfERijzEvx5/s+I/7r3bGN3h8h8d/mL81PpLn5zYux2/w+B0eP+HxBzx+weNPdvzH/Vc74xs8vsPjw/wtmL8F87dg/hbM34L5WzB/J8zfCfN3wvydMH8nzN8J83fC/J0wfyfM38ny17cNHt/g8R0eP+DxGzx+h8d/mL/TPz6iO//x262Xh57U5vxxzhM1Pse9dqxt5081mW8/Hfsn7rEo7loU91wT9+P+tm/CbYvi9kVxx6K426K4+6K4F9VLW1Qv7aV6WfMTt88LLItqoC+qgb6oBvqiGuihw7XHfbXfdA8X1TVfVNd8UV1zIV3zRXUtFtW1WFTXYlFdCyFde9xv/k33cFFdi0V1LRbVtRDStVhU19qiutYW1bW2qK41IV17fB/GN93DRXWtLaprbVFda0K61hbVtb6orvVFda0vqmtdSNce35/0TfdwUV3ri+paX1TXupCu9UV1LRfVtVxU13JRXUshXXt839433cNFdS0X1bVcVNdSSNdyUV0bi+raWFTXxqK6NoR07fH9rN90DxfVtbGoro1FdW0I6dpYVNdqUV2rRXWtFtW1EtK1x/d5f9M9XFTXalFdq0V1rYR0rRbVtbmors1FdW0uqmtTSNcezz/4pnu4qK7NRXVtLqprU0jX5pq6FtuauhbbmroW25q6FpuOrsW2pq7FtqauxaI5JrFojklsOroWi2aTxKLZJLFoNkksmk0SJqRri+aNxKJ5I7Fo3kgsmjcSQnkjsWjeSCyaNxKL5o3EonkjIZQ3EovmjcSieSOxaN5ILJo3EkJ5I7Fo3kgsmjcSi+aNxKJ5IyGUNxKL5o3EonkjsWjeSCyaNxJCeSOxaN5ILJo3EovmjcSieSMhlDcSi+aNxKJ5I7Fo3kgsmjcSQnkjsWjeSCyaNxKL5o3EonkjIZQ3EovmjcSieSOxaN5ILJo3EkJ5I7Fo3kgsmjcSi+aNxKJ5IyGUNxJg3sif43d4/Id1wrZe5z/WZpcVBl6h8AqTrvB4JsVuBcMrOF4h8AoNr9DxCjinB87pgXN64JwunNOFc7pwThfO6cI5XTinC+d04ZwunNOFc3rinJ44pyfO6YlzeuKcnjinJ87piXN64pyeNKfbtuEVDK/geIXAKzS8QscrJF5h4BUKr4Bz2nBOG85pwzltOKcN57ThnDac04Zz2nBOG87px/ffmMV2rnC5Gtoe3ymzW8HxCoFXeJzTludFdatxWaHjFRKvMJ5aYbbLCoVXmHSFx/cemI/zyyKv+XOFy4PDe/44OHz458E/0JgUGpdCE1JomhSa/lo0JwwfaKL1n9BcHnuaH30gP00z+gXyXBb5WBZ5LYt8roq8bcsit2WR+7LIH9e6sDPyiLqY9zzu89+t0PEKiVd4vMef3i9+HHxaFLqsUHiFSVd43A++W8HwCo5XCLxCwyt0vELiFXBOd5zTHed04pxOnNOJczpxTifO6cQ5nTinE+d04pxOnNMD5/TAOT1wTg+c0wPn9MA5PXBOD5zTA+f0wDn9BI/n6X3KucKVZ6AneDz3KjheIfAKDa/Q8QqJVxh4hYc53ct+HNuvvC963OF5e/zH/Z074xs8vsPjBzx+g8fv8PgJjz/g8WH+Tpa/fdvg8Q0e3+HxAx6/weN3ePyExx/w+AWPD/PXYP4azF+D+Wswfw3mr8H8NZi/BvPXYP4azF+H+eswfx3mr8P8dZi/DvPXYf46zF+H+eswfwPmb8D8DZi/AfM3YP4GzN+A+RswfwPmb8D8bTB/G8zfBvO3wfxtMH8bzN8G87fB/G0wfxvM3w7zt8P87TB/O8zfDvO3w/ztMH87zN8O87fD/E2YvwnzN2H+JszfhPmbMH8T5m/C/E2Yvwnzd8D8HTB/B8zfAfN3wPwdMH8HzN8B83fA/B0wfwvmb8H8LZi/BfO3YP4WzN+C+Vswf2H/VYf9Vx32X3XYf9Vh/1WH/Vcd9l912H/VYf9Vh/1XHfZfddh/lbD/KmH/VcL+q4T9V7k1ePwOj5/w+AMev+DxYf7C/quE/VcJ+68S9l8l7L9K2H+VsP8qYf9Vwv6rhP1XCfuvEvZfJey/Sth/lbD/KmH/VcL+q4T9Vwn7rxL2XyXsv0rYf5Ww/yph/1XC/quE/VcJ+68S9l8l7L9K2H+VsP8qYf9Vwv6rhP1XCfuvEvZfJey/Sth/lbD/KmH/VcL+q4T9Vwn7rxL2XyXsv0rYf5Ww/yph/1XC/quE/VcJ+68S9l8l7L9K2H+VsP8qYf9Vwv6rhP1XCfuvEvZfJey/Sth/lbD/KmH/VcL+q4T9Vwn7rxL2XyXsv0rYf5Ww/yph/1XC/quE/Vf5uP8q50fg2bC8HL/D4yc8/oDHf5i/Iz4isceYl+NPdvzH/Vc74xs8vsPjP8zfGh/J83Mbl+M3ePwOj5/w+AMev+DxJzr+eNx/tTO+weM7PH7A4zd4/A6Pn/D4Ax6/4PFh/hrMX4P5azB/Deavwfw1mL8G89dg/hrMX4P56zB/Heavw/x1mL8O89dh/j7uv5r+8RHd+Y/fbr081OZ2/jjntM+Hnbx2rG3nTzWZbz8d+yfusSjuWhT3XBP34/62b8Jti+L2RXHHorjborj7orgX1ctYVC/jpXpZ8xO3zwssi2pgW1QD26Ia2BbVwBY6XHvcV/tN93BRXWuL6lpbVNeakK61RXWtL6prfVFd64vqWhfStcf95t90DxfVtb6orvVFda0L6VpfVNdyUV3LRXUtF9W1FNK1x/dhfNM9XFTXclFdy0V1LYV0LRfVtbGoro1FdW0sqmtDSNce35/0TfdwUV0bi+raWFTXhpCujUV1rRbVtVpU12pRXSshXXt839433cNFda0W1bVaVNdKSNdqUV2bi+raXFTX5qK6NoV07fH9rN90DxfVtbmors1FdW0K6dpcU9dqW1PXaltT12pbU9dq09G12tbUtdrW1LXa1tS12tbUtdp0dK22RXXNFtU1W1TXbFFdMyFdezz/4Jvu4aK6Zovqmi2qayaka7aorvmiuuaL6povqmsupGuP54J80z1cVNcWzTGpRXNMyoV0bdFsklo0m6QWzSapRbNJKoR0bdG8kVo0b6QWzRupRfNGSihvpBbNG6lF80Zq0byRWjRvpITyRmrRvJFaNG+kFs0bqUXzRkoob6QWzRupRfNGatG8kVo0b6SE8kZq0byRWjRvpBbNG6lF80ZKKG+kFs0bqUXzRmrRvJFaNG+khPJGatG8kVo0b6QWzRupRfNGSihvpBbNG6lF80Zq0byRWjRvpITyRmrRvJFaNG+kFs0bqUXzRkoob6QWzRupRfNGatG8kVo0b6SE8kYKzBv5c/wOj/+wTtjW6/zH2uyywsArFF5h0hUez6TYrWB4BccrBF6h4RU6XgHn9MQ5PXFOT5rTc9vwCoZXcLxC4BUaXqHjFRKvMPAKhVfAOW04pw3ntOGcNpzThnPacE4bzmnDOW04pw3ntOOcdpzTjnPacU47zmnHOe04px3ntOOcdpzTgXM6cE4HzunAOR04pwPndOCcDpzTgXM6cE4/vv/GLLZzhcvV0Pn4TpndCo5XCLzC45y2PC+qW43LCh2vkHiF8dQKs11WKLzCpCs8vvfAfJxfFnnNnytcHhze88fB4cM/D/6BxqTQuBSakELTpND016I5YfhAE63/hOby2GZn5M1Gv0CeyyIfyyKvZZHPVZHntixyWxa5L4v8ca0LOyOPqIt5z+M+/90KHa+QeIXHe3xUfBzc7PJZ5nE/+m6FSVd43A++W8HwCo5XCLxCwyt0vELiFXBOD5zTA+d04ZwunNOFc7pwThfO6cI5XTinC+d04ZwunNMT5/TEOT1xTk+c0xPn9MQ5PXFOT5zTE+f0hDlt2/YEk2fzdi5x8RD0RwnjSzhfIvgSjS/R+RLJlxh8iYfJ3ct+HNsvXhz9UWDCBR63eu4VMLqA0wWCLtDoAp0ukHSBQRegmWw0k51mstNMdprJTjPZaSY7zWSnmew0k51mstNMDprJQTM5aCYHzeSgmRw0k4NmctBMDprJQTO50UxuNJMbzeRGM7nRTG40kxvN5EYzudFMbjSTO83kTjO500zuNJM7zeROM7nTTO40kzvN5E4zOWkmJ83kpJmcNJOTZnLSTE6ayUkzOWkmJ83kQTN50EweNJMHzeRBM3nQTB40kwfN5EEzedBMLprJRTO5aCYXzeSimVw0k4tmctFMLprJRTN50kyeNJMnzeRJM3nSTJ40kyfN5EkzedJMnjCTbdvoAkYXcLpA0AUaXaDTBZIuMOgCRRegmUx7vIz2eBnt8TLa42W0x8toj5fRHi+jPV5Ge7yM9ngZ7fEy2uNltMfLaI+X0R4voz1eRnu8jPZ4Ge3xMtrjZbTHy2iPl9EeL6M9XkZ7vIz2eBnt8TLa42W0x8toj5fRHi+jPV5Ge7yM9ngZ7fEy2uNltMfLaI+X0R4voz1eRnu8jPZ4Ge3xMtrjZbTHy2iPl9EeL6M9XkZ7vIz2eBnt8TLa42W0x8toj5fRHi+jPV5Ge7yM9ngZ7fEy2uNltMfLaI+X0R4voz1eRnu8jPZ4Ge3xMtrjZbTHy2iPl9EeL6M9XkZ7vIz2eBnt8TLa42W0x8toj5fRHi+jPV5Ge7yM9ngZ7fEy2uNltMfLaI+X0R4voz1eRnu8jPZ4Oe3xctrj5bTHy2mPl28PMznnR3rbsLxSoNMFki4w6AIPM3nER8b3GPNKgQkXeNzjtVfA6AJOF3iYyTU+8vTnNq4UaHSBThdIusCgCxRdYMIFHvd47RUwuoDTBWgmO81kp5nsNJOdZrLTTHaayUEzOWgmB83koJkcNJODZnLQTA6ayUEzOWgmN5rJjWZyo5ncaCY3msmNZvLjHq/pH98Onv/4ydrLQ0+rtOdvkk77fBzKa8fadv5Clfn207E/gI9VgdeqwOeiwB/30H0XcFsVuK8KPFYF3lYF3lcFvqpy9lWVs79UOWt+Avd5CWZVNcxV1TBXVcNcVQ0zhAj3uHf3u+7iqgqXqypcrqpwqaRwuarCjVUVbqyqcGNVhRtKCve4p/277uKqCjdWVbixqsINJYUbqypcrapwtarC1aoKV0oK9/hej++6i6sqXK2qcLWqwpWSwtWqCjdXVbi5qsLNVRVuKinc43ugvusurqpwc1WFm6sq3FRSuLmowsW2qMLFtqjCxbaowsUmpHCxLapwsS2qcLEtqnCxLapwsQkpXGyrKpytqnC2qsLZqgpnSgr3+J7Z77qLqyqcrapwtqrCmZLC2aoK56sqnK+qcL6qwrmSwj2+l/y77uKqCuerKpyvqnCupHC+qsLFqgoXqypcrKpwoaRwj2csfNddXFXhYlWFi1UVLpQULlZVuLaqwrVVFa6tqnBNSeEezx75rru4qsKtmpUSq2alRFNSuFXzT2LV/JNYNf8kVs0/ia6kcKtmmsSqmSaxaqZJrJppEkqZJrFqpkmsmmkSq2aaxKqZJqGUaRKrZprEqpkmsWqmSayaaRJKmSaxaqZJrJppEqtmmsSqmSahlGkSq2aaxKqZJrFqpkmsmmkSSpkmsWqmSayaaRKrZprEqpkmoZRpEqtmmsSqmSaxaqZJrJppEkqZJrFqpkmsmmkSq2aaxKqZJqGUaRKrZprEqpkmsWqmSayaaRJKmSaxaqZJWzXTpK2aadJWzTRpSpkmbeMU7keBThd4WDFs63X+g212pcTgSxRfYuIlHs+92C9hfAnnSwRfovElOl+CZ7fx7Dae3caz23l2O89u59ntPLudZ7fz7Hae3c6z23l2O8/u4NkdPLuDZ3fw7A6e3cGzO3h2B8/u4NkdPLsbz+7Gs7vx7G48uxvP7sazu/Hsbjy7G8/uxrO78+zuPLs7z+7Os7vz7O48uzvP7s6zu/Ps7jy7H9/jYxbbucS1RdTHd+Psl3C+RPAlHme35XlF3mpcKdH5EsmXGE8tMduVEsWXmHiJx/c3mI/zCyev+XOJy4PDe/44OHz458EfcEwLjmvBCS04TQtOfy2cE4gPONH6T3Aujz29q/iAflrw75fQc13oY13otS70uSz02taFbutC93WhP656YWfoEXU5C3p8L8F+ic6XSL7E490+Kj4ObnblGedxz/t+iYmXeNxzvl/C+BLOlwi+RONLdL5E8iV4dk+e3RNnd982voTxJZwvEXyJxpfofInkSwy+RPEleHYbz27j2W08u41nt/HsNp7dxrPbeHYbz27j2f0EH2nzdi5x5SmpP8FHulvC+RLBl2h8ic6XSL7E4Es8zO5e9uPYfuVVU3/cRbpT4HEP6V4Bows4XSDoAo0u0OkCSRcYdAGayUEzudFMbjSTG83kRjO50UxuNJMbzeRGM7nRTG40kzvN5E4zudNM7jSTO83kTjO500zuNJM7zeROMzlpJifN5KSZnDSTk2Zy0kxOmslJMzlpJifN5EEzedBMHjSTB83kQTN50EweNJMHzeRBM3nQTC6ayUUzuWgmF83koplcNJOLZnLRTC6ayUUzedJMnjSTJ83kSTN50kyeNJMnzeRJM3nSTJ4wk3Pb6AJGF3C6QNAFGl2g0wWSLjDoAkUXoJlsNJONZrLRTDaayUYz2WgmG81ko5lsNJONZrLTTHaayU4z2WkmO81kp5nsNJOdZjLt8Ura45W0xytpj1fSHq+kPV5Je7yS9ngl7fFK2uOVtMcraY9X0h6vpD1eSXu8kvZ4Je3xStrjlbTHK2mPV9Ier6Q9Xkl7vJL2eCXt8Ura45W0xytpj1fSHq+kPV5Je7yS9ngl7fFK2uOVtMcraY9X0h6vpD1eSXu8kvZ4Je3xStrjlbTHK2mPV9Ier6Q9Xkl7vJL2eCXt8Ura45W0xytpj1fSHq+kPV5Je7yS9ngl7fFK2uOVtMcraY9X0h6vpD1eSXu8kvZ4Je3xStrjlbTHK2mPV9Ier6Q9Xkl7vJL2eA3a4zVoj9egPV6D9niNrdEFOl0g6QKDLlB0AZrJtMdr0B6vQXu8Bu3xGrTHa9Aer0F7vAbt8Rq0x2vQHq/xjFyveU4/7r5dKWF8CedLPJ7r1eOcsdZ/Tuw+l3iY0ZafcVWnd09XSnS+RPIlBl+i+BITL/GE78PuljC+hPMlgi/Bszt4dgfP7uDZHTy7g2d349ndeHY3nt2NZ3fj2d14djee3Y1nd+PZ3Xh2d57dnWd359ndeXZ3nt2dZ3fn2f2E78Nmnr+smteeWJ/wfdjdEhMv8YTvw+6WML6E8yWCL9H4Ep0vkXwJnt3Jszt5dg+e3YNn9+DZPXh2D57dg2f34Nk9eHYPnt2DZ3fx7C6e3cWzu3h2F8/u4tldPLuLZ3fx7H7CNyhP8+KPg2u7UuIJ36DcLWF8CedLBF+i8SU6X+JxdtfnF2Yr8kqJx9k97Uy92e3nEpcHe7ftx8He48o6wBM+WPklPG22Tzx5++DwD+zhPx3aPqDPVaHXEz6w+W3QbV3o/mLu9U/upV1wr57w9dDn4mlieLoYnnwxnswznjGu4BlieEoMz9TCYy/u+r3NTzx1Bc+LW3n2j4M9a17B42J4QgxPE8PTxfCkGJ4hhqfE8EwtPL6J4RHrzy7Wn12sP7tYf3ax/uxi/dnF+rOL9WcX688h1p9DrD+HWH8Osf4cYv05xPpziPXnEOvPIdafQ6w/N7H+3MT6cxPrz02sP7cX9+fhZzwj2+2DrfnHwPnT0l77+luI1g9xlXmIqxyHuMp6j6tsH8NGrytXOY9wlX17k6tsN6/SDnGVfoTu0+MQV9kOcZWHmPv0N5n77CjJm8x9dq7yXeY+t5XkXeY+N68y32Tuc7v75JvMfXau8hBznzzE3OcJ2zoXUJJ8k7nPzlW+y9zntpK8y9zn9lW+ydxnp/u8ydzn9lWOQ8x9xiHmPuNN5j63lWS8ydxn5yrbEZRkvMvc5/ZVHuKd1zjEO69xiLnPOMTcp97lnddNJal3eed1+yrfZe5zU0nqXeY+t6+yHaL7HOKdVx1i7lOHmPvUIfw+dQi/zzyE32cewu8zD/HOax7indcTApNWuMpDzH3mIfw+8xB+n3kIv888gt9nbkd45zW3I7zzmtsR5j5zO8LcZ27tAEoytyP4feZ2BL/P3I7g95nbEd55ze0I77ymHWLuY4eY+9gR/D7TjuD3ma/O8PseJbEj+H2mHeGd17QjvPOadoi5jx1i7uNH8PtMP4LfZ/oR/D7Tj+D3ma/Ox/ym7nOEd17TDzH38UPMffwIfp/pR/D7zDiC32fGEfw+Mw7xzisO8c7r1dmz33SVh5j7xBH8PjOO4PeZcQS/z4xD+H3aId55tUO882qHmPu0Q8x93iXX+baSvEuu885VHsLv8y65zjtXeYh3Xu+S63z7Kt8l13nnKg8x93mXXOfbSvIuuc47V9mOoCTvkuu8c5WHeOf1LrnOO1d5iLnPu+Q6377Kd8l1vq0k75LrvHOVh/D7vEuu885VtkN0n0O883qXXOedqzzE3Oddcp13lOQQfp93yXW+rSTvkuu8c5WHeOf1LrnOO1fZDnGVh5j7vEuu846SHMLv8y65zjtKcgi/z7vkOt/uPu+S67xzlYeY+7xLrvPOVbYjKMm75DrvXOUh/D7vkuu8c5WHeOf1LrnOt6/yXXKdd67yEHOfd8l1vq0k75LrvHOV7QhK8i65zjtXeYh3Xu+S67xzlYeY+7xLrvOtq7TtXXKdbynJ6SoP4Pc5XeUB/D6nqzyA3+d0le0Q3ecA77xOV3mAuc/pKg8w9zld5QH8PqerPIDf53QNB/D7nK7hAH6f0zUc4J3XH9dwiKtsh7jKQ8x93iXXeUdJDuD3OV3DAfw+p2s4gN/HtnfJdb7dfd4l13nnKg8x93mXXOedq2xHUJJ3yXXeucoD+H1OV3kAv8/pKg/wzut0lYd45/Uuuc47V3mIuc+75DrfVpJ3yXXeucp2BCV5l1znnas8xDuvd8l13rnKQ8x93iXX+fZVvkuu820leZdc552rPITf511ynXeush2i+xzinde75DrvXOUh5j7vkuu8oySH8Pu8S67zbSV5l1znnas8xDuvd8l13rnKdoirPMTc511ynXeU5BB+n3fJdd5RkkP4fd4l1/l293mXXOedqzzE3Oddcp13rrIdQUneJdd55yoP4fd5l1znnas8xDuvd8l1vn2V75LrvHOVh5j7vEuu820leZdc552rbEdQknfJdd65ykO883qXXOedqzzE3Oddcp1vX+W75DrfVpJ3yXXeucpD+H3eJdd55yrbIbrPId55vUuu885VHmLu8+pc5+r2cZWV/3DwDzxTC8+rs5J38ZgYHv9GPHkFT4jhaWJ4XqxQs8cHnjmu/X5SDM8Qw1NieF7cn6d94ol2gcdenee6i+cIq9L2LsmrO1d5hDfytrVDXOURnszsEMmr9i7JqzdXTOxtkldvX+UR3Ih2iORVO0Tyqr1L8urOVR5i7nOI5FU7RPKqvUvy6s5VHmFV2t4leXXnKg8x93mX5NWdqzzE3Oddkld3rvIIb+TtbZJXb1/lIeY+75K8unOVh5j7HCJ51Q6RvGqHSF61d0leva0kb5O8evsqDzH3OUTyqh0iedXeJXl15yoPMfc5RPKqHSJ51d4leXXnKg/h93mX5NWdqzzE3Oddkld3rvIQc593SV7ducpD+H3eJnn19lUeYu7zLsmrO1d5iLnPIZJX7RDJq3aI5FV7l+TV20ryNsmrt6/yEHOfQySv2iGSV+1dkld3rvIQc59DJK/aIZJX7V2SV3eu8hB+n3dJXt25ykPMfd4leXXnKg8x93mX5NWdqzyE3+dtkldvX+Uh5j7vkry6c5WHmPscInnVDpG8aodIXrV3SV69rSRvk7x6+yoPMfc5RPKqHSJ51d4leXXnKg8x9zlE8qodInnV6hBznzqE32cewu8zDzH3mYeY+8xDzH1enb77TVd5CL/PPITfZx5i7jMPMfeZR5j7+HaEuY8fItfZD5Hr7O+S63xTSXxrh7jKI8x9/F1ynXeu8gh+Hz9ErrO/S67zbSV5l1znnas8xNznXXKdd67yCH4fP0Sus79LrvNtJXmXXOedqzzE3Oddcp13rvIIfh8/RK6zv0uu820leZdc552rPMTc511ynXeu8gh+Hz9ErrO/S67zjpIcYu7zLrnOt6/yXXKdd67yCH4fP0Sus79LrvNtJXmXXOedqzzE3Oddcp13rvIIfh8/RK6zv0uu820leZdc552rPMTc511ynXeu8hB+n0PkOvu75DrfVpJ3yXXeucpDzH3eJdd55yoP4fc5RK6zv0uu820leZdc552rPMTc511ynXeu8hB+n0PkOvu75DrvKMkh5j7vkut8+yrfJdd55yoP4fc5RK6zv0uu820leZdc552rPMTc511ynXeu8hB+n0PkOvu75DrfVpJ3yXXeucpDzH3eJdd55yoP4fc5RK6zv0uu820leZdc552rPMTc511ynXeu8hB+n0PkOvu75DrfVpJ3yXXeucpDzH3eJdd55yoP4fc5RK6zv0uu846SHGLu8y65zrev8l1ynXeu8hB+n0PkOvu75DrfVpJ3yXXeucpDzH3eJdd55yoP4fc5RK6zv0uu800liXfJdd65yiPMfeJdcp13rvIIfp/Y2iGu8ghzn3iXXOedqzzC3CfeJdd55yqP4PeJQ+Q6x7vkOt9WknfJdd65ykPMfd4l13nnKo/g94lD5DrHu+Q67yjJIeY+75LrfPsq3yXXeecqj+D3iUPkOse75DrfVpJ3yXXeucpDzH3eJdd55yqP4PeJQ+Q6x7vkOt9WknfJdd65ykPMfd4l13nnKo/g94lD5DrHu+Q631aSd8l13rnKQ8x93iXXeecqD+H3OUSuc7xLrvNtJXmXXOedqzzE3Oddcp13rvIQfp9D5DrHu+Q67yjJIeY+75LrfPsq3yXXeecqD+H3OUSuc7xLrvNtJXmXXOedqzzE3Oddcp13rvIQfp9D5DrHu+Q631aSd8l13rnKQ8x93iXXeecqD+H3OUSuc7xLrvNtJXmXXOedqzzE3Oddcp13rvIQfp9D5DrHu+Q631aSd8l13rnKQ8x93iXXeecqD+H3OUSuc7xLrvOOkhxi7vMuuc63r/Jdcp13rvIQfp9D5DrHu+Q631aSd8l13rnKQ8x93iXXeecqD+H3OUSuc7xLrvNtJXmXXOedqzzE3Oddcp13rvIQfp9D5DrHu+Q631aSd8l13rnKQ8x93iXXeecqj+D3aYfIdW7vkut8U0nau+Q671zlEeY+bWuHuMoj+H3aIXKd27vkOu8oyRHmPu1dcp1vX+W75DrvXOUR/D7tELnO7V1ynW8rybvkOu9c5SHmPu+S67xzlUfw+7RD5Dq3d8l1vq0k75LrvHOVh5j7vEuu885VHsHv0w6R69zeJdf5tpK8S67zzlUeYu7zLrnOO1d5BL9PO0Suc3uXXOfbSvIuuc47V3mIuc+75DrvXOUR/D7tELnO7V1ynXeU5BBzn3fJdb59le+S67xzlYfw+xwi17m9S67zbSV5l1znnas8xNznXXKdd67yEH6fQ+Q6t3fJdb6tJO+S67xzlYeY+7xLrvPOVR7C73OIXOf2jFznGh/At63/DPxHieRLDL5E8SUe1jvfbDuXiHlZ4vEg3f0SxpdwvkQ8XiL9XGLElRKNL9H5Evl4ifHJi3ntbzH4EvXUG3W1xMRLjI0vYXwJ50sEX6LxJXjtHrx2D167B6/d47na7Vc6bW18CV67i9fuCr5E40vw2l3Jlxh8icKnBzXxEpPX7slr9+S1e/LaPRtfovMlki/Ba/fktfsZmRq3S/RnBFrslTB6etA350vg2t23xpfofInkS+Da3bfiS0y8hG309KCb8SVw7e4WfInGl+h8ieRLDL5E8SV47XZeu5+xI3CvhPMlAp8eeONL8NrtvHb74EsUX4LX7tj4EsaXcHx6EMGX4LU7eO0OXruD1+7gtTvwN2K9bXwJXrsbr93P8DPvlWh8iY5PD1ryJXjtbrx2N9zN0vvGl+C1uztfIvgSDZ8e9M6X4LW789rdee3uvHYnr91pfAl+VS157X7Gh773SnS+RPIlBj49yOJL8No9eO0expdwvgSv3U/2ql0t0fkSuBO1j8GX4LV78NpdvHYXr93Fa3fxb8Sq8SV47S5eu2vwJYovgTtR+9z4Erx2T167J+9meYZXba8Er90z+RK8m2XiTtQ+cSdqbrh252Z8CedLBF+i8SU6XyL5Erh251Z8CdzNkrbxJXAnaprzJXDtzmd41fZKdL5E8iVw7U4rvgTuZknHnajpxpfgtdt57X6GV22vBK/dzmu3D75E8SV47Q5eu8P4Es6XwJ2o+Qyv2l4JXruD1+4YfIniS/Da3Ta+hPElcCdqtuBL8NrdeO1uvHY3Xrsbr90NfyOWnV9V67x2d167e/AlGl8Cd6JmT74Er92d124+Vy35XLVMXrvT+RLBl2j49CA7X4LX7uS1m89VSz5XLflcteRz1ZLPVcvBa/fjXrX9Ep0vkXwJ3Imao/gSvHYXr918rlryuWpZvHY/2at2tUTnS+BO1KzBl+C1u3jt5nPVks9VSz5XLflcteRz1XLy2j157eZz1ZLPVcuJO1HHtvElcO0em/Mlgi/R+BK4do8t+RKDL4E7UceGO1GH4do9zPgSzpcIvkTjS3S+RPIlcO0eVnwJ3M0y+Fy14bgTdbjzJXjtfnKu2tUSnS+RfAleu734EribZQTuRB1hfAleu4PXbj5XbfC5aoPPVRt8rtrgc9VG8NrdeO3mc9UGn6s2Gu5EHc/wqu2V4LW78drN56oNPldtNF67+8aXML4E7kQdPfgSvHZ3Xrv5XLXB56oNPldt8Llqg89VG8lrd/LazeeqDT5XbSTuRB2ZfAleu5PXbj5XbfC5amPw2j2cLxF8iYZPD0bnS/DaPXjt5nPVBp+rNvhctcHnqg0+V20Ur92Pe9X2S3S+RPIlcCfqqOJL8No9ee3mc9UGn6s2Jq/dT/aqXS3Bu1km7kQdc/AleO2euHYXn6tWfK5a8blqxeeq1db4Erh215Z8icGXKL4E7kQt2/gSuHaXOV8i+BKNL4Frd1nyJQZfAneiluFO1HJeu53Xbj5XrfhcteJz1YrPVSs+V62c127ntZvPVSs+V60Cd6JWOF+C1+4n56pdLdH5EsmX4LU7ii+Bu1mq4U7UasaX4LW78drN56oVn6tWfK5a8blqxeeqVeO1u/PazeeqFZ+rVh13otYzvGp7JXjt7rx287lqxeeqVee1Oze+hPElcCdqZfAleO1OXrv5XLXic9WKz1UrPlet+Fy1Grx2D167+Vy14nPVauBO1BrJl+C1e/DazeeqFZ+rVsVrdzlfIvgSDZ8eVOdL8NpdvHbzuWrF56oVn6tWfK5a8blqNXntftyrtl+Cd7PwuWo1cSdqzeJL4No9t40vYXwJ50vg2j23xpfofAnciTq3wZfAtXtuuHZPPldt8rlqk89Vm3yu2uRz1abh2j0t+RKDL1F8CdyJOn3jS/Da7bx287lqk89Vm85rtydfYvAlcCfqdNyJOoPX7uC1m89Vm3yu2uRz1Safqzb5XLUZvHYHr918rtrkc9Vmw52oszlfgtfuJ+eqXS3R+RLJl+C1uxVfAnezzI47UWc3vgSv3Z3Xbj5XbfK5apPPVZt8rtrkc9Vm57U7ee3mc9Umn6s2E3eizmd41fZK8NqdvHbzuWqTz1WbyWv32PgSxpfAnahzBF+C1+7Bazefqzb5XLXJ56pNPldt8rlqs3jtLl67+Vy1yeeqzcKdqLOSL8Frd/HazeeqTT5XbU5eu6fzJXg3yzNy1XamB7PzJXjtnrx287lqE89VOzX4jS9hfAnnS9Daffr/Gl+i8yWSL0E7UU8lii9Ba/cf/5kvYXwJ50vQ2n0q0fgSnS9BO1FPJQZfgtbuUwleu53Xbue123ntxnPVTiUaX4LXbue1G89VO5UovgTtRD3J1MaX4LU7eO3Gc9VO/1/jS/DaHcmXGHwJ2on6x98HL9F47W68djdeuxuv3Xiu2qlE50skX4LX7sZrN56r5hueq3YqQTtRTyWcL8Fr95Nz1a6W6HyJ5Evw2t2LLzHxEkk7UU8ljC/Ba3fy2o3nqp3+M6/dyWs3nqt2+s/8qlry2j147cZz1U4lnC9BO1FPJRpfgtfuwWs3nqt2KlF8CV67a+NLGF+CdqKeSgRfgtfu4rW7eO0uXruL1+7i34hNflVt8to9ee2evJsFz1U7laCdqKcSyZfgtXvy2o3nqrnhuWqnErh22+Z8ieBLNHp6YFvnS+DabdvgSxRfAtduw3PVTiWML+F8CVy77XGv2n6JzpdIvgTuRDUrvgSv3c5rN56rdirhfAleu5/sVbtaovMlcCeq+eBL8NrtvHYHr93Ba3fw2o3nqp1KNL4Er93Bazeeq3YqUXwJ3IlqbeNL8NrdeO3Gc9VOJRpfgtfulnyJwZfAnajWcCeqdV67O6/dndfuzms3nqt2KtH5EvyqWue1u/PajeequeG5aqcSuBPV0vkSvHY/OVftaonOl0i+BK/dWXwJ3M1iA3ei2jC+BK/dg9duPFftVILX7sFr9+DfiA1+VW3w2l28duO5aqcSzpfAnaj2DK/aXgleu4vXbjxX7VSi+BK8ds+NL8G7WSbuRLUZfAleuyev3ZPX7slr9+S1m89Vcz5XzTdcu31zvkTwJRpfAnei+pZ8CVy7fSu+BO5mcT5XzQ3XbjfnSwRfotHTA7fOl8C1223wJYovwWs3n6vmfK6a87lq7rx2P+5V2y/R+RLJl8CdqO7Fl+C1O3jt5nPVnM9V8+C1+8letaslOl8Cd6J6DL4Er93Bazefq+Z8rprzuWrO56o5n6vmjdfuxms3n6vmfK6aN9yJ6n3jS/Da3Xnt5nPVnM9V885rd0++xOBL4E5U77gT1ZPX7uS1m89Vcz5XzflcNedz1ZzPVfPktTt57eZz1ZzPVfOBO1F9OF+C1+4n56pdLdH5EsmX4LV7FF8Cd7N44U5UL+NL8NpdvHbzuWrO56o5n6vmfK6a87lqXrx2T167+Vw153PVfOJOVH+GV22vBK/dk9duPlfN+Vw1n7h2x7bxJYwvgTtRYwu+BK7dsXW+RPIlBl+i+BL4G7Hgc9XCcO0Oc75E8CUaXwJ3ooYlXwLX7rDiS+BuluBz1cJ57XbnSwRfouHTA+98CV67ndduPlct+Fy14HPVgs9VCz5XLYLX7se9avslOl8i+RK4EzWi+BK8djdeu/lcteBz1aLx2v1kr9rVEp0vgTtRow2+BK/djdduPlct+Fy14HPVgs9VCz5XLTqv3Z3Xbj5XLfhctei4EzVy40vw2p28dvO5asHnqkXy2p3Jlxh8CdyJGok7UWPw2j147eZz1YLPVQs+Vy34XLXgc9Vi8No9eO3mc9WCz1WLwp2oUc6X4LX7yblqV0t0vkTyJXjtruJL8G6WiTtRYxpfgtfuyWs3n6sWfK5a8LlqweeqBZ+rFhPX7rZtfAnjSzhfAneitq3xJXDtblvyJQZfovgSuHY32/gSxpfAnajNgi+Ba3ezzpdIvsTgSxRfAn8j1vhctea8djuv3XyuWuNz1ZrjTtTmyZfgtdt57eZz1Rqfq9aC1+5wvkTwJRo+PYjOl+C1O3jt5nPVGp+r1vhctcbnqjU+V601Xrsf96rtl+h8ieRL4E7U1oovwWt357Wbz1VrfK5a67x2P9mrdrVE50vgTtTWB1+C1+7Oazefq9b4XLXG56o1Plet8blqLXntTl67+Vy1xueqtcSdqG1sfAleuwev3XyuWuNz1drgtXskX2LwJXAnahu4E7UVr93Fazefq9b4XLXG56o1Plet8blqrXjtLl67+Vy1xueqtYk7Udt0vgSv3U/OVbtagnez8LlqbfLaPYsvgbtZ+oY7UftmfAlcu/sWfInGl+h8ieRLDL5E8SVw7e628SWML+F8CdyJ2p/hVdsrgWt3t+RLDL5E8SV47faNL2F8CdyJ2j34Erx2O6/dfK5a53PVOp+r1vlctc7nqvXgtTt47eZz1Tqfq9YDd6L2SL4Er93Bazefq9b5XLXeeO1uzpcIvkTDpwet8yV47W68dvO5ap3PVet8rlrnc9U6n6vWO6/dj3vV9kt0vkTyJXAnau/Fl+C1O3nt5nPVOp+r1pPX7id71a6W6HwJ3Inac/AleO1OXrv5XLXO56p1Plet87lqnc9V64PX7sFrN5+r1vlctT5wJ2qvjS/Ba3fx2s3nqnU+V60Xr92VfInBl8CdqL1wJ2qfvHZPXrv5XLXO56p1Plet87lqnc9V65PX7slrN5+rlnyuWm64EzU350vg2p1b40t0vkTyJXDtzq34EribJQ13oqYZXwLX7rTgSzS+ROdLJF9i8CWKL8Frt/PazeeqJZ+rlo47UfMZXrW9Erx2O6/dfK5a8rlq6bx2x8aXML4E7kTNCL4Er93Bazefq5Z8rlryuWrJ56oln6uWjdfuxms3n6uWfK5aNtyJmi35Erx2N167+Vy15HPVsvPa3Z0vEXyJhk8PeudL8Nrdee3mc9WSz1VLPlct+Vy15HPVMnntftyrtl+i8yWSL4E7UTOLL8Fr9+C1m89VSz5XLQev3U/2ql0t0fkSuBM1x+BL8No9eO3mc9WSz1VLPlct+Vy15HPVsnjtLl67+Vy15HPVsnAnas6NL8Fr9+S1m89VSz5XLSev3TP5ErybZeJO1Jy4E3VsuHaPzfgSzpcIvkTjS3S+RPIlcO0eW/ElcDfL4HPVhuFO1GHOl8C1ezw5V+1qic6XSL4Ert3Dii+Bu1mG407U4caX4LXbee3mc9UGn6s2+Fy1weeqDT5XbTiv3cFrN5+rNvhctRG4E3U8w6u2V4LX7uC1m89VG3yu2gheu9vGlzC+BO5EHS34Erx2N167+Vy1weeqDT5XbfC5aoPPVRtP8KpZt48SNupKCedLPM5um+cSpxpXSjS+ROdLJF/icXZHtI8SkXalRD21xDVJeoJXLWJ+XsV2WeIJXrXdEob/LZ7gVdv7WzwhV233RjW+ROf/Fsn/LQZ/o4ovMfG/xdjwv8Uw/EYN50sE/7do/N+i8zcq+RK8dg9euwev3cVrd/HaXbx2F6/d1fgSvHYXr93Fa3fx2l28dk9euyev3ZPX7slr92z834LX7slr9+S1e/LaPXHtrm3jS+DaXRuu3bUFf6MaX6Lzf4vk/xaDv1HFl8C1uwzX7jJcu8ucLxH836Lxf4vO36jkSwz+b1H834LXbue123ntdl67nddub3wJXrud127ntdt57XZeu4PX7uC1O3jtDl67o/F/C167g9fu4LU7eO0OXrsbr92N1+7Ga3fjtbs1vgSv3Y3X7sZrd+O1u/Ha3Xnt7rx2d167O6/dvfF/C167O6/dvFeteK9a8V614r1qxXvViveqFe9VK96rVrxXrXivWvFeteK9asV71Yr3qhXvVSveq1a8V614r1rxXrXivWrFe9WK96oV71Ur3qtWvFeteK9aXfeq2eZ1rtHa7RrZt4+Ds8fnZXheOTjcP9DHCdznwf0a+lML/UB/+u3/fPAP9G1p9H1p9Lk0+qGMfs4P1sZm/Qr6Whr9FEYfW3yib3PnUj9hePft9sF2oszHBc4tLu/LdQvm+9+X2c+CNn/a6Xj14JYfG5LbjJ8v78cttN+38NFb6L9v4aO3UHlSxd1C37az6G7eHruF7fctfPQWKk8vwVtoFh8HW8wrMqs8cf3O+6I8Jf7O+6I82Qbvi7fz0oHXDgyLc9KUte3KnH8ec87/1Js4t2M+IHztJvb4oLP1no8o6NyO+TTxfff7mI8e33e/D/qc8rX7/bnc3mc9dr/b7/v90vv9Rk9An7dwl/V7C41ze6MnoK/cl+ct8cztjR6WvusWvtFz1Rdu4ROXeOb2Rk9V33QL7Y2eqb5yC3dWPaa90bPPU+/LGz2jPPW+vNGzxFfuy1MXeOyNHhC+7yYec9b/basIdsynie+738d89Pi++33Q55TvWrWxgz7UfNf99vd5Ako/J/9n7w/OI/x9noCee1/e5wnoS/fliZLi7/Ow9G23sP2+hY/ewvd5UPraLXyidr7Ps8+33ULpxxk7f+8szPvedO+JuwGmSz92cPfliW+YXPpJYolbGNIPB2vcQunnCOwWPvMlXUg/cqxxC6UfObhbuPfeKqSfI77xvkg/HHzjfZGe8XP35amv6OKYc/4n38RjPiB823ugOObTxLfd73bMR4/vu98HfU75rvdu7aAPNd92v9/oCeiZuwHaGz0BfZOVvb3Rw9J33cI3eq76Jit7e6Onqu+6hW/0TPVMd3d7o2efZ96X/kbPKE+9L2/0LPFtRvb+Rg8I33cTjznr/7ZVhH7Mp4nvu9/HfPT4vvt90OeU71q16Qd9qPm2+/0+T0BPdb3393kCeup9yfd5AvouH3a+z8PSt93C93lU+rZb+D4PSt9lZc/3efb5tlv4q8eZswpt6T/fwn93+pf/+N//+V/+5Z//67//l3/7T//hf/7zv/3r//jj1O2P/7n+CaaI9nF18Zdvu1y5b2Uf78+i8qdPSdS1P9/4uMc5fvrjjT+u7vq3mr4JSwhhaUJYuhCWFMIyhLCUEJapg+X6N6++CYtQ3y2hvltCfbeE+m4J9d0S6rsl1HdLqO+WUN+dQn13CvXd+eLf7hgfzwij5l+w2PbiP5J5nF13/tOHFz/g2Kvh1McfyuLnZbwfcFwLTmjBaVpwuhac1IIztOCUFpwX66aFnZeGol10Zdu04JgWHNeCE1pwmhacrgXn1V259c/3hL0u4AwtOKUFZ0rB8U0LjmnBcS04oQWnacHpWnC0urJrdWXX6squ1ZVDqyuHVlcOra4cWl05tLpyaHXl0OrK7dV/rN7OS5U9L5YM2qtFYm7zA8607QJOacGZUnD6pgXHtOC4FpzQgtO04HQtOKkFR6srd62u3LW6cmp15dTqyqnVlVOrK6dWV06trpxaXTlf3Hfczge7xV8NGPZqx3H4ORbg9I/tAk5owWlacLoWnNSCM7TglBacKQXn1U7kPTimBUerK5dWVy6trlxaXbm0unJpdeXS6sql1ZWnVleeWl15vpxZMc5w4uIlwHz1byfyfHDUX/3K/mr79B4c04LjWnC60k/Zt5czK88bnT0v4QwtOKUFZ0rBsU0LjmnBcS04oQWnfSOcMS7gvLorx2feQ3j+DOfKQuKMDzfxH+Gdnwdfi53oW30E7vZtzp8P/vuF5lEudBzlQusoFzoPcqG+HeVC7SgX6ke50DjKhbajXOjLdbR/Xmj/61tTD621jtBa6wittY4ILThNC44Ys14+jxznJd8YFw+IMaXgtE0LjmnBcS04oQWnacHpWnBSC874RjjlF3BKC86UgtM3LTimBeflXbk+5zszL+CEFpymBadrwUktOEMLTmnBmVJwUusZPbWe0VPrGT21ntGzacHpWnBSC87QglNacLRcYkOrKw+trjy0uvLQ6spDqysPra48tLry0OrKr95v4nZe5j7948Xk9NV7Bk7vZD5GPr0PuTAevdqGvgPn1Tb0PTj2ajjj/LXyGPMCjmvBCS04TQtO14KTWnCGFpzSgjOV4MT28q48Pw4+vWnsF3BMC45rwQktOE0LTteCk1pwhhac0oIzvxPORVe2TQuOacFxLTihBeflXbnOz1nNtws4XQtOasEZWnBKC86UguObFhzTgvONKxjX4Ly8K593AZ7+sS7gNC04XQtOasEZWnBKC86UghObFhzTguNacLS6cmh15dDqyqHVlUOrK4dWVw6trty0uvKrNya4VX3A8S0u4Gj9sV7tdfc22nnqPv0CjmnBcS04oQWnacHpWnBSC87QglNacKYUnNTqyqnVlVOrK6dWV06trpxaXfnVbu6d2eDrvx5wE86r3dz+GSPp3i/hmBYc14ITWnCaFpyuBSe14AwtOK/uyu7n9+ge7QLOlILzcq/7DhzTguNacEILTtOC07XgpBacoQVHqyuXVleeWl15anXlqdWVp1ZXnlpdeWp15Vdv27A+PwJvLLe8gDOV4LRXb9vYg2NacFwLTmjBaVpwuhac1ILz6u89Z7QznOgXcEoLzpSC8+ptG5Z9nOH0uoBjWnBcC86r+07WdoZT8wLOq5k1xhnOGJd3Z0rBebX13so+XpFYXXxgub3aer8Hx7XgvHq+M+b549x1sbevvdp6vwena8FJLThDC05pwZlScF5tvd+DY1pwXAuOVlcOra4cWl05tLpyaHXl0OrKodWVm1ZXfvUXE3aes179xYQ9OFpPoe3lfSfs/NjXLn87QwtOacGZUnD6pgXn5bNBm59wLhZyu2vBCS04TQtO14KTWnCGFpzSgjO/EU6/aIP58q5s7RPOxd3Jl3fl7SYc14ITWnBe3pVvvgTIrgUnteAMLTha77NS633W2LTgvLjvjPHxZnZcPoO+eg9J+cdjRPklmK4EJpXADCUwpQRmCoF59b6R22BMCcyL5351nmudXp9fgAklME0JTFcCk0pghhKYUgIzhcC8eo/IbTCmBEapA0+lDjyVOvBU6sBTqQNPpQ48lTrwlOnAp3+xPw7s1xdILOLsZYz+6WUc/Y/r6NeXMfZOmnecdH1JYO8ku+ckv+ekuOekds9J/Z6T8p6T7vlFjHt+EeOeX0Td84uoe34Rdc8vou75RdQ9v4ja/0VkXJyU95w07jmp7jlp3nHS3O45ye45ye85Ke456Re/iJHnk35aI/w4qX/9pLy+adL6p5m9h12cZPecdB3eiPNWr59fHH6clHecdP3jI77ZORt/83ZxUrvnpKvU8Ng+4HlYXJxU95w07zjp+g6RvZPsnpOuUsN9fkas/vQ5gtNJl7MVr/yYB3nV58GRf1aIp1aY7hcV2nMrtLio0PEK+YQK0c8V+uXfYeAVar/CuPgB/oIf41ypbfbQDzC2p1a48gMMe26Fy5/Hdfv9Fyvc/ONdd9Q/tULbr1B//Xlct7J7tPl50tyBdZpGfhx8mhxeVEi8wqArtO3xCqcZxcfBuV1MAlo8oUKe/9I5L8S/1RMqnB+y/aQ7FxXmEyp85nxkXPxa+/bca7hS4cl/h3HxW+oNr9DxColXGHiFwitMukJueAXDKzheAed04pxOnNOJczqfzemLh/YsvMIzOP35abwrOj02vILhFRyvEHiFhlfoeIXEKwy8wpM5faXCpCvUhlcwvILjFfBnoOp4hcQrDLwCzrjCGXf9lYSbnx/C7R/Xx7+87HX9/cXdFa4se11/2XF/hctlr+tvRp5aIZ9Q4eay13VbxVMr1G6F/tfFkHE9i8/q8wVNtcuT6p6T5h0nXU+f2zvJ7jnp+svBOt89q/7QG5Bx/bXW3RUumTiuvwO7v8IFT8b1gLmnVsgnVLjFk2EDr1D7FcbFD/A6P+b2UclmPPQGZFx/nXh3hSs/wOvvHu+vcPnzuP6i8osVbv7xrr+ofGqFtl/hryu+w3/BvDE/T3ro7cHwxCsMukJsj1e4+QZkRDyhwq054Wj+hAq33oCM9oxruPUGZLT23Gu4UmE89+9wsQ44WuEVJl2hb3gFwys4XiHwCg2v0PEKiVfAOd1xTnec04lzOp/N6XlRwfEKz+D0rRXfkQ2v0PEKiVcYeIXCK0y6wtjwCoZXeDKnr1TA596j4RU6XiHxCgOvMOkKteEVDK+AM65wxv1iS0v6eS9C9vZ/Hln2+sX+l3srXFn2+sVmmbsrXC57/WJnzRMr/GIbztcq3Fz2+sWenWdW8N0K+Y8LOqd/8T8O/cW2uejnHLroP2WJDfuj3i+2ze2dNO846ReJJzsn2T0nXd+/3ud5k2va+PmkBze5tnOIU6ufDh1/ggklME0JTFcCk0pghhKYUgIzXwsmz2By/PWDOr/Y9vldYEwJjCuBCSUwTQlMVwKTSmCGEphSAiPUgX+xdfy7wAh14NyEOnBuQh04N6EO/ItEgu8CI9SBcxPqwLkJdeDclDqwvZhNtyKKf5GFwYExO9uozSou4JQWnCkFxzctOKYFx7XgxMvhnBc8/eLz67/ISQHheJwTjHxc3p2uBSe14AwtOKUFZ0rBiU0LjmnBcS04oQXn5V3586OJsfULOF0LTmrBGVpwSgvOlILTNi04pgXHteCEFhytrty0unLT6srt1V05fJzhtLqAU1pwphScvmnBMS04r+7KYf0TzsXaYA8tOE0LTteCk1pwhhac0oIzpeDkpgXHtOBodeV8dVdu/axZrV9oVjYtOF0LTmrBGVpwSgvOlIIzNi04pgXHteBodeWh1ZWHVlceWl15aHXlodWVh1ZXLq2uXFpdubS6cml15VdvOLDezi8fe16snL7aWG9z+9xAatsFnK4FJ7XgDC04pQVnKsEZrzbZ78ExLTiuBSe04Eh15bFJdeWxSXXlsUl15bFJdeWxaXVl0+rKptWVTasrm1ZXfvU+CbfPHEyLv+4hGa/eCRAnEB8Hu7ULOKYFx7XghBacpgWna8FJLThDC05pwZlScEKrK4dWVw6trhxaXTm0unJodeXQ6sqh1ZVDqyuHVlduL2dWjDOcqAs4r/7tRJ4PjottqqNNqbvTXy6huZ3h5CUc04LjWnBCC07TgtO14KQWnKEFp74RzhgXcF7dlcPOcE7QfoZzZW1q/pzH+tPaVF45uG/nT/f0bc6fD/53v/yswTteqB3lQv0oFxpHudB2lAvtR7nQPMqFjqNcaB3kQsfLdbR/Xmi/eBE3mtTT/OhacFILjtbSyygpOKXFrHr5PHKcVxFjXDwgVmjBaVpwuhac1IIztOCUFpwpBWduWnDsG+H89KnlDziuBSe04DQtOF0Lzsu7cn3Od2ZewBlacEoLzlSCU9umBce04LgWnNCC05Ses2qTekavTeoZvTapZ/TapJ7Ra5tScGzTgmNacFwLTmjB0erKptWVTasrm1ZXNq2ubFpd2bW6smt15Vdvf3E7L3Of/vFicvrqLQwe/jGyn57X/wrn1a74PThNC05/NZxhZzhjXsBJLThDC05pwZlScF6dj78Hx7TguBac0ILz8q48Pw72Zv0CTteCk1pwhhac0oIzpeD0TQuOacFxLTjxnXAuunJvWnC6FpzUgjO04Ly8K9f5Oav5dgFnSsHJTQuOacFxLTihBadpwelacL5xBeManJd35fMuwNM/1gWc0oIzpeCMTQuOacFxLTihBadpwelacFILjlZXHlpdeWh15dLqyqXVlUurK5dWVy6trvzqjQluVR9wfLt4cT21/liv9rp7G+08dZ9+AadrwUktOEMLTmnBmUpw5qu97ntwTAuOa8EJLThSXXluUl15blJdeW5SXXluUl15blpd+dVu7tuzwflqN/cenFf3nc8YSfd+CadrwUktOEMLTmnBmVJwXu3m3oNjWnBe3ZXdz+/RPdoFnNCC07TgdC04qQVnaMEpLThTCk5sWnBMC45WVw6trhxaXTm0unJodeXQ6sqh1ZVDqyu/etuG9fkReGO55QWc0ILTtOB0LTipBWdowSktOFMKzqu3bezBefWXRTPaGU70CziuBSe04Ly6K2cfZzi9LuB0LTipBefVfSdrO8Opv27bmK+23tsYZzjjIqtyvtp6vwfn1cwq+3hFYnXxzd75auv9HpzUgvPq+c6Y5+8918Xevvlq6/0enCkF59XW+z04pgXHteCEFpymBadrwUktOFpdeWh15aHVlUurK5dWVy6trlxaXbm0uvKrv5iw85z16i8m7MHRegqdL+87YefHvnbx25mmBce14IQWnKYF5+WzQZufcC4WcmdqwRlacEoLzlSCY9u2ieExMTwuhie+EU/vl3he3pqtfeK5cn9e3pu323hSDM8Qw/Py9nzrbcAJz9TCY5sYHhPDI/Vy64RH6u3WCU8Tw/Pi/jPGx5vacfFMekLz4u5T/vFcUX4FzVRC8+otJTtoTAqNS6EJKTRNCk2XQvPi2WCdJ1+n9+qXaIYUmpJCM5XQvHojyQ4ak0LjUmhCCk2TQtOl0Ej14pDqxSHVi0OqFzepXtykenGT6sVNphef/iX+OLBf96a07WPS2OLzxNH/uIx+3T9y85TrHo/bp9jXT/Gvn3L1L9LyY59Cq+3ilPb1U/rXT8mvnzK+fkp9/ZT55VOuv2m/fYp9/RT/+ilf/+vPr//159f/+vPrf/359b/+/Ppff375r5/b9vVT7Oun+NdPia+f0r5+Sv/6Kfn1U8bXT6mvn/L1v759/a9vX//r29f/+vb1v759/a9vX//rX18g6u3jlP5TnMzHKVf/lGZxflNqZRcnzTtOuv6kfRPc9cfhnh/bKk7ycHFK//opVzlzupk/TsnmF6eMr59SXz9lfvmU6xP626fY10/xr58SXz/lKmdyfPzIcv51TpbX94GO/jGNO73QuTjlapXyjx/MzzPl0ymXM2Wv/JiDe/3Eycg/x+9PHH+6X4yfzxy/xcX44+Hxo5/H75f3p+DxJzt+fu338/dTrv4kZn78sOfsF6fk108ZXz+lvn7K/PIp1/dS1flzXXObt/8iO0JzfXPUF8bPsg9G5M9vPsafwzs7fLDDN3b4zg6f7PCDHb4eHv48+8uq/tfhJzp8bezwxg7v7PDBDt/Y4Ts7fLLDD3Z4lrXFsnayrJ0sayfL2smydrKsnSxrJ8vaybJ2sqydKGvHtrHDGzu8s8MHO3xjh+/s8MkOP9jhix2eZa2xrDWWtcay1ljWGstaY1lrLGuNZa2xrDWWtc6y1lnWOstaZ1nrLGudZa2zrPWHWTu382rUtIvhix1+osPHxg5v7PDODh/s8F9j7d9P6dffGPf264X8cf3F7N5J456T6p6T5h0nXX9Be/uNxrj+inbvJL/npLjnpHbPSf2ek8Y9J9U9J91hcRj9nj9u//If9/Qv7Y9D+y+C7uwcXhP/cKr93Yf1izi6nZP6PSflPSeNe06qe06ad5z0i8ixnZPsnpP8npPu+UXUPb+IuucXUff8IuqeX0Td84uoe34R855fxLznFzHv+UXMe34Rv0h28e1junr6x/aXk37howy3fj7JL09q91S6/tvzc9JReLOLk/Kek8Y9J9U9J807TvpFooL7+DzJL06ye07ye06Ke05q95zU7zkp7zlp3HNS3UGNX2yhv33SL3a675xk95x0D91/sb1756R2z0n9npPynpPGPSfd84vwe34Rcc8vIu75RcQ9v4i45xcR9/wi4su/iNO/9D8OtesqZRHngPfof53Y23WV2jsp7zlp3HNS3XPSvOOk6yq1d5Ldc5Lfc1Lcc9I9vwi75xdh9/wi7J5fhN3zi7B7fhF+zy/C7/lF+P4vIuPipLjnpHbPSf2ek/Kek8Y9J9U9J807TortnpN+8YsYeT6p5sVJfs9J1+9e//zCR4+L394vVhVvn/SLZbvTmu7HST9HKX6cFHecdH21yjf7eOLw7Wc9/HGS3XPSVWp4nB/yTk85F3/c6xsn9k7Ke04a95xU95x0lRruczuf5P+wQ+Wr200st6dWuNxwYmnPrXCx5cSuf+TpqRXiCRVubQux69tCnlqh71f469YTy1/wY5wrtc0e+wGOp1a49gOs51a48vOYT6hw8493fQ/MUyvYfoW/7p+z63tbPNr8PGnn1aGfVrs/Dj6tYV9UCLxCwyuMxyvkdqZpbheTgNqeUCHPf+mcF+Jf/QkVznkiflrYuaiQT6jw+fHjvEjgsBrPvYbLCvPJf4dx8VuahldwvELgFRpeoeMVEq8w8AqFV5hwBd82vILhFRyvEHiFZ3N6XlToeIVncLr81zrt28ArFF5h0hVswysYXsHxCoFXaHiFJ3P6SoXEKwy8QuEVJl3BN7yC4xUCr9DwCjjjHGfc9VcSp5Z7fgi3f1wf/+qyl19/f3F3hctlL7/+suP+ChfLXn79zchTK8QTKtxa9vLrzoCnVui7FS6SzPwXFun6fEFT7fKkfs9Jec9J456T6p6Trr8crPPdO61MPfQGxH9hwr63whUm/sKxfXeFS550xyvEEyrc5ElveIW+X+Gvb0D8+hvC00rfR6XTcpY99gMcT61w7QdYz61w5ecxn1Dh5h/v+ovKp1aw/Qp/XfH1/AXzzqmDp5MeenvgGXiFhlcYj1e4+QbEx/aECjfnhGM+ocKtNyBez7iGW29AvOy513ClQnvu3+FyHbA6XiHxCgOvUHiFSVeYG17B8AqOVwi8As7piXN64pyeOKfnszl98X5iTrhCbM/g9K0V39gMr+B4hcArNLxCxyskXmHgFQqv8GROX1awDa9geAXHKwReoeEVEq8w8AqFV8AZ5zjjfrGlJc859Za9/Z8Hlr3iF/tf7q1wuewVv9gsc3eFi2Wv+MXOmmdWGE+ocGvZK36xZ+eZFeZuhbxILMk/DrVffcLdPn7o0ftPv92/b9z8xba5vZPynpPGPSfVPSe9+DuQ7fwp+1Y/Hfrn1wVf/Xn022BMCYwrgQklME0JTFcC8+KP8eYZTA67ADOUwJQSmCkE5tUfRb8NxpTAuBKYUALTlMB0JTBKHTiUOnAodeBQ6sBNqQM3pQ7clDpwU+rATakDN6UO3JQ6cH8xm8b4yIIbPyWJfIB58W/mtOTyU5BsXMDpWnBSC87QglNacKYUnNxeDue84OlbXsB5cdc5LQ+dE4x8XN4d14ITWnCaFpyuBSe14AwtOKUFZ0rBGZsWnJd35XPQ9mmRr1/AcS04oQWnacHpWnBSC87QglNacKYUnNq04Gh15dLqyqXVlevVXTnO2fqndx51AadrwUktOEMLTmnBeXVXjnPY/AnOxdrg3LTgmBYc14ITWnCaFpyuBSe14AwtOKUFR6or/yIwEITT+lmzWq8LOKYFx7XghBacpgWna8FJLThDC05pwZlScEyrK5tWVzatrmxaXdm0urJpdWXT6sqm1ZVNqyubVld2ra786g0H1tv55WPPv66c+quN9acFpc8NpLZdwHEtOKEFp2nB6VpwUgvO0IJTWnCmFJxXW+334Gh15abVlZtWV25aXblpdeWm1ZWbVlduWl25aXXlrtWV+4v7zmkF5+Pg03KFXcB5MbPiBOLj4NN6xQWcoQWntOBMKTiv3piwB8e04LgWnNCC07TgdC04Wl05tbpyanXl1OrKQ6srD62uPLS68tDqykOrKw+trlwvZ1aMM5y4eAnwavt0RJ4Pjottql5d6+68XEJzO8PJSzhDC05pwZlScOamBce04LgWnNCC074RzhgXcF7dlcPOcE7QfoZzZW1q/pzH+tPaVF45uG/nT/f0bc6fD/53v/xwwjte6DjKhdZRLnQe40Lj1Y7z77tQO8qF+lEuNI5yoe0oF/pyHe2fF9r/+iIubFN6mg8zLTiuBUdq6SWsacERY9bL55HjvIoYoy7gTCk4vmnBMS04rgUntOA0LThdC05qwRnfCOenTy1/wCktOFMKTmxacEwLzsu7cn3Od2ZewAktOE0LTteCk1pwhhac0oIzpeA0rWf0pvWM3rSe0ZvWM3prWnC6FpzUgjO04JQWnCkFp2t15a7VlbtWV+5aXblrdeWu1ZW7VlfuWl351dtf3M7L3Kd/vJicvnoLg58WRz/gnB5jLuBMKTivdsXvwbFXwxl2hjPmBRzXghNacJoWnK4FJ7XgDC04pQVnSsGpl3fl+XGwN+sXcEwLjmvBCS04TQtO14KTWnCGFpzSgjO/E85FV56bFhzTguNacEILzsu7cp2fs5pvF3C6FpzUgjO04JQWnKkEp22bFhzTgvONKxjX4Ly8K593AZ7+sS7gNC04XQtOasEZWnBKC86UgmObFhzTguNacLS6sml1ZdPqyqbVlU2rK5tWVzatruxaXfnVGxPcqj7g+BYXcLT+WK/2unsb7Tx1n34Bx7TguBac0ILTtOB0LTipBWdowSktOFMKTtPqyk2rKzetrty0unLT6spNqyu/2s29Mxt8tZt7B86r3dz+GSPp3i/hmBYc14ITWnCaFpyuBSe14AwtOK/uyu7n9+ge7QLOlILzcq/7DhzTguNacEILTtOC07XgpBacoQVHqyunVlceWl15aHXlodWVh1ZXHlpdeWh15fHyDyzPj8Abyy0v4EwpOK/etrEHx7TguBac0ILTtOB0LTipBefVHzrNaGc40S/glBacKQXn1ds2LPs4w+kXr/VfvW1jD45rwXl138naznBqXsB5NbPGOMMZ4/LuTCU4/dXWeyv7eEVidfHN3v5q6/0eHNeC8+r5zpjn7z3Xxd6+vjUtOF0LTmrBGVpwSgvOlILzauv9HhzTguNacLS6sml1ZdPqyqbVlU2rK5tWVzatruxaXfnVX0y4/ZzVX/3FhD04Uk+h3V/ed8LOj33t8rcztOCUFpwpBSc2LTgvnw3a/ISTF3BcC05owWlacLoWnNSCM7TglBac+Y1w+kUbbC/vytY+4VzcnfbyrrzdhONacEILzsu78s2XAK1rwUktOEMLjtT7rN603mf1TQvOi/vOGB9vZsflM+ir95CUfzxGlF+C6UpgUgnMUAJTSmCmEJhX7xu5DcaUwLx47lfnudbp9fkFmFAC05TAdCUwqQRmKIEpJTBTCMyr94jcBmNKYJQ68FDqwEOpAw+lDjyUOvBQ6sBDqQMPmQ58+pfxx4F23eLRto8pYovPE0f/4yrsug3j9inj66fU10+ZXz7lui2g5cfug1bbxSn29VP866fE109pXz+lf/2U/Pop4+un1NdPmV8+Jb7+14+v//Xj63/9+PpfP77+14+v//Xj63/9+PpfP77+14+v//Xb1//67et//fb1v377+l+/ff2v377+129f/+u3r//129f/+u3rf/3r61Gnl00/Tuk/ZbH8OOX62oidfnsfq8hWdnFS3HNS/zq4q3+b0xPoxynz4hZcfyC8ecr1x7b0/uOUbH5xin39FP/6KfH1U9rXT+lfPyW/fsr4+ilXOZPj40eW82Lqc32L6egfs6XTy5GLU65WKf/4wfw8IT2dcjkh9cqPqa7XT5yM/HP8+cTxp/tfx7++FfHe8VtcjG8Pjx/9PH6/uD/XNws+cfyAx//a7+fvp1z9Scz8+GHP2f9yil/fFnf7FPv6Kf71U+Lrp1ztUXX+1tXc5u2/yG2h8ev7rr4wfpZ9MCJ/fp0w/hw+2eEHO3yxw090+Ov7kJ43vLHD+8PDn2d/WdX/Onywwzd2+M4On+zwgx2+2OEnOrxv7PDGDs+y1lnWOstaZ1nrLGudZa2zrHWWtcGyNljWBsvaYFkbLGuDZW2wrA2WtcGyNljWNpa1jWVtY1nbWNY2lrWNZW1jWdtY1jaWtY1lbWdZ21nWdpa1nWVtZ1nbWdZ2lrWdZW1nWdtZ1ibL2nyYtXM7r0ZNuxje2eGDHb6xw3d2+GSHH+zwX2Pt30+Z198Y93ZjIf/6i9m9k+yek/yek+Kek9rXX5379Ve0eyflPSeNe06qe06ad5xUds9Jfs9Jcc9J9/xx68t/3NO/1B+H2i9i2eyc/BL/cKr9/e3jL8LTdk7ye06Ke05q95zU7zkp7zlp3HNS3XPSvOMkv+cX4ff8IvyeX4Tf84vwe34Rfs8vwu/5Rfg9vwi/5xfh9/wi4p5fxC9ySE5v+z9OOr3FvzjpOrzTm73zSX5x0i9iIm5X+kWYg59jguK0UHVxUtxzUrvnpH7PSXnPSdd/e6cXG58n+cVJdc9J846TfrH5fecku+ckv+ekuOekds9J/Q5q/GIT+M5J456T6p6T7qH7LzYp75xk95zk95wU95zU7jnpnl9E3vOLyHt+EXnPLyLv+UWMe34R455fxPjyL+L0L/PvE+3rSyVb/9DQ2sZPX7nMv5/5x+T8V6faZudEu+3nz0tcexj/jO4Z5j8f+nfRZYdvjw8fH0o+2vzr8P0Jw38sVIyMvw6f7PDj8eHr4yFvzPHX4Ysdfj48fJ2/61Xtr7+c6w8iXxz+g5j1c2LVn8Pb48OPjz9tXdwc9ycOP/9Cqz96g93oDXZeezv9Y/1/o8xpznk+J/P/Gw9unzPuOKfuOGd+/Zxf/LZun2N3nONfP+cX5oRbUnH6t//ff/jv//wf/uO//Jf/cTrnj//4v/71P/3Pf/63f/3xr//z///fPv7Lf/zv//wv//LP//Xf/7f//m//6b/85//13//Lv/+Xf/tPf/y3f9p+/M//3bf6W/f6497+8W8+/9bb+APZH/82/5bz3/2pTacD/W99G3//Pf5x8t8P6P1vPfvpkD9+M3WSxhP3Pk6obf6trP1xgn9Us63732wb/qPe6R/j9O/TPirmacDRP4awreXpP3f7Y5D4GGTk9rdR2/mUPJ1yrjpO66mjzz9OaB8nZGt/y2znE+x0gn2ckFF/yxZ/nNA/rmv+AdJ/XFacIMeMj+PjBCn+RJTnm1inMbaPm5inC0//uIl/8PO0IHa+jXW6jTXO24//+P98tr+FtfMJp1ti53p+GttnnJfx/n5fyv7m28dNm3VCW+d7NvrfTo/rn7ORv/+f/XT8T9OMvw/c/xbbT+3l7xe3na7t9Bs7/c7+Xw==","file_map":{"6":{"source":"use crate::meta::derive_via;\n\n#[derive_via(derive_eq)]\n// docs:start:eq-trait\npub trait Eq {\n fn eq(self, other: Self) -> bool;\n}\n// docs:end:eq-trait\n\n// docs:start:derive_eq\ncomptime fn derive_eq(s: StructDefinition) -> Quoted {\n let signature = quote { fn eq(_self: Self, _other: Self) -> bool };\n let for_each_field = |name| quote { (_self.$name == _other.$name) };\n let body = |fields| {\n if s.fields().len() == 0 {\n quote { true }\n } else {\n fields\n }\n };\n crate::meta::make_trait_impl(\n s,\n quote { Eq },\n signature,\n for_each_field,\n quote { & },\n body,\n )\n}\n// docs:end:derive_eq\n\nimpl Eq for Field {\n fn eq(self, other: Field) -> bool {\n self == other\n }\n}\n\nimpl Eq for u64 {\n fn eq(self, other: u64) -> bool {\n self == other\n }\n}\nimpl Eq for u32 {\n fn eq(self, other: u32) -> bool {\n self == other\n }\n}\nimpl Eq for u16 {\n fn eq(self, other: u16) -> bool {\n self == other\n }\n}\nimpl Eq for u8 {\n fn eq(self, other: u8) -> bool {\n self == other\n }\n}\nimpl Eq for u1 {\n fn eq(self, other: u1) -> bool {\n self == other\n }\n}\n\nimpl Eq for i8 {\n fn eq(self, other: i8) -> bool {\n self == other\n }\n}\nimpl Eq for i16 {\n fn eq(self, other: i16) -> bool {\n self == other\n }\n}\nimpl Eq for i32 {\n fn eq(self, other: i32) -> bool {\n self == other\n }\n}\nimpl Eq for i64 {\n fn eq(self, other: i64) -> bool {\n self == other\n }\n}\n\nimpl Eq for () {\n fn eq(_self: Self, _other: ()) -> bool {\n true\n }\n}\nimpl Eq for bool {\n fn eq(self, other: bool) -> bool {\n self == other\n }\n}\n\nimpl<T, let N: u32> Eq for [T; N]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T; N]) -> bool {\n let mut result = true;\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<T> Eq for [T]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T]) -> bool {\n let mut result = self.len() == other.len();\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<let N: u32> Eq for str<N> {\n fn eq(self, other: str<N>) -> bool {\n let self_bytes = self.as_bytes();\n let other_bytes = other.as_bytes();\n self_bytes == other_bytes\n }\n}\n\nimpl<A, B> Eq for (A, B)\nwhere\n A: Eq,\n B: Eq,\n{\n fn eq(self, other: (A, B)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1)\n }\n}\n\nimpl<A, B, C> Eq for (A, B, C)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n{\n fn eq(self, other: (A, B, C)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2)\n }\n}\n\nimpl<A, B, C, D> Eq for (A, B, C, D)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n{\n fn eq(self, other: (A, B, C, D)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2) & self.3.eq(other.3)\n }\n}\n\nimpl<A, B, C, D, E> Eq for (A, B, C, D, E)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n E: Eq,\n{\n fn eq(self, other: (A, B, C, D, E)) -> bool {\n self.0.eq(other.0)\n & self.1.eq(other.1)\n & self.2.eq(other.2)\n & self.3.eq(other.3)\n & self.4.eq(other.4)\n }\n}\n\nimpl Eq for Ordering {\n fn eq(self, other: Ordering) -> bool {\n self.result == other.result\n }\n}\n\n// Noir doesn't have enums yet so we emulate (Lt | Eq | Gt) with a struct\n// that has 3 public functions for constructing the struct.\npub struct Ordering {\n result: Field,\n}\n\nimpl Ordering {\n // Implementation note: 0, 1, and 2 for Lt, Eq, and Gt are built\n // into the compiler, do not change these without also updating\n // the compiler itself!\n pub fn less() -> Ordering {\n Ordering { result: 0 }\n }\n\n pub fn equal() -> Ordering {\n Ordering { result: 1 }\n }\n\n pub fn greater() -> Ordering {\n Ordering { result: 2 }\n }\n}\n\n#[derive_via(derive_ord)]\n// docs:start:ord-trait\npub trait Ord {\n fn cmp(self, other: Self) -> Ordering;\n}\n// docs:end:ord-trait\n\n// docs:start:derive_ord\ncomptime fn derive_ord(s: StructDefinition) -> Quoted {\n let signature = quote { fn cmp(_self: Self, _other: Self) -> std::cmp::Ordering };\n let for_each_field = |name| quote {\n if result == std::cmp::Ordering::equal() {\n result = _self.$name.cmp(_other.$name);\n }\n };\n let body = |fields| quote {\n let mut result = std::cmp::Ordering::equal();\n $fields\n result\n };\n crate::meta::make_trait_impl(s, quote { Ord }, signature, for_each_field, quote {}, body)\n}\n// docs:end:derive_ord\n\n// Note: Field deliberately does not implement Ord\n\nimpl Ord for u64 {\n fn cmp(self, other: u64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u32 {\n fn cmp(self, other: u32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u16 {\n fn cmp(self, other: u16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u8 {\n fn cmp(self, other: u8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i8 {\n fn cmp(self, other: i8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i16 {\n fn cmp(self, other: i16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i32 {\n fn cmp(self, other: i32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i64 {\n fn cmp(self, other: i64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for () {\n fn cmp(_self: Self, _other: ()) -> Ordering {\n Ordering::equal()\n }\n}\n\nimpl Ord for bool {\n fn cmp(self, other: bool) -> Ordering {\n if self {\n if other {\n Ordering::equal()\n } else {\n Ordering::greater()\n }\n } else if other {\n Ordering::less()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl<T, let N: u32> Ord for [T; N]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T; N]) -> Ordering {\n let mut result = Ordering::equal();\n for i in 0..self.len() {\n if result == Ordering::equal() {\n let result_i = self[i].cmp(other[i]);\n\n if result_i == Ordering::less() {\n result = result_i;\n } else if result_i == Ordering::greater() {\n result = result_i;\n }\n }\n }\n result\n }\n}\n\nimpl<T> Ord for [T]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T]) -> Ordering {\n let mut result = self.len().cmp(other.len());\n for i in 0..self.len() {\n if result == Ordering::equal() {\n let result_i = self[i].cmp(other[i]);\n\n if result_i == Ordering::less() {\n result = result_i;\n } else if result_i == Ordering::greater() {\n result = result_i;\n }\n }\n }\n result\n }\n}\n\nimpl<A, B> Ord for (A, B)\nwhere\n A: Ord,\n B: Ord,\n{\n fn cmp(self, other: (A, B)) -> Ordering {\n let result = self.0.cmp(other.0);\n\n if result != Ordering::equal() {\n result\n } else {\n self.1.cmp(other.1)\n }\n }\n}\n\nimpl<A, B, C> Ord for (A, B, C)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n{\n fn cmp(self, other: (A, B, C)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D> Ord for (A, B, C, D)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n{\n fn cmp(self, other: (A, B, C, D)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D, E> Ord for (A, B, C, D, E)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n E: Ord,\n{\n fn cmp(self, other: (A, B, C, D, E)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n if result == Ordering::equal() {\n result = self.4.cmp(other.4);\n }\n\n result\n }\n}\n\n// Compares and returns the maximum of two values.\n//\n// Returns the second argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::max(1, 2), 2);\n// assert_eq(cmp::max(2, 2), 2);\n// ```\npub fn max<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v1\n } else {\n v2\n }\n}\n\n// Compares and returns the minimum of two values.\n//\n// Returns the first argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::min(1, 2), 1);\n// assert_eq(cmp::min(2, 2), 2);\n// ```\npub fn min<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v2\n } else {\n v1\n }\n}\n\nmod cmp_tests {\n use crate::cmp::{max, min};\n\n #[test]\n fn sanity_check_min() {\n assert_eq(min(0 as u64, 1 as u64), 0);\n assert_eq(min(0 as u64, 0 as u64), 0);\n assert_eq(min(1 as u64, 1 as u64), 1);\n assert_eq(min(255 as u8, 0 as u8), 0);\n }\n\n #[test]\n fn sanity_check_max() {\n assert_eq(max(0 as u64, 1 as u64), 1);\n assert_eq(max(0 as u64, 0 as u64), 0);\n assert_eq(max(1 as u64, 1 as u64), 1);\n assert_eq(max(255 as u8, 0 as u8), 255);\n }\n}\n","path":"std/cmp.nr"},"7":{"source":"use crate::{cmp::Eq, convert::From};\n\n/// A `BoundedVec<T, MaxLen>` is a growable storage similar to a `Vec<T>` except that it\n/// is bounded with a maximum possible length. Unlike `Vec`, `BoundedVec` is not implemented\n/// via slices and thus is not subject to the same restrictions slices are (notably, nested\n/// slices - and thus nested vectors as well - are disallowed).\n///\n/// Since a BoundedVec is backed by a normal array under the hood, growing the BoundedVec by\n/// pushing an additional element is also more efficient - the length only needs to be increased\n/// by one.\n///\n/// For these reasons `BoundedVec<T, N>` should generally be preferred over `Vec<T>` when there\n/// is a reasonable maximum bound that can be placed on the vector.\n///\n/// Example:\n///\n/// ```noir\n/// let mut vector: BoundedVec<Field, 10> = BoundedVec::new();\n/// for i in 0..5 {\n/// vector.push(i);\n/// }\n/// assert(vector.len() == 5);\n/// assert(vector.max_len() == 10);\n/// ```\npub struct BoundedVec<T, let MaxLen: u32> {\n storage: [T; MaxLen],\n len: u32,\n}\n\nimpl<T, let MaxLen: u32> BoundedVec<T, MaxLen> {\n /// Creates a new, empty vector of length zero.\n ///\n /// Since this container is backed by an array internally, it still needs an initial value\n /// to give each element. To resolve this, each element is zeroed internally. This value\n /// is guaranteed to be inaccessible unless `get_unchecked` is used.\n ///\n /// Example:\n ///\n /// ```noir\n /// let empty_vector: BoundedVec<Field, 10> = BoundedVec::new();\n /// assert(empty_vector.len() == 0);\n /// ```\n ///\n /// Note that whenever calling `new` the maximum length of the vector should always be specified\n /// via a type signature:\n ///\n /// ```noir\n /// fn good() -> BoundedVec<Field, 10> {\n /// // Ok! MaxLen is specified with a type annotation\n /// let v1: BoundedVec<Field, 3> = BoundedVec::new();\n /// let v2 = BoundedVec::new();\n ///\n /// // Ok! MaxLen is known from the type of `good`'s return value\n /// v2\n /// }\n ///\n /// fn bad() {\n /// // Error: Type annotation needed\n /// // The compiler can't infer `MaxLen` from the following code:\n /// let mut v3 = BoundedVec::new();\n /// v3.push(5);\n /// }\n /// ```\n ///\n /// This defaulting of `MaxLen` (and numeric generics in general) to zero may change in future noir versions\n /// but for now make sure to use type annotations when using bounded vectors. Otherwise, you will receive a\n /// constraint failure at runtime when the vec is pushed to.\n pub fn new() -> Self {\n let zeroed = crate::mem::zeroed();\n BoundedVec { storage: [zeroed; MaxLen], len: 0 }\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this\n /// will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// let last = v.get(v.len() - 1);\n /// assert(first != last);\n /// }\n /// ```\n pub fn get(self, index: u32) -> T {\n assert(index < self.len, \"Attempted to read past end of BoundedVec\");\n self.get_unchecked(index)\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero, without\n /// performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element,\n /// it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn sum_of_first_three<let N: u32>(v: BoundedVec<u32, N>) -> u32 {\n /// // Always ensure the length is larger than the largest\n /// // index passed to get_unchecked\n /// assert(v.len() > 2);\n /// let first = v.get_unchecked(0);\n /// let second = v.get_unchecked(1);\n /// let third = v.get_unchecked(2);\n /// first + second + third\n /// }\n /// ```\n pub fn get_unchecked(self, index: u32) -> T {\n self.storage[index]\n }\n\n /// Writes an element to the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// assert(first != 42);\n /// v.set(0, 42);\n /// let new_first = v.get(0);\n /// assert(new_first == 42);\n /// }\n /// ```\n pub fn set(&mut self, index: u32, value: T) {\n assert(index < self.len, \"Attempted to write past end of BoundedVec\");\n self.set_unchecked(index, value)\n }\n\n /// Writes an element to the vector at the given index, starting from zero, without performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element, it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn set_unchecked_example() {\n /// let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n /// vec.extend_from_array([1, 2]);\n ///\n /// // Here we're safely writing within the valid range of `vec`\n /// // `vec` now has the value [42, 2]\n /// vec.set_unchecked(0, 42);\n ///\n /// // We can then safely read this value back out of `vec`.\n /// // Notice that we use the checked version of `get` which would prevent reading unsafe values.\n /// assert_eq(vec.get(0), 42);\n ///\n /// // We've now written past the end of `vec`.\n /// // As this index is still within the maximum potential length of `v`,\n /// // it won't cause a constraint failure.\n /// vec.set_unchecked(2, 42);\n /// println(vec);\n ///\n /// // This will write past the end of the maximum potential length of `vec`,\n /// // it will then trigger a constraint failure.\n /// vec.set_unchecked(5, 42);\n /// println(vec);\n /// }\n /// ```\n pub fn set_unchecked(&mut self, index: u32, value: T) {\n self.storage[index] = value;\n }\n\n /// Pushes an element to the end of the vector. This increases the length\n /// of the vector by one.\n ///\n /// Panics if the new length of the vector will be greater than the max length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n ///\n /// v.push(1);\n /// v.push(2);\n ///\n /// // Panics with failed assertion \"push out of bounds\"\n /// v.push(3);\n /// ```\n pub fn push(&mut self, elem: T) {\n assert(self.len < MaxLen, \"push out of bounds\");\n\n self.storage[self.len] = elem;\n self.len += 1;\n }\n\n /// Returns the current length of this vector\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 4> = BoundedVec::new();\n /// assert(v.len() == 0);\n ///\n /// v.push(100);\n /// assert(v.len() == 1);\n ///\n /// v.push(200);\n /// v.push(300);\n /// v.push(400);\n /// assert(v.len() == 4);\n ///\n /// let _ = v.pop();\n /// let _ = v.pop();\n /// assert(v.len() == 2);\n /// ```\n pub fn len(self) -> u32 {\n self.len\n }\n\n /// Returns the maximum length of this vector. This is always\n /// equal to the `MaxLen` parameter this vector was initialized with.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.max_len() == 5);\n /// v.push(10);\n /// assert(v.max_len() == 5);\n /// ```\n pub fn max_len(_self: BoundedVec<T, MaxLen>) -> u32 {\n MaxLen\n }\n\n /// Returns the internal array within this vector.\n ///\n /// Since arrays in Noir are immutable, mutating the returned storage array will not mutate\n /// the storage held internally by this vector.\n ///\n /// Note that uninitialized elements may be zeroed out!\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.storage() == [0, 0, 0, 0, 0]);\n ///\n /// v.push(57);\n /// assert(v.storage() == [57, 0, 0, 0, 0]);\n /// ```\n pub fn storage(self) -> [T; MaxLen] {\n self.storage\n }\n\n /// Pushes each element from the given array to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_array([2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_array<let Len: u32>(&mut self, array: [T; Len]) {\n let new_len = self.len + array.len();\n assert(new_len <= MaxLen, \"extend_from_array out of bounds\");\n for i in 0..array.len() {\n self.storage[self.len + i] = array[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the given slice to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_slice(&[2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_slice(&mut self, slice: [T]) {\n let new_len = self.len + slice.len();\n assert(new_len <= MaxLen, \"extend_from_slice out of bounds\");\n for i in 0..slice.len() {\n self.storage[self.len + i] = slice[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the other vector to this vector. The length of\n /// the other vector is left unchanged.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// ```noir\n /// let mut v1: BoundedVec<Field, 5> = BoundedVec::new();\n /// let mut v2: BoundedVec<Field, 7> = BoundedVec::new();\n ///\n /// v2.extend_from_array([1, 2, 3]);\n /// v1.extend_from_bounded_vec(v2);\n ///\n /// assert(v1.storage() == [1, 2, 3, 0, 0]);\n /// assert(v2.storage() == [1, 2, 3, 0, 0, 0, 0]);\n /// ```\n pub fn extend_from_bounded_vec<let Len: u32>(&mut self, vec: BoundedVec<T, Len>) {\n let append_len = vec.len();\n let new_len = self.len + append_len;\n assert(new_len <= MaxLen, \"extend_from_bounded_vec out of bounds\");\n\n let mut exceeded_len = false;\n for i in 0..Len {\n exceeded_len |= i == append_len;\n if !exceeded_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n }\n self.len = new_len;\n }\n\n /// Creates a new vector, populating it with values derived from an array input.\n /// The maximum length of the vector is determined based on the type signature.\n ///\n /// Example:\n ///\n /// ```noir\n /// let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array([1, 2, 3])\n /// ```\n pub fn from_array<let Len: u32>(array: [T; Len]) -> Self {\n assert(Len <= MaxLen, \"from array out of bounds\");\n let mut vec: BoundedVec<T, MaxLen> = BoundedVec::new();\n vec.extend_from_array(array);\n vec\n }\n\n /// Pops the element at the end of the vector. This will decrease the length\n /// of the vector by one.\n ///\n /// Panics if the vector is empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n /// v.push(1);\n /// v.push(2);\n ///\n /// let two = v.pop();\n /// let one = v.pop();\n ///\n /// assert(two == 2);\n /// assert(one == 1);\n ///\n /// // error: cannot pop from an empty vector\n /// let _ = v.pop();\n /// ```\n pub fn pop(&mut self) -> T {\n assert(self.len > 0);\n self.len -= 1;\n\n let elem = self.storage[self.len];\n self.storage[self.len] = crate::mem::zeroed();\n elem\n }\n\n /// Returns true if the given predicate returns true for any element\n /// in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<u32, 3> = BoundedVec::new();\n /// v.extend_from_array([2, 4, 6]);\n ///\n /// let all_even = !v.any(|elem: u32| elem % 2 != 0);\n /// assert(all_even);\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n let mut exceeded_len = false;\n for i in 0..MaxLen {\n exceeded_len |= i == self.len;\n if !exceeded_len {\n ret |= predicate(self.storage[i]);\n }\n }\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.map(|value| value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n }\n ret\n }\n}\n\nimpl<T, let MaxLen: u32> Eq for BoundedVec<T, MaxLen>\nwhere\n T: Eq,\n{\n fn eq(self, other: BoundedVec<T, MaxLen>) -> bool {\n // TODO: https://github.com/noir-lang/noir/issues/4837\n //\n // We make the assumption that the user has used the proper interface for working with `BoundedVec`s\n // rather than directly manipulating the internal fields as this can result in an inconsistent internal state.\n (self.len == other.len) & (self.storage == other.storage)\n }\n}\n\nimpl<T, let MaxLen: u32, let Len: u32> From<[T; Len]> for BoundedVec<T, MaxLen> {\n fn from(array: [T; Len]) -> BoundedVec<T, MaxLen> {\n BoundedVec::from_array(array)\n }\n}\n\nmod bounded_vec_tests {\n\n mod get {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test(should_fail_with = \"Attempted to read past end of BoundedVec\")]\n fn panics_when_reading_elements_past_end_of_vec() {\n let vec: BoundedVec<Field, 5> = BoundedVec::new();\n\n crate::println(vec.get(0));\n }\n }\n\n mod set {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn set_updates_values_properly() {\n let mut vec = BoundedVec::from_array([0, 0, 0, 0, 0]);\n\n vec.set(0, 42);\n assert_eq(vec.storage, [42, 0, 0, 0, 0]);\n\n vec.set(1, 43);\n assert_eq(vec.storage, [42, 43, 0, 0, 0]);\n\n vec.set(2, 44);\n assert_eq(vec.storage, [42, 43, 44, 0, 0]);\n\n vec.set(1, 10);\n assert_eq(vec.storage, [42, 10, 44, 0, 0]);\n\n vec.set(0, 0);\n assert_eq(vec.storage, [0, 10, 44, 0, 0]);\n }\n\n #[test(should_fail_with = \"Attempted to write past end of BoundedVec\")]\n fn panics_when_writing_elements_past_end_of_vec() {\n let mut vec: BoundedVec<Field, 5> = BoundedVec::new();\n vec.set(0, 42);\n\n // Need to use println to avoid DIE removing the write operation.\n crate::println(vec.get(0));\n }\n }\n\n mod map {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-map-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| value * 2);\n // docs:end:bounded-vec-map-example\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.map(|value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.storage()[2], 0);\n }\n }\n\n mod from_array {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty() {\n let empty_array: [Field; 0] = [];\n let bounded_vec = BoundedVec::from_array([]);\n\n assert_eq(bounded_vec.max_len(), 0);\n assert_eq(bounded_vec.len(), 0);\n assert_eq(bounded_vec.storage(), empty_array);\n }\n\n #[test]\n fn equal_len() {\n let array = [1, 2, 3];\n let bounded_vec = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 3);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage(), array);\n }\n\n #[test]\n fn max_len_greater_then_array_len() {\n let array = [1, 2, 3];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage()[0], 1);\n assert_eq(bounded_vec.storage()[1], 2);\n assert_eq(bounded_vec.storage()[2], 3);\n }\n\n #[test(should_fail_with = \"from array out of bounds\")]\n fn max_len_lower_then_array_len() {\n let _: BoundedVec<Field, 2> = BoundedVec::from_array([0; 3]);\n }\n }\n\n mod trait_from {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn simple() {\n let array = [1, 2];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 2);\n assert_eq(bounded_vec.storage()[0], 1);\n assert_eq(bounded_vec.storage()[1], 2);\n }\n }\n\n mod trait_eq {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty_equality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n\n assert_eq(bounded_vec1, bounded_vec2);\n }\n\n #[test]\n fn inequality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n bounded_vec1.push(1);\n bounded_vec2.push(2);\n\n assert(bounded_vec1 != bounded_vec2);\n }\n }\n}\n","path":"std/collections/bounded_vec.nr"},"25":{"source":"use crate::field::field_less_than;\nuse crate::runtime::is_unconstrained;\n\n// The low and high decomposition of the field modulus\nglobal PLO: Field = 53438638232309528389504892708671455233;\nglobal PHI: Field = 64323764613183177041862057485226039389;\n\npub(crate) global TWO_POW_128: Field = 0x100000000000000000000000000000000;\nglobal TWO_POW_64: Field = 0x10000000000000000;\n\n// Decomposes a single field into two 16 byte fields.\nfn compute_decomposition(mut x: Field) -> (Field, Field) {\n // Here's we're taking advantage of truncating 64 bit limbs from the input field\n // and then subtracting them from the input such the field division is equivalent to integer division.\n let low_lower_64 = (x as u64) as Field;\n x = (x - low_lower_64) / TWO_POW_64;\n let low_upper_64 = (x as u64) as Field;\n\n let high = (x - low_upper_64) / TWO_POW_64;\n let low = low_upper_64 * TWO_POW_64 + low_lower_64;\n\n (low, high)\n}\n\npub(crate) unconstrained fn decompose_hint(x: Field) -> (Field, Field) {\n compute_decomposition(x)\n}\n\nunconstrained fn lte_hint(x: Field, y: Field) -> bool {\n if x == y {\n true\n } else {\n field_less_than(x, y)\n }\n}\n\n// Assert that (alo > blo && ahi >= bhi) || (alo <= blo && ahi > bhi)\nfn assert_gt_limbs(a: (Field, Field), b: (Field, Field)) {\n let (alo, ahi) = a;\n let (blo, bhi) = b;\n unsafe {\n let borrow = lte_hint(alo, blo);\n\n let rlo = alo - blo - 1 + (borrow as Field) * TWO_POW_128;\n let rhi = ahi - bhi - (borrow as Field);\n\n rlo.assert_max_bit_size::<128>();\n rhi.assert_max_bit_size::<128>();\n }\n}\n\n/// Decompose a single field into two 16 byte fields.\npub fn decompose(x: Field) -> (Field, Field) {\n if is_unconstrained() {\n compute_decomposition(x)\n } else {\n unsafe {\n // Take hints of the decomposition\n let (xlo, xhi) = decompose_hint(x);\n\n // Range check the limbs\n xlo.assert_max_bit_size::<128>();\n xhi.assert_max_bit_size::<128>();\n\n // Check that the decomposition is correct\n assert_eq(x, xlo + TWO_POW_128 * xhi);\n\n // Assert that the decomposition of P is greater than the decomposition of x\n assert_gt_limbs((PLO, PHI), (xlo, xhi));\n (xlo, xhi)\n }\n }\n}\n\npub fn assert_gt(a: Field, b: Field) {\n if is_unconstrained() {\n assert(unsafe { field_less_than(b, a) });\n } else {\n // Decompose a and b\n let a_limbs = decompose(a);\n let b_limbs = decompose(b);\n\n // Assert that a_limbs is greater than b_limbs\n assert_gt_limbs(a_limbs, b_limbs)\n }\n}\n\npub fn assert_lt(a: Field, b: Field) {\n assert_gt(b, a);\n}\n\npub fn gt(a: Field, b: Field) -> bool {\n if is_unconstrained() {\n unsafe {\n field_less_than(b, a)\n }\n } else if a == b {\n false\n } else {\n // Take a hint of the comparison and verify it\n unsafe {\n if field_less_than(a, b) {\n assert_gt(b, a);\n false\n } else {\n assert_gt(a, b);\n true\n }\n }\n }\n}\n\npub fn lt(a: Field, b: Field) -> bool {\n gt(b, a)\n}\n\nmod tests {\n // TODO: Allow imports from \"super\"\n use crate::field::bn254::{assert_gt, decompose, gt, lte_hint, PHI, PLO, TWO_POW_128};\n\n #[test]\n fn check_decompose() {\n assert_eq(decompose(TWO_POW_128), (0, 1));\n assert_eq(decompose(TWO_POW_128 + 0x1234567890), (0x1234567890, 1));\n assert_eq(decompose(0x1234567890), (0x1234567890, 0));\n }\n\n #[test]\n unconstrained fn check_decompose_unconstrained() {\n assert_eq(decompose(TWO_POW_128), (0, 1));\n assert_eq(decompose(TWO_POW_128 + 0x1234567890), (0x1234567890, 1));\n assert_eq(decompose(0x1234567890), (0x1234567890, 0));\n }\n\n #[test]\n unconstrained fn check_lte_hint() {\n assert(lte_hint(0, 1));\n assert(lte_hint(0, 0x100));\n assert(lte_hint(0x100, TWO_POW_128 - 1));\n assert(!lte_hint(0 - 1, 0));\n\n assert(lte_hint(0, 0));\n assert(lte_hint(0x100, 0x100));\n assert(lte_hint(0 - 1, 0 - 1));\n }\n\n #[test]\n fn check_assert_gt() {\n assert_gt(1, 0);\n assert_gt(0x100, 0);\n assert_gt((0 - 1), (0 - 2));\n assert_gt(TWO_POW_128, 0);\n assert_gt(0 - 1, 0);\n }\n\n #[test]\n unconstrained fn check_assert_gt_unconstrained() {\n assert_gt(1, 0);\n assert_gt(0x100, 0);\n assert_gt((0 - 1), (0 - 2));\n assert_gt(TWO_POW_128, 0);\n assert_gt(0 - 1, 0);\n }\n\n #[test]\n fn check_gt() {\n assert(gt(1, 0));\n assert(gt(0x100, 0));\n assert(gt((0 - 1), (0 - 2)));\n assert(gt(TWO_POW_128, 0));\n assert(!gt(0, 0));\n assert(!gt(0, 0x100));\n assert(gt(0 - 1, 0 - 2));\n assert(!gt(0 - 2, 0 - 1));\n }\n\n #[test]\n unconstrained fn check_gt_unconstrained() {\n assert(gt(1, 0));\n assert(gt(0x100, 0));\n assert(gt((0 - 1), (0 - 2)));\n assert(gt(TWO_POW_128, 0));\n assert(!gt(0, 0));\n assert(!gt(0, 0x100));\n assert(gt(0 - 1, 0 - 2));\n assert(!gt(0 - 2, 0 - 1));\n }\n\n #[test]\n fn check_plo_phi() {\n assert_eq(PLO + PHI * TWO_POW_128, 0);\n let p_bytes = crate::field::modulus_le_bytes();\n let mut p_low: Field = 0;\n let mut p_high: Field = 0;\n\n let mut offset = 1;\n for i in 0..16 {\n p_low += (p_bytes[i] as Field) * offset;\n p_high += (p_bytes[i + 16] as Field) * offset;\n offset *= 256;\n }\n assert_eq(p_low, PLO);\n assert_eq(p_high, PHI);\n }\n}\n","path":"std/field/bn254.nr"},"26":{"source":"pub mod bn254;\nuse crate::runtime::is_unconstrained;\nuse bn254::lt as bn254_lt;\n\nimpl Field {\n /// Asserts that `self` can be represented in `bit_size` bits.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^{bit_size}`.\n // docs:start:assert_max_bit_size\n pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {\n // docs:end:assert_max_bit_size\n assert(BIT_SIZE < modulus_num_bits() as u32);\n self.__assert_max_bit_size(BIT_SIZE);\n }\n\n #[builtin(apply_range_constraint)]\n fn __assert_max_bit_size(self, bit_size: u32) {}\n\n /// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n /// This slice will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n /// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n /// wrap around due to overflow when verifying the decomposition.\n #[builtin(to_le_bits)]\n // docs:start:to_le_bits\n pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {}\n // docs:end:to_le_bits\n\n /// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n /// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n /// wrap around due to overflow when verifying the decomposition.\n #[builtin(to_be_bits)]\n // docs:start:to_be_bits\n pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {}\n // docs:end:to_be_bits\n\n /// Decomposes `self` into its little endian byte decomposition as a `[u8;N]` array\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_le_bytes\n pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_le_bytes\n // Compute the byte decomposition\n let bytes = self.to_le_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[N - 1 - i] != p[N - 1 - i]) {\n assert(bytes[N - 1 - i] < p[N - 1 - i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n /// Decomposes `self` into its big endian byte decomposition as a `[u8;N]` array of length required to represent the field modulus\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_be_bytes\n pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_be_bytes\n // Compute the byte decomposition\n let bytes = self.to_be_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_be_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[i] != p[i]) {\n assert(bytes[i] < p[i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n // docs:start:to_le_radix\n pub fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n crate::assert_constant(radix);\n }\n self.__to_le_radix(radix)\n }\n // docs:end:to_le_radix\n\n // docs:start:to_be_radix\n pub fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n crate::assert_constant(radix);\n }\n self.__to_be_radix(radix)\n }\n // docs:end:to_be_radix\n\n // `_radix` must be less than 256\n #[builtin(to_le_radix)]\n fn __to_le_radix<let N: u32>(self, radix: u32) -> [u8; N] {}\n\n #[builtin(to_be_radix)]\n fn __to_be_radix<let N: u32>(self, radix: u32) -> [u8; N] {}\n\n // Returns self to the power of the given exponent value.\n // Caution: we assume the exponent fits into 32 bits\n // using a bigger bit size impacts negatively the performance and should be done only if the exponent does not fit in 32 bits\n pub fn pow_32(self, exponent: Field) -> Field {\n let mut r: Field = 1;\n let b: [u1; 32] = exponent.to_le_bits();\n\n for i in 1..33 {\n r *= r;\n r = (b[32 - i] as Field) * (r * self) + (1 - b[32 - i] as Field) * r;\n }\n r\n }\n\n // Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x `elem` {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.\n pub fn sgn0(self) -> u1 {\n self as u1\n }\n\n pub fn lt(self, another: Field) -> bool {\n if crate::compat::is_bn254() {\n bn254_lt(self, another)\n } else {\n lt_fallback(self, another)\n }\n }\n\n /// Convert a little endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_le_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[i] as Field) * v;\n v = v * 256;\n }\n result\n }\n\n /// Convert a big endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_be_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[N - 1 - i] as Field) * v;\n v = v * 256;\n }\n result\n }\n}\n\n#[builtin(modulus_num_bits)]\npub comptime fn modulus_num_bits() -> u64 {}\n\n#[builtin(modulus_be_bits)]\npub comptime fn modulus_be_bits() -> [u1] {}\n\n#[builtin(modulus_le_bits)]\npub comptime fn modulus_le_bits() -> [u1] {}\n\n#[builtin(modulus_be_bytes)]\npub comptime fn modulus_be_bytes() -> [u8] {}\n\n#[builtin(modulus_le_bytes)]\npub comptime fn modulus_le_bytes() -> [u8] {}\n\n/// An unconstrained only built in to efficiently compare fields.\n#[builtin(field_less_than)]\nunconstrained fn __field_less_than(x: Field, y: Field) -> bool {}\n\npub(crate) unconstrained fn field_less_than(x: Field, y: Field) -> bool {\n __field_less_than(x, y)\n}\n\n// Convert a 32 byte array to a field element by modding\npub fn bytes32_to_field(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..16 {\n high = high + (bytes32[15 - i] as Field) * v;\n low = low + (bytes32[16 + 15 - i] as Field) * v;\n v = v * 256;\n }\n // Abuse that a % p + b % p = (a + b) % p and that low < p\n low + high * v\n}\n\nfn lt_fallback(x: Field, y: Field) -> bool {\n if is_unconstrained() {\n unsafe {\n field_less_than(x, y)\n }\n } else {\n let x_bytes: [u8; 32] = x.to_le_bytes();\n let y_bytes: [u8; 32] = y.to_le_bytes();\n let mut x_is_lt = false;\n let mut done = false;\n for i in 0..32 {\n if (!done) {\n let x_byte = x_bytes[32 - 1 - i] as u8;\n let y_byte = y_bytes[32 - 1 - i] as u8;\n let bytes_match = x_byte == y_byte;\n if !bytes_match {\n x_is_lt = x_byte < y_byte;\n done = true;\n }\n }\n }\n x_is_lt\n }\n}\n\nmod tests {\n use super::field_less_than;\n\n #[test]\n // docs:start:to_be_bits_example\n fn test_to_be_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_be_bits();\n assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);\n }\n // docs:end:to_be_bits_example\n\n #[test]\n // docs:start:to_le_bits_example\n fn test_to_le_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_le_bits();\n assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);\n }\n // docs:end:to_le_bits_example\n\n #[test]\n // docs:start:to_be_bytes_example\n fn test_to_be_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_bytes();\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_bytes_example\n\n #[test]\n // docs:start:to_le_bytes_example\n fn test_to_le_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_bytes();\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_bytes_example\n\n #[test]\n // docs:start:to_be_radix_example\n fn test_to_be_radix() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_radix(256);\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_radix_example\n\n #[test]\n // docs:start:to_le_radix_example\n fn test_to_le_radix() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_radix(256);\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_radix_example\n\n #[test]\n unconstrained fn test_field_less_than() {\n assert(field_less_than(0, 1));\n assert(field_less_than(0, 0x100));\n assert(field_less_than(0x100, 0 - 1));\n assert(!field_less_than(0 - 1, 0));\n }\n}\n","path":"std/field/mod.nr"},"27":{"source":"use crate::runtime::is_unconstrained;\n\nglobal BLOCK_SIZE_IN_BYTES: u32 = 136; //(1600 - BITS * 2) / WORD_SIZE;\nglobal WORD_SIZE: u32 = 8; // Limbs are made up of u64s so 8 bytes each.\nglobal LIMBS_PER_BLOCK: u32 = BLOCK_SIZE_IN_BYTES / WORD_SIZE;\nglobal NUM_KECCAK_LANES: u32 = 25;\n\n#[foreign(keccakf1600)]\nfn keccakf1600(input: [u64; 25]) -> [u64; 25] {}\n\n#[no_predicates]\npub(crate) fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32] {\n assert(N >= message_size);\n\n // Copy input to block bytes. For that we'll need at least input bytes (N)\n // but we want it to be padded to a multiple of BLOCK_SIZE_IN_BYTES.\n let mut block_bytes = [0; ((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES];\n if is_unconstrained() {\n for i in 0..message_size {\n block_bytes[i] = input[i];\n }\n } else {\n for i in 0..N {\n if i < message_size {\n block_bytes[i] = input[i];\n }\n }\n }\n\n //1. format_input_lanes\n let max_blocks = (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n //maximum number of bytes to hash\n let real_max_blocks = (message_size + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n let real_blocks_bytes = real_max_blocks * BLOCK_SIZE_IN_BYTES;\n\n block_bytes[message_size] = 1;\n block_bytes[real_blocks_bytes - 1] = 0x80;\n\n // populate a vector of 64-bit limbs from our byte array\n let mut sliced_buffer =\n [0; (((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES) / WORD_SIZE];\n for i in 0..sliced_buffer.len() {\n let limb_start = WORD_SIZE * i;\n\n let mut sliced = 0;\n let mut v = 1;\n for k in 0..WORD_SIZE {\n sliced += v * (block_bytes[limb_start + k] as Field);\n v *= 256;\n }\n\n sliced_buffer[i] = sliced as u64;\n }\n\n //2. sponge_absorb\n let mut state: [u64; NUM_KECCAK_LANES] = [0; NUM_KECCAK_LANES];\n // When in an unconstrained runtime we can take advantage of runtime loop bounds,\n // thus allowing us to simplify the loop body.\n if is_unconstrained() {\n for i in 0..real_max_blocks {\n if (i == 0) {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = sliced_buffer[j];\n }\n } else {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n }\n state = keccakf1600(state);\n }\n } else {\n // `real_max_blocks` is guaranteed to at least be `1`\n // We peel out the first block as to avoid a conditional inside of the loop.\n // Otherwise, a dynamic predicate can cause a blowup in a constrained runtime.\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = sliced_buffer[j];\n }\n state = keccakf1600(state);\n for i in 1..max_blocks {\n if i < real_max_blocks {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n state = keccakf1600(state);\n }\n }\n }\n\n //3. sponge_squeeze\n let mut result = [0; 32];\n for i in 0..4 {\n let lane = state[i] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n for j in 0..8 {\n result[8 * i + j] = lane_le[j];\n }\n }\n result\n}\n\nmod tests {\n use super::keccak256;\n\n #[test]\n fn smoke_test() {\n let input = [0xbd];\n let result = [\n 0x5a, 0x50, 0x2f, 0x9f, 0xca, 0x46, 0x7b, 0x26, 0x6d, 0x5b, 0x78, 0x33, 0x65, 0x19,\n 0x37, 0xe8, 0x05, 0x27, 0x0c, 0xa3, 0xf3, 0xaf, 0x1c, 0x0d, 0xd2, 0x46, 0x2d, 0xca,\n 0x4b, 0x3b, 0x1a, 0xbf,\n ];\n assert_eq(keccak256(input, input.len()), result);\n }\n\n #[test]\n fn hash_hello_world() {\n let input = \"Hello world!\".as_bytes();\n let result = [\n 0xec, 0xd0, 0xe1, 0x8, 0xa9, 0x8e, 0x19, 0x2a, 0xf1, 0xd2, 0xc2, 0x50, 0x55, 0xf4, 0xe3,\n 0xbe, 0xd7, 0x84, 0xb5, 0xc8, 0x77, 0x20, 0x4e, 0x73, 0x21, 0x9a, 0x52, 0x3, 0x25, 0x1f,\n 0xea, 0xab,\n ];\n assert_eq(keccak256(input, input.len()), result);\n }\n\n #[test]\n fn var_size_hash() {\n let input = [\n 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,\n 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,\n 223,\n ];\n let result = [\n 226, 37, 115, 94, 94, 196, 72, 116, 194, 105, 79, 233, 65, 12, 30, 94, 181, 131, 170,\n 219, 171, 166, 236, 88, 143, 67, 255, 160, 248, 214, 39, 129,\n ];\n assert_eq(keccak256(input, 13), result);\n }\n\n #[test]\n fn hash_longer_than_136_bytes() {\n let input = \"123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789\"\n .as_bytes();\n assert(input.len() > 136);\n\n let result = [\n 0x1d, 0xca, 0xeb, 0xdf, 0xd9, 0xd6, 0x24, 0x67, 0x1c, 0x18, 0x16, 0xda, 0xd, 0x8a, 0xeb,\n 0xa8, 0x75, 0x71, 0x2c, 0xc, 0x89, 0xe0, 0x25, 0x2, 0xe8, 0xb6, 0x5e, 0x16, 0x5, 0x55,\n 0xe4, 0x40,\n ];\n assert_eq(keccak256(input, input.len()), result);\n }\n}\n","path":"std/hash/keccak.nr"},"28":{"source":"pub mod poseidon;\npub mod poseidon2;\npub mod keccak;\npub mod sha256;\npub mod sha512;\n\nuse crate::default::Default;\nuse crate::embedded_curve_ops::{\n EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul, multi_scalar_mul_array_return,\n};\nuse crate::meta::derive_via;\nuse crate::uint128::U128;\n\n// Kept for backwards compatibility\npub use sha256::{digest, sha256, sha256_compression, sha256_var};\n\n#[foreign(blake2s)]\n// docs:start:blake2s\npub fn blake2s<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake2s\n{}\n\n#[foreign(blake3)]\n// docs:start:blake3\npub fn blake3<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake3\n{}\n\n// docs:start:pedersen_commitment\npub fn pedersen_commitment<let N: u32>(input: [Field; N]) -> EmbeddedCurvePoint {\n // docs:end:pedersen_commitment\n pedersen_commitment_with_separator(input, 0)\n}\n\n#[inline_always]\npub fn pedersen_commitment_with_separator<let N: u32>(\n input: [Field; N],\n separator: u32,\n) -> EmbeddedCurvePoint {\n let mut points = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N];\n for i in 0..N {\n // we use the unsafe version because the multi_scalar_mul will constrain the scalars.\n points[i] = from_field_unsafe(input[i]);\n }\n let generators = derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n multi_scalar_mul(generators, points)\n}\n\n// docs:start:pedersen_hash\npub fn pedersen_hash<let N: u32>(input: [Field; N]) -> Field\n// docs:end:pedersen_hash\n{\n pedersen_hash_with_separator(input, 0)\n}\n\n#[no_predicates]\npub fn pedersen_hash_with_separator<let N: u32>(input: [Field; N], separator: u32) -> Field {\n let mut scalars: [EmbeddedCurveScalar; N + 1] = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N + 1];\n let mut generators: [EmbeddedCurvePoint; N + 1] =\n [EmbeddedCurvePoint::point_at_infinity(); N + 1];\n let domain_generators: [EmbeddedCurvePoint; N] =\n derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n\n for i in 0..N {\n scalars[i] = from_field_unsafe(input[i]);\n generators[i] = domain_generators[i];\n }\n scalars[N] = EmbeddedCurveScalar { lo: N as Field, hi: 0 as Field };\n\n let length_generator: [EmbeddedCurvePoint; 1] =\n derive_generators(\"pedersen_hash_length\".as_bytes(), 0);\n generators[N] = length_generator[0];\n multi_scalar_mul_array_return(generators, scalars)[0]\n}\n\n#[field(bn254)]\n#[inline_always]\npub fn derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {\n crate::assert_constant(domain_separator_bytes);\n // TODO(https://github.com/noir-lang/noir/issues/5672): Add back assert_constant on starting_index\n __derive_generators(domain_separator_bytes, starting_index)\n}\n\n#[builtin(derive_pedersen_generators)]\n#[field(bn254)]\nfn __derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {}\n\n#[field(bn254)]\n// Same as from_field but:\n// does not assert the limbs are 128 bits\n// does not assert the decomposition does not overflow the EmbeddedCurveScalar\nfn from_field_unsafe(scalar: Field) -> EmbeddedCurveScalar {\n let (xlo, xhi) = unsafe { crate::field::bn254::decompose_hint(scalar) };\n // Check that the decomposition is correct\n assert_eq(scalar, xlo + crate::field::bn254::TWO_POW_128 * xhi);\n EmbeddedCurveScalar { lo: xlo, hi: xhi }\n}\n\npub fn hash_to_field(inputs: [Field]) -> Field {\n let mut sum = 0;\n\n for input in inputs {\n let input_bytes: [u8; 32] = input.to_le_bytes();\n sum += crate::field::bytes32_to_field(blake2s(input_bytes));\n }\n\n sum\n}\n\n// docs:start:keccak256\npub fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32]\n// docs:end:keccak256\n{\n crate::hash::keccak::keccak256(input, message_size)\n}\n\n#[foreign(poseidon2_permutation)]\npub fn poseidon2_permutation<let N: u32>(_input: [Field; N], _state_length: u32) -> [Field; N] {}\n\n// Generic hashing support.\n// Partially ported and impacted by rust.\n\n// Hash trait shall be implemented per type.\n#[derive_via(derive_hash)]\npub trait Hash {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher;\n}\n\n// docs:start:derive_hash\ncomptime fn derive_hash(s: StructDefinition) -> Quoted {\n let name = quote { Hash };\n let signature = quote { fn hash<H>(_self: Self, _state: &mut H) where H: std::hash::Hasher };\n let for_each_field = |name| quote { _self.$name.hash(_state); };\n crate::meta::make_trait_impl(\n s,\n name,\n signature,\n for_each_field,\n quote {},\n |fields| fields,\n )\n}\n// docs:end:derive_hash\n\n// Hasher trait shall be implemented by algorithms to provide hash-agnostic means.\n// TODO: consider making the types generic here ([u8], [Field], etc.)\npub trait Hasher {\n fn finish(self) -> Field;\n\n fn write(&mut self, input: Field);\n}\n\n// BuildHasher is a factory trait, responsible for production of specific Hasher.\npub trait BuildHasher<H>\nwhere\n H: Hasher,\n{\n fn build_hasher(self) -> H;\n}\n\npub struct BuildHasherDefault<H>;\n\nimpl<H> BuildHasher<H> for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn build_hasher(_self: Self) -> H {\n H::default()\n }\n}\n\nimpl<H> Default for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn default() -> Self {\n BuildHasherDefault {}\n }\n}\n\nimpl Hash for Field {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self);\n }\n}\n\nimpl Hash for u1 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for bool {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for () {\n fn hash<H>(_self: Self, _state: &mut H)\n where\n H: Hasher,\n {}\n}\n\nimpl Hash for U128 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self.lo as Field);\n H::write(state, self.hi as Field);\n }\n}\n\nimpl<T, let N: u32> Hash for [T; N]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<T> Hash for [T]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.len().hash(state);\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<A, B> Hash for (A, B)\nwhere\n A: Hash,\n B: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n }\n}\n\nimpl<A, B, C> Hash for (A, B, C)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n }\n}\n\nimpl<A, B, C, D> Hash for (A, B, C, D)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n }\n}\n\nimpl<A, B, C, D, E> Hash for (A, B, C, D, E)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n E: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n self.4.hash(state);\n }\n}\n\n// Some test vectors for Pedersen hash and Pedersen Commitment.\n// They have been generated using the same functions so the tests are for now useless\n// but they will be useful when we switch to Noir implementation.\n#[test]\nfn assert_pedersen() {\n assert_eq(\n pedersen_hash_with_separator([1], 1),\n 0x1b3f4b1a83092a13d8d1a59f7acb62aba15e7002f4440f2275edb99ebbc2305f,\n );\n assert_eq(\n pedersen_commitment_with_separator([1], 1),\n EmbeddedCurvePoint {\n x: 0x054aa86a73cb8a34525e5bbed6e43ba1198e860f5f3950268f71df4591bde402,\n y: 0x209dcfbf2cfb57f9f6046f44d71ac6faf87254afc7407c04eb621a6287cac126,\n is_infinite: false,\n },\n );\n\n assert_eq(\n pedersen_hash_with_separator([1, 2], 2),\n 0x26691c129448e9ace0c66d11f0a16d9014a9e8498ee78f4d69f0083168188255,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2], 2),\n EmbeddedCurvePoint {\n x: 0x2e2b3b191e49541fe468ec6877721d445dcaffe41728df0a0eafeb15e87b0753,\n y: 0x2ff4482400ad3a6228be17a2af33e2bcdf41be04795f9782bd96efe7e24f8778,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3], 3),\n 0x0bc694b7a1f8d10d2d8987d07433f26bd616a2d351bc79a3c540d85b6206dbe4,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3], 3),\n EmbeddedCurvePoint {\n x: 0x1fee4e8cf8d2f527caa2684236b07c4b1bad7342c01b0f75e9a877a71827dc85,\n y: 0x2f9fedb9a090697ab69bf04c8bc15f7385b3e4b68c849c1536e5ae15ff138fd1,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4], 4),\n 0xdae10fb32a8408521803905981a2b300d6a35e40e798743e9322b223a5eddc,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4], 4),\n EmbeddedCurvePoint {\n x: 0x07ae3e202811e1fca39c2d81eabe6f79183978e6f12be0d3b8eda095b79bdbc9,\n y: 0x0afc6f892593db6fbba60f2da558517e279e0ae04f95758587760ba193145014,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5], 5),\n 0xfc375b062c4f4f0150f7100dfb8d9b72a6d28582dd9512390b0497cdad9c22,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5], 5),\n EmbeddedCurvePoint {\n x: 0x1754b12bd475a6984a1094b5109eeca9838f4f81ac89c5f0a41dbce53189bb29,\n y: 0x2da030e3cfcdc7ddad80eaf2599df6692cae0717d4e9f7bfbee8d073d5d278f7,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6], 6),\n 0x1696ed13dc2730062a98ac9d8f9de0661bb98829c7582f699d0273b18c86a572,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6], 6),\n EmbeddedCurvePoint {\n x: 0x190f6c0e97ad83e1e28da22a98aae156da083c5a4100e929b77e750d3106a697,\n y: 0x1f4b60f34ef91221a0b49756fa0705da93311a61af73d37a0c458877706616fb,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n 0x128c0ff144fc66b6cb60eeac8a38e23da52992fc427b92397a7dffd71c45ede3,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n EmbeddedCurvePoint {\n x: 0x015441e9d29491b06563fac16fc76abf7a9534c715421d0de85d20dbe2965939,\n y: 0x1d2575b0276f4e9087e6e07c2cb75aa1baafad127af4be5918ef8a2ef2fea8fc,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n 0x2f960e117482044dfc99d12fece2ef6862fba9242be4846c7c9a3e854325a55c,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n EmbeddedCurvePoint {\n x: 0x1657737676968887fceb6dd516382ea13b3a2c557f509811cd86d5d1199bc443,\n y: 0x1f39f0cb569040105fa1e2f156521e8b8e08261e635a2b210bdc94e8d6d65f77,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n 0x0c96db0790602dcb166cc4699e2d306c479a76926b81c2cb2aaa92d249ec7be7,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n EmbeddedCurvePoint {\n x: 0x0a3ceae42d14914a432aa60ec7fded4af7dad7dd4acdbf2908452675ec67e06d,\n y: 0xfc19761eaaf621ad4aec9a8b2e84a4eceffdba78f60f8b9391b0bd9345a2f2,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n 0x2cd37505871bc460a62ea1e63c7fe51149df5d0801302cf1cbc48beb8dff7e94,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n EmbeddedCurvePoint {\n x: 0x2fb3f8b3d41ddde007c8c3c62550f9a9380ee546fcc639ffbb3fd30c8d8de30c,\n y: 0x300783be23c446b11a4c0fabf6c91af148937cea15fcf5fb054abf7f752ee245,\n is_infinite: false,\n },\n );\n}\n","path":"std/hash/mod.nr"},"36":{"source":"pub mod hash;\npub mod aes128;\npub mod array;\npub mod slice;\npub mod merkle;\npub mod schnorr;\npub mod ecdsa_secp256k1;\npub mod ecdsa_secp256r1;\npub mod eddsa;\npub mod embedded_curve_ops;\npub mod sha256;\npub mod sha512;\npub mod field;\npub mod ec;\npub mod collections;\npub mod compat;\npub mod convert;\npub mod option;\npub mod string;\npub mod test;\npub mod cmp;\npub mod ops;\npub mod default;\npub mod prelude;\npub mod uint128;\npub mod bigint;\npub mod runtime;\npub mod meta;\npub mod append;\npub mod mem;\npub mod panic;\n\n// Oracle calls are required to be wrapped in an unconstrained function\n// Thus, the only argument to the `println` oracle is expected to always be an ident\n#[oracle(print)]\nunconstrained fn print_oracle<T>(with_newline: bool, input: T) {}\n\nunconstrained fn print_unconstrained<T>(with_newline: bool, input: T) {\n print_oracle(with_newline, input);\n}\n\npub fn println<T>(input: T) {\n unsafe {\n print_unconstrained(true, input);\n }\n}\n\npub fn print<T>(input: T) {\n unsafe {\n print_unconstrained(false, input);\n }\n}\n\npub fn verify_proof<let N: u32, let M: u32, let K: u32>(\n verification_key: [Field; N],\n proof: [Field; M],\n public_inputs: [Field; K],\n key_hash: Field,\n) {\n verify_proof_internal(verification_key, proof, public_inputs, key_hash, 0);\n}\n\npub fn verify_proof_with_type<let N: u32, let M: u32, let K: u32>(\n verification_key: [Field; N],\n proof: [Field; M],\n public_inputs: [Field; K],\n key_hash: Field,\n proof_type: u32,\n) {\n if !crate::runtime::is_unconstrained() {\n crate::assert_constant(proof_type);\n }\n verify_proof_internal(verification_key, proof, public_inputs, key_hash, proof_type);\n}\n\n#[foreign(recursive_aggregation)]\nfn verify_proof_internal<let N: u32, let M: u32, let K: u32>(\n verification_key: [Field; N],\n proof: [Field; M],\n public_inputs: [Field; K],\n key_hash: Field,\n proof_type: u32,\n) {}\n\n// Asserts that the given value is known at compile-time.\n// Useful for debugging for-loop bounds.\n#[builtin(assert_constant)]\npub fn assert_constant<T>(x: T) {}\n\n// Asserts that the given value is both true and known at compile-time\n#[builtin(static_assert)]\npub fn static_assert<let N: u32>(predicate: bool, message: str<N>) {}\n\n// from_field and as_field are private since they are not valid for every type.\n// `as` should be the default for users to cast between primitive types, and in the future\n// traits can be used to work with generic types.\n#[builtin(from_field)]\nfn from_field<T>(x: Field) -> T {}\n\n#[builtin(as_field)]\nfn as_field<T>(x: T) -> Field {}\n\npub fn wrapping_add<T>(x: T, y: T) -> T {\n crate::from_field(crate::as_field(x) + crate::as_field(y))\n}\n\npub fn wrapping_sub<T>(x: T, y: T) -> T {\n //340282366920938463463374607431768211456 is 2^128, it is used to avoid underflow\n crate::from_field(\n crate::as_field(x) + 340282366920938463463374607431768211456 - crate::as_field(y),\n )\n}\n\npub fn wrapping_mul<T>(x: T, y: T) -> T {\n crate::from_field(crate::as_field(x) * crate::as_field(y))\n}\n\n#[builtin(as_witness)]\npub fn as_witness(x: Field) {}\n\n","path":"std/lib.nr"},"69":{"source":"use dep::lib::{ecrecover, proof};\n\nfn main(\n // Address Data\n signature: [u8; 64],\n message_hash: [u8; 32],\n pub_key_x: [u8; 32],\n pub_key_y: [u8; 32],\n // Storage Proof\n storage_hash: [u8; 32],\n storage_nodes: [[u8; 532]; 7],\n storage_leaf: [u8; 69],\n storage_depth: u32,\n storage_value: Field,\n // Verification Data\n chain_id: Field,\n block_number: Field,\n token_address: Field,\n balance_slot: Field,\n // Balance Data\n verified_balance: Field,\n) -> pub (Field, Field, Field, Field, Field, [u8; 32]) {\n let balance_slot_bytes: [u8; 32] = balance_slot.to_be_bytes();\n let address: [u8; 32] =\n ecrecover::ecrecover(pub_key_x, pub_key_y, signature, message_hash).to_be_bytes();\n\n let key = proof::get_storage_key([address, balance_slot_bytes]);\n let value = proof::get_storage_value(storage_value);\n\n proof::verify(\n key,\n value,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n );\n\n assert(!storage_value.lt(verified_balance), \"Attempt to verify too high balance\");\n\n (verified_balance, chain_id, block_number, token_address, balance_slot, storage_hash)\n}\n\n#[test]\nfn test_main() {\n let signature = [\n 0x2d, 0x37, 0xb1, 0x66, 0x31, 0xb6, 0x7c, 0xbe, 0x79, 0xe8, 0xb1, 0x15, 0xcd, 0xa1, 0xee,\n 0x74, 0xdd, 0xe8, 0x49, 0x2b, 0xee, 0xf9, 0xfa, 0xc0, 0x74, 0x67, 0x77, 0xc4, 0x63, 0xe0,\n 0xc8, 0xcc, 0x5c, 0xfd, 0x2c, 0xea, 0x5f, 0x1e, 0x2e, 0x6d, 0x88, 0x99, 0xe4, 0xfe, 0x33,\n 0xab, 0x70, 0x9a, 0x44, 0x9e, 0x26, 0x2c, 0xc9, 0xfc, 0x56, 0xc3, 0xd6, 0x3b, 0x78, 0x9d,\n 0x99, 0x27, 0x09, 0x54,\n ];\n let message_hash = [\n 0x9d, 0x44, 0x7d, 0x95, 0x6f, 0x18, 0xf0, 0x6e, 0xfc, 0x4e, 0x1f, 0xa2, 0xb7, 0x15, 0xe6,\n 0xa4, 0x6f, 0xe6, 0x80, 0xd3, 0xd3, 0x5e, 0x1e, 0xbe, 0x90, 0xb9, 0xd5, 0x6a, 0xd1, 0xed,\n 0xdc, 0xa1,\n ];\n let pub_key_x = [\n 0x12, 0x09, 0x76, 0x95, 0x85, 0xe7, 0xea, 0x6b, 0x1d, 0x48, 0xfb, 0x8e, 0x7a, 0x49, 0xad,\n 0x4a, 0x68, 0x7f, 0x3f, 0x21, 0x9c, 0x80, 0x2b, 0x16, 0x71, 0x32, 0xb3, 0x45, 0x6a, 0xd8,\n 0xd2, 0xe4,\n ];\n let pub_key_y = [\n 0x73, 0x32, 0x84, 0xca, 0x26, 0x7f, 0x3c, 0x5e, 0x6f, 0xa7, 0x5b, 0xad, 0xe8, 0x23, 0xfd,\n 0xab, 0xd5, 0xb4, 0xb6, 0xa9, 0x13, 0x85, 0xd1, 0xa6, 0xde, 0xd7, 0x6c, 0xb5, 0x5d, 0x73,\n 0x61, 0x1c,\n ];\n let balance_slot = 0;\n let verified_balance = 0x27b7c8936148ec1a00001;\n let storage_value = 0x27b7c8936148ec1a00001;\n let storage_hash = [\n 0xfe, 0x24, 0x8f, 0x06, 0xea, 0xe1, 0xa1, 0x53, 0xfb, 0x78, 0x4d, 0x20, 0x48, 0x40, 0x71,\n 0x89, 0x2f, 0xc0, 0xcd, 0xcd, 0x8c, 0x7b, 0x76, 0x4c, 0xc6, 0xb4, 0xcf, 0x33, 0xfd, 0x33,\n 0xa5, 0x24,\n ];\n let storage_nodes = [\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x65, 0x4f, 0x43, 0xea, 0xba, 0x96, 0xcf, 0x57, 0x0d, 0xa0,\n 0x12, 0xb1, 0xc6, 0x47, 0xf4, 0xf4, 0x6d, 0x21, 0x0e, 0x9d, 0x96, 0xec, 0x81, 0x87,\n 0x26, 0x8d, 0xd3, 0x04, 0xa0, 0x78, 0xad, 0xb1, 0xa0, 0x27, 0x9e, 0x0a, 0xcb, 0xa7,\n 0xdf, 0x47, 0xd6, 0x00, 0x24, 0xc1, 0x21, 0x0b, 0x0e, 0xe0, 0x6b, 0x70, 0x11, 0x1f,\n 0xf1, 0xae, 0x08, 0x3a, 0x75, 0xe9, 0x2d, 0x07, 0x4c, 0x30, 0x3b, 0x8b, 0x3c, 0xa0,\n 0xf5, 0x9e, 0x78, 0x37, 0x07, 0xfd, 0x10, 0x5f, 0x6c, 0x4f, 0x10, 0x78, 0xfc, 0x2c,\n 0xeb, 0x68, 0xdd, 0xb2, 0x5a, 0x20, 0x10, 0x7f, 0xd5, 0xe6, 0x67, 0x6a, 0x6f, 0xe1,\n 0x6a, 0xed, 0x69, 0x66, 0xa0, 0x73, 0xba, 0x92, 0xc1, 0x7f, 0x06, 0x1b, 0xeb, 0xe2,\n 0xe9, 0x73, 0xc4, 0xdc, 0x40, 0x92, 0xdf, 0xf4, 0xb3, 0x19, 0x35, 0x3d, 0x37, 0xdb,\n 0x6d, 0x84, 0xde, 0x4e, 0x9a, 0xc9, 0x6a, 0xd7, 0x7c, 0xa0, 0x8c, 0xb6, 0xac, 0xfb,\n 0x9e, 0x40, 0x7c, 0x5a, 0x81, 0x47, 0xaa, 0xe8, 0xb6, 0xb3, 0x9e, 0x60, 0xf9, 0xf9,\n 0x36, 0x05, 0x24, 0x5e, 0xe1, 0xd4, 0xfb, 0xec, 0xa3, 0x2d, 0x7c, 0x30, 0x10, 0x43,\n 0xa0, 0xa5, 0x79, 0xf5, 0x94, 0x63, 0xa2, 0xbd, 0x14, 0xf2, 0x90, 0x97, 0x98, 0x68,\n 0xa0, 0x85, 0x48, 0xf1, 0x7b, 0x8a, 0x3b, 0x52, 0x1f, 0x98, 0x0a, 0xfd, 0x63, 0x77,\n 0x5b, 0x4c, 0xea, 0x5d, 0xed, 0xa0, 0x65, 0x4e, 0xa5, 0xea, 0xe7, 0x47, 0x8b, 0x91,\n 0x31, 0x2c, 0x6f, 0x50, 0x1a, 0xa9, 0x73, 0xcd, 0x43, 0xe9, 0xc1, 0xfe, 0x14, 0x2c,\n 0x3f, 0xba, 0x9a, 0xfd, 0x6c, 0x73, 0xac, 0xf8, 0x47, 0x48, 0xa0, 0x6b, 0x34, 0x79,\n 0xc5, 0x03, 0x42, 0x1a, 0xa5, 0x17, 0x1a, 0x2b, 0x08, 0xf6, 0xdc, 0x09, 0x47, 0x99,\n 0xd8, 0x69, 0x6f, 0x37, 0xc0, 0x03, 0xe3, 0x96, 0x65, 0x68, 0x5f, 0xa8, 0x03, 0x5c,\n 0x39, 0xa0, 0xb2, 0x0e, 0x17, 0x69, 0x66, 0x1c, 0xe3, 0x01, 0xbb, 0x52, 0x4c, 0x94,\n 0xd8, 0x07, 0xeb, 0xf3, 0x5e, 0x64, 0xc8, 0x5f, 0xd2, 0x7a, 0xd5, 0x48, 0xb7, 0x37,\n 0x46, 0x89, 0xa5, 0x93, 0x70, 0x37, 0xa0, 0xc9, 0x6b, 0xe2, 0xab, 0xb9, 0x6b, 0xeb,\n 0x11, 0xec, 0xdd, 0xfa, 0xbc, 0x23, 0x79, 0x88, 0x62, 0xbf, 0x92, 0x24, 0xd7, 0xaf,\n 0xd8, 0x92, 0x0a, 0x95, 0x84, 0x14, 0x3f, 0x65, 0x36, 0xa3, 0x01, 0xa0, 0xe1, 0xde,\n 0xfa, 0x28, 0xf4, 0x66, 0x72, 0xea, 0xf6, 0x39, 0x10, 0x6b, 0x3c, 0x4a, 0x72, 0x77,\n 0x71, 0x8d, 0x78, 0xe4, 0xe5, 0x29, 0xc8, 0x83, 0x5d, 0x41, 0x0c, 0x58, 0x8f, 0xda,\n 0x9d, 0xcf, 0xa0, 0xf1, 0x86, 0xde, 0x2f, 0xb4, 0x22, 0xa1, 0x4b, 0x50, 0x7e, 0x7a,\n 0x83, 0xdd, 0x81, 0x58, 0x65, 0xba, 0xa8, 0xe8, 0xe4, 0xb9, 0x33, 0xfd, 0xfd, 0x81,\n 0x82, 0xf8, 0x28, 0x9c, 0x88, 0xce, 0xf3, 0xa0, 0x77, 0x0e, 0x0a, 0x32, 0xe6, 0xf9,\n 0xdc, 0x7f, 0x3d, 0x37, 0xc7, 0xa0, 0x18, 0x47, 0x4b, 0x84, 0xbd, 0xdd, 0x68, 0x7d,\n 0x44, 0x50, 0x31, 0x17, 0x95, 0x0a, 0xb9, 0x03, 0x03, 0xbf, 0xbe, 0x1d, 0xa0, 0xa6,\n 0x7d, 0x8d, 0x6a, 0x30, 0xfa, 0x19, 0xf7, 0x2b, 0xb1, 0x2e, 0x90, 0xb5, 0x69, 0x6c,\n 0x8a, 0xbe, 0xbd, 0x71, 0x64, 0x61, 0x37, 0x91, 0x5f, 0xaa, 0x01, 0x4b, 0xbf, 0x69,\n 0xf1, 0x6c, 0x82, 0xa0, 0xfc, 0x02, 0xbb, 0x26, 0xc9, 0x2d, 0x42, 0x93, 0xc9, 0x7c,\n 0xae, 0xb2, 0x38, 0xeb, 0x71, 0xc2, 0x18, 0x4e, 0xc2, 0x42, 0xa1, 0xae, 0xcb, 0x48,\n 0x96, 0xf8, 0xfb, 0x20, 0xe6, 0xc3, 0xe8, 0x17, 0xa0, 0x06, 0xf9, 0xc9, 0xc5, 0x58,\n 0xa1, 0xe2, 0x92, 0x5a, 0x2b, 0xa8, 0xed, 0x39, 0xe5, 0xe3, 0x13, 0x71, 0xe8, 0xa3,\n 0x4d, 0x1a, 0xb7, 0xb8, 0xe5, 0x3d, 0x2a, 0xef, 0x36, 0x6d, 0xd9, 0xb4, 0x68, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x59, 0xf9, 0x19, 0x11, 0x94, 0x95, 0x9c, 0xd5, 0x6f, 0x85,\n 0x60, 0x1e, 0x5f, 0xa8, 0x4f, 0x43, 0x0d, 0x19, 0xe6, 0x97, 0xac, 0xa2, 0x05, 0xba,\n 0x85, 0x80, 0x9e, 0x95, 0xc6, 0x25, 0x79, 0x07, 0xa0, 0x0b, 0xde, 0xea, 0x0a, 0x72,\n 0x1c, 0xf8, 0x86, 0x19, 0xf6, 0x67, 0x40, 0x81, 0x89, 0x04, 0x32, 0xe6, 0xd0, 0x67,\n 0x42, 0x3d, 0x04, 0x9a, 0xbc, 0xdb, 0x6d, 0xd1, 0x91, 0x4f, 0x97, 0xd2, 0xce, 0xa0,\n 0x8c, 0x05, 0x6a, 0x88, 0x13, 0xcd, 0x3f, 0xb0, 0x71, 0x23, 0x47, 0x86, 0x6d, 0x7e,\n 0x3e, 0xcf, 0x8d, 0x89, 0x6c, 0x8b, 0xe9, 0xe4, 0x45, 0x11, 0x91, 0xbd, 0x93, 0x51,\n 0xb2, 0xe7, 0xcd, 0xad, 0xa0, 0xa0, 0xe3, 0xa7, 0x45, 0x78, 0x37, 0x52, 0xd5, 0x5b,\n 0x47, 0xbe, 0xd2, 0x01, 0x71, 0x2d, 0xab, 0xb8, 0x71, 0xc2, 0xac, 0xb6, 0x70, 0xf9,\n 0x2f, 0xd7, 0xb6, 0xd0, 0x32, 0x6a, 0x18, 0xea, 0xf0, 0xa0, 0xd4, 0x43, 0x4c, 0x0e,\n 0x2a, 0x5a, 0x39, 0x0b, 0x83, 0x8f, 0xcc, 0xc6, 0xf4, 0x06, 0xb5, 0x22, 0x83, 0x1e,\n 0x76, 0x7a, 0x71, 0xe7, 0x49, 0x44, 0x0b, 0x94, 0x59, 0x6b, 0xcc, 0xde, 0xde, 0xba,\n 0xa0, 0xa6, 0xf0, 0x7c, 0xc7, 0x97, 0x75, 0x7d, 0x20, 0xde, 0x26, 0x7d, 0x3f, 0x5f,\n 0x94, 0x66, 0x8a, 0x57, 0x01, 0x0d, 0xca, 0x08, 0x40, 0x4a, 0xfd, 0xe5, 0x87, 0xc5,\n 0xd8, 0x7d, 0x43, 0x7c, 0x2e, 0xa0, 0x26, 0x79, 0x87, 0xbd, 0x89, 0x8a, 0x37, 0x9b,\n 0x0c, 0xdb, 0x7c, 0x71, 0x29, 0x85, 0xcb, 0x04, 0x9b, 0x42, 0xc0, 0x1b, 0x9c, 0x2e,\n 0x8e, 0x6d, 0x95, 0xe8, 0xde, 0xa3, 0x1d, 0x0b, 0xdb, 0xe7, 0xa0, 0xa0, 0x86, 0x60,\n 0x89, 0xdd, 0x0c, 0xb0, 0xdf, 0x1f, 0x13, 0xfc, 0xa9, 0x3a, 0xf8, 0xca, 0xf4, 0x14,\n 0xf9, 0xa9, 0xbc, 0x87, 0xc5, 0x2c, 0x01, 0x89, 0x0b, 0x0d, 0x59, 0x06, 0x3a, 0x30,\n 0x22, 0xa0, 0x34, 0x3a, 0x91, 0xc4, 0x0e, 0xcb, 0x80, 0xa1, 0x94, 0xec, 0xea, 0xc5,\n 0x13, 0x3f, 0x1c, 0xfd, 0x2c, 0x81, 0x9c, 0xf7, 0xbe, 0x12, 0x46, 0x7d, 0x25, 0x25,\n 0x24, 0x61, 0xbc, 0x40, 0x5f, 0x75, 0xa0, 0xc5, 0x31, 0x34, 0x9f, 0xad, 0xdc, 0xfd,\n 0x82, 0x23, 0x66, 0xdd, 0x3b, 0x44, 0x78, 0xc3, 0xe2, 0x32, 0xc9, 0x07, 0x27, 0x65,\n 0x8e, 0x86, 0x5d, 0x07, 0xda, 0xb2, 0x6d, 0x5c, 0x94, 0xea, 0x60, 0xa0, 0x2b, 0xb8,\n 0x7e, 0x12, 0xf9, 0xae, 0xbd, 0x86, 0x0b, 0x78, 0x4d, 0x22, 0x48, 0x84, 0x69, 0x35,\n 0x9b, 0xbd, 0x9e, 0xc3, 0xe6, 0xcc, 0x03, 0x15, 0x45, 0x97, 0xdc, 0x5f, 0xc1, 0x68,\n 0xd7, 0xee, 0xa0, 0xd7, 0xe6, 0x2f, 0x5c, 0xab, 0x31, 0x69, 0x49, 0x70, 0x6b, 0xad,\n 0xa4, 0xee, 0x3a, 0x6d, 0xdb, 0x94, 0x4c, 0x8b, 0x82, 0xd3, 0x62, 0xb0, 0x8a, 0xef,\n 0xa8, 0x5d, 0x35, 0xad, 0x92, 0x22, 0x6c, 0xa0, 0xe9, 0xfe, 0x8c, 0x7c, 0x09, 0x4f,\n 0xdd, 0xab, 0x67, 0x1e, 0x1d, 0xae, 0x52, 0x4b, 0xee, 0xf0, 0xcc, 0x92, 0x15, 0x69,\n 0xf1, 0xbf, 0xb4, 0xd6, 0x6c, 0x35, 0x77, 0x30, 0x2e, 0x05, 0xea, 0xa1, 0xa0, 0x80,\n 0x0e, 0x28, 0x68, 0xa2, 0x9b, 0x41, 0x95, 0x2e, 0xe8, 0x81, 0x85, 0x42, 0x5f, 0xdf,\n 0xfc, 0xa3, 0x18, 0xf2, 0x3e, 0x45, 0x14, 0x66, 0x73, 0x9b, 0x95, 0xd0, 0x55, 0x1d,\n 0xcb, 0x03, 0x35, 0xa0, 0xd2, 0xf1, 0xbe, 0xf7, 0x62, 0x41, 0x6b, 0xa3, 0xe1, 0x5b,\n 0xf7, 0xd9, 0xb7, 0xc0, 0xc7, 0x71, 0x7c, 0xf2, 0x28, 0xb1, 0x7c, 0x4d, 0x92, 0xc7,\n 0xb7, 0x80, 0xb2, 0x14, 0xa8, 0x8f, 0x96, 0xdb, 0xa0, 0x83, 0x41, 0x35, 0x80, 0xf1,\n 0x04, 0x69, 0xa9, 0x6c, 0xf6, 0x1d, 0x3b, 0xa2, 0xc2, 0x88, 0xbb, 0xe4, 0xcb, 0xdc,\n 0x44, 0x03, 0xdc, 0x88, 0x99, 0x1c, 0xda, 0x60, 0xa7, 0x84, 0x02, 0xda, 0x05, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x4a, 0x41, 0x8f, 0xd3, 0x5c, 0xfd, 0xf6, 0x80, 0x65, 0x01,\n 0x2d, 0x8a, 0xf2, 0x4f, 0x23, 0xc8, 0x88, 0x36, 0x80, 0xcf, 0x96, 0xd9, 0x74, 0xe5,\n 0xda, 0x19, 0xa0, 0xf1, 0x66, 0xae, 0x10, 0xb1, 0xa0, 0xda, 0xa8, 0xd2, 0xa5, 0x35,\n 0xaa, 0x65, 0x68, 0xbb, 0x05, 0xe8, 0x47, 0x30, 0xa4, 0x08, 0xef, 0x2b, 0x77, 0x5c,\n 0xaa, 0xf0, 0x48, 0xff, 0x71, 0x73, 0x8f, 0x3a, 0x09, 0xa8, 0x4a, 0x45, 0x2d, 0xa0,\n 0x92, 0xee, 0x80, 0x2f, 0x9d, 0xe7, 0x2b, 0x2c, 0x71, 0x41, 0x6b, 0x75, 0x6f, 0x4b,\n 0xa6, 0x56, 0x5f, 0x56, 0x16, 0xe0, 0x06, 0x2b, 0x7d, 0xe5, 0x3d, 0x82, 0xbd, 0x06,\n 0xd8, 0x14, 0xa4, 0xdb, 0xa0, 0xae, 0xd4, 0xe9, 0x7b, 0x76, 0xe1, 0xda, 0x53, 0x21,\n 0xdb, 0x87, 0x85, 0x11, 0x96, 0x86, 0xf0, 0x15, 0x36, 0x70, 0x29, 0x3e, 0x7b, 0xfc,\n 0xcd, 0xfe, 0x11, 0xf5, 0x28, 0x6c, 0x19, 0x3a, 0xff, 0xa0, 0xb1, 0x71, 0x38, 0x3e,\n 0x58, 0x91, 0xef, 0x23, 0xdd, 0xf8, 0x59, 0xc9, 0x1a, 0x5e, 0xbb, 0xd0, 0x10, 0x7b,\n 0x1b, 0xcd, 0xea, 0x71, 0xf0, 0x57, 0x76, 0x4c, 0x88, 0x09, 0x57, 0xca, 0xe1, 0xcb,\n 0xa0, 0xa4, 0xf4, 0x48, 0xba, 0xc0, 0x6a, 0x3f, 0xbd, 0x78, 0xd0, 0xd4, 0xda, 0xd0,\n 0x8b, 0x8f, 0xff, 0xb8, 0x29, 0x9f, 0x00, 0x30, 0x30, 0xf8, 0x48, 0x89, 0x9f, 0x3b,\n 0xe0, 0x84, 0x72, 0x3a, 0x0c, 0xa0, 0x2d, 0xb3, 0x0a, 0x85, 0xa5, 0x6e, 0x1b, 0xef,\n 0xa9, 0xaa, 0x23, 0x31, 0x96, 0x99, 0xd5, 0x6d, 0x27, 0x0c, 0xcb, 0xda, 0x9e, 0x8f,\n 0x46, 0xd0, 0x9d, 0x66, 0x99, 0xa8, 0x1b, 0x8b, 0x29, 0xf7, 0xa0, 0x0d, 0xeb, 0x1d,\n 0xf8, 0x72, 0x35, 0x9d, 0x2d, 0x8d, 0xc6, 0x8f, 0xec, 0x4e, 0x89, 0x18, 0x93, 0xa1,\n 0xbf, 0xe0, 0x4a, 0x91, 0x30, 0x58, 0x3b, 0xcf, 0xb6, 0xa7, 0x7f, 0xe0, 0xc2, 0x1e,\n 0x80, 0xa0, 0x8f, 0x75, 0x72, 0x16, 0xf1, 0x40, 0x06, 0xd6, 0x4d, 0xce, 0x23, 0x76,\n 0x25, 0x1e, 0x2d, 0xdf, 0xc3, 0x13, 0xeb, 0xa6, 0x38, 0xce, 0xd1, 0xde, 0x5f, 0x14,\n 0xe4, 0x93, 0x56, 0x76, 0x84, 0x23, 0xa0, 0xa2, 0x45, 0x15, 0x96, 0x88, 0x51, 0x27,\n 0x44, 0x8f, 0x3d, 0x61, 0x0c, 0x8a, 0x63, 0x22, 0x85, 0x05, 0x70, 0xf2, 0x21, 0x39,\n 0x57, 0x60, 0x57, 0x72, 0x2d, 0xe9, 0x6a, 0x9a, 0xeb, 0x25, 0xa4, 0xa0, 0x63, 0xd2,\n 0xdd, 0x75, 0x2e, 0xa9, 0x4c, 0x03, 0x33, 0x1a, 0x4d, 0x45, 0x97, 0x92, 0xc2, 0x66,\n 0x6d, 0x15, 0x6c, 0x4b, 0x5f, 0x58, 0x38, 0x01, 0xc1, 0x2f, 0x42, 0xc2, 0x40, 0xee,\n 0x79, 0xd0, 0xa0, 0xd6, 0x2f, 0x4d, 0xf8, 0x19, 0x8b, 0x1c, 0x79, 0x6c, 0xaf, 0x1f,\n 0xe5, 0x2c, 0xeb, 0xab, 0x63, 0x67, 0x9d, 0x06, 0x16, 0x8d, 0xa6, 0x26, 0xdb, 0x04,\n 0x7f, 0x76, 0xa1, 0x39, 0xae, 0x8e, 0x21, 0xa0, 0xf7, 0x6b, 0x3b, 0x27, 0xb0, 0xfc,\n 0x61, 0x2e, 0xb0, 0x54, 0x61, 0xa7, 0x14, 0xe9, 0x22, 0xa6, 0x90, 0xcd, 0x56, 0xe0,\n 0x33, 0x6a, 0x0a, 0x83, 0x9b, 0x20, 0x46, 0xb0, 0xad, 0x24, 0xaa, 0xe2, 0xa0, 0x08,\n 0x8e, 0x66, 0xe3, 0xc7, 0xec, 0x61, 0xc2, 0xd4, 0x5d, 0xd3, 0xce, 0xb3, 0x9c, 0x49,\n 0xc6, 0x50, 0x04, 0x74, 0x7a, 0x65, 0x14, 0x2b, 0xb4, 0x8d, 0x3a, 0x93, 0x03, 0x9f,\n 0x6c, 0x70, 0x73, 0xa0, 0xd5, 0x27, 0x3e, 0x84, 0x4f, 0x01, 0xce, 0x69, 0x11, 0x0d,\n 0xe3, 0x17, 0x91, 0x7d, 0x7d, 0xc1, 0x05, 0xf3, 0x45, 0x9e, 0x8b, 0x70, 0xc9, 0xf2,\n 0xad, 0xd4, 0xec, 0xa8, 0xd4, 0x1c, 0xb1, 0xbc, 0xa0, 0xf0, 0x04, 0x6d, 0x08, 0xb8,\n 0x17, 0x8a, 0x5d, 0x74, 0x13, 0xaf, 0x84, 0xc2, 0xc6, 0x3d, 0x9a, 0xa2, 0xdc, 0x11,\n 0xe5, 0x52, 0x3d, 0x9d, 0x0f, 0x0f, 0x8a, 0x56, 0x6b, 0x49, 0x43, 0x10, 0x09, 0x80,\n ],\n [\n 0xf9, 0x01, 0xd1, 0x80, 0xa0, 0x4d, 0xa8, 0xf4, 0xc0, 0x7c, 0x24, 0x30, 0x58, 0x83,\n 0x79, 0xc4, 0x8b, 0x2f, 0x15, 0x75, 0x2d, 0x7f, 0x9b, 0x5c, 0x7a, 0x6d, 0x3e, 0xe6,\n 0x8e, 0x47, 0xa1, 0x1e, 0x5e, 0x22, 0x02, 0x7d, 0x7a, 0xa0, 0x55, 0xf6, 0x1f, 0x55,\n 0x0c, 0xf0, 0xf1, 0xc4, 0xa1, 0xb6, 0xa5, 0xee, 0x4a, 0x4f, 0xd0, 0x25, 0x01, 0x1e,\n 0x57, 0x86, 0x46, 0xbb, 0x33, 0xb9, 0x4d, 0x08, 0x73, 0xcf, 0x45, 0xd8, 0xf6, 0x21,\n 0xa0, 0x13, 0x07, 0x4f, 0x8f, 0x9f, 0x38, 0x0f, 0x4f, 0x91, 0xad, 0xfa, 0xea, 0xf6,\n 0xbe, 0x9f, 0xb2, 0x03, 0x7e, 0x0a, 0x96, 0x4c, 0x91, 0x57, 0x88, 0x62, 0xc9, 0xcd,\n 0x51, 0xdb, 0x57, 0xc9, 0x0f, 0xa0, 0x50, 0xa9, 0x73, 0x64, 0x1b, 0x47, 0x11, 0xec,\n 0x3f, 0xd3, 0xad, 0x36, 0x78, 0x98, 0x9a, 0xc9, 0x81, 0xd6, 0x20, 0x69, 0x6d, 0xc3,\n 0x5d, 0xe3, 0x64, 0x7e, 0x40, 0x66, 0xa8, 0x7f, 0xea, 0x1c, 0xa0, 0x87, 0xa2, 0xb9,\n 0x4b, 0xa7, 0x5a, 0x0c, 0xa4, 0x9a, 0x88, 0xbb, 0xb3, 0xa2, 0xcb, 0xca, 0x70, 0xe2,\n 0xb9, 0x8c, 0xa2, 0x97, 0x30, 0x37, 0x0f, 0x57, 0x6d, 0x8a, 0x4b, 0x1e, 0x53, 0x11,\n 0x99, 0xa0, 0xf2, 0x29, 0x88, 0x55, 0x37, 0x5e, 0xb8, 0xee, 0x8e, 0x16, 0xe4, 0x1b,\n 0x37, 0x9b, 0x41, 0xb0, 0x4f, 0x65, 0xfa, 0xd7, 0x31, 0x2c, 0x58, 0xfa, 0xc3, 0x58,\n 0x3e, 0x5e, 0xcb, 0x61, 0x43, 0x36, 0xa0, 0x41, 0xa2, 0xa0, 0x75, 0xec, 0x7c, 0x55,\n 0xce, 0x0e, 0x90, 0xee, 0x76, 0xd0, 0x81, 0xd7, 0x8f, 0x09, 0xf5, 0x40, 0x94, 0x5d,\n 0xd3, 0x50, 0xc3, 0xe4, 0x4b, 0xc8, 0x09, 0xe8, 0xb6, 0x73, 0xf0, 0x80, 0xa0, 0xe3,\n 0x0b, 0xa6, 0x17, 0xc9, 0x84, 0x0f, 0x40, 0x7a, 0x35, 0x1a, 0x6f, 0xbb, 0xe6, 0x59,\n 0xb5, 0xd1, 0x87, 0x86, 0xe5, 0x4e, 0x00, 0x23, 0x2a, 0xeb, 0x98, 0xa7, 0x1d, 0x94,\n 0x3a, 0x2e, 0xc9, 0xa0, 0x31, 0x26, 0xff, 0x24, 0x92, 0x90, 0xdd, 0x63, 0x45, 0x53,\n 0xf8, 0xe2, 0xb8, 0x3d, 0x5a, 0x0a, 0x14, 0x90, 0x2f, 0xe5, 0x21, 0xb0, 0x27, 0x34,\n 0x62, 0x3a, 0xf0, 0xaf, 0x9d, 0x78, 0x83, 0x3d, 0xa0, 0x03, 0xda, 0x4a, 0xd5, 0xd0,\n 0x6a, 0x6b, 0x1b, 0x0d, 0x30, 0x0a, 0x26, 0x27, 0xb3, 0x97, 0x31, 0xbe, 0xb1, 0x20,\n 0xdd, 0x65, 0x79, 0xab, 0x5b, 0x0e, 0x05, 0xbe, 0xc2, 0xb6, 0x79, 0xe0, 0xac, 0xa0,\n 0xb9, 0x5c, 0xa4, 0x83, 0xae, 0xbc, 0x19, 0xd7, 0x27, 0xfb, 0x40, 0x97, 0xf2, 0x30,\n 0x63, 0x3e, 0x6b, 0x5c, 0xc3, 0x3d, 0xfd, 0x1c, 0xce, 0x94, 0x06, 0x92, 0x13, 0x8f,\n 0x90, 0x2a, 0x2e, 0xf0, 0xa0, 0xfd, 0xdb, 0x15, 0xb6, 0xdf, 0x2c, 0xf5, 0xeb, 0xd7,\n 0x5c, 0x8d, 0x95, 0x55, 0x79, 0x64, 0x4b, 0x5b, 0xdf, 0xf8, 0xcc, 0xd5, 0xe9, 0xbb,\n 0xa7, 0x7f, 0xf8, 0x98, 0x42, 0x08, 0xac, 0xda, 0xff, 0xa0, 0x00, 0x45, 0x70, 0x24,\n 0x66, 0xc4, 0xfb, 0xd2, 0x14, 0xad, 0xba, 0x3c, 0x21, 0xae, 0x4d, 0xde, 0x0d, 0x59,\n 0xf0, 0x33, 0xc7, 0x92, 0xe9, 0x4c, 0xf3, 0xc1, 0xe4, 0x9e, 0xf9, 0x51, 0xfb, 0x27,\n 0xa0, 0xbe, 0x91, 0xef, 0xc6, 0x38, 0x96, 0x28, 0xd9, 0x10, 0xb5, 0x8a, 0xf6, 0x74,\n 0x49, 0xd4, 0x27, 0xb4, 0x2b, 0x8c, 0x30, 0x2d, 0x05, 0xfe, 0x10, 0x98, 0x0b, 0x01,\n 0x37, 0xa0, 0xdb, 0xf3, 0xd0, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0xf8, 0x51, 0x80, 0xa0, 0xbc, 0x43, 0x11, 0x7f, 0x1b, 0x42, 0x1e, 0x4a, 0xd0, 0x7c,\n 0x91, 0xae, 0x86, 0xf5, 0x1a, 0xca, 0x7d, 0x4d, 0x51, 0x46, 0xa7, 0x37, 0x6d, 0x1f,\n 0xff, 0x58, 0x6b, 0xce, 0x02, 0x21, 0xdc, 0x75, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,\n 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0xa0, 0x58, 0xa9, 0x36, 0xbb, 0xb3, 0xa5, 0x48,\n 0x29, 0xbd, 0x37, 0x12, 0x44, 0xa9, 0x42, 0x81, 0x2e, 0x11, 0x30, 0xc2, 0x85, 0x2b,\n 0x25, 0xe9, 0x85, 0xae, 0xe2, 0xb9, 0xfc, 0x50, 0xa7, 0xd3, 0x47, 0x80, 0x80, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n ];\n let storage_leaf = [\n 0xec, 0x9e, 0x3f, 0x9a, 0x85, 0x4d, 0xe2, 0x83, 0x3f, 0xd2, 0x17, 0x93, 0x51, 0x14, 0x08,\n 0x77, 0xfd, 0x92, 0x0a, 0x15, 0x98, 0x00, 0xdc, 0x1c, 0x13, 0x9b, 0x4e, 0x8e, 0x4b, 0x59,\n 0x65, 0x7b, 0x8c, 0x8b, 0x02, 0x7b, 0x7c, 0x89, 0x36, 0x14, 0x8e, 0xc1, 0xa0, 0x00, 0x01,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ];\n let storage_depth = 6;\n\n main(\n signature,\n message_hash,\n pub_key_x,\n pub_key_y,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n storage_value,\n 8453,\n 0,\n 0x0000000000000000000000000000000000000000,\n balance_slot,\n verified_balance,\n );\n}\n","path":"/Users/kartik/projects/anoncast/packages/zk/circuits/erc20-balance/src/main.nr"},"71":{"source":"use crate::bytes::{byte_to_nibbles, bytes_as_nibbles};\nuse crate::rlp::{\n decode_rlp_header, decode_rlp_list_fragments, encode_rlp_string, RLP_DATA_TYPE_LIST,\n RlpFragment,\n};\nuse dep::std::hash::keccak256;\n\npub fn verify<let NODES_LEN: u32>(\n key: [u8; 32],\n value: [u8; 32],\n storage_hash: [u8; 32],\n nodes: [[u8; 532]; NODES_LEN],\n leaf: [u8; 69],\n depth: u32,\n) {\n let key_hash = get_key_hash(key);\n let nibbles = bytes_as_nibbles(key_hash);\n\n let mut key_index = 0;\n let mut curr_hash = storage_hash;\n for i in 0..NODES_LEN {\n if i < depth - 1 {\n let node = nodes[i];\n\n // Decode RLP header\n let rlp_header = decode_rlp_header(node);\n assert(rlp_header.data_type == RLP_DATA_TYPE_LIST, \"Invalid data type\");\n\n // Validate node hash\n let node_hash: [u8; 32] = get_node_hash(rlp_header, node);\n assert(node_hash == curr_hash, \"Invalid hash\");\n\n // Create next hash\n let rlp_list: BoundedVec<RlpFragment, 17> = decode_rlp_list_fragments(rlp_header, node);\n let index = if rlp_list.len() == 17 {\n nibbles[key_index] as u32\n } else {\n 1\n };\n\n let rlp_item = rlp_list.get(index);\n assert(rlp_item.length == 32, \"Invalid length\");\n curr_hash = copy(node, rlp_item.offset);\n key_index += 1;\n }\n }\n\n // Verify leaf\n let rlp_header = decode_rlp_header(leaf);\n assert(rlp_header.data_type == RLP_DATA_TYPE_LIST, \"Invalid data type\");\n\n let resolved_hash = get_node_hash(rlp_header, leaf);\n assert(resolved_hash == curr_hash, \"Invalid hash\");\n\n let rlp_list: BoundedVec<RlpFragment, 2> = decode_rlp_list_fragments(rlp_header, leaf);\n assert(rlp_list.len() == 2, \"Invalid length\");\n\n let leaf_key_item = rlp_list.get(0);\n let leaf_key = get_leaf_key(leaf, leaf_key_item);\n\n for i in 0..59 {\n if (i < leaf_key.len()) & (key_index + i < nibbles.len()) {\n assert(leaf_key[i] == nibbles[key_index + i], \"Key mismatch in the leaf\");\n }\n }\n\n key_index += leaf_key.len();\n assert(key_index >= nibbles.len(), \"Expected to consume all key nibbles\");\n\n let leaf_value = rlp_list.get(1);\n for i in 0..32 {\n assert(leaf[leaf_value.offset + i] == value[i], \"Value mismatch\");\n }\n}\n\nfn get_leaf_key(leaf: [u8; 69], rlp_fragment: RlpFragment) -> [u8] {\n let (prefix, _) = byte_to_nibbles(leaf[rlp_fragment.offset]);\n assert((prefix == 2) | (prefix == 3), \"Leaf parity prefix must be 2 or 3\");\n\n let prefixed_key_bytes: [u8; 32] = copy(leaf, rlp_fragment.offset);\n let prefixed_key_nibbles: [u8] = bytes_as_nibbles(prefixed_key_bytes).as_slice();\n let (prefix, key_nibbles) = prefixed_key_nibbles.pop_front();\n if (prefix % 2 == 0) {\n let (parity_prefix, key_nibbles) = key_nibbles.pop_front();\n assert(parity_prefix == 0, \"Parity prefix must be 0\");\n key_nibbles\n } else {\n key_nibbles\n }\n}\n\nunconstrained fn copy<let N: u32, let M: u32>(arr: [u8; N], offset: u32) -> [u8; M] {\n let mut result: [u8; M] = [0; M];\n for i in 0..M {\n result[i] = arr[offset + i];\n }\n result\n}\n\nunconstrained fn get_key_hash(key: [u8; 32]) -> [u8; 32] {\n let key_hash = keccak256(key, 32);\n key_hash\n}\n\nunconstrained fn get_node_hash<let NODE_LEN: u32>(\n rlp_header: RlpFragment,\n node: [u8; NODE_LEN],\n) -> [u8; 32] {\n let node_len = rlp_header.length + rlp_header.offset;\n let resolved_hash: [u8; 32] = keccak256(node, node_len);\n resolved_hash\n}\n\npub fn get_storage_key<let N: u32>(values: [[u8; 32]; N]) -> [u8; 32] {\n let mut input: [u8; N * 32] = [0; N * 32];\n for i in 0..N {\n for j in 0..32 {\n input[i * 32 + j] = values[i][j];\n }\n }\n let key = keccak256(input, input.len());\n key\n}\n\npub fn get_storage_value(field: Field) -> [u8; 32] {\n let value_bytes: [u8; 32] = field.to_be_bytes();\n let value_rlp = encode_rlp_string(value_bytes);\n value_rlp\n}\n\n#[test]\nfn test_extension_node() {\n let key = [\n 0x5a, 0x2c, 0x22, 0x15, 0x9a, 0x93, 0x50, 0x4b, 0xef, 0x3f, 0x17, 0x41, 0x08, 0xe0, 0x22,\n 0xfc, 0x5e, 0x36, 0xef, 0xba, 0xf4, 0x1d, 0xb9, 0xf4, 0x7c, 0x9e, 0x91, 0x1c, 0x5a, 0x84,\n 0x33, 0x6a,\n ];\n let storage_value = 0x10f0cf064dd59200000;\n let storage_hash = [\n 0x34, 0xde, 0x45, 0x97, 0x59, 0x37, 0x39, 0xe9, 0xc8, 0xa3, 0x4e, 0x06, 0x86, 0xe2, 0xf5,\n 0x97, 0xd9, 0x07, 0xad, 0x36, 0x90, 0xaa, 0x76, 0xa4, 0x33, 0xe8, 0xc0, 0x9c, 0x8a, 0x7f,\n 0x06, 0x93,\n ];\n let storage_nodes = [\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x28, 0xa7, 0x1c, 0xcb, 0x5a, 0xaa, 0x3c, 0x97, 0xb4, 0x88,\n 0x94, 0xb6, 0x02, 0xbd, 0x09, 0x03, 0x9e, 0x4c, 0x29, 0x56, 0x89, 0xc4, 0xe5, 0xa9,\n 0xff, 0xbd, 0x70, 0xa9, 0xea, 0x63, 0x25, 0x67, 0xa0, 0x32, 0x24, 0xfd, 0x1a, 0x2c,\n 0x31, 0x0b, 0xfa, 0x08, 0x94, 0xa6, 0xea, 0x97, 0x22, 0xea, 0x6b, 0x8c, 0x7b, 0xe8,\n 0xf6, 0xdc, 0xd8, 0xf3, 0x9b, 0xcf, 0xa9, 0x9f, 0x99, 0xe4, 0xeb, 0x83, 0xff, 0xa0,\n 0x88, 0xc4, 0xc8, 0xea, 0xd8, 0x65, 0x4f, 0xa4, 0xbc, 0xb4, 0xce, 0xcf, 0x6b, 0xf0,\n 0x81, 0x17, 0x86, 0x10, 0x95, 0x5a, 0xfd, 0xf8, 0x1a, 0xb0, 0x6e, 0x6a, 0xb0, 0x1d,\n 0xb0, 0x8b, 0x3e, 0xa1, 0xa0, 0x44, 0x55, 0x33, 0x69, 0xd1, 0xbb, 0x02, 0x51, 0x2d,\n 0xab, 0x9f, 0x79, 0x3d, 0xdb, 0x0b, 0x2e, 0x8f, 0x8f, 0x1e, 0x83, 0x73, 0x86, 0x45,\n 0xe4, 0x72, 0x52, 0x5b, 0x0b, 0x14, 0xb1, 0x2a, 0xff, 0xa0, 0xf6, 0xc0, 0xea, 0xb0,\n 0x56, 0x14, 0xc9, 0x6f, 0x8d, 0x66, 0x44, 0x5a, 0xb5, 0x38, 0xba, 0x0f, 0x9d, 0x09,\n 0xa5, 0x9e, 0xd8, 0x1e, 0x00, 0x6d, 0xa5, 0xd9, 0x75, 0x0e, 0xb8, 0xcf, 0x12, 0x22,\n 0xa0, 0xe6, 0xfd, 0x1f, 0x02, 0x97, 0xcc, 0xda, 0x50, 0xa1, 0xa0, 0x2c, 0xa8, 0x03,\n 0x78, 0x9d, 0x29, 0xb7, 0xa7, 0xa5, 0x55, 0x33, 0x6b, 0x8f, 0xa5, 0x80, 0x9e, 0xa6,\n 0xf8, 0x1f, 0x97, 0x48, 0xed, 0xa0, 0xd2, 0x88, 0x65, 0x35, 0x91, 0x97, 0x3c, 0xb5,\n 0x76, 0x01, 0x73, 0x30, 0x46, 0xd2, 0x56, 0x8d, 0x49, 0xaa, 0x29, 0x36, 0xbf, 0x86,\n 0x6c, 0x37, 0x5e, 0x0b, 0x27, 0x0c, 0x98, 0x91, 0xcd, 0x12, 0xa0, 0xcc, 0x5a, 0x91,\n 0x26, 0xf5, 0x10, 0x1a, 0x7e, 0xb7, 0xd7, 0xd4, 0x32, 0x19, 0x39, 0x80, 0xaa, 0xa2,\n 0x42, 0xd0, 0x17, 0x64, 0x4c, 0xd3, 0xe5, 0x2c, 0x56, 0x2d, 0xdb, 0x9d, 0x57, 0x0b,\n 0x68, 0xa0, 0x6c, 0x0a, 0xc4, 0x76, 0x9b, 0xc7, 0xfa, 0xd2, 0x23, 0xf5, 0x9f, 0xb4,\n 0x85, 0x8c, 0x45, 0x85, 0xa9, 0xfe, 0x35, 0x5d, 0x65, 0xb8, 0xa0, 0x80, 0xe1, 0x7b,\n 0xaa, 0x29, 0x11, 0x5d, 0x8f, 0x20, 0xa0, 0x9d, 0x4c, 0x6e, 0x37, 0x00, 0xd0, 0x21,\n 0x66, 0xb4, 0x84, 0xb6, 0x90, 0x08, 0x4a, 0xca, 0x04, 0xde, 0x16, 0x88, 0xa6, 0xb5,\n 0x2a, 0x3f, 0xc7, 0xc7, 0xd9, 0xf6, 0x13, 0x75, 0x47, 0xcd, 0xdb, 0xa0, 0x51, 0xc1,\n 0x79, 0x4b, 0x97, 0xf1, 0x49, 0x0a, 0xfe, 0x3e, 0x04, 0xff, 0xc9, 0x47, 0x2c, 0x49,\n 0x6f, 0xb7, 0x98, 0x4f, 0xf3, 0xe3, 0x56, 0xc6, 0xff, 0x3b, 0xf9, 0x95, 0x3c, 0xbf,\n 0x4a, 0x39, 0xa0, 0xdd, 0xf1, 0x09, 0x06, 0xfb, 0x66, 0x45, 0x78, 0xe5, 0x8b, 0xdc,\n 0x86, 0xa3, 0x1f, 0x84, 0xd2, 0xda, 0xac, 0xd7, 0x12, 0xab, 0x7d, 0xbe, 0x4a, 0x93,\n 0xaf, 0x57, 0x33, 0xfc, 0xe2, 0x58, 0x8c, 0xa0, 0xe8, 0xdd, 0xe7, 0x0e, 0xf4, 0x76,\n 0x34, 0x88, 0x80, 0xb3, 0x71, 0xda, 0xaa, 0xae, 0xa6, 0xcc, 0x14, 0xa0, 0x72, 0xb3,\n 0x54, 0xc7, 0x8c, 0x14, 0xdd, 0x22, 0x3a, 0x94, 0x47, 0xe2, 0xfe, 0x9a, 0xa0, 0x51,\n 0xd0, 0xa8, 0xd0, 0x7e, 0x98, 0x8d, 0xa3, 0xd7, 0x5f, 0x99, 0x3d, 0xeb, 0x12, 0xa1,\n 0x0d, 0x7f, 0x16, 0x11, 0x51, 0x00, 0x29, 0x11, 0xb2, 0x52, 0x2e, 0x70, 0xd4, 0xab,\n 0xae, 0x40, 0x05, 0xa0, 0xb6, 0x2f, 0xd4, 0x3d, 0x5c, 0xd4, 0x42, 0x29, 0xc1, 0x02,\n 0xba, 0x61, 0x68, 0x8a, 0x73, 0x50, 0x79, 0xdd, 0xbe, 0xae, 0x36, 0x19, 0xc7, 0x3b,\n 0x85, 0x2e, 0x4d, 0xe0, 0x6a, 0x17, 0xc6, 0x45, 0xa0, 0x34, 0xb7, 0x65, 0xe4, 0x01,\n 0x0e, 0x6c, 0xa4, 0x50, 0x75, 0xbc, 0x17, 0x62, 0x9d, 0x1a, 0x97, 0xb8, 0xf4, 0x82,\n 0x8f, 0xa9, 0x20, 0x54, 0x64, 0x2d, 0x3d, 0x5e, 0x03, 0x5c, 0x28, 0x06, 0x57, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x56, 0xaa, 0xc2, 0x80, 0x10, 0x2f, 0xa7, 0xc4, 0x9f, 0xa6,\n 0xba, 0xa3, 0x31, 0xa2, 0x47, 0x45, 0x90, 0x1d, 0x33, 0x24, 0xbb, 0x75, 0x98, 0x1b,\n 0x33, 0xf0, 0xb8, 0x53, 0xb6, 0x62, 0xb7, 0x35, 0xa0, 0x77, 0x55, 0xbe, 0xe7, 0x1d,\n 0x77, 0x54, 0xca, 0x81, 0x21, 0xc1, 0x5c, 0xff, 0xef, 0x3d, 0xeb, 0xb8, 0xd2, 0x3d,\n 0x22, 0xdb, 0x53, 0x14, 0x15, 0xb0, 0xd2, 0x67, 0x09, 0xad, 0x22, 0x2b, 0xcc, 0xa0,\n 0xea, 0x48, 0x65, 0x3b, 0x32, 0x09, 0xcc, 0x7b, 0x75, 0x66, 0x7a, 0x15, 0xec, 0xb7,\n 0xbd, 0x08, 0xee, 0x55, 0x25, 0x60, 0x01, 0xa6, 0xfa, 0xa6, 0x2d, 0x4b, 0xeb, 0x23,\n 0x54, 0x7a, 0xdf, 0x56, 0xa0, 0xe8, 0xaf, 0x8c, 0xbe, 0x69, 0x16, 0x05, 0xd9, 0x50,\n 0x9b, 0xce, 0x5f, 0x95, 0xe9, 0x9f, 0x1a, 0x98, 0xef, 0xd3, 0xe7, 0x14, 0x41, 0xa0,\n 0x95, 0xd2, 0x83, 0xbd, 0x85, 0x5c, 0xb8, 0x3e, 0x04, 0xa0, 0x6d, 0x22, 0x70, 0x5c,\n 0xa5, 0x7c, 0x20, 0xb0, 0x72, 0x18, 0xd9, 0x3b, 0xcb, 0xfc, 0xcb, 0xc7, 0x13, 0xd5,\n 0x93, 0x82, 0xb0, 0xf6, 0x0b, 0xb2, 0x9b, 0x3b, 0xd4, 0x57, 0x2f, 0x9b, 0x1c, 0x2e,\n 0xa0, 0xc1, 0xfa, 0x7f, 0x64, 0xa7, 0x0c, 0x00, 0x9a, 0x5b, 0x4f, 0x05, 0xfd, 0x72,\n 0x18, 0xe5, 0xc3, 0x89, 0x8d, 0x9c, 0x54, 0xb5, 0x3d, 0x3e, 0xbb, 0xfa, 0x96, 0x59,\n 0xe1, 0x0e, 0x6b, 0x10, 0x5f, 0xa0, 0xef, 0x50, 0xe1, 0xbf, 0x33, 0xc0, 0xaa, 0x29,\n 0x7a, 0x52, 0x9d, 0xe8, 0xd2, 0x0c, 0xb0, 0xee, 0x00, 0x12, 0x1e, 0x9a, 0x74, 0xdd,\n 0x94, 0x46, 0xfe, 0xe5, 0xd8, 0xe9, 0xb5, 0xb8, 0x1e, 0x46, 0xa0, 0x57, 0xa6, 0x13,\n 0xff, 0x1d, 0x2d, 0xaf, 0x80, 0x34, 0x36, 0x01, 0xa8, 0xb4, 0x26, 0x5d, 0x4a, 0x69,\n 0x4c, 0x8c, 0x78, 0x7e, 0x91, 0x71, 0x73, 0xa4, 0x9c, 0x5a, 0x11, 0xc5, 0x8b, 0xda,\n 0x8e, 0xa0, 0xb1, 0xc0, 0x8e, 0xb9, 0x55, 0x73, 0xab, 0x5e, 0x5f, 0xa8, 0xdd, 0xb5,\n 0xf7, 0xf3, 0x7d, 0x7d, 0x8a, 0xab, 0xcc, 0x0c, 0x74, 0x80, 0x15, 0x84, 0x64, 0xe0,\n 0x34, 0xcf, 0x86, 0x9d, 0xf5, 0xb8, 0xa0, 0x3e, 0xed, 0x8a, 0xd1, 0x04, 0xde, 0x9b,\n 0xca, 0x13, 0x28, 0xc9, 0x22, 0xdd, 0x8b, 0x3a, 0x94, 0x82, 0x56, 0xe1, 0x7a, 0xc9,\n 0x40, 0x8c, 0x90, 0x65, 0xc5, 0xb1, 0xb2, 0xc2, 0x1c, 0x88, 0xdb, 0xa0, 0xd3, 0x69,\n 0x3d, 0xe8, 0x7b, 0xbe, 0x22, 0x58, 0xc1, 0x52, 0xb4, 0x93, 0x53, 0x71, 0x12, 0xf9,\n 0xf8, 0x2d, 0xac, 0x64, 0x50, 0x36, 0xfe, 0xe3, 0x17, 0x8c, 0x67, 0x66, 0xc7, 0xf9,\n 0x37, 0xf3, 0xa0, 0x40, 0xeb, 0x93, 0xf5, 0x01, 0x70, 0x4a, 0xb5, 0xce, 0x0c, 0x7c,\n 0x51, 0x84, 0x6e, 0xee, 0x54, 0xf9, 0x28, 0xfd, 0x8b, 0xe1, 0x90, 0x3e, 0x65, 0xa0,\n 0x95, 0x64, 0x10, 0x76, 0xc8, 0xa4, 0x47, 0xa0, 0x50, 0x73, 0xa4, 0xe9, 0x3d, 0x9a,\n 0x55, 0xe4, 0x7f, 0xb2, 0x02, 0x63, 0x79, 0x99, 0x54, 0x22, 0xcd, 0xcb, 0xc7, 0x35,\n 0x8a, 0xa4, 0xf9, 0x6f, 0xce, 0x90, 0x5d, 0x3c, 0x48, 0xda, 0x50, 0xfe, 0xa0, 0x2f,\n 0x3e, 0x7e, 0x72, 0xc8, 0x10, 0x8a, 0x29, 0xf3, 0x83, 0x65, 0x51, 0x66, 0xfb, 0x42,\n 0x3a, 0xd8, 0x2e, 0xf3, 0x35, 0x21, 0x87, 0x6d, 0x18, 0xbd, 0x3d, 0x96, 0x35, 0x27,\n 0x00, 0xd4, 0x70, 0xa0, 0x10, 0x6d, 0x69, 0xfe, 0xa8, 0xfa, 0x71, 0x69, 0x0d, 0xaf,\n 0xea, 0xd4, 0x34, 0xac, 0x06, 0xad, 0xe2, 0xcd, 0xd5, 0xd8, 0x69, 0x87, 0x62, 0x55,\n 0x0d, 0x3c, 0x4f, 0x7b, 0x90, 0x63, 0xd5, 0x9b, 0xa0, 0x28, 0xb7, 0xcd, 0x5c, 0x70,\n 0xa5, 0xda, 0x11, 0xce, 0x79, 0xda, 0x74, 0x2e, 0x79, 0xb9, 0xf0, 0xf1, 0x02, 0xa2,\n 0x1d, 0x7a, 0xdf, 0x31, 0xb2, 0xb2, 0x9b, 0x9c, 0xf1, 0x46, 0xfd, 0x42, 0x92, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x80, 0xf6, 0x43, 0xcf, 0xf4, 0x69, 0xbd, 0x2b, 0x75, 0xd7,\n 0x46, 0xad, 0xa3, 0xf5, 0xcf, 0x1b, 0xac, 0xcf, 0xb8, 0xee, 0x12, 0x23, 0x09, 0x49,\n 0x07, 0xbb, 0x0e, 0x60, 0x92, 0x78, 0x8e, 0x4d, 0xa0, 0xdf, 0x6e, 0x72, 0xce, 0x27,\n 0x0e, 0x9e, 0x54, 0x65, 0x27, 0x85, 0x66, 0x62, 0xb5, 0x45, 0xab, 0x70, 0x6f, 0xfd,\n 0x42, 0xda, 0x99, 0xd2, 0xb3, 0x66, 0x76, 0xd7, 0xe3, 0x5f, 0xc0, 0x6f, 0xcf, 0xa0,\n 0x47, 0x17, 0xa5, 0xde, 0xff, 0xfb, 0xc5, 0x9a, 0xbd, 0x1e, 0x38, 0x38, 0x3c, 0xf8,\n 0x65, 0x59, 0x06, 0xe2, 0xae, 0x68, 0xb7, 0x70, 0x5d, 0xe8, 0x11, 0xe3, 0x2e, 0x2d,\n 0x98, 0x53, 0xd3, 0x65, 0xa0, 0xa2, 0x48, 0x0f, 0x7c, 0xdd, 0xe0, 0x4a, 0x37, 0x2a,\n 0xcb, 0xe2, 0x34, 0x36, 0xac, 0xaf, 0x82, 0x99, 0xcf, 0x1d, 0xbc, 0xbe, 0xf8, 0xba,\n 0x5b, 0x42, 0xf8, 0x7a, 0xc1, 0x27, 0xe6, 0x55, 0x5c, 0xa0, 0x29, 0x0e, 0xda, 0x5f,\n 0xc1, 0x9f, 0xca, 0x90, 0xd3, 0x06, 0x3b, 0xa9, 0x6b, 0x5e, 0x13, 0xb2, 0x3f, 0x28,\n 0x6d, 0x57, 0xed, 0x91, 0xd0, 0x80, 0xb9, 0xca, 0xe1, 0xc8, 0xe4, 0x5c, 0xaf, 0xd6,\n 0xa0, 0x02, 0x34, 0x35, 0x35, 0xf7, 0x0f, 0x41, 0x5e, 0x3d, 0x9c, 0x16, 0xfd, 0xff,\n 0xa1, 0x36, 0x3b, 0xd0, 0x79, 0xf0, 0x2b, 0x51, 0xb3, 0x88, 0x18, 0x54, 0xff, 0x17,\n 0xdb, 0xfe, 0x55, 0x23, 0xf9, 0xa0, 0x8f, 0x9a, 0x23, 0xbb, 0x74, 0xd0, 0xb7, 0x65,\n 0x35, 0xdb, 0x37, 0x24, 0x30, 0x6d, 0x29, 0xbc, 0xf5, 0xbb, 0x07, 0x05, 0x97, 0x70,\n 0x22, 0x32, 0x26, 0x18, 0x93, 0x39, 0x7b, 0x4f, 0x7a, 0x1e, 0xa0, 0xa7, 0xa4, 0x24,\n 0x74, 0x9f, 0x95, 0xe8, 0x1c, 0x6b, 0x71, 0xe7, 0x7b, 0x6c, 0xb3, 0xe6, 0x18, 0x3e,\n 0x40, 0x6d, 0x9c, 0x9b, 0x0f, 0xef, 0x45, 0xce, 0x57, 0x46, 0xaa, 0xce, 0x10, 0xf3,\n 0x1f, 0xa0, 0xd1, 0xcd, 0x19, 0x02, 0x5c, 0xb7, 0x8a, 0xba, 0x94, 0x67, 0x07, 0xea,\n 0x7a, 0x3d, 0x36, 0x3c, 0xc2, 0xd6, 0xf9, 0x1a, 0x72, 0xe6, 0xf3, 0xa0, 0x5b, 0x42,\n 0x53, 0x4d, 0x6f, 0x4d, 0x11, 0x2f, 0xa0, 0xdf, 0x25, 0x21, 0x36, 0x74, 0x9f, 0x9e,\n 0xa9, 0x0e, 0xef, 0x15, 0x51, 0x88, 0x28, 0x40, 0xf5, 0xd1, 0x2e, 0xf4, 0xa8, 0x3c,\n 0x5c, 0xfe, 0x81, 0x70, 0x17, 0x91, 0xef, 0xdf, 0xe6, 0xec, 0xcb, 0xa0, 0x19, 0xc0,\n 0xb8, 0x68, 0x06, 0xb1, 0x03, 0xaa, 0x9d, 0xed, 0xb0, 0xa4, 0x70, 0xdd, 0xac, 0xc9,\n 0xd1, 0x11, 0x90, 0x75, 0x58, 0xed, 0x79, 0x6c, 0x58, 0x05, 0x21, 0x14, 0x03, 0x47,\n 0xc8, 0x99, 0xa0, 0x7b, 0x21, 0x30, 0x45, 0x04, 0x78, 0xfd, 0x6b, 0xf8, 0x25, 0x42,\n 0x44, 0x3f, 0x64, 0xf1, 0x57, 0xde, 0xa6, 0x43, 0x69, 0xd8, 0xd9, 0xc1, 0xfc, 0x3c,\n 0xe6, 0x80, 0xd9, 0x27, 0xd7, 0x1b, 0x14, 0xa0, 0xa7, 0x88, 0xdf, 0xcc, 0x27, 0x7b,\n 0xc6, 0xbf, 0x15, 0x5f, 0xeb, 0xff, 0xa7, 0x18, 0xda, 0x71, 0x95, 0xd0, 0x64, 0x2e,\n 0xb8, 0x4e, 0x38, 0x34, 0xc5, 0xfb, 0x33, 0x99, 0x47, 0xb5, 0x3b, 0xb2, 0xa0, 0x19,\n 0x38, 0xd2, 0xff, 0x88, 0xfa, 0xb0, 0x07, 0x8c, 0xd1, 0xff, 0x34, 0x53, 0xbe, 0xae,\n 0x3f, 0x4d, 0x31, 0xc3, 0x45, 0x36, 0xc4, 0xff, 0xc3, 0xba, 0x26, 0xcf, 0x57, 0xd4,\n 0x19, 0xdf, 0xfc, 0xa0, 0xb7, 0xe7, 0x38, 0x57, 0x54, 0x28, 0x34, 0x0c, 0x8a, 0xc7,\n 0xe0, 0x65, 0x9c, 0xca, 0x51, 0x85, 0x57, 0x98, 0x17, 0xa0, 0x45, 0xdf, 0x0d, 0x9d,\n 0x31, 0x24, 0x2d, 0xba, 0x7a, 0xac, 0x08, 0x17, 0xa0, 0x82, 0x20, 0x4e, 0xa9, 0x74,\n 0x64, 0x16, 0xe4, 0xa3, 0x56, 0x4f, 0xde, 0x12, 0x3d, 0x60, 0x9c, 0x17, 0x43, 0x48,\n 0x19, 0xfc, 0x7f, 0x47, 0x29, 0xde, 0x45, 0x9f, 0xd4, 0x5f, 0xe5, 0x87, 0x83, 0x80,\n ],\n [\n 0xf9, 0x01, 0xb1, 0x80, 0xa0, 0x8e, 0x38, 0xfd, 0x86, 0xe5, 0x4b, 0x8a, 0x12, 0x43,\n 0x58, 0x9a, 0x22, 0x9d, 0xb7, 0xcf, 0x04, 0x9c, 0x18, 0xa4, 0xb8, 0xff, 0xb8, 0x27,\n 0xf6, 0x80, 0x36, 0xfa, 0xef, 0x88, 0xae, 0xcd, 0x9a, 0xa0, 0xa5, 0x55, 0x23, 0xc6,\n 0xfc, 0x4b, 0xc1, 0xf7, 0x46, 0xd9, 0xec, 0x50, 0x7f, 0xf4, 0xdf, 0x46, 0x0f, 0xb3,\n 0x58, 0xf9, 0x7f, 0x66, 0xbd, 0x06, 0x11, 0xf0, 0xf2, 0xa6, 0xff, 0x28, 0x23, 0xa9,\n 0x80, 0xa0, 0xb5, 0xc8, 0xe0, 0x56, 0x7f, 0xe1, 0x4c, 0x0d, 0x96, 0x0a, 0x32, 0x31,\n 0xb8, 0x9f, 0x5a, 0xb9, 0x79, 0x73, 0xc9, 0xdc, 0x83, 0xc7, 0x12, 0x6b, 0x2a, 0x39,\n 0xfb, 0xf1, 0xac, 0xa8, 0xb2, 0xb2, 0x80, 0xa0, 0x55, 0x09, 0x98, 0x12, 0xe4, 0x20,\n 0xce, 0x25, 0x48, 0x3f, 0xc4, 0x75, 0x50, 0x3b, 0x0f, 0xcb, 0x6d, 0x7f, 0x8c, 0x78,\n 0x5e, 0xb0, 0x02, 0x9e, 0xeb, 0x78, 0xc1, 0x4c, 0x1c, 0x71, 0x51, 0xcc, 0xa0, 0x68,\n 0x2a, 0x76, 0x86, 0xa1, 0xcf, 0x94, 0xe8, 0xef, 0x0c, 0xc0, 0x13, 0xef, 0x43, 0x93,\n 0xf7, 0x42, 0xa9, 0x0a, 0x10, 0xa8, 0xcc, 0xad, 0xcc, 0x96, 0xc5, 0x4f, 0xfd, 0x10,\n 0x05, 0x05, 0x7b, 0xa0, 0x98, 0xa9, 0x2b, 0xe0, 0x12, 0xe2, 0x1f, 0x6c, 0x29, 0xf5,\n 0xc9, 0x51, 0xc8, 0x48, 0x42, 0x4b, 0x99, 0xf8, 0xca, 0x97, 0x86, 0xca, 0xef, 0x4c,\n 0xc2, 0x19, 0x2e, 0x51, 0x47, 0x23, 0x5d, 0x60, 0xa0, 0x39, 0xc3, 0x38, 0x6e, 0xf5,\n 0xed, 0xb0, 0x5b, 0x00, 0x8e, 0xb2, 0x57, 0xde, 0xd4, 0x67, 0x7f, 0x5e, 0x0a, 0x39,\n 0xc9, 0xea, 0x99, 0x2b, 0x64, 0x7e, 0x43, 0x4e, 0x67, 0x1c, 0xa2, 0x33, 0x63, 0xa0,\n 0xbb, 0x9f, 0x27, 0xc7, 0xe7, 0x7a, 0x3b, 0xed, 0x91, 0x7d, 0x82, 0x6e, 0x14, 0xcb,\n 0x9e, 0x7f, 0x48, 0x18, 0x1e, 0xe0, 0x14, 0x39, 0x02, 0xb9, 0x4c, 0x92, 0xd8, 0x64,\n 0xcc, 0x5c, 0xfc, 0xf1, 0xa0, 0x2c, 0x46, 0xa9, 0xd4, 0x7e, 0x7e, 0x8c, 0x6a, 0x37,\n 0x4c, 0x01, 0x5a, 0x1a, 0x5f, 0x50, 0x21, 0x10, 0x52, 0x77, 0xeb, 0x52, 0xec, 0x74,\n 0x2a, 0xa4, 0x64, 0x87, 0x50, 0xb4, 0x07, 0x7d, 0xd5, 0xa0, 0x55, 0x8b, 0x7a, 0xe0,\n 0xa4, 0x3f, 0x3f, 0xdd, 0x17, 0xbb, 0x30, 0xa5, 0xfa, 0x1b, 0x7d, 0x70, 0x11, 0x15,\n 0xeb, 0x8b, 0x0b, 0x7f, 0xc7, 0xd4, 0x78, 0xad, 0x98, 0xe7, 0x51, 0xf7, 0xe7, 0x01,\n 0xa0, 0x06, 0xb4, 0x34, 0x68, 0x33, 0x9a, 0xdc, 0xfe, 0xb6, 0xc1, 0x2d, 0xbd, 0x6e,\n 0xa3, 0x3b, 0xa9, 0xc4, 0xd7, 0xad, 0x97, 0x68, 0x3c, 0x6a, 0x53, 0x39, 0x4b, 0x3f,\n 0x40, 0x6d, 0x06, 0xb6, 0x48, 0xa0, 0xa9, 0x51, 0x44, 0xcc, 0x87, 0x7d, 0xc0, 0x04,\n 0xd3, 0x6b, 0x36, 0x48, 0x9a, 0x91, 0xa6, 0x21, 0xf0, 0xeb, 0xe6, 0x3b, 0x36, 0x33,\n 0x1c, 0xd5, 0x36, 0xfb, 0x7a, 0x40, 0x86, 0x96, 0xb3, 0xd1, 0xa0, 0x59, 0x9d, 0xaa,\n 0xca, 0x7c, 0x1a, 0x10, 0xbd, 0x9f, 0x12, 0xe0, 0x5a, 0x57, 0xff, 0x66, 0x16, 0xbb,\n 0x5a, 0xc4, 0x00, 0x89, 0x9c, 0x4c, 0xa4, 0x69, 0xa8, 0xd2, 0x07, 0x44, 0x79, 0xa3,\n 0x2e, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0xe2, 0x12, 0xa0, 0xcd, 0xb7, 0x93, 0xcf, 0xa4, 0x0f, 0x9d, 0x96, 0x3c, 0x88, 0xd9,\n 0xf9, 0x67, 0x50, 0x30, 0x13, 0xdf, 0xe9, 0xad, 0x93, 0x33, 0x38, 0xd6, 0xe6, 0x64,\n 0x89, 0x17, 0xc4, 0xc7, 0x8f, 0x16, 0x4a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0xf8, 0x71, 0x80, 0x80, 0x80, 0xa0, 0xdc, 0xc7, 0x71, 0xae, 0x6a, 0x42, 0x35, 0xd3,\n 0x33, 0x9b, 0xbb, 0xf2, 0x04, 0xf6, 0x2e, 0x34, 0x09, 0x72, 0x08, 0xb4, 0x0d, 0x4b,\n 0x02, 0xdc, 0xfb, 0x91, 0x08, 0x00, 0x16, 0x47, 0xdd, 0x60, 0x80, 0x80, 0x80, 0xa0,\n 0xbc, 0x90, 0x80, 0x25, 0x16, 0xd2, 0x72, 0xd0, 0xb6, 0x1a, 0xf7, 0x2f, 0xb9, 0xb2,\n 0x02, 0xf1, 0x19, 0xbd, 0xdd, 0x1b, 0x52, 0x4b, 0x3d, 0x3f, 0xa1, 0xbf, 0x4a, 0x13,\n 0x82, 0xaf, 0xcb, 0x53, 0x80, 0x80, 0x80, 0x80, 0x80, 0xa0, 0xfd, 0x92, 0x65, 0xd7,\n 0x1e, 0x60, 0x5a, 0x77, 0x8d, 0x0d, 0x80, 0x23, 0x4e, 0x4b, 0xaa, 0xf4, 0x17, 0x01,\n 0x60, 0xf1, 0x4c, 0xd1, 0x19, 0xd2, 0x2d, 0x53, 0xd3, 0x34, 0xed, 0xb9, 0x88, 0xaf,\n 0x80, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n ];\n let storage_leaf = [\n 0xeb, 0x9e, 0x20, 0x2d, 0x80, 0x77, 0x15, 0x55, 0x8b, 0x0e, 0x74, 0x16, 0x55, 0x33, 0x9a,\n 0x57, 0x47, 0xd4, 0xc8, 0x73, 0xa2, 0x36, 0xe6, 0x52, 0xb0, 0x2c, 0xf1, 0x7d, 0xfa, 0x2a,\n 0xe4, 0xc2, 0x8b, 0x8a, 0x01, 0x0f, 0x0c, 0xf0, 0x64, 0xdd, 0x59, 0x20, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ];\n let storage_depth = 7;\n\n let value = get_storage_value(storage_value);\n\n verify(\n key,\n value,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n );\n}\n\n#[test]\nfn test_leaf() {\n let key = [\n 0xd2, 0xfd, 0xbe, 0x6a, 0xe5, 0x06, 0x6a, 0x91, 0x19, 0x14, 0xd5, 0xf5, 0x45, 0x84, 0xaf,\n 0xbb, 0xf8, 0xbe, 0x02, 0x1c, 0x12, 0x4f, 0x4c, 0xe7, 0x0d, 0xf1, 0xae, 0x5a, 0xf2, 0x2d,\n 0x0a, 0xf5,\n ];\n let storage_value = 0x21e19e0c9bab2400000;\n let storage_hash = [\n 0x58, 0x64, 0xda, 0x37, 0xf3, 0xad, 0xb7, 0x02, 0x97, 0x46, 0x48, 0x59, 0x12, 0xd3, 0x83,\n 0x8a, 0x09, 0x9b, 0x77, 0x85, 0x24, 0x5f, 0x5d, 0x1c, 0xba, 0xd2, 0x48, 0x3c, 0x77, 0xe5,\n 0xb9, 0xb8,\n ];\n let storage_nodes = [\n [\n 0xf9, 0x02, 0x11, 0xa0, 0xf1, 0x5a, 0xd0, 0x08, 0x86, 0xfb, 0x23, 0x2f, 0x6b, 0x11,\n 0xf6, 0xb5, 0xc8, 0xa5, 0x24, 0xcc, 0xf6, 0x0d, 0xb1, 0xf2, 0xb9, 0xb6, 0x24, 0x23,\n 0x8c, 0x69, 0x9d, 0xba, 0x5b, 0xff, 0x32, 0xcc, 0xa0, 0x63, 0xd9, 0xe6, 0xfd, 0xca,\n 0x9a, 0x48, 0xca, 0xed, 0x0e, 0xd1, 0x33, 0x79, 0x86, 0x4b, 0x0b, 0xe3, 0xa1, 0xdc,\n 0xc4, 0xf2, 0xfe, 0x70, 0x16, 0x53, 0x7e, 0xc7, 0xfa, 0x04, 0x9f, 0x63, 0x39, 0xa0,\n 0xef, 0xba, 0x20, 0xf2, 0x22, 0x10, 0x0b, 0xe4, 0x0c, 0xcd, 0x76, 0x78, 0x95, 0x09,\n 0x1f, 0x45, 0x74, 0x71, 0xa8, 0xa5, 0x3c, 0x8d, 0x11, 0x8d, 0xb3, 0x1c, 0x2b, 0xf8,\n 0xec, 0x90, 0x61, 0x44, 0xa0, 0xe3, 0xb7, 0xc4, 0x1e, 0xd7, 0xc4, 0xe1, 0x68, 0x0f,\n 0x0e, 0xb3, 0xf5, 0x59, 0xec, 0x92, 0xec, 0x46, 0x93, 0x50, 0xda, 0x10, 0x8e, 0x52,\n 0x59, 0xc6, 0xcc, 0x96, 0x1b, 0x8c, 0x61, 0x3c, 0x0b, 0xa0, 0x67, 0xa5, 0x6b, 0xed,\n 0xe6, 0x90, 0x17, 0xc7, 0x79, 0xdd, 0x2e, 0xb2, 0xdd, 0xa8, 0x50, 0xeb, 0x94, 0xf1,\n 0x59, 0x3b, 0xdb, 0x6f, 0xf8, 0xad, 0xa0, 0x8a, 0x1c, 0x71, 0x30, 0xea, 0x22, 0x42,\n 0xa0, 0xa4, 0xff, 0x62, 0xc8, 0xdf, 0x54, 0x1a, 0xd6, 0x7a, 0xb8, 0x1c, 0x75, 0x92,\n 0x1c, 0x9f, 0x66, 0x09, 0xba, 0xe3, 0xcf, 0x37, 0xe0, 0x8e, 0x74, 0x6f, 0x88, 0x7a,\n 0xb3, 0xee, 0xa9, 0x9d, 0xee, 0xa0, 0x83, 0xd6, 0xaa, 0x68, 0xf3, 0xac, 0xf1, 0x61,\n 0xd6, 0x0e, 0x88, 0xb2, 0x3a, 0xbd, 0x71, 0xf2, 0xcd, 0xd8, 0x9c, 0xfe, 0x3f, 0x3c,\n 0xfa, 0x56, 0x89, 0x1a, 0xec, 0xac, 0x46, 0xbb, 0xb2, 0x60, 0xa0, 0xde, 0xd9, 0x98,\n 0xb3, 0x81, 0x6f, 0x64, 0x82, 0x92, 0x9a, 0x7c, 0xc5, 0x04, 0x3e, 0xd5, 0x2e, 0x74,\n 0x66, 0x74, 0x2a, 0x40, 0x51, 0x33, 0xe8, 0xfd, 0x79, 0x73, 0x8e, 0x58, 0x5a, 0x2b,\n 0x41, 0xa0, 0x63, 0x13, 0x0b, 0x03, 0x90, 0x69, 0x73, 0xfe, 0x54, 0x90, 0x75, 0xe7,\n 0x6a, 0x82, 0xc2, 0x42, 0x3c, 0xb5, 0x74, 0x6c, 0x45, 0x32, 0x73, 0x21, 0x89, 0xfb,\n 0x28, 0xd4, 0x95, 0x46, 0xee, 0x3f, 0xa0, 0xe7, 0xe6, 0x52, 0x90, 0x39, 0x1d, 0x0f,\n 0x30, 0xe9, 0x26, 0xdb, 0x82, 0xe3, 0x45, 0xde, 0x5d, 0x3b, 0x6f, 0x29, 0x31, 0xc3,\n 0xf4, 0xa2, 0x39, 0xf7, 0xf8, 0x1f, 0x7f, 0xd2, 0x0e, 0xc6, 0xea, 0xa0, 0xfd, 0x16,\n 0xa9, 0xf5, 0x98, 0xdd, 0xaa, 0x32, 0x9b, 0x54, 0x4d, 0xcd, 0xac, 0xc1, 0xd8, 0x2e,\n 0x6e, 0x20, 0x72, 0xb5, 0x7f, 0x2a, 0x98, 0x4b, 0x6d, 0x7f, 0xb9, 0x95, 0x23, 0xff,\n 0x04, 0xc1, 0xa0, 0x4a, 0x5d, 0x73, 0x80, 0x6d, 0x25, 0x33, 0x4e, 0xfe, 0x03, 0x4a,\n 0x2a, 0xd7, 0x2b, 0xf2, 0x5e, 0xcb, 0xe1, 0x09, 0x78, 0x2c, 0xdb, 0x7d, 0xe9, 0xd0,\n 0x63, 0x2a, 0x74, 0x3e, 0xfd, 0xa4, 0x95, 0xa0, 0x13, 0xdd, 0x76, 0x35, 0xba, 0xde,\n 0x3b, 0xa5, 0x44, 0x85, 0x03, 0x6e, 0xc9, 0x71, 0xa5, 0x57, 0x95, 0xb3, 0xb4, 0x41,\n 0x1a, 0x27, 0x21, 0xab, 0x45, 0x70, 0x45, 0xb5, 0x83, 0x3b, 0x51, 0xf9, 0xa0, 0x93,\n 0x36, 0x91, 0xaa, 0x79, 0xa7, 0x11, 0x09, 0x04, 0xb7, 0x0c, 0x58, 0x77, 0xa7, 0x85,\n 0x60, 0x8e, 0x8c, 0x67, 0x10, 0x96, 0x43, 0x50, 0x68, 0x76, 0xe0, 0x0a, 0xdd, 0x49,\n 0xc1, 0x40, 0x4e, 0xa0, 0x98, 0xe5, 0x9b, 0xae, 0x17, 0xea, 0xa4, 0x8b, 0x0e, 0xcb,\n 0xc5, 0xb0, 0xb5, 0x61, 0x5e, 0x87, 0xb2, 0x8a, 0x8b, 0x20, 0x31, 0x03, 0x01, 0xb6,\n 0xf6, 0x58, 0x8a, 0xfb, 0xcc, 0x88, 0x65, 0x20, 0xa0, 0xb5, 0x20, 0xca, 0xf5, 0x70,\n 0x91, 0xaa, 0x1a, 0xf0, 0x88, 0xb8, 0xea, 0xa1, 0xa9, 0x22, 0x1f, 0x50, 0x2d, 0x6e,\n 0xe7, 0x21, 0x9e, 0x16, 0xf2, 0xe6, 0xed, 0x27, 0x67, 0x16, 0x8b, 0x73, 0x04, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0xb9, 0xb6, 0x8f, 0xef, 0x90, 0x9e, 0xaa, 0x5d, 0x59, 0xc3,\n 0xcb, 0x3c, 0xab, 0x0e, 0xdc, 0x57, 0xc5, 0x09, 0x5c, 0x9e, 0x3e, 0xa5, 0xea, 0x0a,\n 0x94, 0xbb, 0x15, 0x08, 0x31, 0x25, 0xf6, 0xf0, 0xa0, 0x2c, 0x33, 0xf1, 0x64, 0xbd,\n 0x72, 0xa7, 0x7b, 0xf5, 0x33, 0x6d, 0xac, 0x20, 0xb3, 0x97, 0x55, 0xd9, 0xb8, 0xfa,\n 0x28, 0xa8, 0x9e, 0x17, 0x54, 0xe4, 0x03, 0x08, 0xbc, 0x11, 0xdf, 0x85, 0x2b, 0xa0,\n 0x9f, 0x66, 0xbe, 0x57, 0x14, 0x9b, 0xe3, 0xdf, 0x58, 0x8c, 0x4d, 0x17, 0x4a, 0xdd,\n 0x3b, 0x3a, 0x57, 0xc7, 0x73, 0x47, 0x47, 0xd4, 0x3d, 0x6d, 0x4d, 0xb9, 0xef, 0xc4,\n 0x73, 0x43, 0x0b, 0x79, 0xa0, 0xb6, 0x58, 0xb9, 0x08, 0xcf, 0xc5, 0x45, 0x50, 0xa7,\n 0xe6, 0x67, 0x43, 0x47, 0x2e, 0x6d, 0xfa, 0xa1, 0xc9, 0x76, 0x40, 0xb0, 0xff, 0x03,\n 0xc1, 0xed, 0x89, 0xce, 0x0e, 0xdd, 0xe1, 0x03, 0x12, 0xa0, 0x6b, 0x57, 0xb7, 0xcb,\n 0x38, 0x72, 0xc3, 0xe9, 0x57, 0x00, 0xce, 0x78, 0x6e, 0xe4, 0xa4, 0xff, 0x04, 0xf4,\n 0x26, 0xc3, 0x4b, 0xa6, 0x1f, 0x6b, 0x89, 0xec, 0xa8, 0x0d, 0x86, 0xed, 0xd0, 0x79,\n 0xa0, 0x0f, 0xe0, 0x3e, 0xff, 0x73, 0x27, 0x00, 0xb8, 0xe9, 0xd7, 0x36, 0xcc, 0x39,\n 0x11, 0xf1, 0xd4, 0xb2, 0x38, 0xd9, 0x1e, 0x9b, 0xde, 0xf9, 0xda, 0x40, 0x0d, 0x7f,\n 0xb7, 0x89, 0x22, 0x22, 0xa7, 0xa0, 0x11, 0xb1, 0x06, 0xe0, 0x5e, 0x31, 0xe1, 0xe0,\n 0x76, 0x72, 0xb5, 0x77, 0x99, 0xd1, 0x09, 0x77, 0x36, 0x6b, 0x12, 0x2b, 0xb5, 0x0e,\n 0xdf, 0x67, 0xf0, 0x8b, 0x80, 0x31, 0x1e, 0xc3, 0x29, 0x10, 0xa0, 0xa9, 0x7c, 0x62,\n 0x6e, 0x36, 0x00, 0x1e, 0xc4, 0x22, 0x34, 0xa5, 0x6e, 0x19, 0xec, 0xc7, 0xd3, 0x37,\n 0xa9, 0xae, 0x4c, 0x00, 0x8b, 0x98, 0x33, 0x53, 0x11, 0xc5, 0x5b, 0x39, 0x5a, 0x2a,\n 0xe5, 0xa0, 0x7e, 0x8a, 0x86, 0xa9, 0x0e, 0xc1, 0x07, 0x6a, 0x57, 0x19, 0x3d, 0x7c,\n 0x9a, 0xa0, 0xbf, 0x80, 0xc1, 0xe2, 0x05, 0x17, 0x50, 0xc8, 0x48, 0xea, 0x50, 0x66,\n 0x0d, 0x79, 0x34, 0x2c, 0x67, 0xe4, 0xa0, 0xf1, 0x21, 0x79, 0x33, 0xd5, 0x6b, 0x14,\n 0x38, 0x48, 0xde, 0x26, 0x18, 0xdd, 0x68, 0xef, 0x11, 0x23, 0xd2, 0x62, 0xe5, 0x74,\n 0x2c, 0x5d, 0xcb, 0x68, 0x16, 0x92, 0x07, 0x43, 0xd6, 0x5b, 0xf6, 0xa0, 0xe9, 0x96,\n 0x52, 0xb6, 0x9e, 0x6b, 0xec, 0x28, 0x1a, 0x07, 0x98, 0xc2, 0x0d, 0xa1, 0xff, 0x96,\n 0x5d, 0x4f, 0x01, 0xca, 0xee, 0x4c, 0x36, 0xe8, 0x60, 0x07, 0xb9, 0xe4, 0x70, 0x75,\n 0x23, 0x0e, 0xa0, 0xa3, 0xde, 0x3f, 0x3f, 0xf2, 0x9f, 0x66, 0xa7, 0x53, 0x9a, 0x83,\n 0x67, 0x03, 0xf5, 0x9e, 0x7b, 0xce, 0x95, 0x6d, 0xb6, 0xd5, 0xeb, 0x39, 0xab, 0x81,\n 0x3b, 0x29, 0x36, 0x17, 0x8b, 0x7f, 0xec, 0xa0, 0x31, 0x29, 0x7a, 0x2d, 0x0e, 0xd1,\n 0x01, 0xa2, 0x93, 0x0e, 0xaf, 0x42, 0xcb, 0x52, 0x08, 0xc5, 0x5b, 0xc3, 0x73, 0x85,\n 0x59, 0x3d, 0x5a, 0x61, 0x93, 0xa0, 0x6f, 0x4f, 0xc4, 0x24, 0x9b, 0x84, 0xa0, 0x5a,\n 0xbc, 0xae, 0x9d, 0x6b, 0x73, 0xe0, 0xef, 0xce, 0x56, 0x28, 0xae, 0x7f, 0x5b, 0xae,\n 0x4b, 0x8c, 0xcb, 0x19, 0x0d, 0x5c, 0x53, 0xaf, 0x27, 0x1b, 0x57, 0xb1, 0xf2, 0x24,\n 0x71, 0x90, 0x91, 0xa0, 0xfb, 0xdd, 0xb3, 0x36, 0xc8, 0x44, 0x27, 0x69, 0x94, 0xe8,\n 0xe6, 0xaf, 0x33, 0x1c, 0x03, 0x3a, 0xbe, 0x34, 0xab, 0x01, 0x91, 0x21, 0x32, 0x00,\n 0x52, 0x21, 0xd1, 0x28, 0x17, 0x01, 0x15, 0x29, 0xa0, 0xa0, 0x0b, 0x4a, 0xea, 0x6d,\n 0xeb, 0x95, 0x8d, 0x37, 0xf1, 0x65, 0xfa, 0xac, 0x08, 0x02, 0xc5, 0x77, 0x93, 0x9d,\n 0x0a, 0x8c, 0xa8, 0x9c, 0x82, 0xfc, 0x81, 0x53, 0x3c, 0x91, 0x34, 0xce, 0xd5, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x76, 0xdd, 0x54, 0xee, 0xe6, 0x47, 0x07, 0x44, 0x83, 0xdb,\n 0xf1, 0x5b, 0x4d, 0xb5, 0xd4, 0xdf, 0xab, 0xd4, 0x7f, 0x43, 0xc9, 0x1a, 0xa0, 0x5d,\n 0xcd, 0x52, 0x8e, 0x4c, 0x98, 0xee, 0xbb, 0xd8, 0xa0, 0x16, 0xf1, 0xc0, 0x38, 0x60,\n 0xc2, 0xdd, 0xb0, 0x21, 0xe6, 0x28, 0x22, 0x29, 0x56, 0x14, 0xd0, 0x51, 0xc1, 0x80,\n 0x30, 0x7c, 0x6a, 0x3d, 0x1f, 0xc9, 0x84, 0xcd, 0xa9, 0x2e, 0x3a, 0xf8, 0xee, 0xa0,\n 0x79, 0x86, 0xc6, 0xf4, 0x41, 0xe6, 0x6b, 0x41, 0x7f, 0x24, 0x2e, 0xae, 0xfc, 0x3d,\n 0xae, 0x48, 0x28, 0xc7, 0x9a, 0x9c, 0x0e, 0xb4, 0x5f, 0x71, 0xf4, 0x2c, 0x2b, 0x1f,\n 0xc6, 0xc2, 0xb5, 0x6b, 0xa0, 0x32, 0xdd, 0x1d, 0xbf, 0x95, 0x5c, 0xd0, 0x0a, 0xfa,\n 0xdf, 0x48, 0x03, 0x67, 0x5d, 0x19, 0x5d, 0x51, 0xa6, 0xf4, 0x6d, 0x2f, 0x44, 0xdc,\n 0x6e, 0x9f, 0x20, 0x27, 0x09, 0xce, 0x49, 0xa1, 0x46, 0xa0, 0x81, 0x40, 0x18, 0x77,\n 0xdd, 0x0d, 0x38, 0x8d, 0x0b, 0xe7, 0xea, 0x14, 0xb4, 0xa0, 0xb7, 0xda, 0x25, 0xce,\n 0x60, 0x62, 0xaa, 0x0d, 0xcf, 0x34, 0x4e, 0xf3, 0xc2, 0xc0, 0x36, 0xb3, 0x90, 0xc7,\n 0xa0, 0x40, 0xbe, 0xf8, 0xc4, 0xd8, 0x2b, 0xd6, 0x55, 0x69, 0xeb, 0xb3, 0x1d, 0xe2,\n 0x8b, 0xda, 0x9c, 0x4f, 0x3b, 0x04, 0xe4, 0xdb, 0x5b, 0xb7, 0x5f, 0x6e, 0x4c, 0x45,\n 0x51, 0x9e, 0x82, 0x08, 0xda, 0xa0, 0x53, 0x16, 0x37, 0x04, 0xba, 0x1f, 0x4b, 0x91,\n 0x7d, 0x22, 0xf8, 0x95, 0xf0, 0xbe, 0x61, 0x7e, 0x09, 0xed, 0xe7, 0xb3, 0x87, 0xa1,\n 0xfb, 0x38, 0x2d, 0x8f, 0xe5, 0x45, 0x03, 0x1f, 0x76, 0x44, 0xa0, 0x4f, 0x0c, 0x25,\n 0xfc, 0x0e, 0xfb, 0x33, 0x22, 0xb0, 0xbb, 0x17, 0xa5, 0xe4, 0x31, 0x90, 0xd3, 0x64,\n 0x94, 0x51, 0x73, 0x76, 0x4c, 0x91, 0x99, 0x80, 0xb9, 0xbc, 0xcb, 0xe5, 0x14, 0x50,\n 0x3f, 0xa0, 0xfd, 0x5a, 0x44, 0x07, 0xf9, 0x74, 0x16, 0x7a, 0xf1, 0x03, 0xc9, 0x4e,\n 0x48, 0x2b, 0x96, 0x23, 0xbb, 0x43, 0xcf, 0xc3, 0xa7, 0xc7, 0x98, 0x9e, 0x00, 0x21,\n 0xe0, 0x4d, 0x47, 0x31, 0x58, 0x41, 0xa0, 0x35, 0x54, 0x86, 0x0e, 0x3c, 0x56, 0x9c,\n 0x88, 0xb2, 0xa9, 0xb7, 0x3f, 0x72, 0x69, 0x09, 0x48, 0x42, 0xbb, 0x5c, 0x6b, 0x95,\n 0x1e, 0x00, 0xba, 0xae, 0x67, 0xee, 0xfd, 0x6b, 0x67, 0x7e, 0x70, 0xa0, 0x36, 0xb8,\n 0xaf, 0xbf, 0x20, 0x69, 0x30, 0x6b, 0x67, 0x97, 0x30, 0x1f, 0x49, 0xa4, 0xa1, 0x0e,\n 0xe9, 0x8c, 0xa2, 0x5c, 0x6c, 0xc7, 0x6f, 0x10, 0x79, 0xc3, 0xf1, 0x79, 0xf8, 0x90,\n 0x56, 0xdc, 0xa0, 0x46, 0x3d, 0xe5, 0x4b, 0xeb, 0xde, 0xcd, 0x0b, 0x81, 0x24, 0x6f,\n 0xa8, 0xe3, 0xce, 0xbc, 0x08, 0x15, 0xe0, 0xc9, 0x57, 0xce, 0xe9, 0xf2, 0x3e, 0xf3,\n 0xac, 0x7f, 0xda, 0x5a, 0x9a, 0x84, 0x77, 0xa0, 0xda, 0x55, 0x99, 0xe1, 0xf3, 0xd5,\n 0x8e, 0xd6, 0xe4, 0x76, 0x14, 0x5d, 0xbb, 0x68, 0x86, 0xbb, 0x75, 0x06, 0x0e, 0xe4,\n 0x72, 0xdf, 0x78, 0x5f, 0x56, 0xf1, 0x1c, 0x27, 0x4e, 0xfd, 0x06, 0x83, 0xa0, 0x00,\n 0xd4, 0xb1, 0xb2, 0x8d, 0x31, 0x18, 0xc9, 0xe0, 0xc5, 0x6c, 0x8a, 0x23, 0xf5, 0xa2,\n 0x33, 0x4f, 0xec, 0x69, 0x02, 0x9c, 0xfd, 0x31, 0x3f, 0x61, 0xf5, 0x9c, 0x77, 0xe5,\n 0x81, 0x11, 0x6d, 0xa0, 0xe4, 0xad, 0x64, 0x57, 0x5b, 0x73, 0x3d, 0x9e, 0xa9, 0xcd,\n 0xac, 0x97, 0xa4, 0x39, 0xbb, 0xdb, 0xc0, 0x68, 0x47, 0x4f, 0x0e, 0x32, 0xc0, 0xb0,\n 0x44, 0xdf, 0x2e, 0xec, 0xde, 0x07, 0xd4, 0x8a, 0xa0, 0x5c, 0xbe, 0x69, 0xbc, 0x35,\n 0xf0, 0xec, 0x5e, 0xef, 0x19, 0x00, 0xc2, 0x81, 0x71, 0xeb, 0x6b, 0x87, 0xba, 0x0c,\n 0xe2, 0x88, 0x33, 0x8c, 0x74, 0x12, 0x6b, 0xc4, 0x8c, 0x24, 0x06, 0x1a, 0x4b, 0x80,\n ],\n [\n 0xf9, 0x01, 0xd1, 0xa0, 0x7d, 0x57, 0xef, 0xba, 0x2b, 0x0d, 0x32, 0xca, 0x17, 0xe6,\n 0x0f, 0x80, 0x42, 0x21, 0x7e, 0xd2, 0x7f, 0x77, 0xad, 0x82, 0x47, 0xd2, 0xe0, 0xe3,\n 0xdb, 0x85, 0xf2, 0xd8, 0x4b, 0xc8, 0xca, 0xcd, 0xa0, 0x22, 0xf3, 0x44, 0xfe, 0xd7,\n 0xc9, 0x8d, 0x17, 0x90, 0x14, 0xdf, 0x35, 0x31, 0x72, 0x3a, 0x24, 0x8e, 0x1a, 0xbb,\n 0xaf, 0x4f, 0xfb, 0x95, 0x4e, 0xa8, 0xb5, 0xa8, 0xfc, 0x93, 0x3b, 0x3f, 0x3a, 0xa0,\n 0x30, 0x96, 0xfa, 0x0f, 0xa1, 0xee, 0x14, 0x6c, 0x8a, 0xa5, 0x86, 0x8f, 0x80, 0x9e,\n 0xe5, 0x77, 0xf3, 0xf5, 0xba, 0xa3, 0x9f, 0x76, 0x86, 0x50, 0x2d, 0x78, 0x4d, 0x8e,\n 0xdc, 0x68, 0xa4, 0xc5, 0xa0, 0x9e, 0xd4, 0xf4, 0x80, 0xf1, 0x4b, 0x8c, 0x09, 0xa8,\n 0x9d, 0x53, 0x0f, 0xc8, 0x75, 0xd1, 0x88, 0x32, 0x02, 0x67, 0x5b, 0x03, 0x6c, 0xd5,\n 0x53, 0xba, 0xa6, 0xb0, 0xee, 0xfc, 0xdf, 0x69, 0xcc, 0xa0, 0xd5, 0x0b, 0x5d, 0xf3,\n 0x05, 0x43, 0xf6, 0x04, 0x71, 0xc6, 0x20, 0x01, 0x37, 0xe9, 0x5a, 0x35, 0x31, 0xa4,\n 0x29, 0xe3, 0x2b, 0x9f, 0xe4, 0x37, 0x24, 0x5c, 0x93, 0x02, 0x28, 0x5c, 0x65, 0x54,\n 0xa0, 0x6a, 0x82, 0x6f, 0x60, 0x96, 0x3d, 0xd4, 0x5f, 0x9d, 0xae, 0x25, 0xdf, 0x46,\n 0xa4, 0x2e, 0x49, 0xe0, 0xb3, 0x42, 0x30, 0xb8, 0xf3, 0xb3, 0xd7, 0xd3, 0xf4, 0x97,\n 0xc4, 0xd1, 0xd0, 0xfb, 0xbc, 0xa0, 0x80, 0xfb, 0x79, 0x1a, 0x67, 0xee, 0x2a, 0xb0,\n 0x2c, 0xcd, 0xba, 0x4e, 0x7c, 0x4c, 0xc6, 0x5d, 0xcf, 0x68, 0x5f, 0xe2, 0xcc, 0xdc,\n 0x69, 0xe9, 0x95, 0xba, 0x3e, 0xb4, 0x54, 0x4c, 0x13, 0x74, 0x80, 0xa0, 0x32, 0x64,\n 0x81, 0x6a, 0xf1, 0x40, 0x08, 0x93, 0x6c, 0xf4, 0x9d, 0x22, 0x15, 0x27, 0x3b, 0x87,\n 0x62, 0x48, 0x9e, 0x74, 0x3f, 0x5b, 0xbb, 0x27, 0x9a, 0x7a, 0xce, 0xe5, 0x1c, 0x0d,\n 0xae, 0xf6, 0xa0, 0x7a, 0x95, 0x0a, 0x56, 0x88, 0x3a, 0xb7, 0x73, 0xc8, 0xd8, 0xba,\n 0x53, 0xe1, 0x6e, 0x7f, 0x97, 0x97, 0xd9, 0x87, 0x58, 0xae, 0xbd, 0x07, 0x8c, 0x55,\n 0xd9, 0x3e, 0x05, 0x30, 0xe1, 0xe0, 0xef, 0xa0, 0x1c, 0x82, 0xa6, 0x9d, 0xa7, 0x6a,\n 0x57, 0xda, 0x45, 0x2a, 0xae, 0x1b, 0x8b, 0x14, 0xa6, 0x2f, 0x63, 0x9a, 0xfc, 0x60,\n 0x78, 0xce, 0x11, 0xb7, 0xbe, 0x60, 0xce, 0xe1, 0x9b, 0x0e, 0x37, 0xda, 0xa0, 0x50,\n 0x86, 0xfe, 0x71, 0x1d, 0x54, 0x09, 0x0c, 0x01, 0x0c, 0x8f, 0x6a, 0x2f, 0xeb, 0xbc,\n 0x34, 0x68, 0xaa, 0xd3, 0x4b, 0xd0, 0x54, 0xfc, 0x62, 0xda, 0x3f, 0x2f, 0x5e, 0x73,\n 0xe4, 0x1b, 0x5c, 0xa0, 0x44, 0x4d, 0xd0, 0x93, 0x34, 0xc9, 0x13, 0x76, 0xad, 0x8e,\n 0xb0, 0xba, 0x83, 0x0d, 0x33, 0x92, 0x09, 0x09, 0xd2, 0xf5, 0x6d, 0xb6, 0x26, 0x57,\n 0x16, 0xc7, 0x25, 0x59, 0x1e, 0xb2, 0x4f, 0x54, 0x80, 0xa0, 0x58, 0xc6, 0xc6, 0xc5,\n 0x8c, 0x2d, 0xe9, 0x50, 0x07, 0xa9, 0xf9, 0x22, 0xc1, 0xb3, 0xbd, 0x03, 0x2f, 0xed,\n 0x1b, 0xc1, 0xa6, 0x82, 0x9c, 0x2e, 0x95, 0x30, 0xcd, 0x16, 0x47, 0x97, 0x6c, 0x52,\n 0xa0, 0x2e, 0x99, 0x02, 0xa0, 0x4b, 0x27, 0xa6, 0x11, 0x11, 0x92, 0x35, 0x31, 0x8c,\n 0x8f, 0x12, 0x63, 0x0d, 0x58, 0xee, 0x77, 0x5a, 0x31, 0xad, 0xe3, 0x57, 0x6b, 0xe9,\n 0x53, 0x42, 0x6e, 0xc2, 0xf6, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n ];\n let storage_leaf = [\n 0xec, 0x9f, 0x20, 0xef, 0xe9, 0x1b, 0x84, 0xa3, 0xf0, 0x73, 0x56, 0x24, 0xd9, 0xb5, 0xa4,\n 0x1f, 0x2f, 0x1f, 0x4a, 0xa0, 0x92, 0xea, 0xac, 0x1f, 0x9d, 0x6a, 0xf0, 0x1f, 0x15, 0x9f,\n 0x3c, 0x08, 0x9e, 0x8b, 0x8a, 0x02, 0x1e, 0x19, 0xe0, 0xc9, 0xba, 0xb2, 0x40, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ];\n let storage_depth = 5;\n\n let value = get_storage_value(storage_value);\n\n verify(\n key,\n value,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n );\n}\n","path":"/Users/kartik/projects/anoncast/packages/zk/circuits/lib/src/proof/mod.nr"},"72":{"source":"mod secp256k1;\n\npub fn ecrecover(\n pub_key_x: [u8; 32],\n pub_key_y: [u8; 32],\n signature: [u8; 64], // clip v value\n hashed_message: [u8; 32],\n) -> Field {\n let key = secp256k1::PubKey::from_xy(pub_key_x, pub_key_y);\n\n assert(key.verify_sig(signature, hashed_message));\n let addr = key.to_eth_address();\n\n addr\n}\n\n#[test]\nfn test_ecrecover() {\n let pub_key_x = [\n 131, 24, 83, 91, 84, 16, 93, 74, 122, 174, 96, 192, 143, 196, 95, 150, 135, 24, 27, 79, 223,\n 198, 37, 189, 26, 117, 63, 167, 57, 127, 237, 117,\n ];\n let pub_key_y = [\n 53, 71, 241, 28, 168, 105, 102, 70, 242, 243, 172, 176, 142, 49, 1, 106, 250, 194, 62, 99,\n 12, 93, 17, 245, 159, 97, 254, 245, 123, 13, 42, 165,\n ];\n let signature = [\n 57, 17, 112, 239, 241, 30, 64, 157, 170, 50, 85, 145, 156, 69, 226, 85, 147, 164, 10, 82,\n 71, 93, 42, 132, 200, 220, 161, 255, 95, 241, 211, 141, 81, 7, 150, 25, 25, 27, 162, 213,\n 80, 61, 12, 170, 50, 4, 154, 203, 252, 229, 119, 29, 202, 153, 50, 25, 126, 145, 245, 23,\n 136, 75, 29, 177,\n ];\n let hashed_message = [\n 13, 82, 120, 60, 76, 186, 215, 235, 175, 126, 185, 67, 252, 100, 143, 82, 130, 165, 32, 112,\n 68, 47, 193, 141, 141, 209, 109, 219, 47, 203, 175, 102,\n ];\n\n let addr = ecrecover(pub_key_x, pub_key_y, signature, hashed_message);\n assert(addr == 0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266);\n}\n","path":"/Users/kartik/projects/anoncast/packages/zk/circuits/lib/src/ecrecover/mod.nr"},"73":{"source":"use dep::std;\n\nuse dep::array_helpers;\n\nstruct PubKey {\n pub_x: [u8; 32],\n pub_y: [u8; 32],\n}\n\nfn split_uncompressed_pub_key(pub_key: [u8; 65]) -> ([u8; 32], [u8; 32]) {\n let mut pub_key_x: [u8; 32] = [0; 32];\n let mut pub_key_y: [u8; 32] = [0; 32];\n\n for i in 0..32 {\n pub_key_x[i] = pub_key[i + 1];\n pub_key_y[i] = pub_key[i + 32 + 1];\n }\n\n (pub_key_x, pub_key_y)\n}\n\nimpl PubKey {\n fn from_xy(pub_x: [u8; 32], pub_y: [u8; 32]) -> PubKey {\n PubKey { pub_x, pub_y }\n }\n\n fn from_unified(pub_key: [u8; 64]) -> PubKey {\n let (key_x, key_y) = array_helpers::split_u8_64(pub_key);\n\n PubKey { pub_x: key_x, pub_y: key_y }\n }\n\n fn from_uncompressed(pub_key: [u8; 65]) -> PubKey {\n assert(pub_key[0] == 0x04);\n let (key_x, key_y) = split_uncompressed_pub_key(pub_key);\n\n PubKey { pub_x: key_x, pub_y: key_y }\n }\n\n fn verify_sig(self, signature: [u8; 64], hashed_message: [u8; 32]) -> bool {\n std::ecdsa_secp256k1::verify_signature(self.pub_x, self.pub_y, signature, hashed_message)\n }\n\n fn to_eth_address(self) -> Field {\n let pub_key = array_helpers::u8_32_to_u8_64(self.pub_x, self.pub_y);\n let hashed_pub_key = std::hash::keccak256(pub_key, 64);\n\n let mut addr: Field = 0;\n for i in 0..20 {\n // shift left by 8 and add the new value\n addr = (addr * 256) + hashed_pub_key[i + 12] as Field;\n }\n\n addr\n }\n\n fn ecrecover(self, signature: [u8; 64], hashed_message: [u8; 32]) -> Field {\n assert(self.verify_sig(signature, hashed_message));\n\n self.to_eth_address()\n }\n}\n\n#[test]\nfn test_ecrecover_via_key() {\n let pub_key_x = [\n 131, 24, 83, 91, 84, 16, 93, 74, 122, 174, 96, 192, 143, 196, 95, 150, 135, 24, 27, 79, 223,\n 198, 37, 189, 26, 117, 63, 167, 57, 127, 237, 117,\n ];\n let pub_key_y = [\n 53, 71, 241, 28, 168, 105, 102, 70, 242, 243, 172, 176, 142, 49, 1, 106, 250, 194, 62, 99,\n 12, 93, 17, 245, 159, 97, 254, 245, 123, 13, 42, 165,\n ];\n let signature = [\n 57, 17, 112, 239, 241, 30, 64, 157, 170, 50, 85, 145, 156, 69, 226, 85, 147, 164, 10, 82,\n 71, 93, 42, 132, 200, 220, 161, 255, 95, 241, 211, 141, 81, 7, 150, 25, 25, 27, 162, 213,\n 80, 61, 12, 170, 50, 4, 154, 203, 252, 229, 119, 29, 202, 153, 50, 25, 126, 145, 245, 23,\n 136, 75, 29, 177,\n ];\n let hashed_message = [\n 13, 82, 120, 60, 76, 186, 215, 235, 175, 126, 185, 67, 252, 100, 143, 82, 130, 165, 32, 112,\n 68, 47, 193, 141, 141, 209, 109, 219, 47, 203, 175, 102,\n ];\n\n let key = PubKey::from_xy(pub_key_x, pub_key_y);\n assert(key.ecrecover(signature, hashed_message) == 0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266);\n}\n","path":"/Users/kartik/projects/anoncast/packages/zk/circuits/lib/src/ecrecover/secp256k1.nr"},"74":{"source":"pub fn bytes_as_nibbles<let N: u32>(bytes: [u8; N]) -> [u8; N * 2] {\n let mut nibbles = [0; N * 2];\n for i in 0..N {\n let nibs = byte_to_nibbles(bytes[i]);\n nibbles[i * 2] = nibs.0;\n nibbles[i * 2 + 1] = nibs.1;\n }\n nibbles\n}\n\npub fn byte_to_nibbles(b: u8) -> (u8, u8) {\n let upper = b >> 4;\n let lower = b - 16 * upper;\n\n (upper, lower)\n}\n","path":"/Users/kartik/projects/anoncast/packages/zk/circuits/lib/src/bytes/mod.nr"},"75":{"source":"use dep::std::wrapping_sub;\n\npub global RLP_DATA_TYPE_STRING = 0;\npub global RLP_DATA_TYPE_LIST = 1;\n\npub struct RlpFragment {\n pub offset: u32,\n pub length: u32,\n pub data_type: u32,\n}\n\npub unconstrained fn decode_rlp_list_fragments<let NODE_LEN: u32, let MAX_FIELDS: u32>(\n rlp_header: RlpFragment,\n node: [u8; NODE_LEN],\n) -> BoundedVec<RlpFragment, MAX_FIELDS> {\n let node_len = rlp_header.length + rlp_header.offset;\n let mut rlp_list = BoundedVec::new();\n let mut curr_offset = rlp_header.offset;\n for _ in 0..MAX_FIELDS {\n if (curr_offset < node_len) {\n let field_prefix = node[curr_offset];\n\n let field_offset = if field_prefix < 0x80 { 0 } else { 1 };\n let field_length = if field_prefix < 0x80 {\n 1\n } else {\n wrapping_sub(field_prefix as u32, 0x80)\n };\n\n rlp_list.push(\n RlpFragment {\n offset: curr_offset + field_offset,\n length: field_length,\n data_type: RLP_DATA_TYPE_STRING,\n },\n );\n\n curr_offset += field_length + field_offset;\n }\n }\n\n rlp_list\n}\n\npub unconstrained fn decode_rlp_header<let NODE_LEN: u32>(node: [u8; NODE_LEN]) -> RlpFragment {\n let (prefix, data) = node.as_slice().pop_front();\n\n if (prefix < 0x80) {\n // 1 byte\n RlpFragment { offset: 0 as u32, length: 1 as u32, data_type: RLP_DATA_TYPE_STRING }\n } else if (prefix < 0xb8) {\n // 0-55 byte string\n RlpFragment {\n offset: 1,\n length: wrapping_sub(prefix, 0x80) as u32,\n data_type: RLP_DATA_TYPE_STRING,\n }\n } else if (prefix < 0xc0) {\n // > 55 byte string\n RlpFragment {\n offset: wrapping_sub(1 + prefix, 0xb7) as u32,\n length: extract_payload_len(data, wrapping_sub(prefix, 0xb7) as u32),\n data_type: RLP_DATA_TYPE_STRING,\n }\n } else if (prefix < 0xf8) {\n // 0-55 byte array\n RlpFragment {\n offset: 1,\n length: wrapping_sub(prefix, 0xc0) as u32,\n data_type: RLP_DATA_TYPE_LIST,\n }\n } else {\n // > 55 byte array\n RlpFragment {\n offset: wrapping_sub(1 + prefix, 0xf7) as u32,\n length: extract_payload_len(data, wrapping_sub(prefix, 0xf7) as u32),\n data_type: RLP_DATA_TYPE_LIST,\n }\n }\n}\n\nfn extract_payload_len(data: [u8], len: u32) -> u32 {\n let data_len = data.len();\n let mut node_len = 0;\n for i in 0..2 {\n if (i < len & i < data_len) {\n node_len = data[i] as u32 + node_len * 256;\n }\n }\n\n node_len\n}\n\npub fn encode_rlp_string<let N: u32>(data: [u8; N]) -> [u8; N] {\n let length = data.len();\n let mut result = [0; N];\n\n // Find first non-zero byte using for loop\n let mut start_idx = 0;\n for i in 0..N {\n if (start_idx == 0) & (data[i] != 0) {\n start_idx = i;\n }\n }\n\n // If all zeros, return single zero byte\n if (start_idx == 0) & (data[0] == 0) {\n result[0] = 0x80;\n result\n }\n\n let actual_length = length - start_idx;\n\n if (actual_length == 1) & (data[start_idx] < 0x80) {\n // Single byte < 0x80\n result[0] = data[start_idx];\n } else {\n // 0-55 bytes string\n result[0] = (0x80 + actual_length) as u8;\n for i in 0..N {\n if i < actual_length {\n result[i + 1] = data[start_idx + i];\n }\n }\n }\n\n result\n}\n","path":"/Users/kartik/projects/anoncast/packages/zk/circuits/lib/src/rlp/mod.nr"}},"names":["main"],"brillig_names":["get_key_hash","decode_rlp_header","get_node_hash","decode_rlp_list_fragments","copy","decode_rlp_header","get_node_hash","decode_rlp_list_fragments","copy","field_less_than","decompose_hint","lte_hint","directive_invert","directive_integer_quotient"]}