@zkclaw/credentials 1.0.0 → 1.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/package.json +5 -7
- package/src/circuit/Nargo.toml +9 -0
- package/src/circuit/src/main.nr +52 -0
- package/src/circuit/target/vk +0 -0
- package/src/circuit/target/vkey +0 -0
- package/src/index.ts +16 -0
- package/src/noir-lib/Nargo.toml +9 -0
- package/src/noir-lib/src/bytes/mod.nr +16 -0
- package/src/noir-lib/src/ecrecover/mod.nr +40 -0
- package/src/noir-lib/src/ecrecover/secp256k1.nr +87 -0
- package/src/noir-lib/src/lib.nr +4 -0
- package/src/noir-lib/src/proof/mod.nr +768 -0
- package/src/noir-lib/src/rlp/mod.nr +128 -0
- package/src/utils/circuit.ts +74 -0
- package/src/utils/index.ts +59 -0
- package/src/verifier.test.ts +163 -0
- package/src/verifier.ts +227 -0
- package/dist/index.js +0 -479
package/dist/index.js
DELETED
|
@@ -1,479 +0,0 @@
|
|
|
1
|
-
// src/verifier.ts
|
|
2
|
-
import {
|
|
3
|
-
keccak256,
|
|
4
|
-
concat,
|
|
5
|
-
toHex,
|
|
6
|
-
pad,
|
|
7
|
-
createPublicClient,
|
|
8
|
-
http
|
|
9
|
-
} from "viem";
|
|
10
|
-
import { base } from "viem/chains";
|
|
11
|
-
|
|
12
|
-
// src/utils/index.ts
|
|
13
|
-
import { recoverPublicKey } from "viem";
|
|
14
|
-
async function getPublicKey(signature, messageHash) {
|
|
15
|
-
const pubKey = await recoverPublicKey({
|
|
16
|
-
hash: messageHash,
|
|
17
|
-
signature
|
|
18
|
-
});
|
|
19
|
-
const pubKeyX = pubKey.slice(4, 68);
|
|
20
|
-
const pubKeyY = pubKey.slice(68);
|
|
21
|
-
return { pubKeyX, pubKeyY };
|
|
22
|
-
}
|
|
23
|
-
function formatArray(arr, formatFn, { length = 7, pad: pad2 = "end" } = {}) {
|
|
24
|
-
const result = [];
|
|
25
|
-
for (const item of arr) {
|
|
26
|
-
result.push(formatFn(item));
|
|
27
|
-
}
|
|
28
|
-
while (result.length < length) {
|
|
29
|
-
if (pad2 === "start") {
|
|
30
|
-
result.unshift(formatFn("0x00"));
|
|
31
|
-
} else {
|
|
32
|
-
result.push(formatFn("0x00"));
|
|
33
|
-
}
|
|
34
|
-
}
|
|
35
|
-
return result;
|
|
36
|
-
}
|
|
37
|
-
function formatHexArray(hex, {
|
|
38
|
-
chunkSize = 2,
|
|
39
|
-
length = 32,
|
|
40
|
-
pad: pad2 = "left"
|
|
41
|
-
} = {}) {
|
|
42
|
-
const str = hex.replace("0x", "");
|
|
43
|
-
const arr = [];
|
|
44
|
-
for (let i = 0; i < str.length; i += chunkSize) {
|
|
45
|
-
arr.push(`0x${str.slice(i, i + chunkSize)}`);
|
|
46
|
-
}
|
|
47
|
-
while (arr.length < length) {
|
|
48
|
-
if (pad2 === "left") {
|
|
49
|
-
arr.unshift("0x00");
|
|
50
|
-
} else {
|
|
51
|
-
arr.push("0x00");
|
|
52
|
-
}
|
|
53
|
-
}
|
|
54
|
-
return arr.slice(0, length);
|
|
55
|
-
}
|
|
56
|
-
|
|
57
|
-
// src/utils/circuit.ts
|
|
58
|
-
var Circuit = class {
|
|
59
|
-
proverPromise = null;
|
|
60
|
-
verifierPromise = null;
|
|
61
|
-
circuit;
|
|
62
|
-
vkey;
|
|
63
|
-
constructor(circuit, vkey) {
|
|
64
|
-
this.circuit = circuit;
|
|
65
|
-
this.vkey = Array.isArray(vkey) ? new Uint8Array(vkey) : vkey;
|
|
66
|
-
}
|
|
67
|
-
async initProver() {
|
|
68
|
-
if (!this.proverPromise) {
|
|
69
|
-
this.proverPromise = (async () => {
|
|
70
|
-
const [{ Noir }, { UltraHonkBackend }] = await Promise.all([
|
|
71
|
-
import("@noir-lang/noir_js"),
|
|
72
|
-
import("@aztec/bb.js")
|
|
73
|
-
]);
|
|
74
|
-
return {
|
|
75
|
-
Noir,
|
|
76
|
-
UltraHonkBackend
|
|
77
|
-
};
|
|
78
|
-
})();
|
|
79
|
-
}
|
|
80
|
-
return this.proverPromise;
|
|
81
|
-
}
|
|
82
|
-
async initVerifier() {
|
|
83
|
-
if (!this.verifierPromise) {
|
|
84
|
-
this.verifierPromise = (async () => {
|
|
85
|
-
const { BarretenbergVerifier } = await import("@aztec/bb.js");
|
|
86
|
-
return { BarretenbergVerifier };
|
|
87
|
-
})();
|
|
88
|
-
}
|
|
89
|
-
return this.verifierPromise;
|
|
90
|
-
}
|
|
91
|
-
async verify(proofData) {
|
|
92
|
-
const { BarretenbergVerifier } = await this.initVerifier();
|
|
93
|
-
const verifier = new BarretenbergVerifier({ crsPath: process.env.TEMP_DIR });
|
|
94
|
-
const result = await verifier.verifyUltraHonkProof(proofData, this.vkey);
|
|
95
|
-
return result;
|
|
96
|
-
}
|
|
97
|
-
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
98
|
-
async generate(input) {
|
|
99
|
-
const { Noir, UltraHonkBackend } = await this.initProver();
|
|
100
|
-
const backend = new UltraHonkBackend(this.circuit.bytecode);
|
|
101
|
-
const noir = new Noir(this.circuit);
|
|
102
|
-
const { witness } = await noir.execute(input);
|
|
103
|
-
return await backend.generateProof(witness);
|
|
104
|
-
}
|
|
105
|
-
};
|
|
106
|
-
|
|
107
|
-
// src/circuit/target/anon_balance.json
|
|
108
|
-
var anon_balance_default = { noir_version: "0.38.0+e784523a15c0c233a5a794f28498635b7ce86325", hash: 165909494631181e3, abi: { parameters: [{ name: "signature", type: { kind: "array", length: 64, type: { kind: "integer", sign: "unsigned", width: 8 } }, visibility: "private" }, { name: "message_hash", type: { kind: "array", length: 32, type: { kind: "integer", sign: "unsigned", width: 8 } }, visibility: "private" }, { name: "pub_key_x", type: { kind: "array", length: 32, type: { kind: "integer", sign: "unsigned", width: 8 } }, visibility: "private" }, { name: "pub_key_y", type: { kind: "array", length: 32, type: { kind: "integer", sign: "unsigned", width: 8 } }, visibility: "private" }, { name: "storage_hash", type: { kind: "array", length: 32, type: { kind: "integer", sign: "unsigned", width: 8 } }, visibility: "private" }, { name: "storage_nodes", type: { kind: "array", length: 5, type: { kind: "array", length: 1080, type: { kind: "integer", sign: "unsigned", width: 8 } } }, visibility: "private" }, { name: "storage_leaf", type: { kind: "array", length: 120, type: { kind: "integer", sign: "unsigned", width: 8 } }, visibility: "private" }, { name: "storage_depth", type: { kind: "integer", sign: "unsigned", width: 32 }, visibility: "private" }, { name: "storage_value", type: { kind: "field" }, visibility: "private" }, { name: "chain_id", type: { kind: "field" }, visibility: "private" }, { name: "block_number", type: { kind: "field" }, visibility: "private" }, { name: "token_address", type: { kind: "field" }, visibility: "private" }, { name: "balance_slot", type: { kind: "field" }, visibility: "private" }, { name: "verified_balance", type: { kind: "field" }, visibility: "private" }], return_type: { abi_type: { kind: "tuple", fields: [{ kind: "field" }, { kind: "field" }, { kind: "field" }, { kind: "field" }, { kind: "field" }, { kind: "array", length: 32, type: { kind: "integer", sign: "unsigned", width: 8 } }] }, visibility: "public" }, error_types: {} }, bytecode: "H4sIAAAAAAAA/+zdB5RU1dLw/ZEgWRCEgZkBSRJEYRoGZlBUzAgIIjlJHnLOOeeccwYVRMyAEQMiikpSUUBQQUVBUVTE/PT2dj+3bf/XK07V4dS69Frns9/fc9f5atfep07VDOJFMf/6XHxVTMygiv/6flHwSh/6p/tkjrKLwNKBpQfLAJYR7GKwTGCZwbKAZQXLBpYdLAfYJWA5wXKBXQqWGywP2GVgecHygcWC5QcrABYHFg+WAFYQrBDY5WCFwYqAFQUrBlYc7AqwEmAlwUqBlQa7EqwM2FVgV4OVBSsHlggWACsPVgEsCawiWCWwZLAUsMpg14BdC1YF7Dqw68FuAKsKdiPYTWA3g90CdivYbWC3g1UDuwOsOlgNsJpgd4LVAqsNdhdYHbC7weqC1QOrD9YArCFYI7DGYE3AmoI1A2sOdg9YC7CWYK3AWoO1AWsL1g4sFaw9WAewjmCdwDqDdQHrCtYNrDtYD7CeYL3AeoP1AesL1g+sP9gAsIFgg8AGgw0BGwo2DGw42AiwkWCjwEaDjQEbCzYObDzYBLCJYJPAJoNNAZsKNg1sOtgMsJlgs8Bmg80Bmws2D2w+2AKwhWCLwBaDLQFbCrYMbDnYCrCVYKvAVoOtAVsLdi/YfWD3g60DWw/2ANgGsAfBNoI9BPYw2CNgj4I9BvY42BNgm8A2g20BexLsKbCnwZ4BexbsObCtYM+DvQD2IthLYNvAXgbbDvYK2A6wV8FeA9sJ9jrYG2Bvgu0C2w22B2wv2D6wt8DeBnsHbD/Yu2DvgR0AOwh2COx9sMNgR8A+APsQ7COwo2DHwD4G+wTsU7DjYJ+BfQ52Auwk2BdgX4KdAvsK7Guw02DfgH0L9h3YGbDvwc6C/QD2I9hPYD+D/QL2K9hvYO7/E20XgaUDSw+WASwj2MVgmcAyg2UBywqWDSw7WA6wS8ByguUCuxQsN1gesMvA8oLlA4sFyw9WACwOLB4sAawgWCGwy8EKgxUBKwpWDKw42BVgJcBKgpUCKw12JVgZsKvArgYrC1YOLBEsAFYerAJYElhFsEpgyWApYJXBrgG7FqwK2HVg14PdAFYV7Eawm8BuBrsF7Faw28BuB6sGdgdYdbAaYDXB7gSrBVYb7C6wOmB3g9UFqwdWH6wBWEOwRmCNwZqANQVrBtYc7B6wFmAtwVqBtQZrA9YWrB1YKlh7sA5gHcE6gXUG6wLWFawbWHewHmA9wXqB9QbrA9YXrB9Yf7ABYAPBBoENBhsCNhRsGNhwsBFgI8FGgY0GGwM2Fmwc2HiwCWATwSaBTQabAjYVbBrYdLAZYDPBZoHNBpsDNhdsHth8sAVgC8EWgS0GWwK2FGwZ2HKwFWArwVaBrQZbA7YW7F6w+8DuB1sHth7sAbANYA+CbQR7COxhsEfAHgV7DOxxsCfANoFtBtsC9iTYU2BPgz0D9izYc2BbwZ4HewHsRbCXwLaBvQy2HewVsB1gr4K9BrYT7HWwN8DeBNsFthtsD9hesH1gb4G9DfYO2H6wd8HeAzsAdhDsENj7YIfBjoB9APYh2EdgR8GOgX0M9gnYp2DHwT4D+xzsBNhJsC/AvgQ7BfYV2Ndgp8G+AfsW7DuwM2Dfg50F+wHsR7CfwH4G+wXsV7DfwNwf7Iu2i8DSgaUHywCWEexisExgmcGygGUFywaWHSwH2CVgOcFygV0KlhssD9hlYHnB8oHFguUHKwAWBxYPlgBWEKwQ2OVghcGKgBUFKwZWHOwKsBJgJcFKgZUGuxKsDNhVYFeDlQUrB5YIFgArD1YBLAmsIlglsGSwFLDKYNeAXQtWBew6sOvBbgCrCnYj2E1gN4PdAnYr2G1gt4NVA7sDrDpYDbCaYHeC1QKrDXYXWB2wu8HqgtUDqw/WAKwhWCOwxmBNwJqCNQNrDnYPWAuwlmCtwFqDtQFrC9YOLBWsPVgHsI5gncA6g3UB6wrWDaw7WA+wnmC9wHqD9QHrC9YPrD/YALCBYIPABoMNARsKNgxsONgIsJFgo8BGg40BGws2Dmw82ASwiWCTwCaDTQGbCjYNbDrYDLCZYLPAZoPNAZsLNg9sPtgCsIVgi8AWgy0BWwq2DGw52AqwlWCrwFaDrQFbC3Yv2H1g94OtA1sP9gDYBrAHwTaCPQT2MNgjYI+CPQb2ONgTYJvANoNtAXsS7Cmwp8GeAXsW7DmwrWDPg70A9iLYS2DbwF4G2w72CtgOsFfBXgPbCfY62Btgb4LtAtsNtgdsL9g+sLfA3gZ7B2w/2Ltg74EdADsIdgjsfbDDYEfAPgD7EOwjsKNgx8A+BvsE7FOw42CfgX0OdgLsJNgXYF+CnQL7CuxrsNNg34B9C/Yd2Bmw78HOgv0A9iPYT2A/g/0C9ivYb2DuS7RdBJYOLD1YBrCMYBeDZQLLDJYFLCtYNrDsYDnALgHLCZYL7FKw3GB5wC4DywuWDywWLD9YAbA4sHiwBLCCYIXALgcrDFYErChYMbDiYFeAlQArCVYKrDTYlWBlwK4CuxqsLFg5sESwAFh5sApgSWAVwSqBJYOlgFUGuwbsWrAqYNeBXQ92A1hVsBvBbgK7GewWsFvBbgO7Hawa2B1g1cFqgNUEuxOsFlhtsLvA6oDdDVYXrB5YfbAGYA3BGoE1BmsC1hSsGVhzsHvAWoC1BGsF1hqsDVhbsHZgqWDtwTqAdQTrBNYZrAtYV7BuYN3BeoD1BOsF1husD1hfsH5g/cEGgA0EGwQ2GGwI2FCwYWDDwUaAjQQbBTYabAzYWLBxYOPBJoBNBJsENhlsCthUsGlg08FmgM0EmwU2G2wO2FyweWDzwRaALQRbBLYYbAnYUrBlYMvBVoCtBFsFthpsDdhasHvB7gO7H2wd2HqwB8A2gD0IthHsIbCHwR4BexTsMbDHwZ4A2wS2GWwL2JNgT4E9DfYM2LNgz4FtBXse7AWwF8FeAtsG9jLYdrBXwHaAvQr2GthOsNfB3gB7E2wX2G6wPWB7wfaBvQX2Ntg7YPvB3gV7D+wA2EGwQ2Dvgx0GOwL2AdiHYB+BHQU7BvYx2Cdgn4IdB/sM7HOwE2Anwb4A+xLsFNhXYF+DnQb7BuxbsO/AzoB9D3YW7AewH8F+AvsZ7BewX8F+A3N/YV+0XQSWDiw9WAawjGAXg2UCywyWBSwrWDaw7GA5wC4BywmWC+xSsNxgecAuA8sLlg8sFiw/WAGwOLB4sASwgmCFwC4HKwxWBKwoWDGw4mBXgJUAKwlWCqw02JVgZcCuArsarCxYObBEsABYebAKYElgFcEqgSWDpYBVBrsG7FqwKmDXgV0PdgNYVbAbwW4CuxnsFrBbwW4Dux2sGtgdYNXBaoDVBLsTrBZYbbC7wOqA3Q1WF6weWH2wBmANwRqBNQZrAtYUrBlYc7B7wFqAtQRrBdYarA1YW7B2YKlg7cE6gHUE6wTWGawLWFewbmDdwXqA9QTrBdYbrA9YX7B+YP3BBoANBBsENhhsCNhQsGFgw8FGgI0EGwU2GmwM2FiwcWDjwSaATQSbBDYZbArYVLBpYNPBZoDNBJsFNhtsDthcsHlg88EWgC0EWwS2GGwJ2FKwZWDLwVaArQRbBbYabA3YWrB7we4Dux9sHdh6sAfANoA9CLYR7CGwh8EeAXsU7DGwx8GeANsEthlsC9iTYE+BPQ32DNizYM+BbQV7HuwFsBfBXgLbBvYy2HawV8B2gL0K9hrYTrDXwd4AexNsF9husD1ge8H2gb0F9jbYO2D7wd4Few/sANhBsENg74MdBjsC9gHYh2AfgR0FOwb2MdgnYJ+CHQf7DOxzsBNgJ8G+APsS7BTYV2Bfg50G+wbsW7DvwM6AfQ92FuwHsB/BfgL7GewXsF/BfgNz/3GOaLsILB1YerAMYBnBLgbLBJYZLAtYVrBsYNnBcoBdApYTLBfYpWC5wfKAXQaWFywfWCxYfrACYHFg8WAJYAXBCoFdDlYYrAhYUbBiYMXBrgArAVYSrBRYabArwcqAXQV2NVhZsHJgiWABsPJgFcCSwCqCVQJLBksBqwx2Ddi1YFXArgO7HuwGsKpgN4LdBHYz2C1gt4LdBnY7WDWwO8Cqg9UAqwl2J1gtsNpgd4HVAbsbrC5YPbD6YA3AGoI1AmsM1gSsKVgzsOZg94C1AGsJ1gqsNVgbsLZg7cBSwdqDdQDrCNYJrDNYF7CuYN3AuoP1AOsJ1gusN1gfsL5g/cD6gw0AGwg2CGww2BCwoWDDwIaDjQAbCTYKbDTYGLCxYOPAxoNNAJsINglsMtgUsKlg08Cmg80Amwk2C2w22BywuWDzwOaDLQBbCLYIbDHYErClYMvAloOtAFsJtgpsNdgasLVg94LdB3Y/2Dqw9WAPgG0AexBsI9hDYA+DPQL2KNhjYI+DPQG2CWwz2BawJ8GeAnsa7BmwZ8GeA9sK9jzYC2Avgr0Etg3sZbDtYK+A7QB7Few1sJ1gr4O9AfYm2C6w3WB7wPaC7QN7C+xtsHfA9oO9C/Ye2AGwg2CHwN4HOwx2BOwDsA/BPgI7CnYM7GOwT8A+BTsO9hnY52AnwE6CfQH2JdgpsK/AvgY7DfYN2Ldg34GdAfse7CzYD2A/gv0E9jPYL2C/gv0G5v5DvNF2EVg6sPRgGcAygl0MlgksM1gWsKxg2cCyg+UAuwQsJ1gusEvBcoPlAbsMLC9YPrBYsPxgBcDiwOLBEsAKghUCuxysMFgRsKJgxcCKg10BVgKsJFgpsNJgV4KVAbsK7GqwsmDlwBLBAmDlwSqAJYFVBKsElgyWAlYZ7Bqwa8GqgF0Hdj3YDWBVwW4EuwnsZrBbwG4Fuw3sdrBqYHeAVQerAVYT7E6wWmC1we4CqwN2N1hdsHpg9cEagDUEawTWGKwJWFOwZmDNwe4BawHWEqwVWGuwNmBtwdqBpYK1B+sA1hGsE1hnsC5gXcG6gXUH6wHWE6wXWG+wPmB9wfqB9QcbADYQbBDYYLAhYEPBhoENBxsBNhJsFNhosDFgY8HGgY0HmwA2EWwS2GSwKWBTwaaBTQebATYTbBbYbLA5YHPB5oHNB1sAthBsEdhisCVgS8GWgS0HWwG2EmwV2GqwNWBrwe4Fuw/sfrB1YOvBHgDbAPYg2Eawh8AeBnsE7FGwx8AeB3sCbBPYZrAtYE+CPQX2NNgzYM+CPQe2Fex5sBfAXgR7CWwb2Mtg28FeAdsB9irYa2A7wV4HewPsTbBdYLvB9oDtBdsH9hbY22DvgO0HexfsPbADYAfBDoG9D3YY7AjYB2Afgn0EdhTsGNjHYJ+AfQp2HOwzsM/BToCdBPsC7EuwU2BfgX0NdhrsG7Bvwb4DOwP2PdhZsB/AfgT7CexnsF/AfgX7DSwm05/tIrB0YOnBMoBlBLsYLBNYZrAsYFnBsoFlB8sBdglYTrBcYJeC5QbLA3YZWF6wfGCxYPnBCoDFgcWDJYAVBCsEdjlYYbAiYEXBioEVB7sCrARYSbBSYKXBrgQrA3YV2NVgZcHKgSWCBcDKg1UASwKrCFYJLBksBawy2DVg14JVAbsO7HqwG8Cqgt0IdhPYzWC3gN0KdhvY7WDVwO4Aqw5WA6wm2J1gtcBqg90FVgfsbrC6YPXA6oM1AGsI1gisMVgTsKZgzcCag90D1gKsJVgrsNZgbcDagrUDSwVrD9YBrCNYJ7DOYF3AuoJ1A+sO1gOsJ1gvsN5gfcD6gvUD6w82AGwg2CCwwWBDwIaCDQMbDjYCbCTYKLDRYGPAxoKNAxsPNgFsItgksMlgU8Cmgk0Dmw42A2wm2Cyw2WBzwOaCzQObD7YAbCHYIrDFYEvAloItA1sOtgJsJdgqsNVga8DWgt0Ldh/Y/WDrwNaDPQC2AexBsI1gD4E9DPYI2KNgj4E9DvYE2CawzWBbwJ4EewrsabBnwJ4Few5sK9jzYC+AvQj2Etg2sJfBtoO9ArYD7FWw18B2gr0O9gbYm2C7wHaD7QHbC7YP7C2wt8HeAdsP9i7Ye2AHwA6CHQJ7H+ww2BGwD8A+BPsI7CjYMbCPwT4B+xTsONhnYJ+DnQA7CfYF2Jdgp8C+Avsa7DTYN2Dfgn0Hdgbse7CzYD+A/Qj2E9jPYL+A/Qr2G5iDaLsILB1YerAMYBnBLgbLBJYZLAtYVrBsYNnBcoBdApYTLBfYpWC5wfKAXQaWFywfWCxYfrACYHFg8WAJYAXBCoFdDlYYrAhYUbBiYMXBrgArAVYSrBRYabArwcqAXQV2NVhZsHJgiWABsPJgFcCSwCqCVQJLBksBqwx2Ddi1YFXArgO7HuwGsKpgN4LdBHYz2C1gt4LdBnY7WDWwO8Cqg9UAqwl2J1gtsNpgd4HVAbsbrC5YPbD6YA3AGoI1AmsM1gSsKVgzsOZg94C1AGsJ1gqsNVgbsLZg7cBSwdqDdQDrCNYJrDNYF7CuYN3AuoP1AOsJ1gusN1gfsL5g/cD6gw0AGwg2CGww2BCwoWDDwIaDjQAbCTYKbDTYGLCxYOPAxoNNAJsINglsMtgUsKlg08Cmg80Amwk2C2w22BywuWDzwOaDLQBbCLYIbDHYErClYMvAloOtAFsJtgpsNdgasLVg94LdB3Y/2Dqw9WAPgG0AexBsI9hDYA+DPQL2KNhjYI+DPQG2CWwz2BawJ8GeAnsa7BmwZ8GeA9sK9jzYC2Avgr0Etg3sZbDtYK+A7QB7Few1sJ1gr4O9AfYm2C6w3WB7wPaC7QN7C+xtsHfA9oO9C/Ye2AGwg2CHwN4HOwx2BOwDsA/BPgI7CnYM7GOwT8A+BTsO9hnY52AnwE6CfQH2JdgpsK/AvgY7DfYN2Ldg34GdAfse7CzYD2A/gv0E9jPYL2C/gv0GFpPlz3YRWDqw9GAZwDKCXQyWCSwzWBawrGDZwLKD5QC7BCwnWC6wS8Fyg+UBuwwsL1g+sFiw/GAFwOLA4sESwAqCFQK7HKwwWBGwomDFwIqDXQFWAqwkWCmw0mBXgpUBuwrsarCyYOXAEsECYOXBKoAlgVUEqwSWDJYCVhnsGrBrwaqAXQd2PdgNYFXBbgS7CexmsFvAbgW7Dex2sGpgd4BVB6sBVhPsTrBaYLXB7gKrA3Y3WF2wemD1wRqANQRrBNYYrAlYU7BmYM3B7gFrAdYSrBVYa7A2YG3B2oGlgrUH6wDWEawTWGewLmBdwbqBdQfrAdYTrBdYb7A+YH3B+oH1BxsANhBsENhgsCFgQ8GGgQ0HGwE2EmwU2GiwMWBjwcaBjQebADYRbBLYZLApYFPBpoFNB5sBNhNsFthssDlgc8Hmgc0HWwC2EGwR2GKwJWBLwZaBLQdbAbYSbBXYarA1YGvB7gW7D+x+sHVg68EeANsA9iDYRrCHwB4GewTsUbDHwB4HewJsE9hmsC1gT4I9BfY02DNgz4I9B7YV7HmwF8BeBHsJbBvYy2DbwV4B2wH2KthrYDvBXgd7A+xNsF1gu8H2gO0F2wf2FtjbYO+A7Qd7F+w9sANgB8EOgb0PdhjsCNgHYB+CfQR2FOwY2Mdgn4B9CnYc7DOwz8FOgJ0E+wLsS7BTYF+BfQ12GuwbsG/BvgM7A/Y92FmwH8B+BPsJ7GewX8B+BfsNLCbrn+0isHRg6cEygGUEuxgsE1hmsCxgWcGygWUHywF2CVhOsFxgl4LlBssDdhlYXrB8YLFg+cEKgMWBxYMlgBUEKwR2OVhhsCJgRcGKgRUHuwKsBFhJsFJgpcGuBCsDdhXY1WBlwcqBJYIFwMqDVQBLAqsIVgksGSwFrDLYNWDXglUBuw7serAbwKqC3Qh2E9jNYLeA3Qp2G9jtYNXA7gCrDlYDrCbYnWC1wGqD3QVWB+xusLpg9cDqgzUAawjWCKwxWBOwpmDNwJqD3QPWAqwlWCuw1mBtwNqCtQNLBWsP1gGsI1gnsM5gXcC6gnUD6w7WA6wnWC+w3mB9wPqC9QPrDzYAbCDYILDBYEPAhoINAxsONgJsJNgosNFgY8DGgo0DGw82AWwi2CSwyWBTwKaCTQObDjYDbCbYLLDZYHPA5oLNA5sPtgBsIdgisMVgS8CWgi0DWw62Amwl2Cqw1WBrwNaC3Qt2H9j9YOvA1oM9ALYB7EGwjWAPgT0M9gjYo2CPgT0O9gTYJrDNYFvAngR7CuxpsGfAngV7Dmwr2PNgL4C9CPYS2Dawl8G2g70CtgPsVbDXwHaCvQ72BtibYLvAdoPtAdsLtg/sLbC3wd4B2w/2Lth7YAfADoIdAnsf7DDYEbAPwD4E+wjsKNgxsI/BPgH7FOw42Gdgn4OdADsJ9gXYl2CnwL4C+xrsNNg3YN+CfQd2Bux7sLNgP4D9CPYT2M9gv4D9CvYbWEy2P9tFYOnA0oNlAMsIdjFYJrDMYFnAsoJlA8sOlgPsErCcYLnALgXLDZYH7DKwvGD5wGLB8oMVAIsDiwdLACsIVgjscrDCYEXAioIVAysOdgVYCbCSYKXASoNdCVYG7Cqwq8HKgpUDSwQLgJUHqwCWBFYRrBJYMlgKWGWwa8CuBasCdh3Y9WA3gFUFuxHsJrCbwW4BuxXsNrDbwaqB3QFWHawGWE2wO8FqgdUGuwusDtjdYHXB6oHVB2sA1hCsEVhjsCZgTcGagTUHuwesBVhLsFZgrcHagLUFaweWCtYerANYR7BOYJ3BuoB1BesG1h2sB1hPsF5gvcH6gPUF6wfWH2wA2ECwQWCDwYaADQUbBjYcbATYSLBRYKPBxoCNBRsHNh5sAthEsElgk8GmgE0FmwY2HWwG2EywWWCzweaAzQWbBzYfbAHYQrBFYIvBloAtBVsGthxsBdhKsFVgq8HWgK0FuxfsPrD7wdaBrQd7AGwD2INgG8EeAnsY7BGwR8EeA3sc7AmwTWCbwbaAPQn2FNjTYM+APQv2HNhWsOfBXgB7EewlsG1gL4NtB3sFbAfYq2Cvge0Eex3sDbA3wXaB7QbbA7YXbB/YW2Bvg70Dth/sXbD3wA6AHQQ7BPY+2GGwI2AfgH0I9hHYUbBjYB+DfQL2KdhxsM/APgc7AXYS7AuwL8FOgX0F9jXYabBvwL4F+w7sDNj3YGfBfgD7EewnsJ/BfgH7Few3sJjsf7aLwNKBpQfLAJYR7GKwTGCZwbKAZQXLBpYdLAfYJWA5wXKBXQqWGywP2GVgecHygcWC5QcrABYHFg+WAFYQrBDY5WCFwYqAFQUrBlYc7AqwEmAlwUqBlQa7EqwM2FVgV4OVBSsHlggWACsPVgEsCawiWCWwZLAUsMpg14BdC1YF7Dqw68FuAKsKdiPYTWA3g90CdivYbWC3g1UDuwOsOlgNsJpgd4LVAqsNdhdYHbC7weqC1QOrD9YArCFYI7DGYE3AmoI1A2sOdg9YC7CWYK3AWoO1AWsL1g4sFaw9WAewjmCdwDqDdQHrCtYNrDtYD7CeYL3AeoP1AesL1g+sP9gAsIFgg8AGgw0BGwo2DGw42AiwkWCjwEaDjQEbCzYObDzYBLCJYJPAJoNNAZsKNg1sOtgMsJlgs8Bmg80Bmws2D2w+2AKwhWCLwBaDLQFbCrYMbDnYCrCVYKvAVoOtAVsLdi/YfWD3g60DWw/2ANgGsAfBNoI9BPYw2CNgj4I9BvY42BNgm8A2g20BexLsKbCnwZ4BexbsObCtYM+DvQD2IthLYNvAXgbbDvYK2A6wV8FeA9sJ9jrYG2Bvgu0C2w22B2wv2D6wt8DeBnsHbD/Yu2DvgR0AOwh2COx9sMNgR8A+APsQ7COwo2DHwD4G+wTsU7DjYJ+BfQ52Auwk2BdgX4KdAvsK7Guw02DfgH0L9h3YGbDvwc6C/QD2I9hPYD+D/QL2K9hvYDE5/mwXgaUDSw+WASwj2MVgmcAyg2UBywqWDSw7WA6wS8ByguUCuxQsN1gesMvA8oLlA4sFyw9WACwOLB4sAawgWCGwy8EKgxUBKwpWDKw42BVgJcBKgpUCKw12JVgZsKvArgYrC1YOLBEsAFYerAJYElhFsEpgyWApYJXBrgG7FqwK2HVg14PdAFYV7Eawm8BuBrsF7Faw28BuB6sGdgdYdbAaYDXB7gSrBVYb7C6wOmB3g9UFqwdWH6wBWEOwRmCNwZqANQVrBtYc7B6wFmAtwVqBtQZrA9YWrB1YKlh7sA5gHcE6gXUG6wLWFawbWHewHmA9wXqB9QbrA9YXrB9Yf7ABYAPBBoENBhsCNhRsGNhwsBFgI8FGgY0GGwM2Fmwc2HiwCWATwSaBTQabAjYVbBrYdLAZYDPBZoHNBpsDNhdsHth8sAVgC8EWgS0GWwK2FGwZ2HKwFWArwVaBrQZbA7YW7F6w+8DuB1sHth7sAbANYA+CbQR7COxhsEfAHgV7DOxxsCfANoFtBtsC9iTYU2BPgz0D9izYc2BbwZ4HewHsRbCXwLaBvQy2HewVsB1gr4K9BrYT7HWwN8DeBNsFthtsD9hesH1gb4G9DfYO2H6wd8HeAzsAdhDsENj7YIfBjoB9APYh2EdgR8GOgX0M9gnYp2DHwT4D+xzsBNhJsC/AvgQ7BfYV2Ndgp8G+AfsW7DuwM2Dfg50F+wHsR7CfwH4G+wXsV7DfwGIu+bNdBJYOLD1YBrCMYBeDZQLLDJYFLCtYNrDsYDnALgHLCZYL7FKw3GB5wC4DywuWDywWLD9YAbA4sHiwBLCCYIXALgcrDFYErChYMbDiYFeAlQArCVYKrDTYlWBlwK4CuxqsLFg5sESwAFh5sApgSWAVwSqBJYOlgFUGuwbsWrAqYNeBXQ92A1hVsBvBbgK7GewWsFvBbgO7Hawa2B1g1cFqgNUEuxOsFlhtsLvA6oDdDVYXrB5YfbAGYA3BGoE1BmsC1hSsGVhzsHvAWoC1BGsF1hqsDVhbsHZgqWDtwTqAdQTrBNYZrAtYV7BuYN3BeoD1BOsF1husD1hfsH5g/cEGgA0EGwQ2GGwI2FCwYWDDwUaAjQQbBTYabAzYWLBxYOPBJoBNBJsENhlsCthUsGlg08FmgM0EmwU2G2wO2FyweWDzwRaALQRbBLYYbAnYUrBlYMvBVoCtBFsFthpsDdhasHvB7gO7H2wd2HqwB8A2gD0IthHsIbCHwR4BexTsMbDHwZ4A2wS2GWwL2JNgT4E9DfYM2LNgz4FtBXse7AWwF8FeAtsG9jLYdrBXwHaAvQr2GthOsNfB3gB7E2wX2G6wPWB7wfaBvQX2Ntg7YPvB3gV7D+wA2EGwQ2Dvgx0GOwL2AdiHYB+BHQU7BvYx2Cdgn4IdB/sM7HOwE2Anwb4A+xLsFNhXYF+DnQb7BuxbsO/AzoB9D3YW7AewH8F+AvsZ7BewX8F+A4vJ+We7CCwdWHqwDGAZwS4GywSWGSwLWFawbGDZwXKAXQKWEywX2KVgucHygF0GlhcsH1gsWH6wAmBxYPFgCWAFwQqBXQ5WGKwIWFGwYmDFwa4AKwFWEqwUWGmwK8HKgF0FdjVYWbByYIlgAbDyYBXAksAqglUCSwZLAasMdg3YtWBVwK4Dux7sBrCqYDeC3QR2M9gtYLeC3QZ2O1g1sDvAqoPVAKsJdidYLbDaYHeB1QG7G6wuWD2w+mANwBqCNQJrDNYErClYM7DmYPeAtQBrCdYKrDVYG7C2YO3AUsHag3UA6wjWCawzWBewrmDdwLqD9QDrCdYLrDdYH7C+YP3A+oMNABsINghsMNgQsKFgw8CGg40AGwk2Cmw02BiwsWDjwMaDTQCbCDYJbDLYFLCpYNPApoPNAJsJNgtsNtgcsLlg88Dmgy0AWwi2CGwx2BKwpWDLwJaDrQBbCbYKbDXYGrC1YPeC3Qd2P9g6sPVgD4BtAHsQbCPYQ2APgz0C9ijYY2CPgz0BtglsM9gWsCfBngJ7GuwZsGfBngPbCvY82AtgL4K9BLYN7GWw7WCvgO0AexXsNbCdYK+DvQH2JtgusN1ge8D2gu0DewvsbbB3wPaDvQv2HtgBsINgh8DeBzsMdgTsA7APwT4COwp2DOxjsE/APgU7DvYZ2OdgJ8BOgn0B9iXYKbCvwL4GOw32Ddi3YN+BnQH7Huws2A9gP4L9BPYz2C9gv4L9BhaT6892EVg6sPRgGcAygl0MlgksM1gWsKxg2cCyg+UAuwQsJ1gusEvBcoPlAbsMLC9YPrBYsPxgBcDiwOLBEsAKghUCuxysMFgRsKJgxcCKg10BVgKsJFgpsNJgV4KVAbsK7GqwsmDlwBLBAmDlwSqAJYFVBKsElgyWAlYZ7Bqwa8GqgF0Hdj3YDWBVwW4EuwnsZrBbwG4Fuw3sdrBqYHeAVQerAVYT7E6wWmC1we4CqwN2N1hdsHpg9cEagDUEawTWGKwJWFOwZmDNwe4BawHWEqwVWGuwNmBtwdqBpYK1B+sA1hGsE1hnsC5gXcG6gXUH6wHWE6wXWG+wPmB9wfqB9QcbADYQbBDYYLAhYEPBhoENBxsBNhJsFNhosDFgY8HGgY0HmwA2EWwS2GSwKWBTwaaBTQebATYTbBbYbLA5YHPB5oHNB1sAthBsEdhisCVgS8GWgS0HWwG2EmwV2GqwNWBrwe4Fuw/sfrB1YOvBHgDbAPYg2Eawh8AeBnsE7FGwx8AeB3sCbBPYZrAtYE+CPQX2NNgzYM+CPQe2Fex5sBfAXgR7CWwb2Mtg28FeAdsB9irYa2A7wV4HewPsTbBdYLvB9oDtBdsH9hbY22DvgO0HexfsPbADYAfBDoG9D3YY7AjYB2Afgn0EdhTsGNjHYJ+AfQp2HOwzsM/BToCdBPsC7EuwU2BfgX0NdhrsG7Bvwb4DOwP2PdhZsB/AfgT7CexnsF/AfgX7DSzm0j/bRWDpwNKDZQDLCHYxWCawzGBZwLKCZQPLDpYD7BKwnGC5wC4Fyw2WB+wysLxg+cBiwfKDFQCLA4sHSwArCFYI7HKwwmBFwIqCFQMrDnYFWAmwkmClwEqDXQlWBuwqsKvByoKVA0sEC4CVB6sAlgRWEawSWDJYClhlsGvArgWrAnYd2PVgN4BVBbsR7Cawm8FuAbsV7Daw28Gqgd0BVh2sBlhNsDvBaoHVBrsLrA7Y3WB1weqB1QdrANYQrBFYY7AmYE3BmoE1B7sHrAVYS7BWYK3B2oC1BWsHlgrWHqwDWEewTmCdwbqAdQXrBtYdrAdYT7BeYL3B+oD1BesH1h9sANhAsEFgg8GGgA0FGwY2HGwE2EiwUWCjwcaAjQUbBzYebALYRLBJYJPBpoBNBZsGNh1sBthMsFlgs8HmgM0Fmwc2H2wB2EKwRWCLwZaALQVbBrYcbAXYSrBVYKvB1oCtBbsX7D6w+8HWga0HewBsA9iDYBvBHgJ7GOwRsEfBHgN7HOwJsE1gm8G2gD0J9hTY02DPgD0L9hzYVrDnwV4AexHsJbBtYC+DbQd7BWwH2Ktgr4HtBHsd7A2wN8F2ge0G2wO2F2wf2Ftgb4O9A7Yf7F2w98AOgB0EOwT2PthhsCNgH4B9CPYR2FGwY2Afg30C9inYcbDPwD4HOwF2EuwLsC/BToF9BfY12Gmwb8C+BfsO7AzY92BnwX4A+xHsJ7CfwX4B+xXsN7CY3H+2i8DSgaUHywCWEexisExgmcGygGUFywaWHSwH2CVgOcFygV0KlhssD9hlYHnB8oHFguUHKwAWBxYPlgBWEKwQ2OVghcGKgBUFKwZWHOwKsBJgJcFKgZUGuxKsDNhVYFeDlQUrB5YIFgArD1YBLAmsIlglsGSwFLDKYNeAXQtWBew6sOvBbgCrCnYj2E1gN4PdAnYr2G1gt4NVA7sDrDpYDbCaYHeC1QKrDXYXWB2wu8HqgtUDqw/WAKwhWCOwxmBNwJqCNQNrDnYPWAuwlmCtwFqDtQFrC9YOLBWsPVgHsI5gncA6g3UB6wrWDaw7WA+wnmC9wHqD9QHrC9YPrD/YALCBYIPABoMNARsKNgxsONgIsJFgo8BGg40BGws2Dmw82ASwiWCTwCaDTQGbCjYNbDrYDLCZYLPAZoPNAZsLNg9sPtgCsIVgi8AWgy0BWwq2DGw52AqwlWCrwFaDrQFbC3Yv2H1g94OtA1sP9gDYBrAHwTaCPQT2MNgjYI+CPQb2ONgTYJvANoNtAXsS7Cmwp8GeAXsW7DmwrWDPg70A9iLYS2DbwF4G2w72CtgOsFfBXgPbCfY62Btgb4LtAtsNtgdsL9g+sLfA3gZ7B2w/2Ltg74EdADsIdgjsfbDDYEfAPgD7EOwjsKNgx8A+BvsE7FOw42CfgX0OdgLsJNgXYF+CnQL7CuxrsNNg34B9C/Yd2Bmw78HOgv0A9iPYT2A/g/0C9ivYb2Axef5sF4GlA0sPlgEsI9jFYJnAMoNlAcsKlg0sO1gOsEvAcoLlArsULDdYHrDLwPKC5QOLBcsPVgAsDiweLAGsIFghsMvBCoMVASsKVgysONgVYCXASoKVAisNdiVYGbCrwK4GKwtWDiwRLABWHqwCWBJYRbBKYMlgKWCVwa4BuxasCth1YNeD3QBWFexGsJvAbga7BexWsNvAbgerBnYHWHWwGmA1we4EqwVWG+wusDpgd4PVBasHVh+sAVhDsEZgjcGagDUFawbWHOwesBZgLcFagbUGawPWFqwdWCpYe7AOYB3BOoF1BusC1hWsG1h3sB5gPcF6gfUG6wPWF6wfWH+wAWADwQaBDQYbAjYUbBjYcLARYCPBRoGNBhsDNhZsHNh4sAlgE8EmgU0GmwI2FWwa2HSwGWAzwWaBzQabAzYXbB7YfLAFYAvBFoEtBlsCthRsGdhysBVgK8FWga0GWwO2FuxesPvA7gdbB7Ye7AGwDWAPgm0EewjsYbBHwB4FewzscbAnwDaBbQbbAvYk2FNgT4M9A/Ys2HNgW8GeB3sB7EWwl8C2gb0Mth3sFbAdYK+CvQa2E+x1sDfA3gTbBbYbbA/YXrB9YG+BvQ32Dth+sHfB3gM7AHYQ7BDY+2CHwY6AfQD2IdhHYEfBjoF9DPYJ2Kdgx8E+A/sc7ATYSbAvwL4EOwX2FdjXYKfBvgH7Fuw7sDNg34OdBfsB7Eewn8B+BvsF7Few38BiLvuzXQSWDiw9WAawjGAXg2UCywyWBSwrWDaw7GA5wC4BywmWC+xSsNxgecAuA8sLlg8sFiw/WAGwOLB4sASwgmCFwC4HKwxWBKwoWDGw4mBXgJUAKwlWCqw02JVgZcCuArsarCxYObBEsABYebAKYElgFcEqgSWDpYBVBrsG7FqwKmDXgV0PdgNYVbAbwW4CuxnsFrBbwW4Dux2sGtgdYNXBaoDVBLsTrBZYbbC7wOqA3Q1WF6weWH2wBmANwRqBNQZrAtYUrBlYc7B7wFqAtQRrBdYarA1YW7B2YKlg7cE6gHUE6wTWGawLWFewbmDdwXqA9QTrBdYbrA9YX7B+YP3BBoANBBsENhhsCNhQsGFgw8FGgI0EGwU2GmwM2FiwcWDjwSaATQSbBDYZbArYVLBpYNPBZoDNBJsFNhtsDthcsHlg88EWgC0EWwS2GGwJ2FKwZWDLwVaArQRbBbYabA3YWrB7we4Dux9sHdh6sAfANoA9CLYR7CGwh8EeAXsU7DGwx8GeANsEthlsC9iTYE+BPQ32DNizYM+BbQV7HuwFsBfBXgLbBvYy2HawV8B2gL0K9hrYTrDXwd4AexNsF9husD1ge8H2gb0F9jbYO2D7wd4Few/sANhBsENg74MdBjsC9gHYh2AfgR0FOwb2MdgnYJ+CHQf7DOxzsBNgJ8G+APsS7BTYV2Bfg50G+wbsW7DvwM6AfQ92FuwHsB/BfgL7GewXsF/BfgOLyftnuwgsHVh6sAxgGcEuBssElhksC1hWsGxg2cFygF0ClhMsF9ilYLnB8oBdBpYXLB9YLFh+sAJgcWDxYAlgBcEKgV0OVhisCFhRsGJgxcGuACsBVhKsFFhpsCvByoBdBXY1WFmwcmCJYAGw8mAVwJLAKoJVAksGSwGrDHYN2LVgVcCuA7se7AawqmA3gt0EdjPYLWC3gt0GdjtYNbA7wKqD1QCrCXYnWC2w2mB3gdUBuxusLlg9sPpgDcAagjUCawzWBKwpWDOw5mD3gLUAawnWCqw1WBuwtmDtwFLB2oN1AOsI1gmsM1gXsK5g3cC6g/UA6wnWC6w3WB+wvmD9wPqDDQAbCDYIbDDYELChYMPAhoONABsJNgpsNNgYsLFg48DGg00Amwg2CWwy2BSwqWDTwKaDzQCbCTYLbDbYHLC5YPPA5oMtAFsItghsMdgSsKVgy8CWg60AWwm2Cmw12BqwtWD3gt0Hdj/YOrD1YA+AbQB7EGwj2ENgD4M9AvYo2GNgj4M9AbYJbDPYFrAnwZ4CexrsGbBnwZ4D2wr2PNgLYC+CvQS2DexlsO1gr4DtAHsV7DWwnWCvg70B9ibYLrDdYHvA9oLtA3sL7G2wd8D2g70L9h7YAbCDYIfA3gc7DHYE7AOwD8E+AjsKdgzsY7BPwD4FOw72GdjnYCfAToJ9AfYl2Cmwr8C+BjsN9g3Yt2DfgZ0B+x7sLNgPYD+C/QT2M9gvYL+C/QYWk+/PdhFYOrD0YBnAMoJdDJYJLDNYFrCsYNnAsoPlALsELCdYLrBLwXKD5QG7DCwvWD6wWLD8YAXA4sDiwRLACoIVArscrDBYEbCiYMXAioNdAVYCrCRYKbDSYFeClQG7CuxqsLJg5cASwQJg5cEqgCWBVQSrBJYMlgJWGewasGvBqoBdB3Y92A1gVcFuBLsJ7GawW8BuBbsN7HawamB3gFUHqwFWE+xOsFpgtUOWIXhdHLwGxPzr43os11O5Hsr1TK5Hcj2R64Fcz+N6HNfTuB7G9SyuR3E9ietBXM/hegzXU7gewvUMrkdwPYHrAdw7373j3TvdvcPdO9u9o9072b2D3TvXvWPdO9W9Q907070j3TvRvQPdO8+949w7zb3D3DvLvaPcO8m9g35/5+T71zvFvUPcO8O9I9w7wb0DXM13Nd7VdFfDXc12NdrVZFeDXc11NdbVVFdDXc10NdLVRFcDXc1zNc7VNFfDXM1yNcrVJFeDXM1xNcbVFFdDXM1wNcLVBFcD3DPvnnH3TLtn2D2z7hl1z6R7Bt0z554x90y5Z8g9M+4Zcc+EewbcmXdn3J1pd4bdmXVn1J1JdwbdmXNnzJ0pd4bcmXFnxJ0JdwbcnsdEnYO73JqC/0wX88fPRaF/Vg39MzFtn0D9fGL3Siwcus+Q4D2HBq9hwWt48BoRvEYGr1HBa3TwGhO8xgavccFrfPCaELwmBq9JwWty8JoSvKYGr2nBa3rwmhG8ZgavWcFrdvCaE7zmBq95wWt+8FoQvBYGr0XBa3G+fyUpMpdD4DkbCjYMbDjYCLCRYKPARoONARsLNg5sPNgEsIlgk8Amg00Bmwo2DWw62AywmWCzwGaDzQGbCzYPbD7YArCFYIvAFocs8lMk9M+qoX8mpu3zh2e2QmKlpKR2yeXbBSoEWiWWr9w6pWJiUsXWlVICKYGKKRXblk+pUKFdSlJKcuXWlZMTKweSKrQLpFasXCE1dLMhAvdql+o+iYGhQvdyaxwmcq9/5Wt42u9VPpSvwIi03ivp/3MfGJm2eyVG7GNgVFruVf4PZyIw+p/fKzHqfAXG/MN7VUr901kNjP1n90qBcx8Y90/ulYLPUGD8ud8r+T88j4EJ53qv5P/4bAcmntu9yv9FnQhMOpd7Jf9lzQlM/vv3avNf6ldgyt+9V/J/rYWBqX/vXol/o64Gpv2deyX+rRodmP7f71Xxb9b7wIz/dq+kv/3uCMz8y3slpZ7Deygw66/ulXxO77TA7P98r5RzfD8G5vyHe1VOPed3bWAu3yvxH7y3A/PoXon/qAcIzP/zvQL/sJ8ILIi+V9t/3JsEFv7xXhXS0OcEFkXcq3xqmnqmwGLBmSkm4hOe9ar+/Zr9l73dYsE+cYnYmiskZgzeI3vMv2fZyI/0fLtEcK8i412aTzFgd3Pp+y4TPAxa616W798JFrrv74ctR8yff5CisQa5wtA2EcKVuXcgMTEyF8tDOV8R+sHJ/0+yy0OHMNJWwHSbXjGJaZ1Ilwse+hXCm6vxgC+HwpHWdS838rZbJLjXK8XWXCnJy7fdSqW33ap8igGvUnjbrfb5286te7Xxt90iscNWuQ2Eq/K2WxPK+drot90aeNut9eBtt0jwbbdG8NCvVdpc6aovueZ75apnICZG/k28LFQ00gmfQcnR4D7hbkG6aLk9vk+hS/L7usNnR3rd9xvpDiXP+DrlOpGYtk/A7ck6hTpxn2AO1xt4XtYrPC8PCHfo4V7lgYhYtXIhfZ7WCZ6nDUp53ZDvz5ObdG1aKJiHB8XykNTOy8n1QeH9C3825lMMeKPC5PqQzydXt+6HjE+uC8UOW+vyEK7K5PpwKOePRE+uD8Pk+ogHk6tE1QpPrg8LHvpHlDZXuupLrvlRn3ekG0JFI71wDjcI5lCy8D7m8/1w5+Uxhe5WcN348pI4Lw8pdLKSZ+dxn09GLoePK+TwMcEcPmHkpxKS9WuTz2uO25NNCjVns9Lkt1lxog7nQvoZkjxPW5TyusWDiXqBYB6eFMtDcnkvJ+onhfcv/Hkqn2LATylM1E/7fKJ2637a+ES9QOywpbSDcFUm6mdCOX82eqJ+BibqZz2YqCWqVniifkbw0D+rtLnSVV9yzc/5vJvaEioa0hP1FsEcShberT7fD3detip0t4LrVpmow+dQupOVPDvP+3yidjl8XiGHWwVz+IKRiVqyfr3o85rj9uRFhZrzktLk95LiRB3OhfQzJHmetinldZsHE/V8wTy8LJaHdgEvJ+qXhfcv/NmeTzHg7QoT9Ss+n6jdul8xPlHPFztsgVQIV2Wi3hHK+avRE/UOmKhf9WCilqha4Yl6h+Chf1Vpc6WrvuSaX/N5N7UtVDSkJ+ptgjmULLw7fb4f7rzsVOhuBdetMlGHz6F0Jyt5dl73+UTtcvi6Qg53CubwDSMTtWT9etPnNcftyZsKNWeX0uS3S3GiDudC+hmSPE+7lfK624OJep5gHvaI5aGCpxP1HuH9C3/25lMMeK/CRL3P5xO1W/c+4xP1PLHD1sazifqtUM7fjp6o34KJ+m0PJmqJqhWeqN8SPPRvK22udNWXXPM7Pu+mdoeKhvREvVswh5KFd7/P98Odl/0K3a3gulUm6vA5lO5kJc/Ouz6fqF0O31XI4X7BHL5nZKKWrF8HfF5z3J4cUKg5B5Umv4OKE3U4F9LPkOR5OqSU10MeTNRzBfPwvlgeWnn6912+L7x/4c/hfIoBH1aYqI/4fKJ26z5ifKKeK3bYKnn2911+EMr5h9ET9QcwUX/owUQtUbXCE/UHgof+Q6XNla76kmv+yOfd1KFQ0ZCeqA8J5lCy8B71+X6483JUobsVXLfKRB0+h9KdrOTZOebzidrl8JhCDo8K5vBjIxO1ZP36xOc1x+3JJwo151Olye9TxYk6nAvpZ0jyPB1XyutxDybqOYJ5+EwsD+UrezlRfya8f+HP5/kUA/5cYaI+4fOJ2q37hPGJeo7YYWubDOGqTNQnQzn/InqiPgkT9RceTNQSVSs8UZ8UPPRfKG2udNWXXPOXPu+mjoeKhvREfVwwh5KF95TP98Odl1MK3a3gulUm6vA5lO5kJc/OVz6fqF0Ov1LI4SnBHH5tZKKWrF+nfV5z3J6cVqg53yhNft8oTtThXEg/Q5Ln6VulvH7rwUQ9WzAP34nloXWKlxP1d8L7F/6cyacY8BmFifp7n0/Ubt3fG5+oZ4sdtqQUCFdloj4byvkP0RP1WZiof/BgopaoWuGJ+qzgof9BaXOlq77kmn/0eTf1bahoSE/U3wrmULLw/uTz/XDn5SeF7lZw3SoTdfgcSneykmfnZ59P1C6HPyvk8CfBHP5iZKKWrF+/+rzmuD35VaHm/KY0+f2mOFGHcyH9DEmep5hYnby6+2pP1LME83CRWB4qevqnvi8S3r//36tYxYDTxcrfN32svydqt+70sf9OsNB9PZ2oZ8n92MmzP/WdIZTzjLExf5yeM8T+eaJ2/yPtiXqW4ESdQfDQZ4zV2Vzpqi+55otj/d1NxYSKhvREHSOYQ8nCm8nn++HOS6ZY+e5WcN0qE3X4HEp3spJnJ7NyDhPT9vn9Wc6skMNMgjnMIpzD8Ef6HSBZv7L6vOa4PcmqUHOyKU1+2WL1JupwLqSfIcnzlF0pr9k9mKhnCk7UOcTykFTRy4k6h/D+hT+XxCoGfInCRJ3T5xO1W3dO4xP1TLmJujWEqzJR5wrl/NLoiToXTNSXejBRzxScqHMJHvpLY3U2V7rqS645t8+7qeyhoiE9UWcXzKFk4c3j8/1w5yWPQncruG6ViTp8DqU7Wcmzc5nPJ2qXw8sUcphHMId5jUzUkvUrn89rjtuTfAo1J1Zp8otVnKjDuZB+hiTPU36lvOb3YKKeIThRF5DrJyt5OVEXEN6/8CcuVjHgOIWJOt7nE7Vbd7zxiXqG3B8MbgXhqkzUCaGcF4yeqBNgoi7owUQ9Q3CiThA89AVjdTZXuupLrrmQz7up/KGiIT1R5xfMoWThvdzn++HOy+UK3a3gulUm6vA5lO5kJc9OYZ9P1C6HhRVyeLlgDosYmagl61dRn9cctydFFWpOMaXJr5jiRB3OhfQzJHmeiivltbgHE/V0wYn6CrE8pHj6X8+6Qnj/wp8SsYoBl1CYqEv6fKJ26y5pfKKeLjZRJ3v2X88qFcp56eiJuhRM1KU9mKinC07UpQQPfelYnc2VrvqSa77S591U8VDRkJ6oiwvmULLwlvH5frjzUkahuxVct8pEHT6H0p2s5Nm5yucTtcvhVQo5LCOYw6uNTNSS9ausz2uO25OyCjWnnNLkV05xog7nQvoZkjxPiUp5TfRgop4mOFEHjE7UAeH9C3/KxyoGXF5hoq7g84narbuC8Yl6msGJOimU84rRE3USTNQVPZiopwlO1EmCh76ikYlacs2VfN5NJYaKhvREnSiYQ8nCm+zz/XDnJVmhuxVct8pEHT6H0p2s5NlJ8flE7XKYopDDZMEcVjYyUUvWr2t8XnPcnlyjUHOuVZr8rlWcqMO5kH6GJM9TFaW8VvFgop4qOFFfJ5aHip7+Xd/XCe9f+HN9rGLA1ytM1Df4fKJ2677B+EQ9VWyibuXZ3/VdNZTzG6Mn6qowUd/owUQ9VXCirip46G+M1dlc6aovueabfN5NVQkVDemJuopgDiUL780+3w93Xm5W6G4F160yUYfPoXQnK3l2bvH5RO1yeItCDm8WzOGtRiZqyfp1m89rjtuT2xRqzu1Kk9/tihN1OBfSz5DkeaqmlNdqHkzUUwQn6jvkJuq2Xk7UdwjvX/hTPVYx4OoKE3UNn0/Ubt01jE/UU+Qm6goQrspEXTOU8zujJ+qaMFHf6cFEPUVwoq4peOjvjNXZXOmqL7nmWj7vpqqFiob0RF1NMIeShbe2z/fDnZfaCt2t4LpVJurwOZTuZCXPzl0+n6hdDu9SyGFtwRzWMTJRS9avu31ec9ye3K1Qc+oqTX51FSfqcC6knyHJ81RPKa/1PJioJwtO1PXF8lDe099R1xfev/CnQaxiwA0UJuqGPp+o3bobGp+oJ4tN1G09+x11o1DOG0dP1I1gom7swUQ9WXCibiR46BvH6myudNWXXHMTn3dT9UJFQ3qirieYQ8nC29Tn++HOS1OF7lZw3SoTdfgcSneykmenmc8napfDZgo5bCqYw+ZGJmrJ+nWPz2uO25N7FGpOC6XJr4XiRB3OhfQzJHmeWirltaUHE/UkwYm6lVgeKlTwcqJuJbx/4U/rWMWAWytM1G18PlG7dbcxPlFPEpuo27SFcFUm6rahnLeLnqjbwkTdzoOJepLgRN1W8NC3i9XZXOmqL7nmVJ93Uy1DRUN6om4pmEPJwtve5/vhzkt7he5WcN0qE3X4HEp3spJnp4PPJ2qXww4KOWwvmMOORiZqyfrVyec1x+1JJ4Wa01lp8uusOFGHcyH9DEmepy5Kee3iwUQ9UXCi7iqWh3ae/o66q/D+hT/dYhUD7qYwUXf3+UTt1t3d+EQ9UWyiDnj2O+oeoZz3jJ6oe8BE3dODiXqi4ETdQ/DQ94zV2Vzpqi+55l4+76a6hIqG9ETdRTCHkoW3t8/3w52X3grdreC6VSbq8DmU7mQlz04fn0/ULod9FHLYWzCHfY1M1JL1q5/Pa47bk34KNae/0uTXX3GiDudC+hmSPE8DlPI6wIOJeoLgRD1QLA9Jnk7UA4X3L/wZFKsY8CCFiXqwzydqt+7BxifqCWITdWvPJuohoZwPjZ6oh8BEPdSDiXqC4EQ9RPDQD43V2Vzpqi+55mE+76YGhIqG9EQ9QDCHkoV3uM/3w52X4QrdreC6VSbq8DmU7mQlz84In0/ULocjFHI4XDCHI41M1JL1a5TPa47bk1EKNWe00uQ3WnGiDudC+hmSPE9jlPI6xoOJerzgRD1WLA/Jlb2cqMcK71/4My5WMeBxChP1eJ9P1G7d441P1OPFJuqUZAhXZaKeEMr5xOiJegJM1BM9mKjHC07UEwQP/cRYnc0V/zmq4Jon+bybGhMqGtIT9RjBHEoW3sk+3w93XiYrdLeC61aZqMPnULqTlTw7U3w+UbscTlHI4WTBHE41MlFL1q9pPq85bk+mKdSc6UqT33TFiTqcC+lnSPI8zVDK6wwPJupxghP1TLnf0Hg6Uc8U3r/wZ1asYsCzFCbq2T6fqN26ZxufqMeJTdRJnk3Uc0I5nxs9Uc+BiXquBxP1OMGJeo7goZ8bq7O50lVfcs3zfN5NzQgVDemJeoZgDiUL73yf74c7L/MVulvBdatM1OFzKN3JSp6dBT6fqF0OFyjkcL5gDhcamagl69cin9cctyeLFGrOYqXJb7HiRB3OhfQzJHmelijldYkHE/VYwYl6qdzvqBO9nKiXCu9f+LMsVjHgZQoT9XKfT9Ru3cuNT9RjxSbqyokQrspEvSKU85XRE/UKmKhXejBRjxWcqFcIHvqVsTqbK131Jde8yufd1JJQ0ZCeqJcI5lCy8K72+X6487JaobsVXLfKRB0+h9KdrOTZWePzidrlcI1CDlcL5nCtkYlasn7d6/Oa4/bkXoWac5/S5Hef4kQdzoX0MyR5nu5Xyuv9HkzUYwQn6nVy/WTAy4l6nfD+hT/rYxUDXq8wUT/g84narfsB4xP1GLGJulIqhKsyUW8I5fzB6Il6A0zUD3owUY8RnKg3CB76B2N1Nle66kuueaPPu6n7Q0VDeqK+XzCHkoX3IZ/vhzsvDyl0t4LrVpmow+dQupOVPDsP+3yidjl8WCGHDwnm8BEjE7Vk/XrU5zXH7cmjCjXnMaXJ7zHFiTqcC+lnSPI8Pa6U18c9mKhHC07UT8j9mUdP/+tZTwjvX/izKVYx4E0KE/Vmn0/Ubt2bjU/Uo+X+ZjLP/utZW0I5fzJ6ot4CE/WTHkzUowUn6i2Ch/7JWJ3Nla76kmt+yufd1OOhoiE9UT8umEPJwvu0z/fDnZenFbpbwXWrTNThcyjdyUqenWd8PlG7HD6jkMOnBXP4rJGJWrJ+PefzmuP25DmFmrNVafLbqjhRh3Mh/QxJnqfnlfL6vAcT9SjBifoFsTy08/R31C8I71/482KsYsAvKkzUL/l8onbrfsn4RD1K7r+e5dnvqLeFcv5y9ES9DSbqlz2YqEcJTtTbBA/9y7E6mytd9SXXvN3n3dTzoaIhPVE/L5hDycL7is/3w52XVxS6W8F1q0zU4XMo3clKnp0dPp+oXQ53KOTwFcEcvmpkopasX6/5vOa4PXlNoebsVJr8dipO1OFcSD9DkufpdaW8vu7BRD1ScKJ+QywPqRW9nKjfEN6/8OfNWMWA31SYqHf5fKJ2695lfKIeKTZRJ7aGcFUm6t2hnO+Jnqh3w0S9x4OJeqTgRL1b8NDvidXZXOmqL7nmvT7vpl4PFQ3pifp1wRxKFt59Pt8Pd172KXS3gutWmajD51C6k5U8O2/5fKJ2OXxLIYf7BHP4tpGJWrJ+vePzmuP25B2FmrNfafLbrzhRh3Mh/QxJnqd3lfL6rgcT9QjBifo9sTxU9vRPfb8nvH/hz4FYxYAPKEzUB30+Ubt1HzQ+UY+Q+/eoPftT34dCOX8/eqI+BBP1+x5M1CMEJ+pDgof+/VidzZWu+pJrPuzzburdUNGQnqjfFcyhZOE94vP9cOfliEJ3K7hulYk6fA6lO1nJs/OBzydql8MPFHJ4RDCHHxqZqCXr10c+rzluTz5SqDlHlSa/o4oTdTgX0s+Q5Hk6ppTXYx5M1MMFJ+qP5X5H7enf9f2x8P6FP5/EKgb8icJE/anPJ2q37k+NT9TD5f7Ut2d/1/fxUM4/i56oj8NE/ZkHE/VwwYn6uOCh/yxWZ3Olq77kmj/3eTd1LFQ0pCfqY4I5lCy8J3y+H+68nFDobgXXrTJRh8+hdCcreXZO+nyidjk8qZDDE4I5/MLIRC1Zv770ec1xe/KlQs05pTT5nVKcqMO5kH6GJM/TV0p5/SqUVy+ny2H5ZNcS/nwdqxjw1wrT5WmfT5du3acVpkuKVeIBOa3wEAs+eOr77dccSq77GyPNxFeCa/7W582EW+s3Cs3Edz5vvt2+fKdcc9KawzNKjcOZ89A4DFVqHL6PVQz4e4XG4azPGwe37rNGGgd3kM8qPMSCD576fvs1h5Lr/sFI43BGcM0/+rxxcGv9QaFx+MnnjYPbl5+Ua05ac/izUuPwswe/wx8i+Dv8XwSfIS+bpV9idZqlX2MVA/5VoVn6zefNklv3bx41S4lp+wR+DsUq/avDnwX3SHS/8/v7BeoKnYtR+gV6UX5/n8Pf16yw7nT5dV567r7RfwREOifaeybxjP+m0PRIPu/pfX7uXQ5djNI5jKxzac1hBuEchj/STaLkOyejz98Tbk8yKtTLi5Xq5cX59X7d+59ykZi2T0DyPLnYMoXW3jLmX+8O971VxPfWEd/bRHxvG/G9XcT31Ijv7SO+d4j43jHie6eI750jvneJ+N414nu3iO/dI773iPjeM+J7r4jvvSO+94n43jfie7+I7/0jvg+I+D4w4vugiO+DI74Pifg+NOL7sIjvwyO+j4j4PjLi+6iI76Mjvo+J+D424vu4iO/jI75PiPg+MeL7pIjvkyO+T4n4PjXi+7SI79Mjvs+I+D4z4vusiO+zI77Pifg+N+L7vIjv8yO+L4j4vjDi+6KI74sjvi+J+L404vuyiO/LI77HRHy/KOJ7uojv6SO+Z4j4njHi+8UR3zNFfM8c8T1LxPesEd+zRXzPHvE9R8T3SyK+54z4nivi+6UR33NHfM8T8f2yiO95I77ni/geG/E9f8T3AhHf4yK+x0d8T4j4XjDie6GI75dHfC8c8b1IxPeiEd+LRXwvHvH9iojvJSK+l4z4Xirie+mI71dGfC8T8f2qiO9XR3wvG/G9XMT3xIjvgYjv5SO+V4j4nhTxvWLE90oR35MjvqdEfK8c8f2aiO/XRnyvEvH9uojv10d8vyHie9WI7zdGfL8p4vvNEd9vifh+a8T32yK+3x7xvVrE9zsivleP+F4j4nvNiO93RnyvFfG9dsT3uyK+14n4fnfE97oR3+tFfK8f8b1BxPeGEd8bRXxvHPG9ScT3phHfm0V8bx7x/Z6I7y1C3zO7hyviE65HVUP/TEzbJ5BZsO/+q39nI7Nw3C2l7hVITGwlc6+A+/+0lrhX4F//aJP2ewXCX9qm9V6Bf39tl7Z7BSL/H6lpuVfgj//P9jE6c19M2s5uIBoin48soec7q/tnuJG4KPR/eC7KskY8rOFP1rQF96dgW8ZceLD+/p3+9x6sc3xJJEa9JAJZBF84WT36QU9i2j6ia872F/dKSW7XOjU5qUKrxKTU1sH7VEptV6FV+cqB1JQKwdtXSAq0btUusW1S6+RKSZVSUpM9/Td6swn/oCb8yZ5fMeDsCj+lySF4GLTWnSOi6xS6r8pP9LOGYk3rAxt9X8k9ukTpJ5TuvjfG/OsnDF513R1i5JqDjjFyzUGnGLnmoHOMXHPQJUauOegaI9ccdIuRaw66x+i8hGPSdnb/suvOGapvuaK77pzQdefyoOu+8GCdy53+9x6stHbdOQVfaLmMdN2Sa77UaNd9qVLXnTu/YsC5FbruPD7vut268xjpunOFYpXuuiX36DKlrvuy89B194iRaw56xsg1B71i5JqD3jFyzUGfGLnmoG+MXHPQL0auOegfo/MSjknb2f3LrjtvqL7li+6680LXnc+DrvvCg3Uud/rfe7DS2nXnFXyh5TPSdUuuOdZo1x2r1HXnz68YcH6FrruAz7tut+4CRrrufKFYpbtuyT2KU+q6485D1z0gRq45GBgj1xwMipFrDgbHyDUHQ2LkmoOhMXLNwbAYueZgeIzOSzgmbWf3L7vu+FB9S4juuuOh607woOu+8GCdy53+9x6stHbd8YIvtAQjXbfkmgsa7boLKnXdhfIrBlxIoeu+3Oddt1v35Ua67oRQrNJdt+QeFVbqugufh657RIxcczAyRq45GBUj1xyMjpFrDsbEyDUHY2PkmoNxMXLNwfgYnZdwTNrO7l923UVC9a1odNddBLruoh503SNiLjxYf/9O/3sPVlq77iKCL7SiRrpuyTUXM9p1F1PquovnVwy4uELXfYXPu2637iuMdN1FQ7FKd92Se1RCqesucR667gkxcs3BxBi55mBSjFxzMDlGrjmYEiPXHEyNkWsOpsXINQfTY3RewjFpO7t/2XWXDNW3UtFdd0noukt50HVfeLDO5U7/ew9WWrvukoIvtFJGum7JNZc22nWXVuq6r8yvGPCVCl13GZ933W7dZYx03aVCsUp33ZJ7dJVS133Veei6Z8TINQczY+Sag1kxcs3B7Bi55mBOjFxzMDdGrjmYFyPXHMyP0XkJx6Tt7P5l1311qL6Vje66r4auu6wHXfeFB+tc7vS/92Clteu+WvCFVtZI1y255nJGu+5ySl13Yn7FgBMVuu6Az7tut+6Aka67bChW6a5bco/KK3Xd5c9D170gRq45WBgj1xwsipFrDhbHyDUHS2LkmoOlMXLNwbIYueZgeYzOSzgmbWf3L7vuCqH6lhTddVeArjvJg677woN1Lnf633uw0tp1VxB8oSUZ6bol11zRaNddUanrrpRfMeBKCl13ss+7brfuZCNdd1IoVumuW3KPUpS67pRQ1+2+Z4v5418tHPkXnkX+NQyR/3JY5B9ZjfxFeuSP96KbDqkzJny/xAv3u3C/v/qkCN9POr4L9/vfu1/lYF29JnhdG7yqBK/rgtf1wesGV29dbQ9eNwWvm4PXLcHr1uB1W/C6PXhVC153BK/qwatG8KoZvO4MXrWCV+3gdVfwqpP/zz+Jke4VKgu+28I/Ibo7eM+6wate8KofvBoEr4bBq1HwahyakiPfg+5/H/nf73H/rAtWD6w+WAOwhmCNwBrn//dPusKfLIo5T2tvcrfAvdqluk9ioK7Qvdwa64nc61/5qp/2e5UPD68N0nqvpH8Pwg3Tdq/EyKG6UVruVf6PA3pjwWdau/5co1B/mgTv2TR4NQtezYPXPcGrRfBqGbxaQf1pAnWgKVgzsOZg94C1AGsJ1sqD+nONYP1pIlh/mgrWn2aC9ae5YP25R7D+tBCsPy0F608rQ/XnWoX60zp4zzbBq23wahe8UoNX++DVIXh1hPrTGupAG7C2YO3AUsHag3UA6+hB/blWsP60Fqw/bQTrT1vB+tNOsP6kCtaf9oL1p4Ng/eloqP5UUag/nYL37By8ugSvrsGrW/DqHrx6BK+eUH86QR3oDNYFrCtYN7DuYD3AenpQf6oI1p9OgvWns2D96SJYf7oK1p9ugvWnu2D96SFYf3oq1p/L/u6zEPh797/n78X6t+7W4u+u+2/creXfz+F/vds59aP/5W6tz21v//Jubc71nPzF3dqe+5n7j3dr90/O73+4W+o/exbwbu3/6XMFd+vwz5/RP90tTf1G1N06pa12/OFundNahyLu1iXtNe3/79ZVoj6G7tZNptb+frfuUnU7eLcecu8A0fdJ4dB9egXv2Tt49QlefYNXv+DVP3gNCF4Dg9eg4DU4eA0JXkOD17DgNTx4jQheI4PXqOA1OniNCV5jg9e44DU+eE0IXhOD16TgNTl4TQleU4PXtOA1PXjNCF4zoQftBb1gb7A+YH3B+oH1BxsANhBsENhgsCFgQ8GGgQ0HGwE2EmwU2GiwMWBjwcaBjQebADYRbBLYZLApYFPBpoFNB5sBNjP/n2eMpNA/q4b++R8foAt91f9/LvRV53a3C33Vud3tQl91bne70Fed2916Cv4cqJfgz4F6C/4cqI/gz4H6Cv4cqJ/gz4H6C/4caIDgz4EG/vN7/ekP3Q/6h/eqlPqnsxoY/M/ulQLnPjDkn9wrBZ+hwNBzv1fyf3geA8PO9V7J//HZDgw/t3uV/4s6ERhxLvdK/suaExj59+/V5r/Ur8Cov3uv5P9aCwOj/969Ev9GXQ2M+Tv3SvxbNTow9r/fq+LfrPeBcf/tXkl/+90RGP+X90pKPYf3UGDCX90r+ZzeaYGJ//leKef4fgxM+g/3qpx6zu/awGS+V+I/eG8HptC9Ev9RDxCY+ud7Bf5hPxGYFn2vtv+4NwlM/+O9KqShzwnMiLhX+dQ09UyBmXK93F/+y19p7e1mCvaJs8TWXMHTf/lrluBeRcY7O79iwO7m0vedI3gYtNY9J/+/Eyx038S/+qsBpNcgVxjaSv5r4FFR/vGXs3NDOZ8X+uH2//+0cW7oEEbaPPgJZHrFJKZ1Ip0reOjnCW+uxgM+FwpHWtc918jbbobgXs8XW3OlJC/fdvOV3nYL8isGvEDhbbfQ5287t+6Fxt92M8QOW+U2EK7K225RKOeLo992i+Btt9iDt90MwbfdIsFDv1hpc6WrvuSal8hVz0BMjPybeE6oaKQTPoOSo8FS4W5Bumi5PV6q0CX5fd3hsyO97mVGukPJM75cuU4kpu0TcHuyXKFOLBXM4QoDz8sKhedlpXCHHu5VVkbEqpUL6fO0XPA8rVLK66r8f57cpGvTdME8rBbLQ1I7LyfX1cL7F/6sya8Y8BqFyXWtzydXt+61xifX6WKHrXV5CFdlcr03lPP7oifXe2Fyvc+DyVWiaoUn13sFD/19SpsrXfUl13y/zzvSVaGikV44h6sEcyhZeNf5fD/ceVmn0N0Krlvlb20Mn0PpTlby7Kz3+WTkcrheIYfrBHP4gJGfSkjWrw0+rzluTzYo1JwHlSa/BxUn6nAupJ8hyfO0USmvGz2YqKcJ5uEhsTwkl/dyon5IeP/Cn4fzKwb8sMJE/YjPJ2q37keMT9TTxA5bSjsIV2WifjSU88eiJ+pHYaJ+zIOJWqJqhSfqRwUP/WNKmytd9SXX/LjPu6mNoaIhPVFvFMyhZOF9wuf74c7LEwrdreC6VSbq8DmU7mQlz84mn0/ULoebFHL4hGAONxuZqCXr1xaf1xy3J1sUas6TSpPfk4oTdTgX0s+Q5Hl6SimvT3kwUU8VzMPTYnloF/Byon5aeP/Cn2fyKwb8jMJE/azPJ2q37meNT9RTxQ5bIBXCVZmonwvlfGv0RP0cTNRbPZioJapWeKJ+TvDQb1XaXOmqL7nm533eTT0VKhrSE/VTgjmULLwv+Hw/3Hl5QaG7FVy3ykQdPofSnazk2XnR5xO1y+GLCjl8QTCHLxmZqCXr1zaf1xy3J9sUas7LSpPfy4oTdTgX0s+Q5HnarpTX7R5M1FME8/CKWB4qeDpRvyK8f+HPjvyKAe9QmKhf9flE7db9qvGJeorYYWvj2UT9WijnO6Mn6tdgot7pwUQtUbXCE/Vrgod+p9LmSld9yTW/7vNuanuoaEhP1NsFcyhZeN/w+X648/KGQncruG6ViTp8DqU7Wcmz86bPJ2qXwzcVcviGYA53GZmoJevXbp/XHLcnuxVqzh6lyW+P4kQdzoX0MyR5nvYq5XWvBxP1ZME87BPLQytP/77LfcL7F/68lV8x4LcUJuq3fT5Ru3W/bXyinix22Cp59vddvhPK+f7oifodmKj3ezBRS1St8ET9juCh36+0udJVX3LN7/q8m9obKhrSE/VewRxKFt73fL4f7ry8p9DdCq5bZaIOn0PpTlby7Bzw+UTtcnhAIYfvCebwoJGJWrJ+HfJ5zXF7ckih5ryvNPm9rzhRh3Mh/QxJnqfDSnk97MFEPUkwD0fE8lC+spcT9RHh/Qt/PsivGPAHChP1hz6fqN26PzQ+UU8SO2xtkyFclYn6o1DOj0ZP1B/BRH3Ug4laomqFJ+qPBA/9UaXNla76kms+5vNu6nCoaEhP1IcFcyhZeD/2+X648/KxQncruG6ViTp8DqU7Wcmz84nPJ2qXw08UcvixYA4/NTJRS9av4z6vOW5PjivUnM+UJr/PFCfqcC6knyHJ8/S5Ul4/92CiniiYhxNieWid4uVEfUJ4/8Kfk/kVAz6pMFF/4fOJ2q37C+MT9USxw5aUAuGqTNRfhnJ+Knqi/hIm6lMeTNQSVSs8UX8peOhPKW2udNWXXPNXPu+mPg8VDemJ+nPBHEoW3q99vh/uvHyt0N0Krltlog6fQ+lOVvLsnPb5RO1yeFohh18L5vAbIxO1ZP361uc1x+3Jtwo15zulye87xYk6nAvpZ0jyPJ1RyusZDybqCYJ5+F4sDxU9/VPf3wvvX/hzNr9iwGcVJuoffD5Ru3X/YHyiniD3YyfP/tT3j6Gc/xQ9Uf8IE/VPHkzUElUrPFH/KHjof1LaXOmqL7nmn33eTZ0JFQ3pifqMYA4lC+8vPt8Pd15+UehuBdetMlGHz6F0Jyt5dn71+UTtcvirQg5/Eczhb0Ymasn6FVPA3zXH7YmLUfqZvkhu3X+Y/C4qoDdRh3Mh/QxJnqd0SnlNV0B/oh4vmIf0YnlIqujlRJ1eeP/CnwwFFAPOUED+vhkL+HuiduvOWODfCRa6r6cT9Xi5oas1hKsyUV8cynmmAjF/nJ4vLvDnidr9j7Qn6vGCE/XFgoc+UwGdzZWu+pJrzuzzbipdqGhIT9TpBHMoWXiz+Hw/3HnJotDdCq5bZaIOn0PpTlby7GRVzmFi2j6/P8tZFXKYRTCH2YRzGP5IvwMk61d2n9cctyfZFWpODqXJL4fiRB3OhfQzJHmeLlHK6yUeTNTjBCfqnHL9ZCUvJ+qcwvsX/uQqoBhwLoWJ+lKfT9Ru3Zcan6jHyf3B4FYQrspEnTuU8zzRE3VumKjzeDBRjxOcqHMLHvo8BXQ2V7rqS675Mp93U5eEiob0RH2JYA4lC29en++HOy95FbpbwXWrTNThcyjdyUqenXw+n6hdDvMp5DCvYA5jjUzUkvUrv89rjtuT/Ao1p4DS5FdAcaIO50L6GZI8T3FKeY3zYKIeKzhRx4vlIcXT/3pWvPD+hT8JBRQDTlCYqAv6fKJ26y5ofKIeKzZRJ3v2X88qFMr55dETdSGYqC/3YKIeKzhRFxI89JcX0Nlc6aovuebCPu+m4kJFQ3qijhPMoWThLeLz/XDnpYhCdyu4bpWJOnwOpTtZybNT1OcTtcthUYUcFhHMYTEjE7Vk/Sru85rj9qS4Qs25Qmnyu0Jxog7nQvoZkjxPJZTyWsKDiXqM4ERd0uhEXVJ4/8KfUgUUAy6lMFGX9vlE7dZd2vhEPcbgRH1lKOdloifqK2GiLuPBRD1GcKK+UvDQlzEyUUuu+Sqfd1MlQkVDeqIuIZhDycJ7tc/3w52XqxW6W8F1q0zU4XMo3clKnp2yPp+oXQ7LKuTwasEcljMyUUvWr0Sf1xy3J4kKNSegNPkFFCfqcC6knyHJ81ReKa/lPZioRwtO1BXE8lDR07/ru4Lw/oU/SQUUA05SmKgr+nyiduuuaHyiHi02UbdKgXBVJupKoZwnR0/UlWCiTvZgoh4tOFFXEjz0yQV0Nle66kuuOcXn3VT5UNGQnqjLC+ZQsvBW9vl+uPNSWaG7FVy3ykQdPofSnazk2bnG5xO1y+E1CjmsLJjDa41M1JL1q4rPa47bkyoKNec6pcnvOsWJOpwL6WdI8jxdr5TX6z2YqEcJTtQ3yE3Ubb2cqG8Q3r/wp2oBzYAVJuobfT5Ru3XfaHyiHiU3UVeAcFUm6ptCOb85eqK+CSbqmz2YqEcJTtQ3CR76mwvobK501Zdc8y0+76auDxUN6Yn6esEcShbeW32+H+683KrQ3QquW2WiDp9D6U5W8uzc5vOJ2uXwNoUc3iqYw9uNTNSS9auaz2uO25NqCjXnDqXJ7w7FiTqcC+lnSPI8VVfKa3UPJuqRghN1DbE8lPf0d9Q1hPcv/KlZQDHgmgoT9Z0+n6jduu80PlGPFJuo23r2O+paoZzXjp6oa8FEXduDiXqk4ERdS/DQ1y6gs7nSVV9yzXf5vJuqHioa0hN1dcEcShbeOj7fD3de6ih0t4LrVpmow+dQupOVPDt3+3yidjm8WyGHdQRzWNfIRC1Zv+r5vOa4PamnUHPqK01+9RUn6nAupJ8hyfPUQCmvDTyYqEcITtQNxfJQoYKXE3VD4f0LfxoVUAy4kcJE3djnE7Vbd2PjE/UIsYm6TVsIV2WibhLKedPoiboJTNRNPZioRwhO1E0ED33TAjqbK131JdfczOfdVINQ0ZCeqBsI5lCy8Db3+X6489JcobsVXLfKRB0+h9KdrOTZucfnE7XL4T0KOWwumMMWRiZqyfrV0uc1x+1JS4Wa00pp8mulOFGHcyH9DEmep9ZKeW3twUQ9XHCibiOWh3ae/o66jfD+hT9tCygG3FZhom7n84narbud8Yl6uNhEHfDsd9SpoZy3j56oU2Gibu/BRD1ccKJOFTz07QvobK501Zdccwefd1OtQ0VDeqJuLZhDycLb0ef74c5LR4XuVnDdKhN1+BxKd7KSZ6eTzydql8NOCjnsKJjDzkYmasn61cXnNcftSReFmtNVafLrqjhRh3Mh/QxJnqduSnnt5sFEPUxwou4ulockTyfq7sL7F/70KKAYcA+Fibqnzydqt+6exifqYWITdWvPJupeoZz3jp6oe8FE3duDiXqY4ETdS/DQ9y6gs7nSVV9yzX183k11CxUN6Ym6m2AOJQtvX5/vhzsvfRW6W8F1q0zU4XMo3clKnp1+Pp+oXQ77KeSwr2AO+xuZqCXr1wCf1xy3JwMUas5ApclvoOJEHc6F9DMkeZ4GKeV1kAcT9VDBiXqwWB6SK3s5UQ8W3r/wZ0gBxYCHKEzUQ30+Ubt1DzU+UQ8Vm6hTkiFclYl6WCjnw6Mn6mEwUQ/3YKIeKjhRDxM89MML6Gyu+M9RBdc8wufd1KBQ0ZCeqAcJ5lCy8I70+X648zJSobsVXLfKRB0+h9KdrOTZGeXzidrlcJRCDkcK5nC0kYlasn6N8XnNcXsyRqHmjFWa/MYqTtThXEg/Q5LnaZxSXsd5MFEPEZyox8v9hsbTiXq88P6FPxMKKAY8QWGinujzidqte6LxiXqI2ESd5NlEPSmU88nRE/UkmKgnezBRDxGcqCcJHvrJBXQ2V7rqS655is+7qXGhoiE9UY8TzKFk4Z3q8/1w52WqQncruG6ViTp8DqU7WcmzM83nE7XL4TSFHE4VzOF0IxO1ZP2a4fOa4/ZkhkLNmak0+c1UnKjDuZB+hiTP0yylvM7yYKIeLDhRz5b7HXWilxP1bOH9C3/mFFAMeI7CRD3X5xO1W/dc4xP1YLGJunIihKsyUc8L5Xx+9EQ9Dybq+R5M1IMFJ+p5god+fgGdzZWu+pJrXuDzbmpWqGhIT9SzBHMoWXgX+nw/3HlZqNDdCq5bZaIOn0PpTlby7Czy+UTtcrhIIYcLBXO42MhELVm/lvi85rg9WaJQc5YqTX5LFSfqcC6knyHJ87RMKa/LPJioBwlO1Mvl+smAlxP1cuH9C39WFFAMeIXCRL3S5xO1W/dK4xP1ILGJulIqhKsyUa8K5Xx19ES9Cibq1R5M1IMEJ+pVgod+dQGdzZWu+pJrXuPzbmpZqGhIT9TLBHMoWXjX+nw/3HlZq9DdCq5bZaIOn0PpTlby7Nzr84na5fBehRyuFczhfUYmasn6db/Pa47bk/sVas46pclvneJEHc6F9DMkeZ7WK+V1vQcT9UDBifoBuT/z6Ol/PesB4f0LfzYUUAx4g8JE/aDPJ2q37geNT9QD5f5mMs/+61kbQzl/KHqi3ggT9UMeTNQDBSfqjYKH/qECOpsrXfUl1/ywz7up9aGiIT1RrxfMoWThfcTn++HOyyMK3a3gulUm6vA5lO5kJc/Ooz6fqF0OH1XI4SOCOXzMyEQtWb8e93nNcXvyuELNeUJp8ntCcaIO50L6GZI8T5uU8rrJg4l6gOBEvVksD+08/R31ZuH9C3+2FFAMeIvCRP2kzydqt+4njU/UA+T+61me/Y76qVDOn46eqJ+CifppDybqAYIT9VOCh/7pAjqbK131Jdf8jM+7qU2hoiE9UW8SzKFk4X3W5/vhzsuzCt2t4LpVJurwOZTuZCXPznM+n6hdDp9TyOGzgjncamSilqxfz/u85rg9eV6h5rygNPm9oDhRh3Mh/QxJnqcXlfL6ogcTdX/BifolsTykVvRyon5JeP/Cn20FFAPepjBRv+zzidqt+2XjE3V/sYk6sTWEqzJRbw/l/JXoiXo7TNSveDBR9xecqLcLHvpXCuhsrnTVl1zzDp93Uy+Giob0RP2iYA4lC++rPt8Pd15eVehuBdetMlGHz6F0Jyt5dl7z+UTtcviaQg5fFczhTiMTtWT9et3nNcftyesKNecNpcnvDcWJOpwL6WdI8jy9qZTXNz2YqPsJTtS7xPJQ2dM/9b1LeP/Cn90FFAPerTBR7/H5RO3Wvcf4RN1P7t+j9uxPfe8N5Xxf9ES9FybqfR5M1P0EJ+q9god+XwGdzZWu+pJrfsvn3dSboaIhPVG/KZhDycL7ts/3w52XtxW6W8F1q0zU4XMo3clKnp13fD5Ruxy+o5DDtwVzuN/IRC1Zv971ec1xe/KuQs15T2nye09xog7nQvoZkjxPB5TyesCDibqv4ER9UO531J7+Xd8Hhfcv/DlUQDHgQwoT9fs+n6jdut83PlH3lftT3579Xd+HQzk/Ej1RH4aJ+ogHE3VfwYn6sOChP1JAZ3Olq77kmj/weTd1IFQ0pCfqA4I5lCy8H/p8P9x5+VChuxVct8pEHT6H0p2s5Nn5yOcTtcvhRwo5/FAwh0eNTNSS9euYz2uO25NjCjXnY6XJ72PFiTqcC+lnSPI8faKU109CefVyuuyTX3Yt4c+nBRQD/lRhujzu8+nSrfu4wnRJsUo8IMcVHmLBB099v/2aQ8l1f2akmfhEcM2f+7yZcGv9TKGZOOHz5tvtywnlmpPWHJ5UahxOnofGobdS4/BFAcWAv1BoHL70eePg1v2lkcbBHeQvFR5iwQdPfb/9mkPJdZ8y0jicFFzzVz5vHNxaTyk0Dl/7vHFw+/K1cs1Jaw5PKzUOpz34HX4vwd/hfyP4DHnZLH1TQKdZ+raAYsDfKjRL3/m8WXLr/s6jZikxbZ/A6VCs0r86PC24R5L7fcbnL1BX6M4ovEC/9/kL1K35e4V1n1V66Z2FPwIinRPtPZN4xr9TaHokn/cffH7uXQ5/UMjhGcEc/mhk0JJ85/zk8/eE25OfFOrlz0r18mfFX/f+p1wkpu0TkDxPf/XnLzOnNe7AH/+fk9L2U9U/3G1yWn9CG3G3KWn/ae//322qxE+OQ3ebJvNT6N/vNl3qJ9rBu82Q++l4YGZ+nRoek7azG4iGyOfj19AM9Vv0n8l1/4fnouy3iIc1/MmatuAuPFj/9PM/+mCd40siMeolEfhV8IXzm0dNW2LaPqJrjon7z/dKSW7XOjU5qUKrxKTU1sH7VEptV6FV+cqB1JQKwdtXSAq0btUusW1S6+RKSZVSUpM9/bdzIuNOTOMnMt6L4hQDdjeXvm+6OMHDoLTudHH/TrDQfVWmc1cAXKxpfWCj7yu5R+mFD364GXD3vTHmX3+Wwauue5RgczBasDkYI9gcjBVsDsYJNgfjBZuDCYLNwUSDXXeGUH3LGBfzxw7b/R+iu+6Mcfpd94UH69zu9r/2YKW1684g+ELLGKfzwEt33ZJrvtho132xUtedKU4x4EwKXXdmn3fdbt2ZjXTdGUOxSnfdknuURanrznIeuu5Bgs3BYMHmYIhgczBUsDkYJtgcDBdsDkYINgcjDXbdWUP1LVt0150Vuu5sHnTdFx6sc7vb/9qDldauO6vgCy2bka5bcs3ZjXbd2ZW67hxxigHnUOi6L/F51+3WfYmRrjtbKFbprltyj3Iqdd05z0PX3UuwOegt2Bz0EWwO+go2B/0Em4P+gs3BAMHmYKDBrjtXqL5dGt1154Ku+1IPuu4LD9a53e1/7cFKa9edS/CFdqmRrltyzbmNdt25lbruPHGKAedR6Lov83nX7dZ9mZGu+9JQrNJdt+Qe5VXquvOeh657Tj655mBuPrnmYF6+GLHmYH6+GLHmYEG+GLHmYGG+GLHmYFE+uXqxOJ/OSzgmbWf3L7vufKH6FhvddeeDrjvWg677woN1bnf7X3uw0tp15xN8ocUa6bol15zfaNedX6nrLhCnGHABha47zuddt1t3nJGuOzYUq3TXLblH8Updd/x56LqnCDYHUwWbg2mCzcF0weZghmBzMFOwOZgl2BzMNth1J4TqW8HorjsBuu6CHnTdFx6sc7vb/9qDldauO0HwhVbQSNctueZCRrvuQkpd9+VxigFfrtB1F/Z51+3WXdhI110wFKt01y25R0WUuu4i56HrHiPYHIwVbA7GCTYH4wWbgwmCzcFEweZgkmBzMNlg1100VN+KRXfdRaHrLuZB133hwTq3u/2vPVhp7bqLCr7QihnpuiXXXNxo111cqeu+Ik4x4CsUuu4SPu+63bpLGOm6i4Vile66JfeopFLXXfI8dN1DBJuDoYLNwTDB5mC4YHMwQrA5GCnYHIwSbA5GG+y6S4XqW+norrsUdN2lPei6LzxY53a3/7UHK61ddynBF1ppI1235JqvNNp1X6nUdZeJUwy4jELXfZXPu2637quMdN2lQ7FKd92Se3S1Utd9dajr/v2vWYj5418tHPkXnkX+NQyR/3JY5B9ZjfxFeuSP96KbDqkzJny/xAv3u3C/v/qkCN9POr4L9/vfu1/ZYF0tF7wSg1cgeJUPXhWCV1Lwqhi8KgWv5OCVErwqB69rgte1watK8LoueF0fvG5wtdm9B4LXTcHr5uB1S/C6NXjdFvfnn8RI9wplBd9t4Z8Q3R68Z7XgdUfwqh68agSvmsHrzuBVKzQlR74H3f8+c8wfrRrYHWDVwWqA1QS7E6xW3J//W0tZFHOe1t7kdoF7tUt1n8RANaF7uTXeIXKvf+WretrvVT48vNZI672S/j0I10zbvRIjh+o703Kv8n8c0GsJPtPa9aecQv2pHbznXcGrTvC6O3jVDV71glf94NUA6k9tqAN3gdUBuxusLlg9sPpgDTyoP+UE609twfpzl2D9qSNYf+4WrD91BetPPcH6U1+w/jQwVH8SFepPw+A9GwWvxsGrSfBqGryaBa/mweseqD8NoQ40AmsM1gSsKVgzsOZg93hQfxIF609DwfrTSLD+NBasP00E609TwfrTTLD+NBesP/cYqj8BhfrTInjPlsGrVfBqHbzaBK+2watd8EqF+tMC6kBLsFZgrcHagLUFaweW6kH9CQjWnxaC9aelYP1pJVh/WgvWnzaC9aetYP1pJ1h/UgWf6Yyh+4TrkHtGCv/x8RCvSbcLxq8VYzUDMd5hIMbqBmKsYSDGmgZivNNAjLUMxFjbQIx3GYixjoEY7zYQY10DMdYzEGN9AzE2MBBjQwMxNjIQY2MDMTYxEGNTAzE2MxBjcwMx3mMgxhYGYmxpIMZWBmJsbSDGNgZibGsgxnYGYkxViDHyI3Pv8v//LwhE/ryzfTD2DsGrY/DqFLw6B68uwatr8OoWvLoHrx7Bq2fw6hW8egevPsGrb/DqF7z6B68BwWtg8BoUvAYHryHBa2jwGha8hgevEcFrZPAaFbxGB68xwWts8BoX+r3J//+ioj388qIDWEewTmCdwbqAdQXrBtYdrAdYT7BeYL3B+oD1BesH1h9sANhAsEFgg8GGgA0FGwY2HGwE2EiwUWCjwcaAjQUbFzLtX0bWEfzXLwuH7jM+GPuE4DUxeE0KXpOD15TgNTV4TQte04PXjOA1M3jNCl6zg9ec4DU3eM0LXvOD14LgtTB4LQpei4PXkuC1NHgtC17Lg9eK4LUyeK0KXquD15rgtTZ43Rt6aCNzOR7yOwFsItgksMlgU8Cmgk0Dmw42A2wm2Cyw2WBzwOaCzQObD7YAbCHYIrDFYEvAloItA1sOtgJsJdgqsNVga8DWgt0b9+dfZhcJ/bNq6J+Jafv84ZlN6y+zx8fJ/TJ7gtC93BonitzrX/malPZ7/f8vsyen9V4Rv8yekrZ7/eGX2VPTcq+oX2ZP++f3+tO/OTz9H96rUuqfzmpgxj+7Vwqc+8DMf3KvFHyGArPO/V7J/+F5DMw+13sl/8dnOzDn3O5V/i/qRGDuudwr+S9rTmDe379Xm/9SvwLz/+69kv9rLQws+Hv3SvwbdTWw8O/cK/Fv1ejAov9+r4p/s94HFv+3eyX97XdHYMlf3isp9RzeQ4Glf3Wv5HN6pwWW/ed7pZzj+zGw/D/cq3LqOb9rAyv4Xon/4L0dWEn3SvxHPUBg1Z/vFfiH/URgdfS92v7j3iSw5o/3qpCGPiewNuJe5VPT1DMF7o2Tm5kyBO9xWfAqHLrfvaE5Zk1orlkVmnNWhOaeZaE5aEloLloUmpMWhOameaE5ak5orpoVmrNmhOauaaE5bEpoLpsUmtNc7+Z6wehPeP6s+ndq7N/oN++Nk7vXfWL7UMHTv1VDLu4//q0a98cpBuxuLn3fdYKHQWvd6yIeCqH7Jv7V37kmvQa5YtVW76e/gT/+qfv1oZw/EPphzv9P1+tDhzDSHoCJO71iEtM6Ja8XPPQPCG+uxgO+HgpHWte9XrCCRp4b6bfdWsG93iC25kpJXr7tNii97R6MUwz4QYW33Uafv+3cujcaf9utFTtsldtAuCpvu4dCOX84+m33ELztHvbgbbdW8G33kOChf1hpc6WrvuSaH5GrnoGYGPk38bpQ0UgnfAYlR4NHhbsF6aLl9vhRhS7J7+sOnx3pdT9mpDuUPOOPK9eJxLR9Am5PHleoE48K5vAJA8/LEwrPyybhDj3cq2yKiFUrF9Ln6XHB87RZKa+b4/48uUnXpjWCedgiloekdl5OrluE9y/8eTJOMeAnFSbXp3w+ubp1P2V8cl0jdthal4dwVSbXp0M5fyZ6cn0aJtdnPJhcJapWeHJ9WvDQP6O0udJVX3LNz/q8I90cKhrphXO4WTCHkoX3OZ/vhzsvzyl0t4LrVvnr8MPnULqTlTw7W30+GbkcblXI4XOCOXzeyE8lJOvXCz6vOW5PXlCoOS8qTX4vKk7U4VxIP0OS5+klpby+5MFEvVowD9vE8pBc3suJepvw/oU/L8cpBvyywkS93ecTtVv3duMT9Wqxw5bSDsJVmahfCeV8R/RE/QpM1Ds8mKglqlZ4on5F8NDvUNpc6aovueZXfd5NvRQqGtIT9UuCOZQsvK/5fD/ceXlNobsVXLfKRB0+h9KdrOTZ2enzidrlcKdCDl8TzOHrRiZqyfr1hs9rjtuTNxRqzptKk9+bihN1OBfSz5DkedqllNddHkzUqwTzsFssD+0CXk7Uu4X3L/zZE6cY8B6FiXqvzydqt+69xifqVWKHLZAK4apM1PtCOX8reqLeBxP1Wx5M1BJVKzxR7xM89G8pba501Zdc89s+76Z2hYqG9ES9SzCHkoX3HZ/vhzsv7yh0t4LrVpmow+dQupOVPDv7fT5RuxzuV8jhO4I5fNfIRC1Zv97zec1xe/KeQs05oDT5HVCcqMO5kH6GJM/TQaW8HvRgol4pmIdDYnmo4OlEfUh4/8Kf9+MUA35fYaI+7POJ2q37sPGJeqXYYWvj2UR9JJTzD6In6iMwUX/gwUQtUbXCE/URwUP/gdLmSld9yTV/6PNu6mCoaEhP1AcFcyhZeD/y+X648/KRQncruG6ViTp8DqU7Wcmzc9TnE7XL4VGFHH4kmMNjRiZqyfr1sc9rjtuTjxVqzidKk98nihN1OBfSz5DkefpUKa+fejBRrxDMw3GxPLTy9O+7PC68f+HPZ3GKAX+mMFF/7vOJ2q37c+MT9Qqxw1bJs7/v8kQo5yejJ+oTMFGf9GCilqha4Yn6hOChP6m0udJVX3LNX/i8m/o0VDSkJ+pPBXMoWXi/9Pl+uPPypUJ3K7hulYk6fA6lO1nJs3PK5xO1y+EphRx+KZjDr4xM1JL162uf1xy3J18r1JzTSpPfacWJOpwL6WdI8jx9o5TXbzyYqJcL5uFbsTyUr+zlRP2t8P6FP9/FKQb8ncJEfcbnE7Vb9xnjE/VyscPWNhnCVZmovw/l/Gz0RP09TNRnPZioJapWeKL+XvDQn1XaXOmqL7nmH3zeTX0TKhrSE/U3gjmULLw/+nw/3Hn5UaG7FVy3ykQdPofSnazk2fnJ5xO1y+FPCjn8UTCHPxuZqCXr1y8+rzluT35RqDm/Kk1+vypO1OFcSD9DkufpN6W8/ubBRL1McoiKl8pD6xQvJ2q5uP84UV8Urxiwu7n0fdPF+3uidutOF//vBAvd19OJeplYsUhKgXBVJur0oZxniI/54/ScPv7PE7X7H2lP1BJVKzxRpxc89BnidTZXuupLrjljvOADHiP/wLm3qCsa0hP1b4JvTsnCe7HP98Odl4vj5btbwXWrTNThcyjdyUqenUzKOUxM2+f3ZzmTQg4vFsxhZuEchj/S7wDJ+pXF5zXH7UkWhZqTVXhyCPdQWeP1JupwLqSfIcnzlE0pr9ni9SfqpYJ5yC6Wh4qe/qnv7ML7F/7kiFcMOIfCRH2Jzydqt+5LjE/US8Um6tae/anvnKGc54qeqHPCRJ3Lg4l6qeBEnVPw0OeK19lc6aovueZLfd5NZQsVDemJOptgDiULb26f74c7L7kVulvBdatM1OFzKN3JSp6dPD6fqF0O8yjkMLdgDi8zMlFL1q+8Pq85bk/yKtScfEqTXz7FiTqcC+lnSPI8xSrlNdaDiXqJ4ESdX+43NBW9nKjzC+9f+FMgXjHgAgoTdZzPJ2q37jjjE/USuYm6NYSrMlHHh3KeED1Rx8NEneDBRL1EcKKOFzz0CfE6mytd9SXXXNDn3VRsqGhIT9SxgjmULLyFfL4f7rwUUuhuBdetMlGHz6F0Jyt5di73+UTtcni5Qg4LCeawsJGJWrJ+FfF5zXF7UkSh5hRVmvyKKk7U4VxIP0OS56mYUl6LeTBRLxacqIvL9ZOVvJyoiwvvX/hzRbxiwFcoTNQlfD5Ru3WXMD5RL5b7U9+tIFyVibpkKOeloifqkjBRl/Jgol4sOFGXFDz0peJ1Nle66kuuubTPu6lioaIhPVEXE8yhZOG90uf74c7LlQrdreC6VSbq8DmU7mQlz04Zn0/ULodlFHJ4pWAOrzIyUUvWr6t9XnPcnlytUHPKKk1+ZRUn6nAupJ8hyfNUTimv5TyYqBcJTtSJYnlI8fS/npUovH/hTyBeMeCAwkRd3ucTtVt3eeMT9SKxiTrZs/96VoVQzpOiJ+oKMFEneTBRLxKcqCsIHvqkeJ3Nla76kmuu6PNuqlyoaEhP1OUEcyhZeCv5fD/ceamk0N0Krltlog6fQ+lOVvLsJPt8onY5TFbIYSXBHKYYmagl61dln9cctyeVFWrONUqT3zWKE3U4F9LPkOR5ulYpr9d6MFEvFJyoqxidqKsI71/4c128YsDXKUzU1/t8onbrvt74RL3Q4ER9QyjnVaMn6htgoq7qwUS9UHCivkHw0Fc1MlFLrvlGn3dT14aKhvREfa1gDiUL700+3w93Xm5S6G4F160yUYfPoXQnK3l2bvb5RO1yeLNCDm8SzOEtRiZqyfp1q89rjtuTWxVqzm1Kk99tihN1OBfSz5DkebpdKa+3ezBRLxCcqKuJ5aGip3/XdzXh/Qt/7ohXDPgOhYm6us8narfu6sYn6gVy/9F2z/6u7xqhnNeMnqhrwERd04OJeoHgRF1D8NDXjNfZXOmqL7nmO33eTd0eKhrSE/XtgjmULLy1fL4f7rzUUuhuBdetMlGHz6F0Jyt5dmr7fKJ2OaytkMNagjm8y8hELVm/6vi85rg9qaNQc+5WmvzuVpyow7mQfoYkz1NdpbzW9WCini84UdeTm6jbejlR1xPev/CnfrxiwPUVJuoGPp+o3bobGJ+o58tN1BUgXJWJumEo542iJ+qGMFE38mCini84UTcUPPSN4nU2V7rqS665sc+7qbqhoiE9UdcVzKFk4W3i8/1w56WJQncruG6ViTp8DqU7Wcmz09TnE7XLYVOFHDYRzGEzIxO1ZP1q7vOa4/akuULNuUdp8rtHcaIO50L6GZI8Ty2U8trCg4l6nuBE3VIsD+U9/R11S+H9C39axSsG3Ephom7t84narbu18Yl6nthE3daz31G3CeW8bfRE3QYm6rYeTNTzBCfqNoKHvm28zuZKV33JNbfzeTfVIlQ0pCfqFoI5lCy8qT7fD3deUhW6W8F1q0zU4XMo3clKnp32Pp+oXQ7bK+QwVTCHHYxM1JL1q6PPa47bk44KNaeT0uTXSXGiDudC+hmSPE+dlfLa2YOJeq7gRN1FLA8VKng5UXcR3r/wp2u8YsBdFSbqbj6fqN26uxmfqOeKTdRt2kK4KhN191DOe0RP1N1hou7hwUQ9V3Ci7i546HvE62yudNWXXHNPn3dTnUNFQ3qi7iyYQ8nC28vn++HOSy+F7lZw3SoTdfgcSneykment88napfD3go57CWYwz5GJmrJ+tXX5zXH7UlfhZrTT2ny66c4UYdzIf0MSZ6n/kp57e/BRD1HcKIeIJaHdp7+jnqA8P6FPwPjFQMeqDBRD/L5RO3WPcj4RD1HbKIOePY76sGhnA+JnqgHw0Q9xIOJeo7gRD1Y8NAPidfZXOmqL7nmoT7vpvqHiob0RN1fMIeShXeYz/fDnZdhCt2t4LpVJurwOZTuZCXPznCfT9Quh8MVcjhMMIcjjEzUkvVrpM9rjtuTkQo1Z5TS5DdKcaIO50L6GZI8T6OV8jrag4l6tuBEPUYsD0meTtRjhPcv/BkbrxjwWIWJepzPJ2q37nHGJ+rZYhN1a88m6vGhnE+InqjHw0Q9wYOJerbgRD1e8NBPiNfZXOmqL7nmiT7vpkaHiob0RD1aMIeShXeSz/fDnZdJCt2t4LpVJurwOZTuZCXPzmSfT9Quh5MVcjhJMIdTjEzUkvVrqs9rjtuTqQo1Z5rS5DdNcaIO50L6GZI8T9OV8jrdg4l6luBEPUMsD8mVvZyoZwjvX/gzM14x4JkKE/Usn0/Ubt2zjE/Us8Qm6pRkCFdlop4dyvmc6Il6NkzUczyYqGcJTtSzBQ/9nHidzRX/Oargmuf6vJuaHioa0hP1dMEcShbeeT7fD3de5il0t4LrVpmow+dQupOVPDvzfT5RuxzOV8jhPMEcLjAyUUvWr4U+rzluTxYq1JxFSpPfIsWJOpwL6WdI8jwtVsrrYg8m6pmCE/USud/QeDpRLxHev/BnabxiwEsVJuplPp+o3bqXGZ+oZ4pN1EmeTdTLQzlfET1RL4eJeoUHE/VMwYl6ueChXxGvs7nSVV9yzSt93k0tDhUN6Yl6sWAOJQvvKp/vhzsvqxS6W8F1q0zU4XMo3clKnp3VPp+oXQ5XK+RwlWAO1xiZqCXr11qf1xy3J2sVas69SpPfvYoTdTgX0s+Q5Hm6Tymv93kwUc8QnKjvl/sddaKXE/X9wvsX/qyLVwx4ncJEvd7nE7Vb93rjE/UMsYm6ciKEqzJRPxDK+YboifoBmKg3eDBRzxCcqB8QPPQb4nU2V7rqS675QZ93U/eFiob0RH2fYA4lC+9Gn++HOy8bFbpbwXWrTNThcyjdyUqenYd8PlG7HD6kkMONgjl82MhELVm/HvF5zXF78ohCzXlUafJ7VHGiDudC+hmSPE+PKeX1MQ8m6umCE/Xjcv1kwMuJ+nHh/Qt/nohXDPgJhYl6k88narfuTcYn6uliE3WlVAhXZaLeHMr5luiJejNM1Fs8mKinC07UmwUP/ZZ4nc2VrvqSa37S593UY6GiIT1RPyaYQ8nC+5TP98Odl6cUulvBdatM1OFzKN3JSp6dp30+UbscPq2Qw6cEc/iMkYlasn496/Oa4/bkWYWa85zS5Pec4kQdzoX0MyR5nrYq5XWrBxP1NMGJ+nm5P/Po6X8963nh/Qt/XohXDPgFhYn6RZ9P1G7dLxqfqKfJ/c1knv3Xs14K5Xxb9ET9EkzU2zyYqKcJTtQvCR76bfE6mytd9SXX/LLPu6mtoaIhPVFvFcyhZOHd7vP9cOdlu0J3K7hulYk6fA6lO1nJs/OKzydql8NXFHK4XTCHO4xM1JL161Wf1xy3J68q1JzXlCa/1xQn6nAupJ8hyfO0UymvOz2YqKcKTtSvi+Whnae/o35deP/CnzfiFQN+Q2GiftPnE7Vb95vGJ+qpcv/1LM9+R70rlPPd0RP1Lpiod3swUU8VnKh3CR763fE6mytd9SXXvMfn3dTOUNGQnqh3CuZQsvDu9fl+uPOyV6G7FVy3ykQdPofSnazk2dnn84na5XCfQg73CubwLSMTtWT9etvnNcftydsKNecdpcnvHcWJOpwL6WdI8jztV8rrfg8m6imCE/W7YnlIrejlRP2u8P6FP+/FKwb8nsJEfcDnE7Vb9wHjE/UUsYk6sTWEqzJRHwzl/FD0RH0QJupDHkzUUwQn6oOCh/5QvM7mSld9yTW/7/Nuan+oaEhP1PsFcyhZeA/7fD/ceTms0N0Krltlog6fQ+lOVvLsHPH5RO1yeEQhh4cFc/iBkYlasn596POa4/bkQ4Wa85HS5PeR4kQdzoX0MyR5no4q5fWoBxP1ZMGJ+phYHip7+qe+jwnvX/jzcbxiwB8rTNSf+Hyiduv+xPhEPVnu36P27E99fxrK+fHoifpTmKiPezBRTxacqD8VPPTH43U2V7rqS675M593U0dDRUN6oj4qmEPJwvu5z/fDnZfPFbpbwXWrTNThcyjdyUqenRM+n6hdDk8o5PBzwRyeNDJRS9avL3xec9yefKFQc75Umvy+VJyow7mQfoYkz9Mppbye8mCiniQ4UX8l9ztqT/+u76+E9y/8+TpeMeCvFSbq0z6fqN26TxufqCfJ/alvz/6u729COf82eqL+Bibqbz2YqCcJTtTfCB76b+N1Nle66kuu+Tufd1OnQkVDeqI+JZhDycJ7xuf74c7LGYXuVnDdKhN1+BxKd7KSZ+d7n0/ULoffK+TwjGAOzxqZqCXr1w8+rzluT35QqDk/Kk1+PypO1OFcSD9DkufpJ6W8/hTKq5fT5cQ42bWEPz/HKwb8s8J0+YvPp0u37l8UpkuKVeIB+UXhIRZ88NT32685lFz3r0aaiZ8E1/ybz5sJt9ZfFZqJmAR/N99uX1yMmjUnrTm8KEGncXD39bpxmKDUOKRLUAw4XYL8fdMn+LtxcOtOn/DvBAvdV+Wl5w5yeoWHWPDBU99vv+ZQct0ZEmw0DhcJrjmj4Bmkc5OYts/vz0iGBPnzeLHPGwe3Lxcr15y05jCTUuOQKUH/d/jjBX+Hn1nwGfKyWcqcoNMsZUlQDDiLQrOU1efNklt3VoVmycvDNl6pM8+WoBhwNoXDlt3nh82tO7tHnXli2j6BTKEHQ/r31JkE90iyuOTwebfmzk4OhW7tEp93a27NlyisO6dSh+XuG/3njaRzor1nEs94VoUOW/J5z+Xzc+9ymEshhzkEc3ipkale8p2T2+fvCbcnuRXqZR6lepknQe/PFvynXCSm7ROQPE9eDgprlQaFvAmKAedV2MB8Ph8U3LrzKQ0K4Y/0i0Uyp7FGH7BYpR/75E9QDDi/wgNWwOcPmFt3AeM/9lmjVM3jEhQDjlM4bPE+P2xu3fFGfuzjHor4BPkWXLIgJAi34OGP9Jol34gFhdcstdZ//WtLqanhcyMVo9vjgvLjb3nJc1hIaSRy9y0c4+2f7imk1LlcnqAY8OUKL5PCPn+Z/H44jHcuq5U6lyIJigEXUThsRX1+2Ny6ixrpXNxDUVShc5EsCMV8/sNDV1yKKfzwsLjSm7J46E1JuUhjR9MufJ6E/2XxCoUFz0BxwbN5hdIeXXEeupkrlLqZEgmKAZdQeMGU9PkLxq27pPFuZpVSN1MqQTHgUgqHrbTPD5tbd2kj3Yx7KEordDOSBeFKn3czrrhcqdDNlFF6U5bR62bahs+TcDeTVFLwDJQRPJtXKe3RVeehm7lKqZu5OkEx4KsVXjBlff6Ccesua7ybWanUzZRLUAy4nMJhS/T5YXPrTjTSzbiHIlGhm5EsCAGfdzOuuAQUupnySm/K8nrdTJvweRLuZiqWFTwD5QXPZgWlPapwHrqZCkrdTFKCYsBJCi+Yij5/wbh1VzTezaxQ6mYqJSgGXEnhsCX7/LC5dScb6WbcQ5Gs0M1IFoQUn3czrrikKHQzlZXelJX1upnW4fMk3M1Uqih4BioLns1rlPbomvPQzVyj1M1cm6AY8LUKL5gqPn/BuHVXMd7NLFfqZq5LUAz4OoXDdr3PD5tb9/VGuhn3UFyv0M1IFoQbfN7NuOJyg0I3U1XpTVlVr5tpFT5Pwt1MchXBM1BV8GzeqLRHN56HbuZGpW7mpgTFgG9SeMHc7PMXjFv3zca7mWVK3cwtCYoB36Jw2G71+WFz677VSDfjHopbFboZyYJwm8+7GVdcblPoZm5XelPertfNVA6fJ+FuJuVmwTNwu+DZrKa0R9XOQzdTTambuSNBMeA7FF4w1X3+gnHrrm68m1mq1M3USFAMuIbCYavp88Pm1l3TSDfjHoqaCt2MZEG40+fdjCsudyp0M7WU3pS19LqZlPB5Eu5mKlcXPAO1BM9mbaU9qn0eupnaSt3MXQmKAd+l8IKp4/MXjFt3HePdzBKlbubuBMWA71Y4bHV9ftjcuusa6WbcQ1FXoZuRLAj1fN7NuOJST6Gbqa/0pqyv180kh8+TcDfTqo7gGagveDYbKO1Rg/PQzTRQ6mYaJigG3FDhBdPI5y8Yt+5GxruZxUrdTOMExYAbKxy2Jj4/bG7dTYx0M+6haKLQzUgWhKY+72ZccWmq0M00U3pTNtPrZiqFz5NwN9O6keAZaCZ4Npsr7VHz89DNNFfqZu5JUAz4HoUXTAufv2DculsY72YWKXUzLRMUA26pcNha+fywuXW3MtLNuIeilUI3I1kQWvu8m3HFpbVCN9NG6U3ZRq+bqRg+T8LdTJsWgmegjeDZbKu0R23PQzfTVqmbaZegGHA7hRdMqs9fMG7dqca7mYVK3Uz7BMWA2ysctg4+P2xu3R2MdDPuoeig0M1IFoSOPu9mXHHpqNDNdFJ6U3bS62aSwudJuJtpmyp4BjoJns3OSnvU+Tx0M52VupkuCYoBd1F4wXT1+QvGrbur8W5mgVI30y1BMeBuCoetu88Pm1t3dyPdjHsouit0M5IFoYfPuxlXXHoodDM9ld6UPfW6mQrh8yTczbTrKngGegqezV5Ke9TrPHQzvZS6md4JigH3VnjB9PH5C8atu4/xbma+UjfTN0Ex4L4Kh62fzw+bW3c/I92Meyj6KXQzkgWhv8+7GVdc+it0MwOU3pQD9LqZ8uHzJNzNpPYRPAMDBM/mQKU9GngeupmBSt3MoATFgAcpvGAG+/wF49Y92Hg3M0+pmxmSoBjwEIXDNtTnh82te6iRbsY9FEMVuhnJgjDM592MKy7DFLqZ4UpvyuF63cz/nyfZbibwh/OUmLZPYLjg2RyhtEcjzkM3M0KpmxmZoBjwSIUXzCifv2DcukcZ72bmKnUzoxMUAx6tcNjG+PywuXWPMdLNuIdijEI3I1kQxvq8m3HFZaxCNzNO6U05Tq+bSQyfJ+Fu5g8vmMS0fQLjBM/meKU9Gn8eupnxSt3MhATFgCcovGAm+vwF49Y90Xg3M0epm5mUoBjwJIXDNtnnh82te7KRbsY9FJMVuhnJgjDF592MKy5TFLqZqUpvyqlq3Uy71PB5Eu5myk8UPANTBc/mNKU9mnYeuplpSt3M9ATFgKcrvGBm+PwF49Y9w3g3M1upm5mZoBjwTIXDNsvnh82te5aRbsY9FLMUuhnJgjDb592MKy6zFbqZOUpvyjl63Uy78HkS7mYqzBA8A3MEz+ZcpT2aex66mblK3cy8BMWA5ym8YOb7/Yf/wfjmG+9mZil1MwsSFANeoHDYFvr8sLl1LzTSzbiHYqFCNyNZEBb5vJtxxWWRQjezWOlNuVivm2kbPk/C3UzSfMEzsFjwbC5R2qMl56GbWaLUzSxNUAx4qcILZpnPXzBu3cuMdzMzlbqZ5QmKAS9XOGwrfH7Y3LpXGOlm3EOxQqGbkSwIK33ezbjislKhm1ml9KZcpdfNtAmfJ+FupuIywTOwSvBsrlbao9XnoZtZrdTNrElQDHiNwgtmrc9fMG7da413MzOUupl7ExQDvlfhsN3n88Pm1n2fkW7GPRT3KXQzkgXhfp93M6643K/QzaxTelOu0+tmWofPk3A3U2mt4BlYJ3g21yvt0frz0M2sV+pmHkhQDPgBhRfMBp+/YNy6NxjvZqYrdTMPJigG/KDCYdvo88Pm1r3RSDfjHoqNCt2MZEF4yOfdjCsuDyl0Mw8rvSkf1utmWoXPk3A3k7xB8Aw8LHg2H1Hao0fOQzfziFI382iCYsCPKrxgHvP5C8at+zHj3cw0pW7m8QTFgB9XOGxP+PywuXU/YaSbcQ/FEwrdjGRB2OTzbsYVl00K3cxmpTflZr1upnL4PAl3MymPCZ6BzYJnc4vSHm05D93MFqVu5skExYCfVHjBPOXzF4xb91PGu5mpSt3M0wmKAT+tcNie8flhc+t+xkg34x6KZxS6GcmC8KzPuxlXXJ5V6GaeU3pTPqfXzaSEz5NwN1P5KcEz8Jzg2dyqtEdbz0M3s1Wpm3k+QTHg5xVeMC/4/AXj1v2C8W5milI382KCYsAvKhy2l3x+2Ny6XzLSzbiH4iWFbkayIGzzeTfjiss2hW7mZaU35ct63Uxy+DwJdzOtXhA8Ay8Lns3tSnu0/Tx0M9uVuplXEhQDfkXhBbPD5y8Yt+4dxruZyUrdzKsJigG/qnDYXvP5YXPrfs1IN+MeitcUuhnJgrDT592MKy47FbqZ15XelK/rdTOVwudJuJtpvUPwDLwueDbfUNqjN85DN/OGUjfzZoJiwG8qvGB2+fwF49a9y3g3M0mpm9mdoBjwboXDtsfnh82te4+RbsY9FHsUuhnJgrDX592MKy57FbqZfUpvyn163UzF8HkS7mba7BI8A/sEz+ZbSnv01nnoZt5S6mbeTlAM+G2FF8w7Pn/BuHW/Y+QF80v8v2KVfsFI7tF+n79g3H7vV3jBvKtUvN7Ve8Ekhc+T8Aum7TuCZ+BdwbP5ntIevXceXjDvKb1gDiQoBnxA4QVz0OcvGLfug0ZeMOlDsUq/YCT36JDPXzBuvw8pvGDeVype7+u9YCqEz5PwC6bdQcEz8L7g2TystEeHz8ML5rDSC+ZIgmLARxReMB/4/AXj1v2BkRdM9lCs0i8YyT360OcvGLffHyq8YD5SKl4f6b1gyofPk/ALJvUDwTPwkeDZPKq0R0cj9ij8kX5Gjwrm4ZhYHsr/IQ/HPMjDMcE8fCx4Tr1sLj5Wai4+SVAM+BOF5uJTnzcXbt2fKjQX7oG7LObPH6n7xyidA8kCrBXjcckYXVXIEfPvKhj58W/gKYkxWocrkJgYmYvPQg/H5wmhhIRfJZ+FqkWkuf9R5qigZFuXPyYxbe1VYuAzwer0ufDmSre/rsp9BqNJYto+ohX+hHD10aiOJxRGk5MJF948Jw28eb6QjlH6IB0LHVDpontMrOimBE4IFowvBYtu5Ivsy4gfSHrVHRwz2B2cCnUHX0V3B+7/kD/KvvKgOzgm2B2cEjyoXwlu7rkcSh/8ICIQ/hIjfyj//96Rufg6dChPRx/Kr6FlPQ0/EUmvmMR/eK/yoXsFvhY8lKeFN1e6Iro3xdcJ8vsh+QaS3I9vfP6Tedf+fqPQ/n57of0NSOZAK8bvtNvfxLR9Au5wfqdwQM/4fC516z6jsO7vlX4d832oEzTayQQgXJVO5myok/khupM5C53MD8Y6mbOCb84flDZX+odlkr8j/NHn3YLrss76vHuTPIM/+Xw/3Hn5SeEl8bPSS+Lnv/hzFYlp+6jl4pcLnWzglwT/x/ir3ztZdzh/VTigvylsjvtI/yESySIfU9DfhdntiYtReq8vKqhTmN19DXfv5SFcle49XcF//TN9wZg/durpCv65e3f/o8JRQfm5e09XUC6u9AV1NtfP3XsGuYfz9zVLP3CuILk9ls5hjOC5yVhQ9mUmXdjdHmdUKOwXKxX2iwvqddxaucgkmAurHXemgv6PMbN0jNIBusOZWeGAZvF5kXIFOYvCurMqFamstrvPChCuSveZLdR9Zo/uPrNB95ndWPeZTbCLyF5QZ3P93H3mkHs4f1+zRveZzefd5yU+L+xujy9RKOw5lQp7TsXuUysXuS50n4FcBrrPS/3efbrDeanCAc1toPvMrbDuPEpFKo/t7jMJwlXpPi8LdZ95o7vPy6D7zGus+7xMsIvIW1Bnc/3cfeaTezh/X7NG93mZz7vPWJ8XdrfHsQqFPb9SYc+v2H1q5aLAhe4zUMBA9xnn9+7THc44hQMab6D7jFdYd4JSkUqw3X1WhHBVus+Coe6zUHT3WRC6z0LGus+Cgl1EoYI6m+vn7vNyuYfz9zVrdJ8Ffd59FvZ5YXd7XFihsBdRKuxFFLtPrVwUvdB9Booa6D6L+b37dIezmMIBLW6g+yyusO4rlIrUFba7z0oQrkr3WSLUfZaM7j5LQPdZ0lj3WUKwiyhZUGdz/dx9lpJ7OH9fs0b3WcLn3Wdpnxd2t8elFQr7lUqF/UrF7lMrF2UudJ+BMga6z6v83n26w3mVwgG92kD3ebXCussqFamytrvPZAhXpfssF+o+E6O7z3LQfSYa6z7LCXYRiQV1NtfP3WdA7uH8fc0a3Wc5n3ef5X1e2N0el1co7BWUCnsFxe5TKxdJF7rPQJKB7rOi37tPdzgrKhzQSga6z0oK605WKlLJtrvPFAhXpftMCXWflaO7zxToPisb6z5TBLuIygV1NtfP3ec1cg/n72vW6D5TfN59Xuvzwu72+FqFwl5FqbBXUew+tXJx3YXuM3Cdge7zer93n+5wXq9wQG8w0H3eoLDuqkpFqqrt7rMyhKvSfd4Y6j5viu4+b4Tu8yZj3eeNgl3ETQV1NtfP3efNcg/n72vW6D5v9Hn3eYvPC7vb41sUCvutSoX9VsXuUysXt13oPgO3Geg+b/d79+kO5+0KB7Sage6zmsK671AqUnfY7j5bQbgq3Wf1UPdZI7r7rA7dZw1j3Wd1wS6iRkGdzfVz91lT7uH8fc0a3Wd1n3efd/q8sLs9vlOhsNdSKuy1FLtPrVzUvtB9Bmob6D7v8nv36Q7nXQoHtI6B7rOOwrrvVipSd9vuPltDuCrdZ91Q91kvuvusC91nPWPdZ13BLqJeQZ3N9XP3WV/u4fx9zRrdZ12fd58NfF7Y3R43UCjsDZUKe0PF7lMrF40udJ+BRga6z8Z+7z7d4WyscECbGOg+myisu6lSkWpqu/tsA+GqdJ/NQt1n8+jusxl0n82NdZ/NBLuI5gV1NtfP3ec9cg/n72vW6D6b+bz7bOHzwu72uIVCYW+pVNhbKnafWrlodaH7DLQy0H229nv36Q5na4UD2sZA99lGYd1tlYpUW9vdZ1sIV6X7bBfqPlOju8920H2mGus+2wl2EakFdTbXz91ne7mH8/c1a3Sf7XzefXbweWF3e9xBobB3VCrsHRW7T61cdLrQfQY6Geg+O/u9+3SHs7PCAe1ioPvsorDurkpFqqvt7rMdhKvSfXYLdZ/do7vPbtB9djfWfXYT7CK6F9TZXD93nz3kHs7f16zRfXbzeffZ0+eF3e1xT4XC3kupsPdS7D61ctH7QvcZ6G2g++zj9+7THc4+Cge0r4Hus6/CuvspFal+trvPVAhXpfvsH+o+B0R3n/2h+xxgrPvsL9hFDCios7l+7j4Hyj2cv69Zo/vs7/Puc5DPC7vb40EKhX2wUmEfrNh9auViyIXuMzDEQPc51O/dpzucQxUO6DAD3ecwhXUPVypSw013n4FECFel+xwR6j5HRnefI6D7HGms+xwh2EWMLKizuX7uPkeJPZwBLEoS3ecIn3efo31e2N0ej1Yo7GOUCvsYxe5TKxdjL3SfgbEGus9xfu8+3eEcp3BAxxvoPscrrHuCUpGaYLv7DEC4Kt3nxFD3OSm6+5wI3eckY93nRMEuYlJBnc31c/c5Wa77/H3NGt3nRJ93n1N8XtjdHk9RKOxTlQr7VMXuUysX0y50n4FpBrrP6X7vPt3hnK5wQGcY6D5nKKx7plKRmmm7+ywP4ap0n7NC3efs6O5zFnSfs411n7MEu4jZBXU218/d5xy57vP3NWt0n7N83n3O9Xlhd3s8V6Gwz1Mq7PMUu0+tXMy/0H0G5hvoPhf4vft0h3OBwgFdaKD7XKiw7kVKRWqR7e6zAoSr0n0uDnWfS6K7z8XQfS4x1n0uFuwilhTU2Vw/d59L5brP39es0X0u9nn3ucznhd3t8TKFwr5cqbAvV+w+tXKx4kL3GVhhoPtc6ffu0x3OlQoHdJWB7nOVwrpXKxWp1ba7zyQIV6X7XBPqPtdGd59roPtca6z7XCPYRawtqLO5fu4+75XrPn9fs0b3ucbn3ed9Pi/sbo/vUyjs9ysV9vsVu0+tXKy70H0G1hnoPtf7vft0h3O9wgF9wED3+YDCujcoFakNtrvPihCuSvf5YKj73BjdfT4I3edGY93ng4JdxMaCOpvr5+7zIbnu8/c1a3SfD/q8+3zY54Xd7fHDCoX9EaXC/ohi96mVi0cvdJ+BRw10n4/5vft0h/MxhQP6uIHu83GFdT+hVKSesN19VoJwVbrPTaHuc3N097kJus/NxrrPTYJdxOaCOpvr5+5zi1z3+fuaNbrPTT7vPp/0eWF3e/ykQmF/SqmwP6XYfWrl4ukL3WfgaQPd5zN+7z7d4XxG4YA+a6D7fFZh3c8pFannbHefyRCuSve5NdR9Ph/dfW6F7vN5Y93nVsEu4vmCOpvr5+7zBbnu8/c1a3SfW33efb7o88Lu9vhFhcL+klJhf0mx+9TKxbYL3Wdgm4Hu82W/d5/ucL6scEC3G+g+tyus+xWlIvWK7e4zBcJV6T53hLrPV6O7zx3Qfb5qrPvcIdhFvFpQZ3P93H2+Jtd9/r5mje5zh8+7z50+L+xuj3cqFPbXlQr764rdp1Yu3rjQfQbeMNB9vun37tMdzjcVDuguA93nLoV171YqUrttd5+VIVyV7nNPqPvcG9197oHuc6+x7nOPYBext6DO5vq5+9wn133+vmaN7nOPz7vPt3xe2N0ev6VQ2N9WKuxvK3afWrl450L3GXjHQPe53+/dpzuc+xUO6LsGus93Fdb9nlKRes9299kKwlXpPg+Eus+D0d3nAeg+DxrrPg8IdhEHC+psrp+7z0Ny3efva9boPg/4vPt83+eF3e3x+wqF/bBSYT+s2H1q5eLIhe4zcMRA9/mB37tPdzg/UDigHxroPj9UWPdHSkXqI9vdZ2sIV6X7PBrqPo9Fd59Hofs8Zqz7PCrYRRwrqLO5fu4+P5brPn9fs0b3edTn3ecnPi/sbo8/USjsnyoV9k8Vu0+tXBy/0H0GjhvoPj/ze/fpDudnCgf0cwPd5+cK6z6hVKRO2O4+20C4Kt3nyVD3+UV093kSus8vjHWfJwW7iC8K6myun7vPL+W6z9/XrNF9nvR593nK54Xd7fEphcL+lVJh/0qx+9TKxdcXus/A1wa6z9N+7z7d4TytcEC/MdB9fqOw7m+VitS3trvPthCuSvf5Xaj7PBPdfX4H3ecZY93nd4JdxJmCOpvr5+7ze7nu8/c1a3Sf3/m8+zzr88Lu9visQmH/Qamw/6DYfWrl4scL3WfgRwPd509+7z7d4fxJ4YD+bKD7/Flh3b8oFalfbHef7SBcle7z11D3+Vt09/krdJ+/Ges+fxXsIn4rqLO5fu4+YwqJdZ+/r1mj+/zV593nRYV8XtiD8bkYpfcmXSGdwu7uWzh0Xyu5SC+YC6vdZ/pC/o8xg3SM0gG6w5lB4YBm9HuRChbkjArrvlipSLn7Gu4+UyFcle4zU6F//TNzoZg/dpqZCv25+8xcyFb3mamQXFyZC+lsrp+7zyxy3efva9boPt0e+7n7zOrzwu72OKtCYc+mVNizhWrQuRT2xLR9AhLPQervn3aJEK5KYc8eKuw5ogt7dijsOf5GYU9M2+cPSUxrYc8uWNhzCG+u9IPkHs7wZgruxx8OokbMknFKP9Angi/JLxLk132JUtG7JNTNauTiq2AeYhR+rpxTKRc5I3IR/kjXKsF9DOQUrFW5lHKaS/F8nVE6X5cq5eJSxVz8ppSL3Eq5yK2YC5eHLAq5yKOUizzKucitkIvLlHJxmXIu4hVykVcpF3mVc1FcIRf5lHKRTzkXVyvkIlYpF7HKuaikkIv8SrnIr5yLGxRyUUApFwWUc1FNIRdxSrmIU85FHYVcxCvlIl45F00UcpGglIsE5Vy0UchFQaVcFFTORReFXBRSykUh5Vz0VcjF5Uq5uFw5F8MUclFYKReFlXMxXiEXRZRyUUQ5FzMUclFUKRdFlXOxUCEXxZRyUUw5F6sUclFcKRfFlXPxgEIurlDKxRXKuXhcIRcllHJRQjkXGv/F5JJKuSipnAuN/35fKaVclFLOhcZ/Taa0Ui5KK+dC4+82v1IpF1cq50Ljb9oso5SLMsq50Ph7n65SysVVyrnQ+FsIrlbKxdXKudD4d+LKKuWirHIuNP6EdjmlXJT7B39COzFtn0D7OJ0/PxUjGmfgD3+QLzH0Z78C0X+Qz/0fMkRZIGSRH+k/HBOZxH96uNr960/MBRIF/3BMoJDO5qYT3lzJNZdXejjLe/CHrCTOEeUhrfeqoJTTCueh4HUwWPCSQgWvYnTBS4KCV9GDgtdBsOAlCR7UikYKnuSaKyk9nJU8KHgd4nTykNZ7JSvlNPk8FLyOBgteSqjgVY4ueClQ8Cp7UPA6Cha8FMGDWtlIwZNc8zVKD+c1HhS8jnE6eUjrva5Vyum156HgdTJY8KqECt510QWvChS86zwoeJ0EC14VwYN6nZGCJ7nm65Uezus9KHid4nTykNZ73aCU0xvOQ8HrbLDgVQ0VvBujC15VKHg3elDwOgsWvKqCB/VGIwVPcs03KT2cN3lQ8DrH6eQhrfe6WSmnN5+HgtfFYMG7JVTwbo0ueLdAwbvVg4LXRbDg3SJ4UG81UvAk13yb0sN5mwcFr0ucTh7Seq/blXJ6+3koeF0NFrxqoYJ3R3TBqwYF7w4PCl5XwYJXTfCg3mGk4EmuubrSw1ndg4LXNU4nD2m9Vw2lnNY4DwWvm8GCVzNU8O6MLng1oeDd6UHB6yZY8GoKHtQ7jRQ8yTXXUno4a3lQ8LrF6eQhrfeqrZTT2ueh4HU3WPDuChW8OtEF7y4oeHU8KHjdBQveXYIHtY6Rgie55ruVHs67PSh43eN08pDWe9VVymnd81DwehgsePVCBa9+dMGrBwWvvgcFr4dgwasneFDrGyl4kmtuoPRwNvCg4PWI08lDWu/VUCmnDc9DwetpsOA1ChW8xtEFrxEUvMYeFLyeggWvkeBBbWyk4EmuuYnSw9nEg4LXM04nD2m9V1OlnDY9DwWvl8GC1yxU8JpHF7xmUPCae1DwegkWvGaCB7W5kYInueZ7lB7OezwoeL3idPKQ1nu1UMppi/NQ8HobLHgtQwWvVXTBawkFr5UHBa+3YMFrKXhQWxkpeJJrbq30cLb2oOD1jtPJQ1rv1UYpp23OQ8HrY7DgtQ0VvHbRBa8tFLx2HhS8PoIFr63gQW1npOBJrjlV6eFM9aDg9YnTyUNa79VeKaftz0PB62uw4HUIFbyO0QWvAxS8jh4UvL6CBa+D4EHtaKTgSa65k9LD2cmDgtc3TicPab1XZ6Wcdj4PBa+fwYLXJVTwukYXvC5Q8Lp6UPD6CRa8LoIHtauRgie55m5KD2c3DwpevzidPKT1Xt2Vctr9PBS8/gYLXo9QwesZXfB6QMHr6UHB6y9Y8HoIHtSeRgqe5Jp7KT2cvTwoeP3jdPKQ1nv1Vspp7/NQ8AYYLHh9QgWvb3TB6wMFr68HBW+AYMHrI3hQ+xopeJJr7qf0cPbzoOANiNPJQ1rv1V8pp/3PQ8EbaLDgDQgVvIHRBW8AFLyBHhS8gYIFb4DgQR1opOBJrnmQ0sM5yIOCNzBOJw9pvddgpZwOPg8Fb5DBgjckVPCGRhe8IVDwhnpQ8AYJFrwhggd1qJGCJ7nmYUoP5zAPCt6gOJ08pPVew5VyOvw8FLzBBgveiFDBGxld8EZAwRvpQcEbLFjwRgge1JFGCp7kmkcpPZyjPCh4g+N08pDWe41Wyuno81DwhhgseGNCBW9sdMEbAwVvrAcFb4hgwRsjeFDHGil4kmsep/RwjvOg4A2J08lDWu81Ximn489DwRtqsOBNCBW8idEFbwIUvIkeFLyhggVvguBBnWik4EmueZLSwznJg4I3NE4nD2m912SlnE4+DwVvmMGCNyVU8KZGF7wpUPCmelDwhgkWvCmCB3WqkYInueZpSg/nNA8K3rA4nTyk9V7TlXI6/TwUvOEGC96MUMGbGV3wZkDBm+lBwRsuWPBmCB7UmUYKnuSaZyk9nLM8KHjD43TykNZ7zVbK6ezzUPBGGCx4c0IFb250wZsDBW+uBwVvhGDBmyN4UOcaKXiSa56n9HDO86DgjYjTyUNa7zVfKafzz0PBG2mw4C0IFbyF0QVvARS8hR4UvJGCBW+B4EFdaKTgSa55kdLDuciDgjcyTicPab3XYqWcLj4PBW+UwYK3JFTwlkYXvCVQ8JZ6UPBGCRa8JYIHdamRgie55mVKD+cyDwreqDidPKT1XsuVcrr8PBS80QYL3opQwVsZXfBWQMFb6UHBGy1Y8FYIHtSVRgqe5JpXKT2cqzwoeKPjdPKQ1nutVsrp6vNQ8MYYLHhrQgVvbXTBWwMFb60HBW+MYMFbI3hQ1xopeJJrvlfp4bzXg4I3Jk4nD2m9131KOb3vPBS8sQYL3v2hgrcuuuDdDwVvnQcFb6xgwbtf8KCuM1LwJNe8XunhXO9BwRsbp5OHtN7rAaWcPnAeCt44gwVvQ6jgPRhd8DZAwXvQg4I3TrDgbRA8qA8aKXiSa96o9HBu9KDgjYvTyUNa7/WQUk4fgpzKnq3EwF355PLwsGBOI/Pg7ls45twKv+RaEv/ZJxD+AuGK3TsyF4+ECv+j0YXf/R8uirJHQ0mN/KRXTOI/vFf50L0CjwgerkcFNzdjzL9zGz6IKRn++nAmpu0TeD5G/sUlHeMLBmJ80UCMLxmIcZuBGF82EON2AzG+YiDGHQZifNVAjK8ZiHGngRhfNxDjGwZifNNAjLsMxLjbQIx7DMS410CM+wzE+JaBGN82EOM7BmLcbyDGdw3E+J6BGA8YiPGggRgPGYjxfQMxHjYQ4xEDMX5gIMYPDcT4kYEYjxqI8ZiBGD82EOMnBmL81ECMxw3E+JmBGD83EOMJAzGeNBDjFwZi/NJAjKcMxPiVgRi/NhDjaQMxfmMgxm8NxPidgRjPGIjxewMxnjUQ4w8GYvzRQIw/GYjxZwMx/mIgxl8NxPibgRjdDf0e40UGYkxnIMb0BmLMYCDGjAZivNhAjJkMxJjZQIxZDMSY1UCM2QzEmN1AjDkMxHiJgRhzGogxl4EYLzUQY24DMeYxEONlBmLMayDGfAZijDUQY34DMRYwEGOcgRjjDcSYYCDGggZiLGQgxssNxFjYQIxFDMRY1ECMxQzEWNxAjFcYiLGEgRhLGoixlIEYSxuI8UoDMZYxEONVBmK82kCMZQ3EWM5AjIkGYgwYiLG8gRgrGIgxyUCMFQ3EWMlAjMkGYkwxEGNlAzFeYyDGaw3EWMVAjNcZiPF6AzHeYCDGqgZivNFAjDcZiPFmAzHeYiDGWw3EeJuBGG83EGM1AzHeYSDG6gZirGEgxpoGYrzTQIy1DMRY20CMdxmIsY6BGO82EGNdAzHWMxBjfQMxNjAQY0MDMTYyEGNjAzE2MRBjUwMxNjMQY3MDMd5jIMYWBmJsaSDGVgZibG0gxjYGYmxrIMZ2BmJMNRBjewMxdjAQY0cDMXYyEGNnAzF2MRBjVwMxdjMQY3cDMfYwEGNPAzH2MhBjbwMx9jEQY18DMfYzEGN/AzEOMBDjQAMxDjIQ42ADMQ4xEONQAzEOMxDjcAMxjjAQ40gDMY4yEONoAzGOMRDjWAMxjjMQ43gDMU4wEONEAzFOMhDjZAMxTjEQ41QDMU4zEON0AzHOMBDjTAMxzjIQ42wDMc4xEONcAzHOMxDjfAMxLjAQ40IDMS4yEONiAzEuMRDjUgMxLjMQ43IDMa4wEONKAzGuMhDjagMxrjEQ41oDMd5rIMb7DMR4v4EY1xmIcb2BGB8wEOMGAzE+aCDGjQZifMhAjA8biPERAzE+aiDGxwzE+LiBGJ8wEOMmAzFuNhDjFgMxPmkgxqcMxPi0gRifMRDjswZifM5AjFsNxPi8gRhfMBDjiwZifMlAjNsMxPiygRi3G4jxFQMx7jAQ46sGYnzNQIw7DcT4uoEY3zAQ45sGYtxlIMbdBmLcYyDGvQZi3GcgxrcMxPi2gRjfMRDjfgMxvmsgxvcMxHjAQIwHDcR4yECM7xuI8bCBGI8YiPEDAzF+aCDGjwzEeNRAjMcMxPixgRg/MRDjpwZiPG4gxs8MxPi5gRhPGIjxpIEYvzAQ45cGYjxlIMavDMT4tYEYTxuI8RsDMX5rIMbvDMR4xkCM3xuI8ayBGH8wEOOPBmL8yUCMPxuI8RcDMf5qIMbfDMQYk87/MV5kIMZ0BmJMbyDGDAZizGggxosNxJjJQIyZDcSYxUCMWQ3EmM1AjNkNxJjDQIyXGIgxp4EYcxmI8VIDMeY2EGMeAzFeZiDGvAZizGcgxlgDMeY3EGMBAzHGGYgx3kCMCQZiLGggxkIGYrzcQIyFDcRYxECMRQ3EWMxAjMUNxHiFgRhLGIixpIEYSxmIsbSBGK80EGMZAzFeZSDGqw3EWNZAjOUMxJhoIMaAgRjLG4ixgoEYkwzEWNFAjJUMxJhsIMYUAzFWNhDjNQZivNZAjFUMxHidgRivNxDjDQZirGogxhsNxHiTgRhvNhDjLQZivNVAjLcZiPF2AzFWMxDjHQZirG4gxhoGYqxpIMY7DcRYy0CMtQ3EeJeBGOsYiPFuAzHWNRBjPQMx1jcQYwMDMTY0EGMjAzE2NhBjEwMxNjUQYzMDMTY3EOM9BmJsYSDGlgZibGUgxtYGYmxjIMa2BmJsZyDGVAMxtjcQYwcDMXY0EGMnAzF2NhBjFwMxdjUQYzcDMXY3EGMPAzH2NBBjLwMx9jYQYx8DMfY1EGM/AzH2NxDjAAMxDjQQ4yADMQ42EOMQAzEONRDjMAMxDjcQ4wgDMY40EOMoAzGONhDjGAMxjjUQ4zgDMY43EOMEAzFONBDjJAMxTjYQ4xQDMU41EOM0AzFONxDjDAMxzjQQ4ywDMc42EOMcAzHONRDjPAMxzjcQ4wIDMS40EOMiAzEuNhDjEgMxLjUQ4zIDMS43EOMKAzGuNBDjKgMxrjYQ4xoDMa41EOO9BmK8z0CM9xuIcZ2BGNcbiPEBAzFuMBDjgwZi3GggxocMxPiwgRgfMRDjowZifMxAjI8biPEJAzFuMhDjZgMxbjEQ45MGYnzKQIxPG4jxGQMxPmsgxucMxLjVQIzPG4jxBQMxvmggxpcMxLjNQIwvG4hxu4EYXzEQ4w4DMb5qIMbXDMS400CMrxuI8Q0DMb5pIMZdBmLcbSDGPQZi3Gsgxn0GYnzLQIxvG4jxHQMx7jcQ47sGYnzPQIwHDMR40ECMhwzE+L6BGA8biPGIgRg/MBDjhwZi/MhAjEcNxHjMQIwfG4jxEwMxfmogxuMGYvzMQIyfG4jxhIEYTxqI8QsDMX5pIMZTBmL8ykCMXxuI8bSBGL8xEOO3BmL8zkCMZwzE+L2BGM8aiPEHAzH+aCDGnwzE+LOBGH8xEOOvBmL8zUCMMen9H+NFBmJMZyDG9AZizGAgxowGYrzYQIyZDMSY2UCMWQzEmNVAjNkMxJjdQIw5DMR4iYEYcxqIMZeBGC81EGNuAzHmMRDjZQZizGsgxnwGYow1EGN+AzEWMBBjnIEY4w3EmGAgxoIGYixkIMbLDcRY2ECMRQzEWNRAjMUMxFjcQIxXGIixhIEYSxqIsZSBGEsbiPFKAzGWMRDjVQZivNpAjGUNxFjOQIyJBmIMGIixvIEYKxiIMclAjBUNxFjJQIzJBmJMMRBjZQMxXmMgxmsNxFjFQIzXGYjxegMx3mAgxqoGYrzRQIw3GYjxZgMx3mIgxlsNxHibgRhvNxBjNQMx3mEgxuoGYqxhIMaaBmK800CMtQzEWNtAjHcZiLGOgRjvNhBjXQMx1jMQY30DMTYwEGNDAzE2MhBjYwMxNjEQY1MDMTYzEGNzAzHeYyDGFgZibGkgxlYGYmxtIMY2BmJsayDGdgZiTDUQY3sDMXYwEGNHAzF2MhBjZwMxdjEQY1cDMXYzEGN3AzH2MBBjTwMx9jIQY28DMfYxEGNfAzH2MxBjfwMxDjAQ40ADMQ4yEONgAzEOMRDjUAMxDjMQ43ADMY4wEONIAzGOMhDjaAMxjjEQ41gDMY4zEON4AzFOMBDjRAMxTjIQ42QDMU4xEONUAzFOMxDjdAMxzjAQ40wDMc4yEONsAzHOMRDjXAMxzjMQ43wDMS4wEONCAzEuMhDjYgMxLjEQ41IDMS4zEONyAzGuMBDjSgMxrjIQ42oDMa4xEONaAzHeayDG+wzEeL+BGNcZiHG9gRgfMBDjBgMxPmggxo0GYnzIQIwPG4jxEQMxPmogxscMxPi4gRifMBDjJgMxbjYQ4xYDMT5pIManDMT4tIEYnzEQ47MGYnzOQIxbDcT4vIEYXzAQ44sGYnzJQIzbDMT4soEYtxuI8RUDMe4wEOOrBmJ8zUCMOw3E+LqBGN8wEOObBmLcZSDG3QZi3GMgxr0GYtxnIMa3DMT4toEY3zEQ434DMb5rIMb3DMR4wECMBw3EeMhAjO8biPGwgRiPGIjxAwMxfmggxo8MxHjUQIzHDMT4sYEYPzEQ46cGYjxuIMbPDMT4uYEYTxiI8aSBGL8wEOOXBmI8ZSDGrwzE+LWBGE8biPEbAzF+ayDG7wzEeMZAjN8biPGsgRh/MBDjjwZi/MlAjD8biPEXAzH+aiDG3wzEGJPB/zFeZCDGdAZiTG8gxgwGYsxoIMaLDcSYyUCMmQ3EmMVAjFkNxJjNQIzZDcSYw0CMlxiIMaeBGHMZiPFSAzHmNhBjHgMxXmYgxrwGYsxnIMZYAzHmNxBjAQMxxhmIMd5AjAkGYixoIMZCBmK83ECMhQ3EWMRAjEUNxFjMQIzFDcR4hYEYSxiIsaSBGEsZiLG0gRivNBBjGQMxXmUgxqsNxFjWQIzlDMSYaCDGgIEYyxuIsYKBGJMMxFjRQIyVDMSYbCDGFAMxVjYQ4zUGYrzWQIxVDMR4nYEYrzcQ4w0GYqxqIMYbDcR4k4EYbzYQ4y0GYrzVQIy3GYjxdgMxVjMQ4x0GYqxuIMYaBmKsaSDGOw3EWMtAjLUNxHiXgRjrGIjxbgMx1jUQYz0DMdY3EGMDAzE2NBBjIwMxNjYQYxMDMTY1EGMzAzE2NxDjPQZibGEgxpYGYmxlIMbWBmJsYyDGtgZibGcgxlQDMbY3EGMHAzF2NBBjJwMxdjYQYxcDMXY1EGM3AzF2NxBjDwMx9jQQYy8DMfY2EGMfAzH2NRBjPwMx9jcQ4wADMQ40EOMgAzEONhDjEAMxDjUQ4zADMQ43EOMIAzGONBDjKAMxjjYQ4xgDMY41EOM4AzGONxDjBAMxTjQQ4yQDMU42EOMUAzFONRDjNAMxTjcQ4wwDMc40EOMsAzHONhDjHAMxzjUQ4zwDMc43EOMCAzEuNBDjIgMxLjYQ4xIDMS41EOMyAzEuNxDjCgMxrjQQ4yoDMa42EOMaAzGuNRDjvQZivM9AjPcbiHGdgRjXG4jxAQMxbjAQ44MGYtxoIMaHDMT4sIEYHzEQ46MGYnzMQIyPG4jxCQMxbjIQ42YDMW4xEOOTBmJ8ykCMTxuI8RkDMT5rIMbnDMS41UCMzxuI8QUDMb5oIMaXDMS4zUCMLxuIcbuBGF8xEOMOAzG+aiDG1wzEuNNAjK8biPENAzG+aSDGXQZi3G0gxj0GYtxrIMZ9BmJ8y0CMbxuI8R0DMe43EOO7BmJ8z0CMBwzEeNBAjIcMxPi+gRgPG4jxiIEYPzAQ44cGYvzIQIxHDcR4zECMHxuI8RMDMX5qIMbjBmL8zECMnxuI8YSBGE8aiPELAzF+aSDGUwZi/MpAjF8biPG0gRi/MRDjtwZi/M5AjGcMxPi9YIzpY/79eazQv/75eOifTxT6d+x/WkSFxEpJSe2Sy7cLVAi0SixfuXVKxcSkiq0rpQRSAhVTKrYtn1KhQruUpJTkyq0rJydWDiRVaBdIrVi5Qmro/8ePFJJLiIstfShGt4jCoe9hexzsiZBprc3dP53wxj9RSC7GTYXkD7r7pFM8J2m912bBM0fnJjFtn4Dbk82F5M/jFsG9jnyGtkQ8Q/9p/xPT9gls8uf+J2YMrTVDzJ8/4v8ChtKzKv4vYRiJ8wnh5yElg+7+Px8jn1fxPyxrIMYXDcT4koEYtxmI8WUDMW43EOMrBmLcYSDGVw3E+JqBGHcaiPF1AzG+YSDGNw3EuMtAjLsNxLjHQIx7DcS4z0CMbxmI8W0DMb5jIMb9BmJ810CM7xmI8YCBGA8aiPGQgRjfNxDjYQMxHjEQ4wcGYvzQQIwfGYjxqIEYjxmI8WMDMX5iIMZPDcR43ECMnxmI8XMDMZ4wEONJAzF+YSDGLw3EeMpAjF8ZiPFrAzGeNhDjNwZi/NZAjN8ZiPGMgRi/NxDjWQMx/mAgxh8NxPiTgRh/NhDjLwZi/NVAjL8ZiNHd0O8xXmQgxnQGYkxvIMYMBmLMaCDGiw3EmMlAjJkNxJjFQIxZDcSYzUCM2Q3EmMNAjJcYiDGngRhzGYjxUgMx5jYQYx4DMV5mIMa8BmLMZyDGWAMx5jcQYwEDMcYZiDHeQIwJBmIsaCDGQgZivNxAjIUNxFjEQIxFDcRYzECMxQ3EeIWBGEsYiLGkgRhLGYixtIEYrzQQYxkDMV5lIMarDcRY1kCM5QzEmGggxoCBGMsbiLGCgRiTDMRY0UCMlQzEmGwgxhQDMVY2EOM1BmK81kCMVQzEeJ2BGK83EOMNBmKsaiDGGw3EeJOBGG82EOMtBmK81UCMtxmI8XYDMVYzEOMdBmKsbiDGGgZirGkgxjsNxFjLQIy1DcR4l4EY6xiI8W4DMdY1EGM9AzHWNxBjAwMxNjQQYyMDMTY2EGMTAzE2NRBjMwMxNjcQ4z0GYmxhIMaWBmJsZSDG1gZibGMgxrYGYmxnIMZUAzG2NxBjBwMxdjQQYycDMXY2EGMXAzF2NRBjNwMxdjcQYw8DMfY0EGMvAzH2NhBjHwMx9jUQYz8DMfY3EOMAAzEONBDjIAMxDjYQ4xADMQ41EOMwAzEONxDjCAMxjjQQ4ygDMY42EOMYAzGONRDjOAMxjjcQ4wQDMU40EOMkAzH+H3v/HWR11eYL303OoihIENigBBGkN03oFiSKoiiCoCiCZMw555wT5qwgOeecc86CoAiKoiiKoiiCIu/eM1j2zOxn/jj+FtWf855dz1VQ1zO1zmdde13fbuaeqvtZwPgcYHweML4AGF8EjH0B40uA8WXA+ApgfBUwvgYYXweMbwDGNwHjW4DxbcD4DmB8FzC+BxjfB4wfAMZ+gLE/YPwQMA4AjAMB4yDAOBgwDgGMQwHjMMA4HDCOAIwjAeMowDgaMI4BjGMB4zjAOB4wTgCMEwHjJMA4GTBOAYxTAeM0wDgdMM4AjDMB4yzAOBswzgGMcwHjPMA4HzAuAIwLAeMiwLgYMC4BjEsB4zLAuBwwrgCMKwHjKsC4GjCuAYxrAeM6wLgeMG4AjB8Bxo2AcRNg/BgwbgaMWwDjJ4DxU8C4FTB+Bhi3AcbtgPFzwPgFYNwBGL8EjF8Bxp2A8WvA+A1g3AUYvwWM3wHG3YDxe8D4A2DcAxh/BIw/Aca9gPFnwPgLYNwHGH8FjL8Bxv2A8XfAeAAwHgSMfwDGPwHjIcD4F2A8DBjTcud8Yy7AmBsw5gGMeQFjPsCYHzAWAIwFAWMhwFgYMBYBjEUBYzHAeAxgLA4YjwWMxwHGEoDxeMB4AmAsCRhLAcYTAWNpwFgGMJYFjOUA40mAsTxgrAAYKwLGGGCsBBgrA8aTAeMpgLEKYKwKGKsBxuqA8VTAWAMwngYYawLGWoDxdMBYGzCmA8Y4YKwDGDMAY13AWA8w1geMDQBjJmDMAoxnAMaGgLERYDwTMDYGjE0AY1PA2AwwNgeMLQDjWYCxJWA8GzCeAxhbAcZzAeN5gLE1YDwfMF4AGNsAxgsBY1vA2A4wXgQY2wPGDoDxYsB4CWDsCBgvBYyXAcZOgPFywNgZMHYBjFcAxq6AsRtg7A4YewDGnoCxF2DsDRj7AMYrAeNVgPFqwHgNYLwWMF4HGK8HjDcAxhsB402A8WbAeAtgvBUw3gYYbweMdwDGOwHjXYDxbsB4D2C8FzDeBxjvB4wPAMYHAeNDgPFhwPgIYHwUMD4GGB8HjE8AxicB41OA8WnA+AxgfBYwPgcYnweMLwDGFwFjX8D4EmB8GTC+AhhfBYyvAcbXAeMbgPFNwPgWYHwbML4DGN8FjO8BxvcB4weAsR9g7A8YPwSMAwDjQMA4CDAOBoxDAONQwDgMMA4HjCMA40jAOAowjgaMYwDjWMA4DjCOB4wTAONEwDgJME4GjFMA41TAOA0wTgeMMwDjTMA4CzDOBoxzAONcwDgPMM4HjAsA40LAuAgwLgaMSwDjUsC4DDAuB4wrAONKwLgKMK4GjGsA41rAuA4wrgeMGwDjR4BxI2DcBBg/BoybAeMWwPgJYPwUMG4FjJ8Bxm2AcTtg/BwwfgEYdwDGLwHjV4BxJ2D8GjB+Axh3AcZvAeN3gHE3YPweMP4AGPcAxh8B40+AcS9g/Bkw/gIY9wHGXwHjb4BxP2D8HTAeAIwHAeMfgPFPwHgIMP4FGA8DxrQ8Od+YCzDmBox5AGNewJgPMOYHjAUAY0HAWAgwFgaMRQBjUcBYDDAeAxiLA8ZjAeNxgLEEYDweMJ4AGEsCxlKA8UTAWBowlgGMZQFjOcB4EmAsDxgrAMaKgDEGGCsBxsqA8WTAeApgrAIYqwLGaoCxOmA8FTDWAIynAcaagLEWYDwdMNYGjOmAMQ4Y6wDGDMBYFzDWA4z1AWMDwJgJGLMA4xmAsSFgbAQYzwSMjQFjE8DYFDA2A4zNAWMLwHgWYGwJGM8GjOcAxlaA8VzAeB5gbA0YzweMFwDGNoDxQsDYFjC2A4wXAcb2gLEDYLwYMF4CGDsCxksB42WAsRNgvBwwdgaMXQDjFYCxK2DsBhi7A8YegLEnYOwFGHsDxj6A8UrAeBVgvBowXgMYrwWM1wHG6wHjDYDxRsB4E2C8GTDeAhhvBYy3AcbbAeMdgPFOwHgXYLwbMN4DGO8FjPcBxvsB4wOA8UHA+BBgfBgwPgIYHwWMjwHGxwHjE4DxScD4FGB8GjA+AxifBYzPAcbnAeMLgPFFwNgXML4EGF8GjK8AxlcB42uA8XXA+AZgfBMwvgUY3waM7wDGdwHje4DxfcD4AWDsBxj7A8YPAeMAwDgQMA4CjIMB4xDAOBQwDgOMwwHjCMA4EjCOAoyjAeMYwDgWMI4DjOMB4wTAOBEwTgKMkwHjFMA4FTBOA4zTAeMMwDgTMM4CjLMB4xzAOBcwzgOM8wHjAsC4EDAuAoyLAeMSwLgUMC4DjMsB4wrAuBIwrgKMqwHjGsC4FjCuA4zrAeMGwPgRYNwIGDcBxo8B42bAuAUwfgIYPwWMWwHjZ4BxG2DcDhg/B4xfAMYdgPFLwPgVYNwJGL8GjN8Axl2A8VvA+B1g3A0YvweMPwDGPYDxR8D4E2DcCxh/Boy/AMZ9gPFXwPgbYNwPGH8HjAcA40HA+Adg/BMwHgKMfwHGw4AxLW/ON+YCjLkBYx7AmBcw5gOM+QFjAcBYEDAWAoyFAWMRwFgUMBYDjMcAxuKA8VjAeBxgLAEYjweMJwDGkoCxFGA8ETCWBoxlAGNZwFgOMJ4EGMsDxgqAsSJgjAHGSoCxMmA8GTCeAhirAMaqgLEaYKwOGE8FjDUA42mAsSZgrAUYTweMtQFjOmCMA8Y6gDEDMNYFjPUAY33A2AAwZgLGLMB4BmBsCBgbAcYzAWNjwNgEMDYFjM0AY3PA2AIwngUYWwLGswHjOYCxFWA8FzCeBxhbA8bzAeMFgLENYLwQMLYFjO0A40WAsT1g7AAYLwaMlwDGjoDxUsB4GWDsBBgvB4ydAWMXwHgFYOwKGLsBxu6AsQdg7AkYewHG3oCxD2C8EjBeBRivBozXAMZrAeN1gPF6wHgDYLwRMN4EGG8GjLcAxlsB422A8XbAeAdgvBMw3gUY7waM9wDGewHjfYDxfsD4AGB8EDA+BBgfBoyPAMZHAeNjgPFxwPgEYHwSMD4FGJ8GjM8AxmcB43OA8XnA+AJgfBEw9gWMLwHGlwHjK4DxVcD4GmB8HTC+ARjfBIxvAca3AeM7gPFdwPgeYHwfMH4AGPsBxv6A8UPAOAAwDgSMgwDjYMA4BDAOBYzDAONwwDgCMI4EjKMA42jAOAYwjgWM4wDjeMA4ATBOBIyTAONkwDgFME4FjNMA43TAOAMwzgSMswDjbMA4BzDOBYzzAON8wLgAMC4EjIsA42LAuAQwLgWMywDjcsC4AjCuBIyrAONqwLgGMK4FjOsA43rAuAEwfgQYNwLGTYDxY8C4GTBuAYyfAMZPAeNWwPgZYNwGGLcDxs8B4xeAcQdg/BIwfgUYdwLGrwHjN4BxF2D8FjB+Bxh3A8bvAeMPgHEPYPwRMP4EGPcCxp8B4y+AcR9g/BUw/gYY90dozJXNGDvy92kV0tKmJ2pGomYmalaiZidqTqLmJmpeouYnakGiFiZqUaIWJ2pJopYmalmilidqRaJWJmpVolYnak2i1iZqXaLWJ2pDoj5K1MZEbUrUx4naXOGfeUX/f9xaIdrB5TliTA6s4JG//92bnqI3I0VvZorerBS92Sl6c1L05qbozUvRm5+ityBFb2GK3qIUvcUpektS9Jam6C1L0VueorciRW9lit6qFL3VKXprUvTWpuitS9Fbn6K3IUXvoxS9jSl6m1L0Pk7R23ykl/2T58ifTY/8mf7vPvF+2c7KSK9ft27vBnV6xzPi3dPrZPXIrJdet16P+pnxzHi9zHq96mRmZPTOrJvZIKtHVoP0rHjdjN7xPvWyMvocOWxahejO2hLh/uZLnFE0LVvYZPtE/h90VIg+sJOfTyoEBH9SIcB/UhHhYwh1708r/DPgiM5NT8v2iXpZ+6dFN9PpEX4/W9Fl3RpoWT+rEBD8WYBl3ZbDlzV5723Ysn6YFt1MZ0T4/WxHl3V7oGX9vEJA8OcBlvWLHL6syXt/EWhZQ/yWsi3Fd/Rv57qjghFSAyK888wI3+WXaEh9GSikvqoQEPxVgJDamcNDKnnvnUhIJcN0R4CQ+hoJqYER3nlWhO/yGzSkvgkUUrsqBATvChBS3+bwkEre+1skpJJh+nWAkPoOCalBEd55doTvcjcaUrsDhdT3FQKCvw8QUj/k8JBK3vsHJKSSYfpdgJDag4TU4AjvPCfCd/kjGlI/BgqpnyoEBP8UIKT25vCQSt57LxJSyTDdEyCkfkZCakiEd54b4bv8BQ2pXwKF1L4KAcH7AoTUrzk8pJL3/hUJqWSY/hwgpH5DQmpohHeeF+G73I+G1P5AIfV7hYDg3wOE1IEcHlLJex9AQioZpr8FCKmDSEgNi/DO8yN8l3+gIfVHoJD6s0JA8J8BQupQDg+p5L0PISGVDNODAULqLySkhkd45wURvsvDaEgdDhRSaRUDgpOHR31uroo5O6SS985V8Z/5RnRuEGsyTP8KEFK5KxohNSLCOy+MMKTyVDRDKkp3dm/eigHBeQOEVL4cHlLJe+dDQioZprkrRh9S+ZGQGhnhnRdFGFIF0JAqECikClYMCC4YIKQK5fCQSt67EBJSyTDNHyCkCiMhNSrCOy+OMKSKoCFVJFBIFa0YEFw0QEgVy+Ehlbx3MSSkkmFaOEBIHYOE1OgI77wkwpAqjoZU8UAhdWzFgOBjA4TUcTk8pJL3Pg4JqWSYHhMgpEogITUmwjsvjTCkjkdD6vhAIXVCxYDgEwKEVMkcHlLJe5dEQioZpiUChFQpJKTGRnjnZRGG1IloSJ0YKKRKVwwILh0gpMrk8JBK3rsMElLJMC0VIKTKIiE1LsI7L48wpMqhIVUuUEidVDEg+KQAIVU+h4dU8t7lkZBKhmnZACFVAQmp8RHeeUWEIVURDamKgUIqVjEgOBYgpCrl8JBK3rsSElLJMK0QIKQqIyE1IcI7r4wwpE5GQ+rkQCF1SsWA4FMChFSVHB5SyXtXQUIqGaaVA4RUVSSkJkZ451URhlQ1NKSqBQqp6hUDgqsHCKlTc3hIJe99KhJSyTCtGiCkaiAhNSnCO6+OMKROQ0PqtEAhVbNiQHDNACFVK4eHVPLetZCQSoZpjQAhdToSUpMjvPOaCEOqNhpStQOFVHrFgOD0ACEVz+Ehlbx3HAmpZJieHiCk6iAhNSXCO6+NMKQy0JDKCBRSdSsGBNcNEFL1cnhIJe9dDwmpZJjWCRBS9ZGQmhrhnddFGFIN0JBqECikMisGBGcGCKmsHB5SyXtnISGVDNP6AULqDCSkpkV45/URhlRDNKQaBgqpRhUDghsFCKkzc3hIJe99JhJSyTA9I0BINUZCanqEd94QYUg1QUOqSaCQaloxJDhASDXL4SGVvHczJKSSYdo4QEg1R0JqRoR3/ijCkGqBhlSLQCF1VsWA4LMChFTLHB5SyXu3REIqGabNA4TU2UhIzYzwzhsjDKlz0JA6J1BItaoYENwqQEidm8NDKnnvc5GQSobp2QFC6jwkpGZFeOdNEYZUazSkWgcKqfMrBgSfHyCkLsjhIZW89wVISCXD9LwAIdUGCanZEd754whD6kI0pC4MFFJtKwYEtw0QUu1yeEgl790OCalkmLYJEFIXISE1J8I7b44wpNqjIdU+UEh1qBgQ3CFASF2cw0Mqee+LkZBKhulFAULqkoo5+97J7+eSAPfumMPvPTkRpB0D3HtyxP/tNskfRnnT/ucn6nlMCPTfahS1cyLinBTxf1tQZt6w3//ctOjnGrVxHmCcDxgXAMaFgHERYFwMGJcAxqWAcRlgXA4YVwDGlYBxFWBcDRjXAMa1gHEdYFwPGDcAxo8A40bAuAkwfgwYNwPGLYDxE8D4KWDcChg/A4zbAON2wPg5YPwCMO4AjF8Cxq8A407A+DVg/AYw7gKM3wLG7wDjbsD4PWD8ATDuAYw/AsafAONewPgzYPwFMO4DjL8Cxt8A437A+DtgPAAYDwLGPwDjn4DxEGD8CzAeBozJA3O6MRdgzA0Y8wDGvIAxH2DMDxgLAMaCgLEQYCwMGIsAxqKAsRhgPAYwFgeMxwLG4wBjCcB4PGA8ATCWBIylAOOJgLE0YCwDGMsCxnKA8STAWB4wVgCMFQFjDDBWAoyVAePJgPEUwFgFMFYFjNUAY3XAeCpgrAEYTwOMNQFjLcB4OmCsDRjTAWMcMNYBjBmAsS5grAcY6wPGBoAxEzBmAcYzAGNDwNgIMJ4JGBsDxiaAsSlgbAYYmwPGFoDxLMDYEjCeDRjPAYytAOO5gPE8wNgaMJ4PGC8AjG0A44WAsS1gbAcYLwKM7QFjB8B4MWC8BDB2BIyXAsbLAGMnwHg5YOwMGLsAxisAY1fA2A0wdgeMPQBjT8DYCzD2Box9AOOVgPEqwHg1YLwGMF4LGK8DjNcDxhsA442A8SbAeDNgvAUw3goYbwOMtwPGOwDjnYDxLsB4N2C8BzDeCxjvA4z3A8YHAOODgPEhwPgwYHwEMD4KGB8DjI8DxicA45OA8SnA+DRgfAYwPgsYnwOMzwPGFwDji4CxL2B8CTC+DBhfAYyvAsbXAOPrgPENwPgmYHwLML4NGN8BjO8CxvcA4/uA8QPA2A8w9geMHwLGAYBxIGAcBBgHA8YhgHEoYBwGGIcDxhGAcSRgHAUYRwPGMYBxLGAcBxjHA8YJgHEiYJwEGCcDximAcSpgnAYYpwPGGYBxJmCcBRhnA8Y5gHEuYJwHGOcDxgWAcSFgXAQYFwPGJYBxKWBcBhiXA8YVgHElYFwFGFcDxjWAcS1gXAcY1wPGDYDxI8C4ETBuAowfA8bNgHELYPwEMH4KGLcCxs8A4zbAuB0wfg4YvwCMOwDjl4DxK8C4EzB+DRi/AYy7AOO3gPE7wLgbMH4PGH8AjHsA44+A8SfAuBcw/gwYfwGM+wDjr4DxN8C4HzD+DhgPAMaDgPEPwPgnYDwEGP8CjIcBY1runG/MBRhzA8Y8gDEvYMwHGPMDxgKAsSBgLAQYCwPGIoCxKGAsBhiPAYzFAeOxgPE4wFgCMB4PGE8AjCUBYynAeCJgLA0YywDGsoCxHGA8CTCWB4wVAGNFwBgDjJUAY2XAeDJgPAUwVgGMVQFjNcBYHTCeChhrAMbTAGNNwFgLMJ4OGGsDxnTAGAeMdQBjBmCsCxjrAcb6gLEBYMwEjFmA8QzA2BAwNgKMZwLGxoCxCWBsChibAcbmgLEFYDwLMLYEjGcDxnMAYyvAeC5gPA8wtgaM5wPGCwBjG8B4IWBsCxjbAcaLAGN7wNgBMF4MGC8BjB0B46WA8TLA2AkwXg4YOwPGLoDxCsDYFTB2A4zdAWMPwNgTMPYCjL0BYx/AeCVgvAowXg0YrwGM1wLG6wDj9YDxBsB4I2C8CTDeDBhvAYy3AsbbAOPtgPEOwHgnYLwLMN4NGO8BjPcCxvsA4/2A8QHA+CBgfAgwPgwYHwGMjwLGxwDj44DxCcD4JGB8CjA+DRifAYzPAsbnAOPzgPEFwPgiYOwLGF8CjC8DxlcA46uA8TXA+DpgfAMwvgkY3wKMbwPGdwDju4DxPcD4PmD8ADD2A4z9AeOHgHEAYBwIGAcBxsGAcQhgHAoYhwHG4YBxBGAcCRhHAcbRgHEMYBwLGMcBxvGAcQJgnAgYJwHGyYBxCmCcChinAcbpgHEGYJwJGGcBxtmAcQ5gnAsY5wHG+YBxAWBcCBgXAcbFgHEJYFwKGJcBxuWAcQVgXAkYVwHG1YBxDWBcCxjXAcb1gHEDYPwIMG4EjJsA48eAcTNg3AIYPwGMnwLGrYDxM8C4DTBuB4yfA8YvAOMOwPglYPwKMO4EjF8Dxm8A4y7A+C1g/A4w7gaM3wPGHwDjHsD4I2D8CTDuBYw/A8ZfAOM+wPgrYPwNMO4HjL8DxgOA8SBg/AMw/gkYDwHGvwDjYcCYlifnG3MBxtyAMQ9gzAsY8wHG/ICxAGAsCBgLAcbCgLEIYCwKGIsBxmMAY3HAeCxgPA4wlgCMxwPGEwBjScBYCjCeCBhLA8YygLEsYCwHGE8CjOUBYwXAWBEwxgBjJcBYGTCeDBhPAYxVAGNVwFgNMFYHjKcCxhqA8TTAWBMw1gKMpwPG2oAxHTDGAWMdwJgBGOsCxnqAsT5gbAAYMwFjFmA8AzA2BIyNAOOZgLExYGwCGJsCxmaAsTlgbAEYzwKMLQHj2YDxHMDYCjCeCxjPA4ytAeP5gPECwNgGMF4IGNsCxnaA8SLA2B4wdgCMFwPGSwBjR8B4KWC8DDB2AoyXA8bOgLELYLwCMHYFjN0AY3fA2AMw9gSMvQBjb8DYBzBeCRivAoxXA8ZrAOO1gPE6wHg9YLwBMN4IGG8CjDcDxlsA462A8TbAeDtgvAMw3gkY7wKMdwPGewDjvYDxPsB4P2B8ADA+CBgfAowPA8ZHAOOjgPExwPg4YHwCMD4JGJ8CjE8DxmcA47OA8TnA+DxgfAEwvggY+wLGlwDjy4DxFcD4KmB8DTC+DhjfAIxvAsa3AOPbgPEdwPguYHwPML4PGD8AjP0AY3/A+CFgHAAYBwLGQYBxMGAcAhiHAsZhgHE4YBwBGEcCxlGAcTRgHAMYxwLGcYBxPGCcABgnAsZJgHEyYJwCGKcCxmmAcTpgnAEYZwLGWYBxNmCcAxjnAsZ5gHE+YFwAGBcCxkWAcTFgXAIYlwLGZYBxOWBcARhXAsZVgHE1YFwDGNcCxnWAcT1g3AAYPwKMGwHjJsD4MWDcDBi3AMZPAOOngHErYPwMMG4DjNsB4+eA8QvAuAMwfgkYvwKMOwHj14DxG8C4CzB+Cxi/A4y7AeP3gPEHwLgHMP4IGH8CjHsB48+A8RfAuA8w/goYfwOM+wHj74DxAGA8CBj/AIx/AsZDgPEvwHgYMKblzfnGXIAxN2DMAxjzAsZ8gDE/YCwAGAsCxkKAsTBgLAIYiwLGYoDxGMBYHDAeCxiPA4wlAOPxgPEEwFgSMJYCjCcCxtKAsQxgLAsYywHGkwBjecBYATBWBIwxwFgJMFYGjCcDxlMAYxXAWBUwVgOM1QHjqYCxBmA8DTDWBIy1AOPpgLE2YEwHjHHAWAcwZgDGuoCxHmCsDxgbAMZMwJgFGM8AjA0BYyPAeCZgbAwYmwDGpoCxGWBsDhhbAMazAGNLwHg2YDwHMLYCjOcCxvMAY2vAeD5gvAAwtgGMFwLGtoCxHWC8CDC2B4wdAOPFgPESwNgRMF4KGC8DjJ0A4+WAsTNg7AIYrwCMXQFjN8DYHTD2AIw9AWMvwNgbMPYBjFcCxqsA49WA8RrAeC1gvA4wXg8YbwCMNwLGmwDjzYDxFsB4K2C8DTDeDhjvAIx3Asa7AOPdgPEewHgvYLwPMN4PGB8AjA8CxocA48OA8RHA+ChgfAwwPg4YnwCMTwLGpwDj04DxGcD4LGB8DjA+DxhfAIwvAsa+gPElwPgyYHwFML4KGF8DjK8DxjcA45uA8S3A+DZgfAcwvgsY3wOM7wPGDwBjP8DYHzB+CBgHAMaBgHEQYBwMGIcAxqGAcRhgHA4YRwDGkYBxFGAcDRjHAMaxgHEcYBwPGCcAxomAcRJgnAwYpwDGqYBxGmCcDhhnAMaZgHEWYJwNGOcAxrmAcR5gnA8YFwDGhYBxEWBcDBiXAMalgHEZYFwOGFcAxpWAcRVgXA0Y1wDGtYBxHWBcDxg3AMaPAONGwLgJMH4MGDcDxi2A8RPA+Clg3AoYPwOM2wDjdsD4OWD8AjDuAIxfAsavAONOwPg1YPwGMO4CjN8Cxu8A427A+D1g/AEw7gGMPwLGnwDjXsD4M2D8BTDuA4y/AsbfAOP+CI25sxkzjvz90oppaZclqlOiLk9U50R1SdQVieqaqG6J6p6oHonqmaheieqdqD6JujJRVyXq6kRdk6hrE3Vdoq5P1A2JujFRNyXq5kTdkqhbE3Vbom5P1B2JujNRdyXq7kTdk6h7E3Vfou5P1AOJejBRDyXq4UQ9kqhHE/VYoh5P1BOJejJRTyXq6UQ9U/E/7/NsxX++g+j/D2YrRPdlJG15jhiTX0LsyN//7l2WotcpRe/yFL3OKXpdUvSuSNHrmqLXLUWve4pejxS9nil6vVL0eqfo9UnRuzJF76oUvatT9K5J0bs2Re+6FL3rU/RuSNG7MUXvphS9m1P0bknRuzVF77YUvdtT9O5I0bszRe+uFL27U/TuSdG7N0XvvhS9+1P0HkjRezBF76EUvYdT9B5J0Xs0Re+xFL3HU/SeSNF7MkXvqRS9p1P0nknRe/ZIL5HzaaXS/u8N5uyfv38QNT3yZ0Z6/bp1ezeo0zueEe+eXierR2a99Lr1etTPjGfG62XW61UnMyOjd2bdzAZZPbIapGfF62b0jvepl5XR50iWJmcY1VnPVYwq4+PxfIkziqZl+4GU7ZPrv80g/d994tG5//Nn09+f5ysGBD9fMfpzX4jwMYS69wvZliKic4NYk7/wvJDiO/q3c32xYrT3zh3xvdMT934xwnf09xyjdmb/hfTfGvtWzPlvsW+At/hSxTC/1L905Ad78odAsWxvNPsn5A/C9H/3iUfwHuJ//yXF1SM7O/tcXz6Sq69UTPuvv2W9fOThZO+9cuQLyv7Ji3wh/4euOkdc8ZcjDLdXIn4oUS94MjheNn7gZoQKuVcDhdyr2XZImcVrEc4iOYdSaf/zE9X5aWFmG3+tYs43vh61MdQDzcm/1b0RaPHfOAqLn5Pn+ub/C5H4m0CIvJXDQ+Q/HuVbAX7KvQ38c+7tAPd+J1DgvZPiXwtR/fOtd5/kp3eU//lSPMrvP/lP2LzZ7pucR2be/zqLqN/H3LScHy7zAON8wLgAMC4EjIsA42LAuAQwLgWMywDjcsC4AjCuBIyrAONqwLgGMK4FjOsA43rAuAEwfgQYNwLGTYDxY8C4GTBuAYyfAMZPAeNWwPgZYNwGGLcDxs8B4xeAcQdg/BIwfgUYdwLGrwHjN4BxF2D8FjB+Bxh3A8bvAeMPgHEPYPwRMP4EGPcCxp8B4y+AcR9g/BUw/gYY9wPG3wHjAcB4EDD+ARj/BIyHAONfgPEwYEwemNONuQBjbsCYBzDmBYz5AGN+wFgAMBYEjIUAY2HAWAQwFgWMxQDjMYCxOGA8FjAeBxhLAMbjAeMJgLEkYCwFGE8EjKUBYxnAWBYwlgOMJwHG8oCxAmCsCBhjgLESYKwMGE8GjKcAxiqAsSpgrAYYqwPGUwFjDcB4GmCsCRhrAcbTAWNtwJgOGOOAsQ5gzACMdQFjPcBYHzA2AIyZgDELMJ4BGBsCxkaA8UzA2BgwNgGMTQFjM8DYHDC2AIxnAcaWgPFswHgOYGwFGM8FjOcBxtaA8XzAeAFgbAMYLwSMbQFjO8B4EWBsDxg7AMaLAeMlgLEjYLwUMF4GGDsBxssBY2fA2AUwXgEYuwLGboCxO2DsARh7AsZegLE3YOwDGK8EjFcBxqsB4zWA8VrAeB1gvB4w3gAYbwSMNwHGmwHjLYDxVsB4G2C8HTDeARjvBIx3Aca7AeM9gPFewHgfYLwfMD4AGB8EjA8BxocB4yOA8VHA+BhgfBwwPgEYnwSMTwHGpwHjM4DxWcD4HGB8HjC+ABhfBIx9AeNLgPFlwPgKYHwVML4GGF8HjG8AxjcB41uA8W3A+A5gfBcwvgcY3weMHwDGfoCxP2D8EDAOAIwDAeMgwDgYMA4BjEMB4zDAOBwwjgCMIwHjKMA4GjCOAYxjAeM4wDgeME4AjBMB4yTAOBkwTgGMUwHjNMA4HTDOAIwzAeMswDgbMM4BjHMB4zzAOB8wLgCMCwHjIsC4GDAuAYxLAeMywLgcMK4AjCsB4yrAuBowrgGMawHjOsC4HjBuAIwfAcaNgHETYPwYMG4GjFsA4yeA8VPAuBUwfgYYtwHG7YDxc8D4BWDcARi/BIxfAcadgPFrwPgNYNwFGL8FjN8Bxt2A8XvA+ANg3AMYfwSMPwHGvYDxZ8D4C2DcBxh/BYy/Acb9gPF3wHgAMB4EjH8Axj8B4yHA+BdgPAwY03LnfGMuwJgbMOYBjHkBYz7AmB8wFgCMBQFjIcBYGDAWAYxFAWMxwHgMYCwOGI8FjMcBxhKA8XjAeAJgLAkYSwHGEwFjacBYBjCWBYzlAONJgLE8YKwAGCsCxhhgrAQYKwPGkwHjKYCxCmCsChirAcbqgPFUwFgDMJ4GGGsCxlqA8XTAWBswpgPGOGCsAxgzAGNdwFgPMNYHjA0AYyZgzAKMZwDGhoCxEWA8EzA2BoxNAGNTwNgMMDYHjC0A41mAsSVgPBswngMYWwHGcwHjeYCxNWA8HzBeABjbAMYLAWNbwNgOMF4EGNsDxg6A8WLAeAlg7AgYLwWMlwHGToDxcsDYGTB2AYxXAMaugLEbYOwOGHsAxp6AsRdg7A0Y+wDGKwHjVYDxasB4DWC8FjBeBxivB4w3AMYbAeNNgPFmwHgLYLwVMN4GGG8HjHcAxjsB412A8W7AeA9gvBcw3gcY7weMDwDGBwHjQ4DxYcD4CGB8FDA+BhgfB4xPAMYnAeNTgPFpwPgMYHwWMD4HGJ8HjC8AxhcBY1/A+BJgfBkwvgIYXwWMrwHG1wHjG4DxTcD4FmB8GzC+AxjfBYzvAcb3AeMHgLEfYOwPGD8EjAMA40DAOAgwDgaMQwDjUMA4DDAOB4wjAONIwDgKMI4GjGMA41jAOA4wjgeMEwDjRMA4CTBOBoxTAONUwDgNME4HjDMA40zAOAswzgaMcwDjXMA4DzDOB4wLAONCwLgIMC4GjEsA41LAuAwwLgeMKwDjSsC4CjCuBoxrAONawLgOMK4HjBsA40eAcSNg3AQYPwaMmwHjFsD4CWD8FDBuBYyfAcZtgHE7YPwcMH4BGHcAxi8B41eAcSdg/BowfgMYdwHGbwHjd4BxN2D8HjD+ABj3AMYfAeNPgHEvYPwZMP4CGPcBxl8B42+AcT9g/B0wHgCMBwHjH4DxT8B4CDD+BRgPA8a0PDnfmAsw5gaMeQBjXsCYDzDmB4wFAGNBwFgIMBYGjEUAY1HAWAwwHgMYiwPGYwHjcYCxBGA8HjCeABhLAsZSgPFEwFgaMJYBjGUBYznAeBJgLA8YKwDGioAxBhgrAcbKgPFkwHgKYKwCGKsCxmqAsTpgPBUw1gCMpwHGmoCxFmA8HTDWBozpgDEOGOsAxgzAWBcw1gOM9QFjA8CYCRizAOMZgLEhYGwEGM8EjI0BYxPA2BQwNgOMzQFjC8B4FmBsCRjPBoznAMZWgPFcwHgeYGwNGM8HjBcAxjaA8ULA2BYwtgOMFwHG9oCxA2C8GDBeAhg7AsZLAeNlgLETYLwcMHYGjF0A4xWAsStg7AYYuwPGHoCxJ2DsBRh7A8Y+gPFKwHgVYLwaMF4DGK8FjNcBxusB4w2A8UbAeBNgvBkw3gIYbwWMtwHG2wHjHYDxTsB4F2C8GzDeAxjvBYz3Acb7AeMDgPFBwPgQYHwYMD4CGB8FjI8BxscB4xOA8UnA+BRgfBowPgMYnwWMzwHG5wHjC4DxRcDYFzC+BBhfBoyvAMZXAeNrgPF1wPgGYHwTML4FGN8GjO8AxncB43uA8X3A+AFg7AcY+wPGDwHjAMA4EDAOAoyDAeMQwDgUMA4DjMMB4wjAOBIwjgKMowHjGMA4FjCOA4zjAeMEwDgRME4CjJMB4xTAOBUwTgOM0wHjDMA4EzDOAoyzAeMcwDgXMM4DjPMB4wLAuBAwLgKMiwHjEsC4FDAuA4zLAeMKwLgSMK4CjKsB4xrAuBYwrgOM6wHjBsD4EWDcCBg3AcaPAeNmwLgFMH4CGD8FjFsB42eAcRtg3A4YPweMXwDGHYDxS8D4FWDcCRi/BozfAMZdgPFbwPgdYNwNGL8HjD8Axj2A8UfA+BNg3AsYfwaMvwDGfYDxV8D4G2DcDxh/B4wHAONBwPgHYPwTMB4CjH8BxsOAMS1vzjfmAoy5AWMewJgXMOYDjPkBYwHAWBAwFgKMhQFjEcBYFDAWA4zHAMbigPFYwHgcYCwBGI8HjCcAxpKAsRRgPBEwlgaMZQBjWcBYDjCeBBjLA8YKgLEiYIwBxkqAsTJgPBkwngIYqwDGqoCxGmCsDhhPBYw1AONpgLEmYKwFGE8HjLUBYzpgjAPGOoAxAzDWBYz1AGN9wNgAMGYCxizAeAZgbAgYGwHGMwFjY8DYBDA2BYzNAGNzwNgCMJ4FGFsCxrMB4zmAsRVgPBcwngcYWwPG8wHjBYCxDWC8EDC2BYztAONFgLE9YOwAGC8GjJcAxo6A8VLAeBlg7AQYLweMnQFjF8B4BWDsChi7AcbugLEHYOwJGHsBxt6AsQ9gvBIwXgUYrwaM1wDGawHjdYDxesB4A2C8ETDeBBhvBoy3AMZbAeNtgPF2wHgHYLwTMN4FGO8GjPcAxnsB432A8X7A+ABgfBAwPgQYHwaMjwDGRwHjY4DxccD4BGB8EjA+BRifBozPAMZnAeNzgPF5wPgCYHwRMPYFjC8BxpcB4yuA8VXA+BpgfB0wvgEY3wSMbwHGtwHjO4DxXcD4HmB8HzB+ABj7Acb+gPFDwDgAMA4EjIMA42DAOAQwDgWMwwDjcMA4AjCOBIyjAONowDgGMI4FjOMA43jAOAEwTgSMkwDjZMA4BTBOBYzTAON0wDgDMM4EjLMA42zAOAcwzgWM8wDjfMC4ADAuBIyLAONiwLgEMC4FjMsA43LAuAIwrgSMqwDjasC4BjCuBYzrAON6wLgBMH4EGDcCxk2A8WPAuBkwbgGMnwDGTwHjVsD4GWDcBhi3A8bPAeMXgHEHYPwSMH4FGHcCxq8B4zeAcRdg/BYwfgcYdwPG7wHjD4BxD2D8ETD+BBj3AsafAeMvgHEfYPwVMP4GGPcHMIZwvl4xOmeubMbYkb+/mzj/vUS9n6gPEtUvUf0T9WGiBiRqYKIGJWpwooYkamiihiVqeKJGJGpkokYlanSixiRqbKLGJWp8oiYkamKiJiVqcqKmJGpqoqYlanqiZlT8Z17R/x/hVoh2cHmOGJMDK3jk73/33kvRez9F74MUvX4pev1T9D5M0RuQojcwRW9Qit7gFL0hKXpDU/SGpegNT9EbkaI3MkVvVIre6BS9MSl6Y1P0xqXojU/Rm5CiNzFFb1KK3uQUvSkpelNT9Kal6E1P0ZtxpJeWFmY/3q34P8/NSK9ft27vBnV6xzPi3dPrZPXIrJdet16P+pnxzHi9zHq96mRmZPTOrJvZIKtHVoP0rHjdjN7xPvWyMvocOXhmxTB7N/N/mcW/NfdLfp+JeeSOeMb9IjTOCjTXWdnm+vcnT8RziPBNxLPP4d/OdHagmc4OvLfvBdjbOYFmMSfg3vYPtLf9IzTODTTXuUdhbyN8E/G5Ee7tvEAznRd4b98PsLfzA81ifsC9/TDQ3n4YoXFBoLkuOAp7G+GbiC+IcG8XBprpwsB7+0GAvV0UaBaLAu7tgEB7OyBC4+JAc118FPY2wjcRXxzh3i4JNNMlgfe2X4C9XRpoFksD7u3AQHs7MELjskBzXXYU9jbCNxFfFuHeLg800+WB97Z/gL1dEWgWKwLu7aBAezsoQuPKQHNdeRT2NsI3EV8Z4d6uCjTTVYH39sMAe7s60CxWB9zbwYH2dnCExjWB5rrmKOxthG8ivibCvV0baKZrA+/tgAB7uy7QLNYF3NshgfZ2SITG9YHmuv4o7G2EbyK+PsK93RBophsC7+3AAHv7UaBZfBRwb4cG2tuhERo3BprrxqOwtxG+ifjGCPd2U6CZbgq8t4MC7O3HgWbxccC9HRZob4dFaNwcaK6bj8LeRvgm4psj3NstgWa6JfDeDg6wt58EmsUnAfd2eKC9HR6h8dNAc/30KOxthG8i/mmEe7s10Ey3Bt7bIQH29rNAs/gs4N6OCLS3IyI0bgs0121HYW8jfBPxbRHu7fZAM90eeG+HBtjbzwPN4vOAezsy0N6OjND4RaC5fnEU9jbCNxH/IsK93RFopjsC7+2wAHv7ZaBZfBlwb0cF2ttRERq/CjTXr47C3kb4JuJfRbi3OwPNdGfgvR0eYG+/DjSLrwPu7ehAezs6QuM3geb6zVHY2wjfRPybCPd2V6CZ7gq8tyMC7O23gWbxbcC9HRNob8dEaPwu0Fy/Owp7G+GbiH8X4d7uDjTT3YH3dmSAvf0+0Cy+D7i3YwPt7dgIjT8EmusPR2FvI3wT8R8i3Ns9gWa6J/Dejgqwtz8GmsWPAfd2XKC9HReh8adAc/3pKOxthG8i/lOEe7s30Ez3Bt7b0QH29udAs/g54N6OD7S34yM0/hJorr8chb2N8E3Ef4lwb/cFmum+wHs7JsDe/hpoFr8G3NsJgfZ2QoTG3wLN9bejsLcRvon4bxHu7f5AM90feG/HBtjb3wPN4veAezsx0N5OjNB4INBcDxyFvY3wTcQPRLi3BwPN9GDgvR0XYG//CDSLPwLu7aRAezspQuOfgeb651HY2wjfRPzPCPf2UKCZHgq8t+MD7O1fgWbxV8C9nRxobydHaDwcaK6Hj8LeRvgm4ocj3Nu0WJiZJs8NubcTAuxtrkCzyBULt7dT0sLs7ZQIjbkDzTV3LPzeRvgm4tnn8G9nmifQTPPEwu7txAB7mzfQLPLGwu3t1LQwezs1QmO+QHPNFwu/txG+iXj2OfzbmeYPNNP8sbB7OynA3hYINIsCsXB7Oy0tzN5Oi9BYMNBcC8bC722EbyKefQ7/dqaFAs20UCzs3k4OsLeFA82icCzc3k5PC7O30yM0Fgk01yKx8Hsb4ZuIZ5/Dv51p0UAzLRoLu7dTAuxtsUCzKBYLt7cz0sLs7YwIjccEmusxsfB7G+GbiGefw7+dafFAMy0eC7u3UwPs7bGBZnFsLNzezkwLs7czIzQeF2iux8XC722EbyKefQ7/dqYlAs20RCzs3k4LsLfHB5rF8bFwezsrLczezorQeEKguZ4QC7+3Eb6JePY5/NuZlgw005KxsHs7PcDelgo0i1KxcHs7Oy3M3s6O0HhioLmeGAu/txG+iXj2OfzbmZYONNPSsbB7OyPA3pYJNIsysXB7OyctzN7OidBYNtBcy8bC722EbyKefQ7/dqblAs203JGZ5ktUsbR/3lX2T9RveOy//++Njv/9ZwpuVGenZ5/FSbH//LN87MhA/h5g8v9Hrv/WS/4Pxf4bKk/AIf4fnlXnyFnx5B2icpWPRffl5kv7Z7Z/P8TMvP91rlH/sPk9wH9rfdTGA4DxIGD8AzD+CRgPAca/AONhwJj8TSGnG3MBxtyAMQ9gzAsY8wHG/ICxAGAsCBgLAcbCgLEIYCwKGIsBxmMAY3HAeCxgPA4wlgCMxwPGEwBjScBYCjCeCBhLA8YygLEsYCwHGE8CjOUBYwXAWBEwxgBjJcBYGTCeDBhPAYxVAGNVwFgNMFYHjKcCxhqA8TTAWBMw1gKMpwPG2oAxHTDGAWMdwJgBGOsCxnqAsT5gbAAYMwFjFmA8AzA2BIyNAOOZgLExYGwCGJsCxmaAsTlgbAEYzwKMLQHj2YDxHMDYCjCeCxjPA4ytAeP5gPECwNgGMF4IGNsCxnaA8SLA2B4wdgCMFwPGSwBjR8B4KWC8DDB2AoyXA8bOgLELYLwCMHYFjN0AY3fA2AMw9gSMvQBjb8DYBzBeCRivAoxXA8ZrAOO1gPE6wHg9YLwBMN4IGG8CjDcDxlsA462A8TbAeDtgvAMw3gkY7wKMdwPGewDjvYDxPsB4P2B8ADA+CBgfAowPA8ZHAOOjgPExwPg4YHwCMD4JGJ8CjE8DxmcA47OA8TnA+DxgfAEwvggY+wLGlwDjy4DxFcD4KmB8DTC+DhjfAIxvAsa3AOPbgPEdwPguYHwPML4PGD8AjP0AY3/A+CFgHAAYBwLGQYBxMGAcAhiHAsZhgHE4YBwBGEcCxlGAcTRgHAMYxwLGcYBxPGCcABgnAsZJgHEyYJwCGKcCxmmAcTpgnAEYZwLGWYBxNmCcAxjnAsZ5gHE+YFwAGBcCxkWAcTFgXAIYlwLGZYBxOWBcARhXAsZVgHE1YFwDGNcCxnWAcT1g3AAYPwKMGwHjJsD4MWDcDBi3AMZPAOOngHErYPwMMG4DjNsB4+eA8QvAuAMwfgkYvwKMOwHj14DxG8C4CzB+Cxi/A4y7AeP3gPEHwLgHMP4IGH8CjHsB48+A8RfAuA8w/goYfwOM+wHj74DxAGA8CBj/AIx/AsZDgPEvwHgYMKblz/nGXIAxN2DMAxjzAsZ8gDE/YCwAGAsCxkKAsTBgLAIYiwLGYoDxGMBYHDAeCxiPA4wlAOPxgPEEwFgSMJYCjCcCxtKAsQxgLAsYywHGkwBjecBYATBWBIwxwFgJMFYGjCcDxlMAYxXAWBUwVgOM1QHjqYCxBmA8DTDWBIy1AOPpgLE2YEwHjHHAWAcwZgDGuoCxHmCsDxgbAMZMwJgFGM8AjA0BYyPAeCZgbAwYmwDGpoCxGWBsDhhbAMazAGNLwHg2YDwHMLYCjOcCxvMAY2vAeD5gvAAwtgGMFwLGtoCxHWC8CDC2B4wdAOPFgPESwNgRMF4KGC8DjJ0A4+WAsTNg7AIYrwCMXQFjN8DYHTD2AIw9AWMvwNgbMPYBjFcCxqsA49WA8RrAeC1gvA4wXg8YbwCMNwLGmwDjzYDxFsB4K2C8DTDeDhjvAIx3Asa7AOPdgPEewHgvYLwPMN4PGB8AjA8CxocA48OA8RHA+ChgfAwwPg4YnwCMTwLGpwDj04DxGcD4LGB8DjA+DxhfAIwvAsa+gPElwPgyYHwFML4KGF8DjK8DxjcA45uA8S3A+DZgfAcwvgsY3wOM7wPGDwBjP8DYHzB+CBgHAMaBgHEQYBwMGIcAxqGAcRhgHA4YRwDGkYBxFGAcDRjHAMaxgHEcYBwPGCcAxomAcRJgnAwYpwDGqYBxGmCcDhhnAMaZgHEWYJwNGOcAxrmAcR5gnA8YFwDGhYBxEWBcDBiXAMalgHEZYFwOGFcAxpWAcRVgXA0Y1wDGtYBxHWBcDxg3AMaPAONGwLgJMH4MGDcDxi2A8RPA+Clg3AoYPwOM2wDjdsD4OWD8AjDuAIxfAsavAONOwPg1YPwGMO4CjN8Cxu8A427A+D1g/AEw7gGMPwLGnwDjXsD4M2D8BTDuA4y/AsbfAON+wPg7YDwAGA8Cxj8A45+A8RBg/AswHgaMaQVyvjEXYMwNGPMAxryAMR9gzA8YCwDGgoCxEGAsDBiLAMaigLEYYDwGMBYHjMcCxuMAYwnAeDxgPAEwlgSMpQDjiYCxNGAsAxjLAsZygPEkwFgeMFYAjBUBYwwwVgKMlQHjyYDxFMBYBTBWBYzVAGN1wHgqYKwBGE8DjDUBYy3AeDpgrA0Y0wFjHDDWAYwZgLEuYKwHGOsDxgaAMRMwZgHGMwBjQ8DYCDCeCRgbA8YmgLEpYGwGGJsDxhaA8SzA2BIwng0YzwGMrQDjuYDxPMDYGjCeDxgvAIxtAOOFgLEtYGwHGC8CjO0BYwfAeDFgvAQwdgSMlwLGywBjJ8B4OWDsDBi7AMYrAGNXwNgNMHYHjD0AY0/A2Asw9gaMfQDjlYDxKsB4NWC8BjBeCxivA4zXA8YbAOONgPEmwHgzYLwFMN4KGG8DjLcDxjsA452A8S7AeDdgvAcw3gsY7wOM9wPGBwDjg4DxIcD4MGB8BDA+ChgfA4yPA8YnAOOTgPEpwPg0YHwGMD4LGJ8DjM8DxhcA44uAsS9gfAkwvgwYXwGMrwLG1wDj64DxDcD4JmB8CzC+DRjfAYzvAsb3AOP7gPEDwNgPMPYHjB8CxgGAcSBgHAQYBwPGIYBxKGAcBhiHA8YRgHEkYBwFGEcDxjGAcSxgHAcYxwPGCYBxImCcBBgnA8YpgHEqYJwGGKcDxhmAcSZgnAUYZwPGOYBxLmCcBxjnA8YFgHEhYFwEGBcDxiWAcSlgXAYYlwPGFYBxJWBcBRhXA8Y1gHEtYFwHGNcDxg2A8SPAuBEwbgKMHwPGzYBxC2D8BDB+Chi3AsbPAOM2wLgdMH4OGL8AjDsA45eA8SvAuBMwfg0YvwGMuwDjt4DxO8C4GzB+Dxh/AIx7AOOPgPEnwLgXMP4MGH8BjPsA46+A8TfAuB8w/g4YDwDGg4DxD8D4J2A8BBj/AoyHAWNawZxvzAUYcwPGPIAxL2DMBxjzA8YCgLEgYCwEGAsDxiKAsShgLAYYjwGMxQHjsYDxOMBYAjAeDxhPAIwlAWMpwHgiYCwNGMsAxrKAsRxgPAkwlgeMFQBjRcAYA4yVAGNlwHgyYDwFMFYBjFUBYzXAWB0wngoYawDG0wBjTcBYCzCeDhhrA8Z0wBgHjHUAYwZgrAsY6wHG+oCxAWDMBIxZgPEMwNgQMDYCjGcCxsaAsQlgbAoYmwHG5oCxBWA8CzC2BIxnA8ZzAGMrwHguYDwPMLYGjOcDxgsAYxvAeCFgbAsY2wHGiwBje8DYATBeDBgvAYwdAeOlgPEywNgJMF4OGDsDxi6A8QrA2BUwdgOM3QFjD8DYEzD2Aoy9AWMfwHglYLwKMF4NGK8BjNcCxusA4/WA8QbAeCNgvAkw3gwYbwGMtwLG2wDj7YDxDsB4J2C8CzDeDRjvAYz3Asb7AOP9gPEBwPggYHwIMD4MGB8BjI8CxscA4+OA8QnA+CRgfAowPg0YnwGMzwLG5wDj84DxBcD4ImDsCxhfAowvA8ZXAOOrgPE1wPg6YHwDML4JGN8CjG8DxncA47uA8T3A+D5g/AAw9gOM/QHjh4BxAGAcCBgHAcbBgHEIYBwKGIcBxuGAcQRgHAkYRwHG0YBxDGAcCxjHAcbxgHECYJwIGCcBxsmAcQpgnAoYpwHG6YBxBmCcCRhnAcbZgHEOYJwLGOcBxvmAcQFgXAgYFwHGxYBxCWBcChiXAcblgHEFYFwJGFcBxtWAcQ1gXAsY1wHG9YBxA2D8CDBuBIybAOPHgHEzYNwCGD8BjJ8Cxq2A8TPAuA0wbgeMnwPGLwDjDsD4JWD8CjDuBIxfA8ZvAOMuwPgtYPwOMO4GjN8Dxh8A4x7A+CNg/Akw7gWMPwPGXwDjPsD4K2D8DTDuB4y/A8YDgPEgYPwDMP4JGA8Bxr8A42HAmFYo5xtzAcbcgDEPYMwLGPMBxvyAsQBgLAgYCwHGwoCxCGAsChiLAcZjAGNxwHgsYDwOMJYAjMcDxhMAY0nAWAownggYSwPGMoCxLGAsBxhPAozlAWMFwFgRMMYAYyXAWBkwngwYTwGMVQBjVcBYDTBWB4ynAsYagPE0wFgTMNYCjKcDxtoRGvOk/fOpEPvPPyse+TMW+8f+Py6RkV6/bt3eDer0jmfEu6fXyeqRWS+9br0e9TPjmfF6mfV61cnMyOidWTezQVaPrAbpWfG6Gb3jfeplZfQ58v/wSbEI/4PoxBl5jhiTl4gd+fvfvYoperEjvVB3S56fO+IvPhaLzlgpFv1DT35yB3wn//asyhG+uVTvJv3ffeLJ7yRpjPo9nhzhd519h07OtkP/X99/+r/7xCvlzO8/Pd+Ru+ZN+5+fyP+XGrEwuxr5/2IDccZi0e5DZt6w3//veXP+LyUHAONBwPgHYPwTMB4CjH8BxsOAMS1fzjfmAoy5AWMewJgXMOYDjPkBYwHAWBAwFgKMhQFjEcBYFDAWA4zHAMbigPFYwHgcYCwBGI8HjCcAxpKAsRRgPBEwlgaMZQBjWcBYDjCeBBjLA8YKgLEiYIwBxkqAsTJgPBkwngIYqwDGqoCxGmCsDhhPBYw1AONpgLEmYKwFGE8HjLUBYzpgjAPGOoAxAzDWBYz1AGN9wNgAMGYCxizAeAZgbAgYGwHGMwFjY8DYBDA2BYzNAGNzwNgCMJ4FGFsCxrMB4zmAsRVgPBcwngcYWwPG8wHjBYCxDWC8EDC2BYztAONFgLE9YOwAGC8GjJcAxo6A8VLAeBlg7AQYLweMnQFjF8B4BWDsChi7AcbugLEHYOwJGHsBxt6AsQ9gvBIwXgUYrwaM1wDGawHjdYDxesB4A2C8ETDeBBhvBoy3AMZbAeNtgPF2wHgHYLwTMN4FGO8GjPcAxnsB432A8X7A+ABgfBAwPgQYHwaMjwDGRwHjY4DxccD4BGB8EjA+BRifBozPAMZnAeNzgPF5wPgCYHwRMPYFjC8BxpcB4yuA8VXA+BpgfB0wvgEY3wSMbwHGtwHjO4DxXcD4HmB8HzB+ABj7Acb+gPFDwDgAMA4EjIMA42DAOAQwDgWMwwDjcMA4AjCOBIyjAONowDgGMI4FjOMA43jAOAEwTgSMkwDjZMA4BTBOBYzTAON0wDgDMM4EjLMA42zAOAcwzgWM8wDjfMC4ADAuBIyLAONiwLgEMC4FjMsA43LAuAIwrgSMqwDjasC4BjCuBYzrAON6wLgBMH4EGDcCxk2A8WPAuBkwbgGMnwDGTwHjVsD4GWDcBhi3A8bPAeMXgHEHYPwSMH4FGHcCxq8B4zeAcRdg/BYwfgcYdwPG7wHjD4BxD2D8ETD+BBj3AsafAeMvgHEfYPwVMP4GGPcDxt8B4wHAeBAw/gEY/wSMhwDjX4DxMGBMy5/zjbkAY27AmAcw5gWM+QBjfsBYADAWBIyFAGNhwFgEMBYFjMUA4zGAsThgPBYwHgcYSwDG4wHjCYCxJGAsBRhPBIylAWMZwFgWMJYDjCcBxvKAsQJgrAgYY4CxEmCsDBhPBoynAMYqgLEqYKwGGKsDxlMBYw3AeBpgrAkYawHG0wFjbcCYDhjjgLEOYMwAjHUBYz3AWB8wNgCMmYAxCzCeARgbAsZGgPFMwNgYMDYBjE0BYzPA2BwwtgCMZwHGloDxbMB4DmBsBRjPBYznAcbWgPF8wHgBYGwDGC8EjG0BYzvAeBFgbA8YOwDGiwHjJYCxI2C8FDBeBhg7AcbLAWNnwNgFMF4BGLsCxm6AsTtg7AEYewLGXoCxN2DsAxivBIxXAcarAeM1gPFawHgdYLweMN4AGG8EjDcBxpsB4y2A8VbAeBtgvB0w3gEY7wSMdwHGuwHjPYDxXsB4H2C8HzA+ABgfBIwPAcaHAeMjgPFRwPgYYHwcMD4BGJ8EjE8BxqcB4zOA8VnA+BxgfB4wvgAYXwSMfQHjS4DxZcD4CmB8FTC+BhhfB4xvAMY3AeNbgPFtwPgOYHwXML4HGN8HjB8Axn6AsT9g/BAwDgCMAwHjIMA4GDAOAYxDAeMwwDgcMI4AjCMB4yjAOBowjgGMYwHjOMA4HjBOAIwTAeMkwDgZME4BjFMB4zTAOB0wzgCMMwHjLMA4GzDOAYxzAeM8wDgfMC4AjAsB4yLAuBgwLgGMSwHjMsC4HDCuAIwrAeMqwLgaMK4BjGsB4zrAuB4wbgCMHwHGjYBxE2D8GDBuBoxbAOMngPFTwLgVMH4GGLcBxu2A8XPA+AVg3AEYvwSMXwHGnYDxa8D4DWDcBRi/BYzfAcbdgPF7wPgDYNwDGH8EjD8Bxr2A8WfA+Atg3AcYfwWMvwHG/YDxd8B4ADAeBIx/AMY/AeMhwPgXYDwMGNMK5HxjLsCYGzDmAYx5AWM+wJgfMBYAjAUBYyHAWBgwFgGMRQFjMcB4DGAsDhiPBYzHAcYSgPF4wHgCYCwJGEsBxhMBY2nAWAYwlgWM5QDjSYCxPGCsABgrAsYYYKwEGCsDxpMB4ymAsQpgrAoYqwHG6oDxVMBYAzCeBhhrAsZagPF0wFgbMKYDxjhgrAMYMwBjXcBYDzDWB4wNAGMmYMwCjGcAxoaAsRFgPBMwNgaMTQBjU8DYDDA2B4wtAONZgLElYDwbMJ4DGFsBxnMB43mAsTVgPB8wXgAY2wDGCwFjW8DYDjBeBBjbA8YOgPFiwHgJYOwIGC8FjJcBxk6A8XLA2BkwdgGMVwDGroCxG2DsDhh7AMaegLEXYOwNGPsAxisB41WA8WrAeA1gvBYwXgcYrweMNwDGGwHjTYDxZsB4C2C8FTDeBhhvB4x3AMY7AeNdgPFuwHgPYLwXMN4HGO8HjA8AxgcB40OA8WHA+AhgfBQwPgYYHweMTwDGJwHjU4DxacD4DGB8FjA+BxifB4wvAMYXAWNfwPgSYHwZML4CGF8FjK8BxtcB4xuA8U3A+BZgfBswvgMY3wWM7wHG9wHjB4CxH2DsDxg/BIwDAONAwDgIMA4GjEMA41DAOAwwDgeMIwDjSMA4CjCOBoxjAONYwDgOMI4HjBMA40TAOAkwTgaMUwDjVMA4DTBOB4wzAONMwDgLMM4GjHMA41zAOA8wzgeMCwDjQsC4CDAuBoxLAONSwLgMMC4HjCsA40rAuAowrgaMawDjWsC4DjCuB4wbAONHgHEjYNwEGD8GjJsB4xbA+Alg/BQwbgWMnwHGbYBxO2D8HDB+ARh3AMYvAeNXgHEnYPwaMH4DGHcBxm8B43eAcTdg/B4w/gAY9wDGHwHjT4BxL2D8GTD+Ahj3AcZfAeNvgHE/YPwdMB4AjAcB4x+A8U/AeAgw/gUYDwPGtII535gLMOYGjHkAY17AmA8w5geMBQBjQcBYCDAWBoxFAGNRwFgMMB4DGIsDxmMB43GAsQRgPB4wngAYSwLGUoDxRMBYGjCWAYxlAWM5wHgSYCwPGCsAxoqAMQYYKwHGyoDxZMB4CmCsAhirAsZqgLE6YDwVMNYAjKcBxpqAsRZgPB0w1gaM6YAxDhjrAMYMwFgXMNYDjPUBYwPAmAkYswDjGYCxIWBsBBjPBIyNAWMTwNgUMDYDjM0BYwvAeBZgbAkYzwaM5wDGVoDxXMB4HmBsDRjPB4wXAMY2gPFCwNgWMLYDjBcBxvaAsQNgvBgwXgIYOwLGSwHjZYCxE2C8HDB2BoxdAOMVgLErYOwGGLsDxh6AsSdg7AUYewPGPoDxSsB4FWC8GjBeAxivBYzXAcbrAeMNgPFGwHgTYLwZMN4CGG8FjLcBxtsB4x2A8U7AeBdgvBsw3gMY7wWM9wHG+wHjA4DxQcD4EGB8GDA+AhgfBYyPAcbHAeMTgPFJwPgUYHwaMD4DGJ8FjM8BxucB4wuA8UXA2BcwvgQYXwaMrwDGVwHja4DxdcD4BmB8EzC+BRjfBozvAMZ3AeN7gPF9wPgBYOwHGPsDxg8B4wDAOBAwDgKMgwHjEMA4FDAOA4zDAeMIwDgSMI4CjKMB4xjAOBYwjgOM4wHjBMA4ETBOAoyTAeMUwDgVME4DjNMB4wzAOBMwzgKMswHjHMA4FzDOA4zzAeMCwLgQMC4CjIsB4xLAuBQwLgOMywHjCsC4EjCuAoyrAeMawLgWMK4DjOsB4wbA+BFg3AgYNwHGjwHjZsC4BTB+Ahg/BYxbAeNngHEbYNwOGD8HjF8Axh2A8UvA+BVg3AkYvwaM3wDGXYDxW8D4HWDcDRi/B4w/AMY9gPFHwPgTYNwLGH8GjL8Axn2A8VfA+Btg3A8YfweMBwDjQcD4B2D8EzAeAox/AcbDgDGtUM435gKMuQFjHsCYFzDmA4z5AWMBwFgQMBYCjIUBYxHAWBQwFgOMxwDG4oDxWMB4HGAsARiPB4wnAMaSgLEUYDwRMJYGjGUAY1nAWA4wngQYywPGCoCxImCMAcZKgLEyYDwZMJ4CGKsAxqqAsRpgrA4YTwWMNQDjaYCxJmCsBRhPB4y1IzTmymaMHfn7KYm/VElU1URVS1T1RJ2aqBqJOi1RNRNVK1GnJ6p2otITFU9UnURlJKpuouolqn6iGiQqM1FZiTojUQ0T1ShRZyaqcaKaJKppopolqnmiWsT+mVf0vzDGoh1cniPG5MAKHvn7370qKXpVU/SqpehVT9E7NUWvRoreaSl6NVP0aqXonZ6iVztFLz1FL56iVydFLyNFr26KXr0Uvfopeg1S9DJT9LJS9M5I0WuYotcoRe/MFL3GKXpNUvSapug1S9FrnqLX4kgv+yfPkT+bHvkz/d994rMr/nNWRnr9unV7N6jTO54R755eJ6tHZr30uvV61M+MZ8brZdbrVSczI6N3Zt3MBlk9shqkZ8XrZvSO96mXldHnyGHJ3YjqrLNi0e1vvsQZRdOyhU22T9S5E6U7u7dlLCA4eXjU554d4WMIde+zY/8MOKJz09OyfaJe1nkRLmuVCL+fc2Lmskbpzu5tFQsITh4e9bnnxnL2sibvfW7snwFHdG7QZV0Y4bJWjfD7OS9mLmuU7uze1rGA4OThUZ97fixnL2vy3ufH/hlwROcGsSZ/Azg3xXf0b+d6QcwIqSURhlS1CN9lm5gZUlG6s3svjAUEXxiL/ty2sZwdUsl7t439M+CIzg1iTYbpBbHoQ6pdzAip5RGGVPUI3+VFMTOkonRn97aPBQS3j0V/bodYzg6p5L07xP4ZcETnBrEmw7RdLPqQujhmhNSqCEPq1Ajf5SUxM6SidGf3dowFBHeMRX/upbGcHVLJe18a+2fAEZ0bxJoM04tj0YfUZTEjpNZGGFI1InyXnWJmSEXpzu69PBYQfHks+nM7x3J2SCXv3Tn2z4AjOjeINRmml8WiD6kuMSOkNkQYUqdF+C6viJkhFaU7u7drLCC4ayz6c7vFcnZIJe/dLfbPgCM6N4g1GaZdYtGHVPeYEVKbIgypmhG+yx4xM6SidGf39owFBPeMRX9ur1jODqnkvXvF/hlwROcGsSbDtHss+pDqHTNCakuEIVUrwnfZJ2aGVJTu7N4rYwHBV8aiP/eqWM4OqeS9r4r9M+CIzg1iTYZp71j0IXV1zAiprRGG1OkRvstrYmZIRenO7r02FhB8bSz6c6+L5eyQSt77utg/A47o3CDWZJheHYs+pK6PGSG1PcKQqh3hu7whZoZUlO7s3htjAcE3xqI/96ZYzg6p5L1viv0z4IjODWJNhun1sehD6uaYEVI7Igyp9Ajf5S0xM6SidGf33hoLCL41Fv25t8Vydkgl731b7J8BR3RuEGsyTG+ORR9St8eMkNoZYUjFI3yXd8TMkIrSnd17Zywg+M5Y9OfeFcvZIZW8912xfwYc0blBrMkwvT0WfUjdHTNCaleEIVUnwnd5T8wMqSjd2b33xgKC741Ff+59sZwdUsl73xf7Z8ARnRvEmgzTu2PRh9T9MSOkdkcYUhkRvssHYmZIRenO7n0wFhD8YCz6cx+K5eyQSt77odg/A47o3CDWZJjeH4s+pB6OGSG1J8KQqhvhu3wkZoZUlO7s3kdjAcGPxqI/97FYzg6p5L0fi/0z4IjODWJNhunDsehD6vGYEVJ7IwypehG+yydiZkhF6c7ufTIWEPxkLPpzn4rl7JBK3vup2D8DjujcINZkmD4eiz6kno4ZIbUvwpCqH+G7fCZmhlSU7uzeZ2MBwc/Goj/3uVjODqnkvZ+L/TPgiM4NYk2G6dOx6EPq+ZgRUvsjDKkGEb7LF2JmSEXpzu59MRYQ/GIs+nP7xnJ2SCXv3Tf2z4AjOjeINRmmz8eiD6mXYkZIHYwwpDIjfJcvx8yQitKd3ftKLCD4lVj0574ay9khlbz3q7F/BhzRuUGsyTB9KRZ9SL0WM0LqUIQhlRXhu3w9ZoZUlO7s3jdiAcFvxKI/981Yzg6p5L3fjP0z4IjODWJNhulrsehD6q2YEVJpsejufEaEZ70dM0MqSnd27zuxgOB3YtGf+24sZ4dU8t7vxv4ZcETnBrEmw/StWPQh9V7MCKk8seju3DDCs96PmSEVpTu794NYQPAHsejP7RfL2SGVvHe/2D8DjujcINZkmL4Xiz6k+seMkMofi+7OjSI868OYGVJRurN7B8QCggfEoj93YCxnh1Ty3gNj/ww4onODWJNh2j8WfUgNihkhVSgW3Z3PjPCswTEzpKJ0Z/cOiQUED4lFf+7QWM4OqeS9h8b+GXBE5waxJsN0UCz6kBoWM0KqaCy6OzeO8KzhMTOkonRn946IBQSPiEV/7shYzg6p5L1Hxv4ZcETnBrEmw3RYLPqQGhUzQqp4LLo7N4nwrNExM6SidGf3jokFBI+JRX/u2FjODqnkvcfG/hlwROcGsSbDdFQs+pAaFzNCqkQsujs3jfCs8TEzpKJ0Z/dOiAUET4hFf+7EWM4OqeS9J8b+GXBE5waxJsN0XCz6kJoUM0KqZCy6OzeL8KzJMTOkonRn906JBQRPiUV/7tRYzg6p5L2nxv4ZcETnBrEmw3RSLPqQmhYzQqp0LLo7N4/wrOkxM6SidGf3zogFBM+IRX/uzFjODqnkvWfG/hlwROcGsSbDdFos+pCaFTNCqlwsuju3iPCs2TEzpKJ0Z/fOiQUEz4lFf+7cWM4OqeS958b+GXBE5waxJsN0Viz6kJoXy9n3Tn4/8wLce34Ov3elhG9+gHtXikUbqskfRnnT/ucn6nlUiIX5YRq1syLijMWi/SGVmTfs9/973ujnGrXxAGA8CBj/AIx/AsZDgPEvwHgYMKbly/nGXIAxN2DMAxjzAsZ8gDE/YCwAGAsCxkKAsTBgLAIYiwLGYoDxGMBYHDAeCxiPA4wlAOPxgPEEwFgSMJYCjCcCxtKAsQxgLAsYywHGkwBjecBYATBWBIwxwFgJMFYGjCcDxlMAYxXAWBUwVgOM1QHjqYCxBmA8DTDWBIy1AOPpgLE2YEwHjHHAWAcwZgDGuoCxHmCsDxgbAMZMwJgFGM8AjA0BYyPAeCZgbAwYmwDGpoCxGWBsDhhbAMazAGNLwHg2YDwHMLYCjOcCxvMAY2vAeD5gvAAwtgGMFwLGtoCxHWC8CDC2B4wdAOPFgPESwNgRMF4KGC8DjJ0A4+WAsTNg7AIYrwCMXQFjN8DYHTD2AIw9AWMvwNgbMPYBjFcCxqsA49WA8RrAeC1gvA4wXg8YbwCMNwLGmwDjzYDxFsB4K2C8DTDeDhjvAIx3Asa7AOPdgPEewHgvYLwPMN4PGB8AjA8CxocA48OA8RHA+ChgfAwwPg4YnwCMTwLGpwDj04DxGcD4LGB8DjA+DxhfAIwvAsa+gPElwPgyYHwFML4KGF8DjK8DxjcA45uA8S3A+DZgfAcwvgsY3wOM7wPGDwBjP8DYHzB+CBgHAMaBgHEQYBwMGIcAxqGAcRhgHA4YRwDGkYBxFGAcDRjHAMaxgHEcYBwPGCcAxomAcRJgnAwYpwDGqYBxGmCcDhhnAMaZgHEWYJwNGOcAxrmAcR5gnA8YFwDGhYBxEWBcDBiXAMalgHEZYFwOGFcAxpWAcRVgXA0Y1wDGtYBxHWBcDxg3AMaPAONGwLgJMH4MGDcDxi2A8RPA+Clg3AoYPwOM2wDjdsD4OWD8AjDuAIxfAsavAONOwPg1YPwGMO4CjN8Cxu8A427A+D1g/AEw7gGMPwLGnwDjXsD4M2D8BTDuA4y/AsbfAON+wPg7YDwAGA8Cxj8A45+A8RBg/AswHgaMaflzvjEXYMwNGPMAxryAMR9gzA8YCwDGgoCxEGAsDBiLAMaigLEYYDwGMBYHjMcCxuMAYwnAeDxgPAEwlgSMpQDjiYCxNGAsAxjLAsZygPEkwFgeMFYAjBUBYwwwVgKMlQHjyYDxFMBYBTBWBYzVAGN1wHgqYKwBGE8DjDUBYy3AeDpgrA0Y0wFjHDDWAYwZgLEuYKwHGOsDxgaAMRMwZgHGMwBjQ8DYCDCeCRgbA8YmgLEpYGwGGJsDxhaA8SzA2BIwng0YzwGMrQDjuYDxPMDYGjCeDxgvAIxtAOOFgLEtYGwHGC8CjO0BYwfAeDFgvAQwdgSMlwLGywBjJ8B4OWDsDBi7AMYrAGNXwNgNMHYHjD0AY0/A2Asw9gaMfQDjlYDxKsB4NWC8BjBeCxivA4zXA8YbAOONgPEmwHgzYLwFMN4KGG8DjLcDxjsA452A8S7AeDdgvAcw3gsY7wOM9wPGBwDjg4DxIcD4MGB8BDA+ChgfA4yPA8YnAOOTgPEpwPg0YHwGMD4LGJ8DjM8DxhcA44uAsS9gfAkwvgwYXwGMrwLG1wDj64DxDcD4JmB8CzC+DRjfAYzvAsb3AOP7gPEDwNgPMPYHjB8CxgGAcSBgHAQYBwPGIYBxKGAcBhiHA8YRgHEkYBwFGEcDxjGAcSxgHAcYxwPGCYBxImCcBBgnA8YpgHEqYJwGGKcDxhmAcSZgnAUYZwPGOYBxLmCcBxjnA8YFgHEhYFwEGBcDxiWAcSlgXAYYlwPGFYBxJWBcBRhXA8Y1gHEtYFwHGNcDxg2A8SPAuBEwbgKMHwPGzYBxC2D8BDB+Chi3AsbPAOM2wLgdMH4OGL8AjDsA45eA8SvAuBMwfg0YvwGMuwDjt4DxO8C4GzB+Dxh/AIx7AOOPgPEnwLgXMP4MGH8BjPsA46+A8TfAuB8w/g4YDwDGg4DxD8D4J2A8BBj/AoyHAWNagZxvzAUYcwPGPIAxL2DMBxjzA8YCgLEgYCwEGAsDxiKAsShgLAYYjwGMxQHjsYDxOMBYAjAeDxhPAIwlAWMpwHgiYCwNGMsAxrKAsRxgPAkwlgeMFQBjRcAYA4yVAGNlwHgyYDwFMFYBjFUBYzXAWB0wngoYawDG0wBjTcBYCzCeDhhrA8Z0wBgHjHUAYwZgrAsY6wHG+oCxAWDMBIxZgPEMwNgQMDYCjGcCxsaAsQlgbAoYmwHG5oCxBWA8CzC2BIxnA8ZzAGMrwHguYDwPMLYGjOcDxgsAYxvAeCFgbAsY2wHGiwBje8DYATBeDBgvAYwdAeOlgPEywNgJMF4OGDsDxi6A8QrA2BUwdgOM3QFjD8DYEzD2Aoy9AWMfwHglYLwKMF4NGK8BjNcCxusA4/WA8QbAeCNgvAkw3gwYbwGMtwLG2wDj7YDxDsB4J2C8CzDeDRjvAYz3Asb7AOP9gPEBwPggYHwIMD4MGB8BjI8CxscA4+OA8QnA+CRgfAowPg0YnwGMzwLG5wDj84DxBcD4ImDsCxhfAowvA8ZXAOOrgPE1wPg6YHwDML4JGN8CjG8DxncA47uA8T3A+D5g/AAw9gOM/QHjh4BxAGAcCBgHAcbBgHEIYBwKGIcBxuGAcQRgHAkYRwHG0YBxDGAcCxjHAcbxgHECYJwIGCcBxsmAcQpgnAoYpwHG6YBxBmCcCRhnAcbZgHEOYJwLGOcBxvmAcQFgXAgYFwHGxYBxCWBcChiXAcblgHEFYFwJGFcBxtWAcQ1gXAsY1wHG9YBxA2D8CDBuBIybAOPHgHEzYNwCGD8BjJ8Cxq2A8TPAuA0wbgeMnwPGLwDjDsD4JWD8CjDuBIxfA8ZvAOMuwPgtYPwOMO4GjN8Dxh8A4x7A+CNg/Akw7gWMPwPGXwDjPsD4K2D8DTDuB4y/A8YDgPEgYPwDMP4JGA8Bxr8A42HAmFYw5xtzAcbcgDEPYMwLGPMBxvyAsQBgLAgYCwHGwoCxCGAsChiLAcZjAGNxwHgsYDwOMJYAjMcDxhMAY0nAWAownggYSwPGMoCxLGAsBxhPAozlAWMFwFgRMMYAYyXAWBkwngwYTwGMVQBjVcBYDTBWB4ynAsYagPE0wFgTMNYCjKcDxtqAMR0wxgFjHcCYARjrAsZ6gLE+YGwAGDMBYxZgPAMwNgSMjQDjmYCxMWBsAhibAsZmgLE5YGwBGM8CjC0B49mA8RzA2AowngsYzwOMrQHj+YDxAsDYBjBeCBjbAsZ2gPEiwNgeMHYAjBcDxksAY0fAeClgvAwwdgKMlwPGzoCxC2C8AjB2BYzdAGN3wNgDMPYEjL0AY2/A2AcwXgkYrwKMVwPGawDjtYDxOsB4PWC8ATDeCBhvAow3A8ZbAOOtgPE2wHg7YLwDMN4JGO8CjHcDxnsA472A8T7AeD9gfAAwPggYHwKMDwPGRwDjo4DxMcD4OGB8AjA+CRifAoxPA8ZnAOOzgPE5wPg8YHwBML4IGPsCxpcA48uA8RXA+CpgfA0wvg4Y3wCMbwLGtwDj24DxHcD4LmB8DzC+Dxg/AIz9AGN/wPghYBwAGAcCxkGAcTBgHAIYhwLGYYBxOGAcARhHAsZRgHE0YBwDGMcCxnGAcTxgnAAYJwLGSYBxMmCcAhinAsZpgHE6YJwBGGcCxlmAcTZgnAMY5wLGeYBxPmBcABgXAsZFgHExYFwCGJcCxmWAcTlgXAEYVwLGVYBxNWBcAxjXAsZ1gHE9YNwAGD8CjBsB4ybA+DFg3AwYtwDGTwDjp4BxK2D8DDBuA4zbAePngPELwLgDMH4JGL8CjDsB49eA8RvAuAswfgsYvwOMuwHj94DxB8C4BzD+CBh/Aox7AePPgPEXwLgPMP4KGH8DjPsB4++A8QBgPAgY/wCMfwLGQ4DxL8B4GDCmFcr5xlyAMTdgzAMY8wLGfIAxP2AsABgLAsZCgLEwYCwCGIsCxmKA8RjAWBwwHgsYjwOMJQDj8YDxBMBYEjCWAownAsbSgLEMYCwLGMsBxpMAY3nAWAEwVgSMMcBYCTBWBownA8ZTAGMVwFgVMFYDjNUB46mAsQZgPA0w1gSMtQDj6YCxdoTG3NmMGUf+viCWlrYwUYsStThRSxK1NFHLErU8USsStTJRqxK1OlFrErU2UesStT5RGxL1UaI2JmpToj5O1OZEbUnUJ4n6NFFbE/VZorYlanuiPk/UF4nakagvE/VVonYm6utEfZOoXYn6NlHfJWp3or5P1A+J2pOoHxP1U6L2JurnRP2SqH2J+jX2n/f5LfbPdxD9L6Gx6L6MpC3PEWPyS4gd+fvfvYUpeotS9Ban6C1J0VuaorcsRW95it6KFL2VKXqrUvRWp+itSdFbm6K3LkVvfYrehhS9j1L0NqbobUrR+zhFb3OK3pYUvU9S9D5N0duaovdZit62FL3tKXqfp+h9kaK3I0XvyxS9r1L0dqbofZ2i902K3q4UvW9T9L5L0dudovd9it4PKXp7UvR+TNH7KUVvb4rezyl6v6To7UvR+zVF77cjvbyJKpP2f28wZ//8/YOo6ZE/M9Lr163bu0Gd3vGMePf0Olk9Muul163Xo35mPDNeL7NerzqZGRm9M+tmNsjqkdUgPSteN6N3vE+9rIw+R7I0OcOoztofiyrj4/F8iTOKpmX7gZTtk+u/zSD9333i0bn/82fT35/fYwHBycOjPvdAhI8h1L0PxP4ZcETnpicDpGz28yok7p+ouolqkKjMRDVMVKNENUlU00S1SNRZiTonUa0S1TpR5yfqwkS1TVT7RHVIVMdEXZqoyxPVOVFdE9UtUT0T1StRVybqqkRdm6jrEnVjom5K1K2Jui1RdybqrkTdm6j7EvVgoh5K1KOJeixRTybqqUQ9m6jnEvViovom6pVEvZqoNxL1ZqLeSdS7ifogUf0SNSBRAxM1JFFDEzUiUSMTNaZCWrBFq3Tk+/vv5/7bt3YwFu2/RqK+9+TETA8GuPcfEd47z5Ed+O+fKOcaYrZRziCU8c+ojVH/FlAp9p+LGdWFk489eencEQ+yUiy6Ox+K5ezQSN41aYw6NP6KRfvbzt+/jSfPTfx/acnf3Iple6PZPyF/e03/d594BO8h/vdfUlw9srOzz/Vw7MhfKqX9138aHT7ycLL3kv9Dsf+Gyot8If+HrjpHXPHDsejumJxjlA8l6gWvFMv2MNJydMhlJK0hQi5XpTAhlyvbDimzyB3hLJJzKJP2Pz9RnZ8WZrbxKGcQypgnamOoB5qTf6vLG2jx8x6Fxc/Jc833/0Ikng8Ikfw5PET+41EmkVH/lCtQKUf/pvMf9y4Q4N4FAwVewRT/Wojqn2+9+yQ/vaP8D4XjUX7/yX/C5s123+Q8MvP+11lE/T5+z5vzw+UAYDwIGP8AjH8CxkOA8S/AeBgwJv/3ijndmAsw5gaMeQBjXsCYDzDmB4wFAGNBwFgIMBYGjEUAY1HAWAwwHgMYiwPGYwHjcYCxBGA8HjCeABhLAsZSgPFEwFgaMJYBjGUBYznAeBJgLA8YKwDGioAxBhgrAcbKgPFkwHgKYKwCGKsCxmqAsTpgPBUw1gCMpwHGmoCxFmA8HTDWBozpgDEOGOsAxgzAWBcw1gOM9QFjA8CYCRizAOMZgLEhYGwEGM8EjI0BYxPA2BQwNgOMzQFjC8B4FmBsCRjPBoznAMZWgPFcwHgeYGwNGM8HjBcAxjaA8ULA2BYwtgOMFwHG9oCxA2C8GDBeAhg7AsZLAeNlgLETYLwcMHYGjF0A4xWAsStg7AYYuwPGHoCxJ2DsBRh7A8Y+gPFKwHgVYLwaMF4DGK8FjNcBxusB4w2A8UbAeBNgvBkw3gIYbwWMtwHG2wHjHYDxTsB4F2C8GzDeAxjvBYz3Acb7AeMDgPFBwPgQYHwYMD4CGB8FjI8BxscB4xOA8UnA+BRgfBowPgMYnwWMzwHG5wHjC4DxRcDYFzC+BBhfBoyvAMZXAeNrgPF1wPgGYHwTML4FGN8GjO8AxncB43uA8X3A+AFg7AcY+wPGDwHjAMA4EDAOAoyDAeMQwDgUMA4DjMMB4wjAOBIwjgKMowHjGMA4FjCOA4zjAeMEwDgRME4CjJMB4xTAOBUwTgOM0wHjDMA4EzDOAoyzAeMcwDgXMM4DjPMB4wLAuBAwLgKMiwHjEsC4FDAuA4zLAeMKwLgSMK4CjKsB4xrAuBYwrgOM6wHjBsD4EWDcCBg3AcaPAeNmwLgFMH4CGD8FjFsB42eAcRtg3A4YPweMXwDGHYDxS8D4FWDcCRi/BozfAMZdgPFbwPgdYNwNGL8HjD8Axj2A8UfA+BNg3AsYfwaMvwDGfYDxV8D4G2DcDxh/B4wHAONBwPgHYPwTMB4CjH8BxsOAMS1/zjfmAoy5AWMewJgXMOYDjPkBYwHAWBAwFgKMhQFjEcBYFDAWA4zHAMbigPFYwHgcYCwBGI8HjCcAxpKAsRRgPBEwlgaMZQBjWcBYDjCeBBjLA8YKgLEiYIwBxkqAsTJgPBkwngIYqwDGqoCxGmCsDhhPBYw1AONpgLEmYKwFGE8HjLUBYzpgjAPGOoAxAzDWBYz1AGN9wNgAMGYCxizAeAZgbAgYGwHGMwFjY8DYBDA2BYzNAGNzwNgCMJ4FGFsCxrMB4zmAsRVgPBcwngcYWwPG8wHjBYCxDWC8EDC2BYztAONFgLE9YOwAGC8GjJcAxo6A8VLAeBlg7AQYLweMnQFjF8B4BWDsChi7AcbugLEHYOwJGHsBxt6AsQ9gvBIwXgUYrwaM1wDGawHjdYDxesB4A2C8ETDeBBhvBoy3AMZbAeNtgPF2wHgHYLwTMN4FGO8GjPcAxnsB432A8X7A+ABgfBAwPgQYHwaMjwDGRwHjY4DxccD4BGB8EjA+BRifBozPAMZnAeNzgPF5wPgCYHwRMPYFjC8BxpcB4yuA8VXA+BpgfB0wvgEY3wSMbwHGtwHjO4DxXcD4HmB8HzB+ABj7Acb+gPFDwDgAMA4EjIMA42DAOAQwDgWMwwDjcMA4AjCOBIyjAONowDgGMI4FjOMA43jAOAEwTgSMkwDjZMA4BTBOBYzTAON0wDgDMM4EjLMA42zAOAcwzgWM8wDjfMC4ADAuBIyLAONiwLgEMC4FjMsA43LAuAIwrgSMqwDjasC4BjCuBYzrAON6wLgBMH4EGDcCxk2A8WPAuBkwbgGMnwDGTwHjVsD4GWDcBhi3A8bPAeMXgHEHYPwSMH4FGHcCxq8B4zeAcRdg/BYwfgcYdwPG7wHjD4BxD2D8ETD+BBj3AsafAeMvgHEfYPwVMP4GGPcDxt8B4wHAeBAw/gEY/wSMhwDjX4DxMGBMK5DzjbkAY27AmAcw5gWM+QBjfsBYADAWBIyFAGNhwFgEMBYFjMUA4zGAsThgPBYwHgcYSwDG4wHjCYCxJGAsBRhPBIylAWMZwFgWMJYDjCcBxvKAsQJgrAgYY4CxEmCsDBhPBoynAMYqgLEqYKwGGKsDxlMBYw3AeBpgrAkYawHG0wFjbcCYDhjjgLEOYMwAjHUBYz3AWB8wNgCMmYAxCzCeARgbAsZGgPFMwNgYMDYBjE0BYzPA2BwwtgCMZwHGloDxbMB4DmBsBRjPBYznAcbWgPF8wHgBYGwDGC8EjG0BYzvAeBFgbA8YOwDGiwHjJYCxI2C8FDBeBhg7AcbLAWNnwNgFMF4BGLsCxm6AsTtg7AEYewLGXoCxN2DsAxivBIxXAcarAeM1gPFawHgdYLweMN4AGG8EjDcBxpsB4y2A8VbAeBtgvB0w3gEY7wSMdwHGuwHjPYDxXsB4H2C8HzA+ABgfBIwPAcaHAeMjgPFRwPgYYHwcMD4BGJ8EjE8BxqcB4zOA8VnA+BxgfB4wvgAYXwSMfQHjS4DxZcD4CmB8FTC+BhhfB4xvAMY3AeNbgPFtwPgOYHwXML4HGN8HjB8Axn6AsT9g/BAwDgCMAwHjIMA4GDAOAYxDAeMwwDgcMI4AjCMB4yjAOBowjgGMYwHjOMA4HjBOAIwTAeMkwDgZME4BjFMB4zTAOB0wzgCMMwHjLMA4GzDOAYxzAeM8wDgfMC4AjAsB4yLAuBgwLgGMSwHjMsC4HDCuAIwrAeMqwLgaMK4BjGsB4zrAuB4wbgCMHwHGjYBxE2D8GDBuBoxbAOMngPFTwLgVMH4GGLcBxu2A8XPA+AVg3AEYvwSMXwHGnYDxa8D4DWDcBRi/BYzfAcbdgPF7wPgDYNwDGH8EjD8Bxr2A8WfA+Atg3AcYfwWMvwHG/YDxd8B4ADAeBIx/AMY/AeMhwPgXYDwMGNMK5nxjLsCYGzDmAYx5AWM+wJgfMBYAjAUBYyHAWBgwFgGMRQFjMcB4DGAsDhiPBYzHAcYSgPF4wHgCYCwJGEsBxhMBY2nAWAYwlgWM5QDjSYCxPGCsABgrAsYYYKwEGCsDxpMB4ymAsQpgrAoYqwHG6oDxVMBYAzCeBhhrAsZagPF0wFgbMKYDxjhgrAMYMwBjXcBYDzDWB4wNAGMmYMwCjGcAxoaAsRFgPBMwNgaMTQBjU8DYDDA2B4wtAONZgLElYDwbMJ4DGFsBxnMB43mAsTVgPB8wXgAY2wDGCwFjW8DYDjBeBBjbA8YOgPFiwHgJYOwIGC8FjJcBxk6A8XLA2BkwdgGMVwDGroCxG2DsDhh7AMaegLEXYOwNGPsAxisB41WA8WrAeA1gvBYwXgcYrweMNwDGGwHjTYDxZsB4C2C8FTDeBhhvB4x3AMY7AeNdgPFuwHgPYLwXMN4HGO8HjA8AxgcB40OA8WHA+AhgfBQwPgYYHweMTwDGJwHjU4DxacD4DGB8FjA+BxifB4wvAMYXAWNfwPgSYHwZML4CGF8FjK8BxtcB4xuA8U3A+BZgfBswvgMY3wWM7wHG9wHjB4CxH2DsDxg/BIwDAONAwDgIMA4GjEMA41DAOAwwDgeMIwDjSMA4CjCOBoxjAONYwDgOMI4HjBMA40TAOAkwTgaMUwDjVMA4DTBOB4wzAONMwDgLMM4GjHMA41zAOA8wzgeMCwDjQsC4CDAuBoxLAONSwLgMMC4HjCsA40rAuAowrgaMawDjWsC4DjCuB4wbAONHgHEjYNwEGD8GjJsB4xbA+Alg/BQwbgWMnwHGbYBxO2D8HDB+ARh3AMYvAeNXgHEnYPwaMH4DGHcBxm8B43eAcTdg/B4w/gAY9wDGHwHjT4BxL2D8GTD+Ahj3AcZfAeNvgHE/YPwdMB4AjAcB4x+A8U/AeAgw/gUYDwPGtEI535gLMOYGjHkAY17AmA8w5geMBQBjQcBYCDAWBoxFAGNRwFgMMB4DGIsDxmMB43GAsQRgPB4wngAYSwLGUoDxRMBYGjCWAYxlAWM5wHgSYCwPGCsAxoqAMQYYKwHGyoDxZMB4CmCsAhirAsZqgLE6YDwVMNYAjKcBxpqAsRZgPB0w1g5gDOHMUyk6Z65sxtiRvxdKnF84UUUSVTRRxRJ1TKKKJ+rYRB2XqBKJOj5RJySqZKJKJerERJVOVJlElU1UuUSdlKjyiaqQqIqJiiWqUqIqJ+rkRJ2SqCqJqpqoaomqXumfeUX/i20s2sHlOWJMDqzgkb//3SucolckRa9oil6xFL1jUvSKp+gdm6J3XIpeiRS941P0TkjRK5miVypF78QUvdIpemVS9Mqm6JVL0TspRa98il6FFL2KKXqxFL1KKXqVU/ROTtE7JUWvSope1RS9ail61Y/00tKi34/JFRJ3jaWl5Y743OSZf5+VkV6/bt3eDer0jmfEu6fXyeqRWS+9br0e9TPjmfF6mfV61cnMyOidWTezQVaPrAbpWfG6Gb3jfeplZfQ5ctiplcLscPLc2P/HXP+t+e+55gnwfUV1Vva5/tv71gj0HdX4X76j9H/3+Y83WqhS9N/9aYFmcdr/kgP/1jy7YpgcSJ4blbFmoLnWzDbXvz9R722EbyJeM8K9rRVoprUC/sxKvtPCAfb29ECzOD3g3s4LtLfzItzb2oHmWvso7G2EbyJeO8K9TQ800/TAe1skwN7GA80iHnBvFwba24UR7m2dQHOtcxT2NsI3Ea8T4d5mBJppRuC9LRpgb+sGmkXdgHu7JNDeLolwb+sFmmu9o7C3Eb6JeL0I97Z+oJnWD7y3xQLsbYNAs2gQcG+XB9rb5RHubWaguWYehb2N8E3EMyPc26xAM80KvLfHBNjbMwLN4oyAe7sq0N6uinBvGwaaa8OjsLcRvol4wwj3tlGgmTYKvLfFA+ztmYFmcWbAvV0baG/XRri3jQPNtfFR2NsI30S8cYR72yTQTJsE3ttjA+xt00CzaBpwbzcE2tsNEe5ts0BzbXYU9jbCNxFvFuHeNg800+aB9/a4AHvbItAsWgTc202B9nZThHt7VqC5nnUU9jbCNxE/K8K9bRlopi0D722JAHt7dqBZnB1wb7cE2tstEe7tOYHmes5R2NsI30T8nAj3tlWgmbYKvLfHB9jbcwPN4tyAe7s10N5ujXBvzws01/OOwt5G+Cbi50W4t60DzbR14L09IcDenh9oFucH3NvtgfZ2e4R7e0GguV5wFPY2wjcRvyDCvW0TaKZtAu9tyQB7e2GgWVwYcG93BNrbHRHubdtAc217FPY2wjcRbxvh3rYLNNN2gfe2VIC9vSjQLC4KuLc7A+3tzgj3tn2gubY/Cnsb4ZuIt49wbzsEmmmHwHt7YoC9vTjQLC4OuLe7Au3trgj39pJAc73kKOxthG8ifkmEe9sx0Ew7Bt7b0gH29tJAs7g04N7uDrS3uyPc28sCzfWyo7C3Eb6J+GUR7m2nQDPtFHhvywTY28sDzeLygHu7J9De7olwbzsHmmvno7C3Eb6JeOcI97ZLoJl2Cby3ZQPs7RWBZnFFwL3dG2hv90a4t10DzbXrUdjbCN9EvGuEe9st0Ey7Bd7bcgH2tnugWXQPuLf7Au3tvgj3tkegufY4Cnsb4ZuI94hwb3sGmmnPwHt7UoC97RVoFr0C7u3+QHu7P8K97R1orr2Pwt5G+CbivSPc2z6BZton8N6WD7C3VwaaxZUB9/ZgoL09GOHeXhVorlcdhb2N8E3Er4pwb68ONNOrA+9thQB7e02gWVwTcG8PBdrbQxHu7bWB5nrtUdjbCN9E/NoI9/a6QDO9LvDeVgywt9cHmsX1Afc2LRZmb5PnRmW8IdBcbzgKexvhm4jfEOHe3hhopjcG3ttYgL29KdAsbgq4t3liYfY2eW5UxpsDzfXmo7C3Eb6J+M0R7u0tgWZ6S+C9rRRgb28NNItbA+5t/liYvU2eG5XxtkBzve0o7G2EbyJ+W4R7e3ugmd4eeG8rB9jbOwLN4o6Ae1soFmZvk+dGZbwz0FzvPAp7G+GbiN8Z4d7eFWimdwXe25MD7O3dgWZxd8C9LRoLs7fJc6My3hNorvcchb2N8E3E74lwb+8NNNN7A+/tKQH29r5As7gv4N4Wj4XZ2+S5URnvDzTX+4/C3kb4JuL3R7i3DwSa6QOB97ZKgL19MNAsHgy4tyViYfY2eW5UxocCzfWho7C3Eb6J+EMR7u3DgWb6cOC9rRpgbx8JNItHAu5tyViYvU2eG5Xx0UBzffQo7G2EbyL+aIR7+1igmT4WeG+rBdjbxwPN4vGAe1s6FmZvk+dGZXwi0FyfOAp7G+GbiD8R4d4+GWimTwbe2+oB9vapQLN4KuDelouF2dvkuVEZnw4016ePwt5G+CbiT0e4t88EmukzR2aaL1HF0v55V9k/Ub/hsf/+v2M4fuTPOim4UZ2dnn0Wz1b6zz+fq3RkIH8P8NkjwZS9l/wfiv03VJ6AQ/w/PKvOkbPiz0b4UJ+rFN2Xmy/tn9n+/RAz86b9r48z/d994umFolu0UMY4YKwDGDMAY13AWA8w1geMDQBjJmDMAoxnAMaGgLERYDwTMDYGjE0AY1PA2AwwNgeMLQDjWYCxJWA8GzCeAxhbAcZzAeN5gLE1YDwfMF4AGNsAxgsBY1vA2A4wXgQY2wPGDoDxYsB4CWDsCBgvBYyXAcZOgPFywNgZMHYBjFcAxq6AsRtg7A4YewDGnoCxF2DsDRj7AMYrAeNVgPFqwHgNYLwWMF4HGK8HjDcAxhsB402A8WbAeAtgvBUw3gYYbweMdwDGOwHjXYDxbsB4D2C8FzDeBxjvB4wPAMYHAeNDgPFhwPgIYHwUMD4GGB8HjE8AxicB41OA8WnA+AxgfBYwPgcYnweMLwDGFwFjX8D4EmB8GTC+AhhfBYyvAcbXAeMbgPFNwPgWYHwbML4DGN8FjO8BxvcB4weAsR9g7A8YPwSMAwDjQMA4CDAOBoxDAONQwDgMMA4HjCMA40jAOAowjgaMYwDjWMA4DjCOB4wTAONEwDgJME4GjFMA41TAOA0wTgeMMwDjTMA4CzDOBoxzAONcwDgPMM4HjAsA40LAuAgwLgaMSwDjUsC4DDAuB4wrAONKwLgKMK4GjGsA41rAuA4wrgeMGwDjR4BxI2DcBBg/BoybAeMWwPgJYPwUMG4FjJ8Bxm2AcTtg/BwwfgEYdwDGLwHjV4BxJ2D8GjB+Axh3AcZvAeN3gHE3YPweMP4AGPcAxh8B40+AcS9g/Bkw/gIY9wHGXwHjb4BxP2D8HTAeAIwHAeMfgPFPwHgIMP4FGA8DxrTCOd+YCzDmBox5AGNewJgPMOYHjAUAY0HAWAgwFgaMRQBjUcBYDDAeAxiLA8ZjAeNxgLEEYDweMJ4AGEsCxlKA8UTAWBowlgGMZQFjOcB4EmAsDxgrAMaKgDEGGCsBxsqA8WTAeApgrAIYqwLGaoCxOmA8FTDWAIynAcaagLEWYDwdMNYGjOmAMQ4Y6wDGDMBYFzDWA4z1AWMDwJgJGLMA4xmAsSFgbAQYzwSMjQFjE8DYFDA2A4zNAWMLwHgWYGwJGM8GjOcAxlaA8VzAeB5gbA0YzweMFwDGNoDxQsDYFjC2A4wXAcb2gLEDYLwYMF4CGDsCxksB42WAsRNgvBwwdgaMXQDjFYCxK2DsBhi7A8YegLEnYOwFGHsDxj6A8UrAeBVgvBowXgMYrwWM1wHG6wHjDYDxRsB4E2C8GTDeAhhvBYy3AcbbAeMdgPFOwHgXYLwbMN4DGO8FjPcBxvsB4wOA8UHA+BBgfBgwPgIYHwWMjwHGxwHjE4DxScD4FGB8GjA+AxifBYzPAcbnAeMLgPFFwNgXML4EGF8GjK8AxlcB42uA8XXA+AZgfBMwvgUY3waM7wDGdwHje4DxfcD4AWDsBxj7A8YPAeMAwDgQMA4CjIMB4xDAOBQwDgOMwwHjCMA4EjCOAoyjAeMYwDgWMI4DjOMB4wTAOBEwTgKMkwHjFMA4FTBOA4zTAeMMwDgTMM4CjLMB4xzAOBcwzgOM8wHjAsC4EDAuAoyLAeMSwLgUMC4DjMsB4wrAuBIwrgKMqwHjGsC4FjCuA4zrAeMGwPgRYNwIGDcBxo8B42bAuAUwfgIYPwWMWwHjZ4BxG2DcDhg/B4xfAMYdgPFLwPgVYNwJGL8GjN8Axl2A8VvA+B1g3A0YvweMPwDGPYDxR8D4E2DcCxh/Boy/AMZ9gPFXwPgbYNwPGH8HjAcA40HA+Adg/BMwHgKMfwHGw4AxrUjON+YCjLkBYx7AmBcw5gOM+QFjAcBYEDAWAoyFAWMRwFgUMBYDjMcAxuKA8VjAeBxgLAEYjweMJwDGkoCxFGA8ETCWBoxlAGNZwFgOMJ4EGMsDxgqAsSJgjAHGSoCxMmA8GTCeAhirAMaqgLEaYKwOGE8FjDUA42mAsSZgrAUYTweMtQFjOmCMA8Y6gDEDMNYFjPUAY33A2AAwZgLGLMB4BmBsCBgbAcYzAWNjwNgEMDYFjM0AY3PA2AIwngUYWwLGswHjOYCxFWA8FzCeBxhbA8bzAeMFgLENYLwQMLYFjO0A40WAsT1g7AAYLwaMlwDGjoDxUsB4GWDsBBgvB4ydAWMXwHgFYOwKGLsBxu6AsQdg7AkYewHG3oCxD2C8EjBeBRivBozXAMZrAeN1gPF6wHgDYLwRMN4EGG8GjLcAxlsB422A8XbAeAdgvBMw3gUY7waM9wDGewHjfYDxfsD4AGB8EDA+BBgfBoyPAMZHAeNjgPFxwPgEYHwSMD4FGJ8GjM8AxmcB43OA8XnA+AJgfBEw9gWMLwHGlwHjK4DxVcD4GmB8HTC+ARjfBIxvAca3AeM7gPFdwPgeYHwfMH4AGPsBxv6A8UPAOAAwDgSMgwDjYMA4BDAOBYzDAONwwDgCMI4EjKMA42jAOAYwjgWM4wDjeMA4ATBOBIyTAONkwDgFME4FjNMA43TAOAMwzgSMswDjbMA4BzDOBYzzAON8wLgAMC4EjIsA42LAuAQwLgWMywDjcsC4AjCuBIyrAONqwLgGMK4FjOsA43rAuAEwfgQYNwLGTYDxY8C4GTBuAYyfAMZPAeNWwPgZYNwGGLcDxs8B4xeAcQdg/BIwfgUYdwLGrwHjN4BxF2D8FjB+Bxh3A8bvAeMPgHEPYPwRMP4EGPcCxp8B4y+AcR9g/BUw/gYY9wPG3wHjAcB4EDD+ARj/BIyHAONfgPEwYEwrmvONuQBjbsCYBzDmBYz5AGN+wFgAMBYEjIUAY2HAWAQwFgWMxQDjMYCxOGA8FjAeBxhLAMbjAeMJgLEkYCwFGE8EjKUBYxnAWBYwlgOMJwHG8oCxAmCsCBhjgLESYKwMGE8GjKcAxiqAsSpgrAYYqwPGUwFjDcB4GmCsCRhrAcbTAWNtwJgOGOOAsQ5gzACMdQFjPcBYHzA2AIyZgDELMJ4BGBsCxkaA8UzA2BgwNgGMTQFjM8DYHDC2AIxnAcaWgPFswHgOYGwFGM8FjOcBxtaA8XzAeAFgbAMYLwSMbQFjO8B4EWBsDxg7AMaLAeMlgLEjYLwUMF4GGDsBxssBY2fA2AUwXgEYuwLGboCxO2DsARh7AsZegLE3YOwDGK8EjFcBxqsB4zWA8VrAeB1gvB4w3gAYbwSMNwHGmwHjLYDxVsB4G2C8HTDeARjvBIx3Aca7AeM9gPFewHgfYLwfMD4AGB8EjA8BxocB4yOA8VHA+BhgfBwwPgEYnwSMTwHGpwHjM4DxWcD4HGB8HjC+ABhfBIx9AeNLgPFlwPgKYHwVML4GGF8HjG8AxjcB41uA8W3A+A5gfBcwvgcY3weMHwDGfoCxP2D8EDAOAIwDAeMgwDgYMA4BjEMB4zDAOBwwjgCMIwHjKMA4GjCOAYxjAeM4wDgeME4AjBMB4yTAOBkwTgGMUwHjNMA4HTDOAIwzAeMswDgbMM4BjHMB4zzAOB8wLgCMCwHjIsC4GDAuAYxLAeMywLgcMK4AjCsB4yrAuBowrgGMawHjOsC4HjBuAIwfAcaNgHETYPwYMG4GjFsA4yeA8VPAuBUwfgYYtwHG7YDxc8D4BWDcARi/BIxfAcadgPFrwPgNYNwFGL8FjN8Bxt2A8XvA+ANg3AMYfwSMPwHGvYDxZ8D4C2DcBxh/BYy/Acb9gPF3wHgAMB4EjH8Axj8B4yHA+BdgPAwY04rlfGMuwJgbMOYBjHkBYz7AmB8wFgCMBQFjIcBYGDAWAYxFAWMxwHgMYCwOGI8FjMcBxhKA8XjAeAJgLAkYSwHGEwFjacBYBjCWBYzlAONJgLE8YKwAGCsCxhhgrAQYKwPGkwHjKYCxCmCsChirAcbqgPFUwFgDMJ4GGGsCxlqA8XTAWBswpgPGOGCsAxgzAGNdwFgPMNYHjA0AYyZgzAKMZwDGhoCxEWA8EzA2BoxNAGNTwNgMMDYHjC0A41mAsSVgPBswngMYWwHGcwHjeYCxNWA8HzBeABjbAMYLAWNbwNgOMF4EGNsDxg6A8WLAeAlg7AgYLwWMlwHGToDxcsDYGTB2AYxXAMaugLEbYOwOGHsAxp6AsRdg7A0Y+wDGKyM05kn75/N8pf/884Ujf75Y6R/7/7hERnr9unV7N6jTO54R755eJ6tHZr30uvV61M+MZ8brZdbrVSczI6N3Zt3MBlk9shqkZ8XrZvSO96mXldHnyP/Dz1aKbiBJW54jxuQlYkf+/nfvhRS9F4/0Qt0teX7uiL/4FytFZ+xbKfqHnvzkDvhO/u1ZL0X45lK9m/R/94knv5OXKkX/Hl+O8LvOvkMvZ9uh/6/vP/3ffeJ9c+b3n57vyF3zpv3PT9Tv4vlAuxq18wXE+WLE+5CZN+z3n14o5/9SEgeMdQBjBmCsCxjrAcb6gLEBYMwEjFmA8QzA2BAwNgKMZwLGxoCxCWBsChibAcbmgLEFYDwLMLYEjGcDxnMAYyvAeC5gPA8wtgaM5wPGCwBjG8B4IWBsCxjbAcaLAGN7wNgBMF4MGC8BjB0B46WA8TLA2AkwXg4YOwPGLoDxCsDYFTB2A4zdAWMPwNgTMPYCjL0BYx/AeCVgvAowXg0YrwGM1wLG6wDj9YDxBsB4I2C8CTDeDBhvAYy3AsbbAOPtgPEOwHgnYLwLMN4NGO8BjPcCxvsA4/2A8QHA+CBgfAgwPgwYHwGMjwLGxwDj44DxCcD4JGB8CjA+DRifAYzPAsbnAOPzgPEFwPgiYOwLGF8CjC8DxlcA46uA8TXA+DpgfAMwvgkY3wKMbwPGdwDju4DxPcD4PmD8ADD2A4z9AeOHgHEAYBwIGAcBxsGAcQhgHAoYhwHG4YBxBGAcCRhHAcbRgHEMYBwLGMcBxvGAcQJgnAgYJwHGyYBxCmCcChinAcbpgHEGYJwJGGcBxtmAcQ5gnAsY5wHG+YBxAWBcCBgXAcbFgHEJYFwKGJcBxuWAcQVgXAkYVwHG1YBxDWBcCxjXAcb1gHEDYPwIMG4EjJsA48eAcTNg3AIYPwGMnwLGrYDxM8C4DTBuB4yfA8YvAOMOwPglYPwKMO4EjF8Dxm8A4y7A+C1g/A4w7gaM3wPGHwDjHsD4I2D8CTDuBYw/A8ZfAOM+wPgrYPwNMO4HjL8DxgOA8SBg/AMw/gkYDwHGvwDjYcCYVjjnG3MBxtyAMQ9gzAsY8wHG/ICxAGAsCBgLAcbCgLEIYCwKGIsBxmMAY3HAeCxgPA4wlgCMxwPGEwBjScBYCjCeCBhLA8YygLEsYCwHGE8CjOUBYwXAWBEwxgBjJcBYGTCeDBhPAYxVAGNVwFgNMFYHjKcCxhqA8TTAWBMw1gKMpwPG2oAxHTDGAWMdwJgBGOsCxnqAsT5gbAAYMwFjFmA8AzA2BIyNAOOZgLExYGwCGJsCxmaAsTlgbAEYzwKMLQHj2YDxHMDYCjCeCxjPA4ytAeP5gPECwNgGMF4IGNsCxnaA8SLA2B4wdgCMFwPGSwBjR8B4KWC8DDB2AoyXA8bOgLELYLwCMHYFjN0AY3fA2AMw9gSMvQBjb8DYBzBeCRivAoxXA8ZrAOO1gPE6wHg9YLwBMN4IGG8CjDcDxlsA462A8TbAeDtgvAMw3gkY7wKMdwPGewDjvYDxPsB4P2B8ADA+CBgfAowPA8ZHAOOjgPExwPg4YHwCMD4JGJ8CjE8DxmcA47OA8TnA+DxgfAEwvggY+wLGlwDjy4DxFcD4KmB8DTC+DhjfAIxvAsa3AOPbgPEdwPguYHwPML4PGD8AjP0AY3/A+CFgHAAYBwLGQYBxMGAcAhiHAsZhgHE4YBwBGEcCxlGAcTRgHAMYxwLGcYBxPGCcABgnAsZJgHEyYJwCGKcCxmmAcTpgnAEYZwLGWYBxNmCcAxjnAsZ5gHE+YFwAGBcCxkWAcTFgXAIYlwLGZYBxOWBcARhXAsZVgHE1YFwDGNcCxnWAcT1g3AAYPwKMGwHjJsD4MWDcDBi3AMZPAOOngHErYPwMMG4DjNsB4+eA8QvAuAMwfgkYvwKMOwHj14DxG8C4CzB+Cxi/A4y7AeP3gPEHwLgHMP4IGH8CjHsB48+A8RfAuA8w/goYfwOM+wHj74DxAGA8CBj/AIx/AsZDgPEvwHgYMKYVyfnGXIAxN2DMAxjzAsZ8gDE/YCwAGAsCxkKAsTBgLAIYiwLGYoDxGMBYHDAeCxiPA4wlAOPxgPEEwFgSMJYCjCcCxtKAsQxgLAsYywHGkwBjecBYATBWBIwxwFgJMFYGjCcDxlMAYxXAWBUwVgOM1QHjqYCxBmA8DTDWBIy1AOPpgLE2YEwHjHHAWAcwZgDGuoCxHmCsDxgbAMZMwJgFGM8AjA0BYyPAeCZgbAwYmwDGpoCxGWBsDhhbAMazAGNLwHg2YDwHMLYCjOcCxvMAY2vAeD5gvAAwtgGMFwLGtoCxHWC8CDC2B4wdAOPFgPESwNgRMF4KGC8DjJ0A4+WAsTNg7AIYrwCMXQFjN8DYHTD2AIw9AWMvwNgbMPYBjFcCxqsA49WA8RrAeC1gvA4wXg8YbwCMNwLGmwDjzYDxFsB4K2C8DTDeDhjvAIx3Asa7AOPdgPEewHgvYLwPMN4PGB8AjA8CxocA48OA8RHA+ChgfAwwPg4YnwCMTwLGpwDj04DxGcD4LGB8DjA+DxhfAIwvAsa+gPElwPgyYHwFML4KGF8DjK8DxjcA45uA8S3A+DZgfAcwvgsY3wOM7wPGDwBjP8DYHzB+CBgHAMaBgHEQYBwMGIcAxqGAcRhgHA4YRwDGkYBxFGAcDRjHAMaxgHEcYBwPGCcAxomAcRJgnAwYpwDGqYBxGmCcDhhnAMaZgHEWYJwNGOcAxrmAcR5gnA8YFwDGhYBxEWBcDBiXAMalgHEZYFwOGFcAxpWAcRVgXA0Y1wDGtYBxHWBcDxg3AMaPAONGwLgJMH4MGDcDxi2A8RPA+Clg3AoYPwOM2wDjdsD4OWD8AjDuAIxfAsavAONOwPg1YPwGMO4CjN8Cxu8A427A+D1g/AEw7gGMPwLGnwDjXsD4M2D8BTDuA4y/AsbfAON+wPg7YDwAGA8Cxj8A45+A8RBg/AswHgaMaUVzvjEXYMwNGPMAxryAMR9gzA8YCwDGgoCxEGAsDBiLAMaigLEYYDwGMBYHjMcCxuMAYwnAeDxgPAEwlgSMpQDjiYCxNGAsAxjLAsZygPEkwFgeMFYAjBUBYwwwVgKMlQHjyYDxFMBYBTBWBYzVAGN1wHgqYKwBGE8DjDUBYy3AeDpgrA0Y0wFjHDDWAYwZgLEuYKwHGOsDxgaAMRMwZgHGMwBjQ8DYCDCeCRgbA8YmgLEpYGwGGJsDxhaA8SzA2BIwng0YzwGMrQDjuYDxPMDYGjCeDxgvAIxtAOOFgLEtYGwHGC8CjO0BYwfAeDFgvAQwdgSMlwLGywBjJ8B4OWDsDBi7AMYrAGNXwNgNMHYHjD0AY0/A2Asw9gaMfQDjlYDxKsB4NWC8BjBeCxivA4zXA8YbAOONgPEmwHgzYLwFMN4KGG8DjLcDxjsA452A8S7AeDdgvAcw3gsY7wOM9wPGBwDjg4DxIcD4MGB8BDA+ChgfA4yPA8YnAOOTgPEpwPg0YHwGMD4LGJ8DjM8DxhcA44uAsS9gfAkwvgwYXwGMrwLG1wDj64DxDcD4JmB8CzC+DRjfAYzvAsb3AOP7gPEDwNgPMPYHjB8CxgGAcSBgHAQYBwPGIYBxKGAcBhiHA8YRgHEkYBwFGEcDxjGAcSxgHAcYxwPGCYBxImCcBBgnA8YpgHEqYJwGGKcDxhmAcSZgnAUYZwPGOYBxLmCcBxjnA8YFgHEhYFwEGBcDxiWAcSlgXAYYlwPGFYBxJWBcBRhXA8Y1gHEtYFwHGNcDxg2A8SPAuBEwbgKMHwPGzYBxC2D8BDB+Chi3AsbPAOM2wLgdMH4OGL8AjDsA45eA8SvAuBMwfg0YvwGMuwDjt4DxO8C4GzB+Dxh/AIx7AOOPgPEnwLgXMP4MGH8BjPsA46+A8TfAuB8w/g4YDwDGg4DxD8D4J2A8BBj/AoyHAWNasZxvzAUYcwPGPIAxL2DMBxjzA8YCgLEgYCwEGAsDxiKAsShgLAYYjwGMxQHjsYDxOMBYAjAeDxhPAIwlAWMpwHgiYCwNGMsAxrKAsRxgPAkwlgeMFQBjRcAYA4yVAGNlwHgyYDwFMFYBjFUBYzXAWB0wngoYawDG0wBjTcBYCzCeDhhrA8Z0wBgHjHUAYwZgrAsY6wHG+oCxAWDMBIxZgPEMwNgQMDYCjGcCxsaAsQlgbAoYmwHG5oCxBWA8CzC2BIxnA8ZzAGMrwHguYDwPMLYGjOcDxgsAYxvAeCFgbAsY2wHGiwBje8DYATBeDBgvAYwdAeOlgPEywNgJMF4OGDsDxi6A8QrA2BUwdgOM3QFjD8DYEzD2Aoy9AWMfwHhlhMZc2YyxI39/pVJa2quJei1RryfqjUS9mai3EvV2ot5J1LuJei9R7yfqg0T1S1T/RH2YqAGJGpioQYkanKghiRqaqGGJGp6oEYkamahRiRqdqDGJGpuocYkaX+mfeUU+uL6Voh1cniPG5MAKHvn7371XU/ReS9F7PUXvjRS9N1P03krReztF750UvXdT9N5L0Xs/Re+DFL1+KXr9U/Q+TNEbkKI3MEVvUIre4BS9ISl6Q1P0hqXoDU/RG5GiNzJFb1SK3ugUvTEpemNT9Mal6I0/0sv+yXPkz6ZH/kz/d594rWx7kpFev27d3g3q9I5nxLun18nqkVkvvW69HvUz45nxepn1etXJzMjonVk3s0FWj6wG6Vnxuhm9433qZWX0OXLYKxGeNSHC/c2XOKNoWrawyfaJOneidGf3TqwUEDyxUvTnTorwMYS696RK/ww4onPT07J9ol7W9Ahn+mqEZ01Gl3VyoGWdUikgeEqAZZ2aw5c1ee+p2LJmRDjT1yI8axq6rNMCLev0SgHB0wMs64wcvqzJe88ItKwhfkuZmuI7+rdznVnJCKn6Eb6l1yM8axYaUrMChdTsSgHBswOE1JwcHlLJe89BQioZpjMDhNRcJKSyInxLb0R41jw0pOYFCqn5lQKC5wcIqQU5PKSS916AhFQyTOcGCKmFSEg1ivAtvRnhWYvQkFoUKKQWVwoIXhwgpJbk8JBK3nsJElLJMF0YIKSWIiHVJMK39FaEZy1DQ2pZoJBaXikgeHmAkFqRw0Mqee8VSEglw3RpgJBaiYRU8wjf0tsRnrUKDalVgUJqdaWA4NUBQmpNDg+p5L3XICGVDNOVAUJqLRJSLSN8S+9EeNY6NKTWBQqp9ZUCgtcHCKkNOTykkvfegIRUMkzXBgipj5CQahXhW3o3wrM2oiG1MVBIbaoUELwpQEh9nMNDKnnvj5GQSobpRwFCajMSUq0jfEvvRXjWFjSktgQKqU8qBQR/EiCkPs3hIZW896dISCXDdHOAkNqKhFSbCN/S+xGe9RkaUp8FCqltlQKCtwUIqe05PKSS996OhFQyTLcGCKnPkZBqF+Fb+iDCs75AQ+qLQCG1o1JA8I4AIfVlDg+p5L2/REIqGaafBwipr5CQ6hDhW+oX4Vk70ZDaGSikvq4UEPx1gJD6JoeHVPLe3yAhlQzTrwKE1C4kpDpG+Jb6R3jWt2hIfRsopL6rFBD8XYCQ2p3DQyp5791ISCXDdFeAkPoeCalOEb6lDyM86wc0pH4IFFJ7KgUE7wkQUj/m8JBK3vtHJKSSYfp9gJD6CQmpLhG+pQERnrUXDam9gULq50oBwT8HCKlfcnhIJe/9CxJSyTD9KUBI7UNCqluEb2lghGf9iobUr4FC6rdKAcG/BQip/Tk8pJL33o+EVDJM9wUIqd+RkOoZ4VsaFOFZB9CQOhAopA5WCgg+GCCk/sjhIZW89x9ISCXD9PcAIfUnElJ9InxLgyM86xAaUocChdRflQKC/woQUodzeEgl730YCalkmP4ZIKTSKhshdXWEb2lIhGflqmyGVJTu7N7clQOCk4dHfW6eyjk7pJL3zlP5nwFHdG4Q63+EaeXoQyovElLXRRgsQyM8Kx8aUvkChVT+ygHB+QOEVIEcHlLJexdAQioZpnkDhFRBJKRujDBYhkV4ViE0pAoFCqnClQOCCwcIqSI5PKSS9y6ChFQyTAsGCKmiSEjdEmGwDI/wrGJoSBULFFLHVA4IPiZASBXP4SGVvHdxJKSSYVo0QEgdi4TU7REGy4gIzzoODanjAoVUicoBwSUChNTxOTykkvc+HgmpZJgeGyCkTkBC6q4Ig2VkhGeVREOqZKCQKlU5ILhUgJA6MYeHVPLeJyIhlQzTEwKEVGkkpO6NMFhGRXhWGTSkygQKqbKVA4LLBgipcjk8pJL3LoeEVDJMSwcIqZOQkHogwmAZHeFZ5dGQKh8opCpUDgiuECCkKubwkEreuyISUskwPSlASMWQkHo4wmAZE+FZldCQqhQopCpXDgiuHCCkTs7hIZW898lISCXDNBYgpE5BQuqxCINlbIRnVUFDqkqgkKpaOSC4aoCQqpbDQyp572pISCXD9JQAIVUdCaknIwyWcRGedSoaUqcGCqkalQOCawQIqdNyeEgl730aElLJMK0eIKRqIiH1TITBMj7Cs2qhIVUrUEidXjkg+PQAIVU7h4dU8t61kZBKhmnNACGVXjln3zv5/aQHuHc8h9+7byJI4wHu3bdStKGa/GGUN+1/fqKex/OVwvwwjdr5AuJ8sVK0P6Qy84b9/tMLRT/XqI1xwFgHMGYAxrqAsR5grA8YGwDGTMCYBRjPAIwNAWMjwHgmYGwMGJsAxqaAsRlgbA4YWwDGswBjS8B4NmA8BzC2AoznAsbzAGNrwHg+YLwAMLYBjBcCxraAsR1gvAgwtgeMHQDjxYDxEsDYETBeChgvA4ydAOPlgLEzYOwCGK8AjF0BYzfA2B0w9gCMPQFjL8DYGzD2AYxXAsarAOPVgPEawHgtYLwOMF4PGG8AjDcCxpsA482A8RbAeCtgvA0w3g4Y7wCMdwLGuwDj3YDxHsB4L2C8DzDeDxgfAIwPAsaHAOPDgPERwPgoYHwMMD4OGJ8AjE8CxqcA49OA8RnA+CxgfA4wPg8YXwCMLwLGvoDxJcD4MmB8BTC+ChhfA4yvA8Y3AOObgPEtwPg2YHwHML4LGN8DjO8Dxg8AYz/A2B8wfggYBwDGgYBxEGAcDBiHAMahgHEYYBwOGEcAxpGAcRRgHA0YxwDGsYBxHGAcDxgnAMaJgHESYJwMGKcAxqmAcRpgnA4YZwDGmYBxFmCcDRjnAMa5gHEeYJwPGBcAxoWAcRFgXAwYlwDGpYBxGWBcDhhXAMaVgHEVYFwNGNcAxrWAcR1gXA8YNwDGjwDjRsC4CTB+DBg3A8YtgPETwPgpYNwKGD8DjNsA43bA+Dlg/AIw7gCMXwLGrwDjTsD4NWD8BjDuAozfAsbvAONuwPg9YPwBMO4BjD8Cxp8A417A+DNg/AUw7gOMvwLG3wDjfsD4O2A8ABgPAsY/AOOfgPEQYPwLMB4GjGmFc74xF2DMDRjzAMa8gDEfYMwPGAsAxoKAsRBgLAwYiwDGooCxGGA8BjAWB4zHAsbjAGMJwHg8YDwBMJYEjKUA44mAsTRgLAMYywLGcoDxJMBYHjBWAIwVAWMMMFYCjJUB48mA8RTAWAUwVgWM1QBjdcB4KmCsARhPA4w1AWMtwHg6YKwNGNMBYxww1gGMGYCxLmCsBxjrA8YGgDETMGYBxjMAY0PA2AgwngkYGwPGJoCxKWBsBhibA8YWgPEswNgSMJ4NGM8BjK0A47mA8TzA2Bowng8YLwCMbQDjhYCxLWBsBxgvAoztAWMHwHgxYLwEMHYEjJcCxssAYyfAeDlg7AwYuwDGKwBjV8DYDTB2B4w9AGNPwNgLMPYGjH0A45WA8SrAeDVgvAYwXgsYrwOM1wPGGwDjjYDxJsB4M2C8BTDeChhvA4y3A8Y7AOOdgPEuwHg3YLwHMN4LGO8DjPcDxgcA44OA8SHA+DBgfAQwPgoYHwOMjwPGJwDjk4DxKcD4NGB8BjA+CxifA4zPA8YXAOOLgLEvYHwJML4MGF8BjK8CxtcA4+uA8Q3A+CZgfAswvg0Y3wGM7wLG9wDj+4DxA8DYDzD2B4wfAsYBgHEgYBwEGAcDxiGAcShgHAYYhwPGEYBxJGAcBRhHA8YxgHEsYBwHGMcDxgmAcSJgnAQYJwPGKYBxKmCcBhinA8YZgHEmYJwFGGcDxjmAcS5gnAcY5wPGBYBxIWBcBBgXA8YlgHEpYFwGGJcDxhWAcSVgXAUYVwPGNYBxLWBcBxjXA8YNgPEjwLgRMG4CjB8Dxs2AcQtg/AQwfgoYtwLGzwDjNsC4HTB+Dhi/AIw7AOOXgPErwLgTMH4NGL8BjLsA47eA8TvAuBswfg8YfwCMewDjj4DxJ8C4FzD+DBh/AYz7AOOvgPE3wLgfMP4OGA8AxoOA8Q/A+CdgPAQY/wKMhwFjWpGcb8wFGHMDxjyAMS9gzAcY8wPGAoCxIGAsBBgLA8YigLEoYCwGGI8BjMUB47GA8TjAWAIwHg8YTwCMJQFjKcB4ImAsDRjLAMaygLEcYDwJMJYHjBUAY0XAGAOMlQBjZcB4MmA8BTBWAYxVAWM1wFgdMJ4KGGsAxtMAY03AWAswng4YawPGdMAYB4x1AGMGYKwLGOsBxvqAsQFgzASMWYDxDMDYEDA2AoxnAsbGgLEJYGwKGJsBxuaAsQVgPAswtgSMZwPGcwBjK8B4LmA8DzC2BoznA8YLAGMbwHghYGwLGNsBxosAY3vA2AEwXgwYLwGMHQHjpYDxMsDYCTBeDhg7A8YugPEKwNgVMHYDjN0BYw/A2BMw9gKMvQFjH8B4JWC8CjBeDRivAYzXAsbrAOP1gPEGwHgjYLwJMN4MGG8BjLcCxtsA4+2A8Q7AeCdgvAsw3g0Y7wGM9wLG+wDj/YDxAcD4IGB8CDA+DBgfAYyPAsbHAOPjgPEJwPgkYHwKMD4NGJ8BjM8CxucA4/OA8QXA+CJg7AsYXwKMLwPGVwDjq4DxNcD4OmB8AzC+CRjfAoxvA8Z3AOO7gPE9wPg+YPwAMPYDjP0B44eAcQBgHAgYBwHGwYBxCGAcChiHAcbhgHEEYBwJGEcBxtGAcQxgHAsYxwHG8YBxAmCcCBgnAcbJgHEKYJwKGKcBxumAcQZgnAkYZwHG2YBxDmCcCxjnAcb5gHEBYFwIGBcBxsWAcQlgXAoYlwHG5YBxBWBcCRhXAcbVgHENYFwLGNcBxvWAcQNg/AgwbgSMmwDjx4BxM2DcAhg/AYyfAsatgPEzwLgNMG4HjJ8Dxi8A4w7A+CVg/Aow7gSMXwPGbwDjLsD4LWD8DjDuBozfA8YfAOMewPgjYPwJMO4FjD8Dxl8A4z7A+Ctg/A0w7geMvwPGA4DxIGD8AzD+CRgPAca/AONhwJhWNOcbcwHG3IAxD2DMCxjzAcb8gLEAYCwIGAsBxsKAsQhgLAoYiwHGYwBjccB4LGA8DjCWAIzHA8YTAGNJwFgKMJ4IGEsDxjKAsSxgLAcYTwKM5QFjBcBYETDGAGMlwFgZMJ4MGE8BjFUAY1XAWA0wVgeMpwLGGoDxNMBYEzDWAoynA8bagDEdMMYBYx3AmAEY6wLGeoCxPmBsABgzAWMWYDwDMDYEjI0A45mAsTFgbAIYmwLGZoCxOWBsARjPAowtAePZgPEcwNgKMJ4LGM8DjK0B4/mA8QLA2AYwXggY2wLGdoDxIsDYHjB2AIwXA8ZLAGNHwHgpYLwMMHYCjJcDxs6AsQtgvAIwdgWM3QBjd8DYAzD2BIy9AGNvwNgHMF4JGK8CjFcDxmsA47WA8TrAeD1gvAEw3ggYbwKMNwPGWwDjrYDxNsB4O2C8AzDeCRjvAox3A8Z7AOO9gPE+wHg/YHwAMD4IGB8CjA8DxkcA46OA8THA+DhgfAIwPgkYnwKMTwPGZwDjs4DxOcD4PGB8ATC+CBj7AsaXAOPLgPEVwPgqYHwNML4OGN8AjG8CxrcA49uA8R3A+C5gfA8wvg8YPwCM/QBjf8D4IWAcABgHAsZBgHEwYBwCGIcCxmGAcThgHAEYRwLGUYBxNGAcAxjHAsZxgHE8YJwAGCcCxkmAcTJgnAIYpwLGaYBxOmCcARhnAsZZgHE2YJwDGOcCxnmAcT5gXAAYFwLGRYBxMWBcAhiXAsZlgHE5YFwBGFcCxlWAcTVgXAMY1wLGdYBxPWDcABg/AowbAeMmwPgxYNwMGLcAxk8A46eAcStg/AwwbgOM2wHj54DxC8C4AzB+CRi/Aow7AePXgPEbwLgLMH4LGL8DjLsB4/eA8QfAuAcw/ggYfwKMewHjz4DxF8C4DzD+Chh/A4z7AePvgPEAYDwIGP8AjH8CxkOA8S/AeBgwphXL+cZcgDE3YMwDGPMCxnyAMT9gLAAYCwLGQoCxMGAsAhiLAsZigPEYwFgcMB4LGI8DjCUA4/GA8QTAWBIwlgKMJwLG0oCxDGAsCxjLAcaTAGN5wFgBMFYEjDHAWAkwVgaMJwPGUwBjFcBYFTBWA4zVAeOpgLEGYDwNMNYEjLUA4+mAsTZgTAeMccBYBzBmAMa6gLEeYKwPGBsAxkzAmAUYzwCMDQFjI8B4JmBsDBibAMamgLEZYGwOGFsAxrMAY0vAeDZgPAcwtgKM5wLG8wBja8B4PmC8ADC2AYwXAsa2gLEdYLwIMLYHjB0A48WA8RLA2BEwXgoYLwOMnQDj5YCxM2DsAhivAIxdAWM3wNgdMPYAjD0BYy/A2Bsw9gGMV0ZozJ3NmHHk73UqJ/6eqLqJqpeo+olqkKjMRGUl6oxENUxUo0SdmajGiWqSqKaJapao5olqkaizEtUyUWcn6pxEtUrUuYk6L1GtE3V+oi5IVJtEXZiotolql6iLEtU+UR0SdXGiLklUx0RdmqjLEtUpUZcnqnOiuiTqikR1TVS3RHVPVI9E9UxUr8r/eZ/elf/5DiL/MvpWiu7LSNryHDEmv4TYkb//3ctI0aubolcvRa9+il6DFL3MFL2sFL0zUvQapug1StE7M0WvcYpekxS9pil6zVL0mqfotUjROytFr2WK3tkpeuek6LVK0Ts3Re+8FL3WKXrnp+hdkKLXJkXvwhS9til67VL0LkrRa5+i1yFF7+IUvUtS9Dqm6F2aondZil6nFL3LU/Q6p+h1SdG7IkWva4petxS97il6PVL0eqbo9UrR632klzdR5dP+7w3m7J/cR/5seuTPjPT6dev2blCndzwj3j29TlaPzHrpdev1qJ8Zz4zXy6zXq05mRkbvzLqZDbJ6ZDVIz4rXzegd71MvK6PPkSxNzjCqs/pUjirj4/F8iTOKpmX7gZTtk+u/zSD9333i0bn/82fT358rKwcEX1k5+nOvivAxhLr3VdmWIqJzg1iTv/BcleI7+rdzvbpyzr53jcS9rw5w72sivHfyB0jZtP/5iXKuIWZ7TeWcb7w2amPUP/H+XsyoLpx87MlL5454kNn/xfRv73xdDg+N5F2vCxAa10f8k/3v3zyvP/KbZ/K3lGLZ3mj2T8jf1NL/3ScewXuI//2XFFeP7Ozsc73hyA/+Gyun/dd/Btxw5OFk79145AvK/smLfCH/h646R1zxGyL8Le7GiB9K1AueDI6/H0YEDy/9f7Om/7tPRqiQuylQyN2UbYeUWdwc8W+J5dP+5yeq89PCzDYe5QxCGW+J2hjqgebk3+puDbT4tx6Fxc/Jc73t/4VIPMoZhDLensND5D8e5e0BfsrdAfxz7o4A974zUODdmeJfC1H98613n+Snd5T/AWg8yu8/+U/YvNnum5xHZt7/Oouo30d6oZwfLnHAWAcwZgDGuoCxHmCsDxgbAMZMwJgFGM8AjA0BYyPAeCZgbAwYmwDGpoCxGWBsDhhbAMazAGNLwHg2YDwHMLYCjOcCxvMAY2vAeD5gvAAwtgGMFwLGtoCxHWC8CDC2B4wdAOPFgPESwNgRMF4KGC8DjJ0A4+WAsTNg7AIYrwCMXQFjN8DYHTD2AIw9AWMvwNgbMPYBjFcCxqsA49WA8RrAeC1gvA4wXg8YbwCMNwLGmwDjzYDxFsB4K2C8DTDeDhjvAIx3Asa7AOPdgPEewHgvYLwPMN4PGB8AjA8CxocA48OA8RHA+ChgfAwwPg4YnwCMTwLGpwDj04DxGcD4LGB8DjA+DxhfAIwvAsa+gPElwPgyYHwFML4KGF8DjK8DxjcA45uA8S3A+DZgfAcwvgsY3wOM7wPGDwBjP8DYHzB+CBgHAMaBgHEQYBwMGIcAxqGAcRhgHA4YRwDGkYBxFGAcDRjHAMaxgHEcYBwPGCcAxomAcRJgnAwYpwDGqYBxGmCcDhhnAMaZgHEWYJwNGOcAxrmAcR5gnA8YFwDGhYBxEWBcDBiXAMalgHEZYFwOGFcAxpWAcRVgXA0Y1wDGtYBxHWBcDxg3AMaPAONGwLgJMH4MGDcDxi2A8RPA+Clg3AoYPwOM2wDjdsD4OWD8AjDuAIxfAsavAONOwPg1YPwGMO4CjN8Cxu8A427A+D1g/AEw7gGMPwLGnwDjXsD4M2D8BTDuA4y/AsbfAON+wPg7YDwAGA8Cxj8A45+A8RBg/AswHgaMaYVzvjEXYMwNGPMAxryAMR9gzA8YCwDGgoCxEGAsDBiLAMaigLEYYDwGMBYHjMcCxuMAYwnAeDxgPAEwlgSMpQDjiYCxNGAsAxjLAsZygPEkwFgeMFYAjBUBYwwwVgKMlQHjyYDxFMBYBTBWBYzVAGN1wHgqYKwBGE8DjDUBYy3AeDpgrA0Y0wFjHDDWAYwZgLEuYKwHGOsDxgaAMRMwZgHGMwBjQ8DYCDCeCRgbA8YmgLEpYGwGGJsDxhaA8SzA2BIwng0YzwGMrQDjuYDxPMDYGjCeDxgvAIxtAOOFgLEtYGwHGC8CjO0BYwfAeDFgvAQwdgSMlwLGywBjJ8B4OWDsDBi7AMYrAGNXwNgNMHYHjD0AY0/A2Asw9gaMfQDjlYDxKsB4NWC8BjBeCxivA4zXA8YbAOONgPEmwHgzYLwFMN4KGG8DjLcDxjsA452A8S7AeDdgvAcw3gsY7wOM9wPGBwDjg4DxIcD4MGB8BDA+ChgfA4yPA8YnAOOTgPEpwPg0YHwGMD4LGJ8DjM8DxhcA44uAsS9gfAkwvgwYXwGMrwLG1wDj64DxDcD4JmB8CzC+DRjfAYzvAsb3AOP7gPEDwNgPMPYHjB8CxgGAcSBgHAQYBwPGIYBxKGAcBhiHA8YRgHEkYBwFGEcDxjGAcSxgHAcYxwPGCYBxImCcBBgnA8YpgHEqYJwGGKcDxhmAcSZgnAUYZwPGOYBxLmCcBxjnA8YFgHEhYFwEGBcDxiWAcSlgXAYYlwPGFYBxJWBcBRhXA8Y1gHEtYFwHGNcDxg2A8SPAuBEwbgKMHwPGzYBxC2D8BDB+Chi3AsbPAOM2wLgdMH4OGL8AjDsA45eA8SvAuBMwfg0YvwGMuwDjt4DxO8C4GzB+Dxh/AIx7AOOPgPEnwLgXMP4MGH8BjPsA46+A8TfAuB8w/g4YDwDGg4DxD8D4J2A8BBj/AoyHAWNakZxvzAUYcwPGPIAxL2DMBxjzA8YCgLEgYCwEGAsDxiKAsShgLAYYjwGMxQHjsYDxOMBYAjAeDxhPAIwlAWMpwHgiYCwNGMsAxrKAsRxgPAkwlgeMFQBjRcAYA4yVAGNlwHgyYDwFMFYBjFUBYzXAWB0wngoYawDG0wBjTcBYCzCeDhhrA8Z0wBgHjHUAYwZgrAsY6wHG+oCxAWDMBIxZgPEMwNgQMDYCjGcCxsaAsQlgbAoYmwHG5oCxBWA8CzC2BIxnA8ZzAGMrwHguYDwPMLYGjOcDxgsAYxvAeCFgbAsY2wHGiwBje8DYATBeDBgvAYwdAeOlgPEywNgJMF4OGDsDxi6A8QrA2BUwdgOM3QFjD8DYEzD2Aoy9AWMfwHglYLwKMF4NGK8BjNcCxusA4/WA8QbAeCNgvAkw3gwYbwGMtwLG2wDj7YDxDsB4J2C8CzDeDRjvAYz3Asb7AOP9gPEBwPggYHwIMD4MGB8BjI8CxscA4+OA8QnA+CRgfAowPg0YnwGMzwLG5wDj84DxBcD4ImDsCxhfAowvA8ZXAOOrgPE1wPg6YHwDML4JGN8CjG8DxncA47uA8T3A+D5g/AAw9gOM/QHjh4BxAGAcCBgHAcbBgHEIYBwKGIcBxuGAcQRgHAkYRwHG0YBxDGAcCxjHAcbxgHECYJwIGCcBxsmAcQpgnAoYpwHG6YBxBmCcCRhnAcbZgHEOYJwLGOcBxvmAcQFgXAgYFwHGxYBxCWBcChiXAcblgHEFYFwJGFcBxtWAcQ1gXAsY1wHG9YBxA2D8CDBuBIybAOPHgHEzYNwCGD8BjJ8Cxq2A8TPAuA0wbgeMnwPGLwDjDsD4JWD8CjDuBIxfA8ZvAOMuwPgtYPwOMO4GjN8Dxh8A4x7A+CNg/Akw7gWMPwPGXwDjPsD4K2D8DTDuB4y/A8YDgPEgYPwDMP4JGA8Bxr8A42HAmFY05xtzAcbcgDEPYMwLGPMBxvyAsQBgLAgYCwHGwoCxCGAsChiLAcZjAGNxwHgsYDwOMJYAjMcDxhMAY0nAWAownggYSwPGMoCxLGAsBxhPAozlAWMFwFgRMMYAYyXAWBkwngwYTwGMVQBjVcBYDTBWB4ynAsYagPE0wFgTMNYCjKcDxtqAMR0wxgFjHcCYARjrAsZ6gLE+YGwAGDMBYxZgPAMwNgSMjQDjmYCxMWBsAhibAsZmgLE5YGwBGM8CjC0B49mA8RzA2AowngsYzwOMrQHj+YDxAsDYBjBeCBjbAsZ2gPEiwNgeMHYAjBcDxksAY0fAeClgvAwwdgKMlwPGzoCxC2C8AjB2BYzdAGN3wNgDMPYEjL0AY2/A2AcwXgkYrwKMVwPGawDjtYDxOsB4PWC8ATDeCBhvAow3A8ZbAOOtgPE2wHg7YLwDMN4JGO8CjHcDxnsA472A8T7AeD9gfAAwPggYHwKMDwPGRwDjo4DxMcD4OGB8AjA+CRifAoxPA8ZnAOOzgPE5wPg8YHwBML4IGPsCxpcA48uA8RXA+CpgfA0wvg4Y3wCMbwLGtwDj24DxHcD4LmB8DzC+Dxg/AIz9AGN/wPghYBwAGAcCxkGAcTBgHAIYhwLGYYBxOGAcARhHAsZRgHE0YBwDGMcCxnGAcTxgnAAYJwLGSYBxMmCcAhinAsZpgHE6YJwBGGcCxlmAcTZgnAMY5wLGeYBxPmBcABgXAsZFgHExYFwCGJcCxmWAcTlgXAEYVwLGVYBxNWBcAxjXAsZ1gHE9YNwAGD8CjBsB4ybA+DFg3AwYtwDGTwDjp4BxK2D8DDBuA4zbAePngPELwLgDMH4JGL8CjDsB49eA8RvAuAswfgsYvwOMuwHj94DxB8C4BzD+CBh/Aox7AePPgPEXwLgPMP4KGH8DjPsB4++A8QBgPAgY/wCMfwLGQ4DxL8B4GDCmFcv5xlyAMTdgzAMY8wLGfIAxP2AsABgLAsZCgLEwYCwCGIsCxmKA8RjAWBwwHgsYjwOMJQDj8YDxBMBYEjCWAownAsbSgLEMYCwLGMsBxpMAY3nAWAEwVgSMMcBYCTBWBownA8ZTAGMVwFgVMFYDjNUB46mAsQZgPA0w1gSMtQDj6YCxNmBMB4xxwFgHMGYAxrqAsR5grA8YGwDGTMCYBRjPAIwNAWMjwHgmYGwMGJsAxqaAsRlgbA4YWwDGswBjS8B4NmA8BzC2AoznAsbzAGNrwHg+YLwAMLYBjBcCxraAsR1gvAgwtgeMHQDjxYDxEsDYETBeChgvA4ydAOPlgLEzYOwCGK8AjF0BYzfA2B0w9gCMPQFjL8DYGzD2AYxXBjCGcN5SOTpnrmzG2JG/35U4/+5E3ZOoexN1X6LuT9QDiXowUQ8l6uFEPZKoRxP1WKIeT9QTiXoyUU8l6ulEPZOoZxP1XKKeT9QLiXoxUX0T9VKiXk7UK4l6NVGvJer1RL1R+Z95RT64vpWiHVyeI8bkwAoe+fvfvbtT9O5J0bs3Re++FL37U/QeSNF7MEXvoRS9h1P0HknRezRF77EUvcdT9J5I0XsyRe+pFL2nU/SeSdF7NkXvuRS951P0XkjRezFFr2+K3kspei+n6L2Sovdqit5rKXqvp+i9caSXlhb9ftSolLhronJHfG72vctIr1+3bu8GdXrHM+Ld0+tk9cisl163Xo/6mfHMeL3Mer3qZGZk9M6sm9kgq0dWg/SseN2M3vE+9bIy+hw57M3KYXY4eW7s/4/n+lagub71v8z135pDzbVGhHN9O9Bc3842178/eSKeQ4RvIp59Dv92pu8Emuk7ATMg+U7vqhz9DrwbaBbv/i8/Z/6tuVagva0V4d6+F2iu72Wba6i9jfBNxN+LcG/fDzTT9wP+TpR8p3cH2NsPAs3ig4B7mx5ob9Mj3Nt+geba7yjsbYRvIt4vwr3tH2im/QPv7T0B9vbDQLP4MODeZgTa24wI93ZAoLkOOAp7G+GbiA+IcG8HBprpwMB7e2+AvR0UaBaDAu5t/UB7Wz/CvR0caK6Dj8LeRvgm4oMj3NshgWY6JPDe3hdgb4cGmsXQgHubFWhvsyLc22GB5jrsKOxthG8iPizCvR0eaKbDA+/t/QH2dkSgWYwIuLeNAu1towj3dmSguY48Cnsb4ZuIj4xwb0cFmumowHv7QIC9HR1oFqMD7m2TQHvbJMK9HRNormOOwt5G+CbiYyLc27GBZjo28N4+GGBvxwWaxbiAe9s80N42j3Bvxwea6/ijsLcRvon4+Aj3dkKgmU4IvLcPBdjbiYFmMTHg3rYMtLctI9zbSYHmOuko7G2EbyI+KcK9nRxoppMD7+3DAfZ2SqBZTAm4t60C7W2rCPd2aqC5Tj0Kexvhm4hPjXBvpwWa6bTAe/tIgL2dHmgW0wPubetAe9s6wr2dEWiuM47C3kb4JuIzItzbmYFmOjPw3j4aYG9nBZrFrIB72ybQ3raJcG9nB5rr7KOwtxG+ifjsCPd2TqCZzgm8t48F2Nu5gWYxN+Detgu0t+0i3Nt5geY67yjsbYRvIj4vwr2dH2im8wPv7eMB9nZBoFksCLi3HQLtbYcI93ZhoLkuPAp7G+GbiC+McG8XBZrposB7+0SAvV0caBaLA+5tx0B72zHCvV0SaK5LjsLeRvgm4ksi3NulgWa6NPDePhlgb5cFmsWygHvbKdDedopwb5cHmuvyo7C3Eb6J+PII93ZFoJmuCLy3TwXY25WBZrEy4N52CbS3XSLc21WB5rrqKOxthG8ivirCvV0daKarA+/t0wH2dk2gWawJuLfdAu1ttwj3dm2gua49Cnsb4ZuIr41wb9cFmum6wHv7TIC9Xf//Y+8ugOP4snzPy8zMDJItyaiyJFsyMzMzy8zMzMzMzMzMzMzMzAxbOV3/bY06d2J3fE45v/tKERl23O6o+dyT53dcefu9lFItzinmtoFSbhsI5va8Ul3POyG3gj1hOy+Y2wtKNb2gnNvhCrm9qFSLi4q5baSU20aCub2kVNdLTsitYE/YLgnm9rJSTS8r53aEQm6vKNXiimJumyrltqlgbq8q1fWqE3Ir2BO2q4K5vaZU02vKuR2pkNvrSrW4rpjbFkq5bSGY2xtKdb3hhNwK9oTthmBubyrV9KZybkcp5PaWUi1uKea2tVJuWwvm9rZSXW87IbeCPWG7LZjbO0o1vaOc29EKub2rVIu7irltp5TbdoK5vadU13tOyK1gT9juCeb2vlJN7yvndoxCbh8o1eKBYm47KuW2o2BuHyrV9aETcivYE7aHgrl9pFTTR8q5HauQ28dKtXismNsuSrntIpjbJ0p1feKE3Ar2hO2JYG6fKtX0qXJuxynk9plSLZ4p5ra7Um67C+b2uVJdnzsht4I9YXsumNsXSjV9oZzb8Qq5falUi5eKue2llNtegrl9pVTXV07IrWBP2F4J5va1Uk1fK+d2gkJu3yjV4o1ibvsq5bavYG7fKtX1rRNyK9gTtreCuX2nVNN3yrmdqJDb90q1eK+Y2wFKuR0gmNsPSnX94ITcCvaE7YNgbj8q1fSjcm4nKeT2k1ItPinmdrBSbgcL5vazUl0/OyG3gj1h+yyY2y9KNf2inNvJCrn9qlSLr4q5HaaU22GCuf2mVNdvTsitYE/Yvgnm9rtSTb87ahrOfkVz+3dfBf+R7uE1yf94LzbHn74mXKnP9gleix+p//Xnz9SOgvxTwB+OwRR8zfgvpQyBCqNYxP/lZ2VxfJbth2Cj/kwtd3PDuf27tv80YkBYt/+xOX3+7MfWJJpc0LSMTQHGZgBjc4CxBcDYEmBsBTC2BhjbAIxtAcZ2AGN7gLEDwNgRYOwEMHYGGLsAjF0Bxm4AY3eAsQfA2BNg7AUw9gYY+wCMfQHGfgBjf4BxAMA4EGAcBDAOBhiHAIxDAcZhAONwgHEEwDgSYBwFMI4GGMcAjGMBxnEA43iAcQLAOBFgnAQwTgYYpwCMUwHGaQDjdIBxBsA4E2CcBTDOBhjnAIxzAcZ5AON8gHEBwLgQYFwEMC4GGJcAjEsBxmUA43KAcQXAuBJgXAUwrgYY1wCMawHGdQDjeoBxA8C4EWDcBDBuBhi3AIxbAcZtAON2gHEHwLgTYNwFMO4GGPcAjHsBxn0A436A8QDAeBBgPAQwHgYYjwCMRwHGYwDjcYDxBMB4EmA8BTCeBhjPAIxnAcZzAON5gPECwHgRYLwEMF4GGK8AjFcBxmsA43WA8QbAeBNgvAUw3gYY7wCMdwHGewDjfYDxAcD4EGB8BDA+BhifAIxPAcZnAONzgPEFwPgSYHwFML4GGN8AjG8BxncA43uA8QPA+BFg/AQwfgYYvwCMXwHGbwDjd4DxB8D4E2D8BTD+BhjdolvfGApgDA0whgEYwwKM4QDG8ABjBIAxIsAYCWCMDDBGARijAozRAMboAGMMgDEmwBgLYIwNMMYBGOMCjPEAxvgAYwKAMSHAmAhgTAwwJgEYkwKMyQDG5ABjCoAxJcCYCmBMDTC6A4weAGMagDEtwOgJMHoBjN4AYzqAMT3AmAFgzAgwZgIYMwOMPgCjDWDMAjD6Aox+AKM/wJgVYMwGMAYAjIEAY3aAMQfAmBNgzAUw5gYY8wCMeQHGfABjfoCxAMBYEGAsBDAWBhiLAIxFAcZiAGNxgLEEwFgSYCwFMJYGGMsAjGUBxnIAY3mAsQLAWBFgrAQwVgYYqwCMVQHGagBjdYCxBsBYE2CsBTDWBhjrAIx1AcZ6AGN9gLEBwNgQYAwCGBsBjI0BxiYAY1OAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswHGOQDjXIBxHsA4H2BcADAuBBgXAYyLAcYlAONSgHEZwLgcYFwBMK4EGFcBjKsBxjUA41qAcR3AuB5g3AAwbgQYNwGMmwHGLQDjVoBxG8C4HWDcATDuBBh3AYy7AcY9AONegHEfwLgfYDwAMB4EGA8BjIcBxiMA41GA8RjAeBxgPAEwngQYTwGMpwHGMwDjWYDxHMB4HmC8ADBeBBgvAYyXAcYrAONVgPEawHgdYLwBMN4EGG8BjLcBxjsA412A8R7AeB9gfAAwPgQYHwGMjwHGJwDjU4DxGcD4HGB8ATC+BBhfAYyvAcY3AONbgPEdwPgeYPwAMH4EGD8BjJ8Bxi8A41eA8RvA+B1g/AEw/gQYfwGMvwFGtxjWN4YCGEMDjGEAxrAAYziAMTzAGAFgjAgwRgIYIwOMUQDGqABjNIAxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwpgIYUwOM7gCjB8CYBmBMCzB6AoxeAKM3wJgOYEwPMGYAGDMCjJkAxswAow/AaAMYswCMvgCjH8DoDzBmBRizAYwBAGMgwJgdYMwBMOYEGHMBjLkBxjwAY16AMR/AmB9gLAAwFgQYCwGMhQHGIgBjUYCxGMBYHGAsATCWBBhLAYylAcYyAGNZgLEcwFgeYKwAMFYEGCsBjJUBxioAY1WAsRrAWB1grAEw1gQYawGMtQHGOgBjXYCxHsBYH2BsADA2BBiDAMZGAGNjgLEJwNgUYGwGMDYHGFsAjC0BxlYAY2uAsQ3A2BZgbAcwtgcYOwCMHQHGTgBjZ4CxC8DYFWDsBjB2Bxh7AIw9AcZeAGNvgLEPwNgXYOwHMPYHGAcAjAMBxkEA42CAcQjAOBRgHAYwDgcYRwCMIwHGUQDjaIBxDMA4FmAcBzCOBxgnAIwTAcZJAONkgHEKwDgVYJwGME4HGGcAjDMBxlkA42yAcQ7AOBdgnAcwzgcYFwCMCwHGRQDjYoBxCcC4FGBcBjAuBxhXAIwrAcZVAONqgHENwLgWYFwHMK4HGDcAjBsBxk0A42aAcQvAuBVg3AYwbgcYdwCMOwHGXQDjboBxD8C4F2DcBzDuBxgPAIwHAcZDAONhgPEIwHgUYDwGMB4HGE8AjCcBxlMA42mA8QzAeBZgPAcwngcYLwCMFwHGSwDjZYDxCsB4FWC8BjBeBxhvAIw3AcZbAONtgPEOwHgXYLwHMN4HGB8AjA8BxkcA42OA8QnA+BRgfAYwPgcYXwCMLwHGVwDja4DxDcD4FmB8BzC+Bxg/AIwfAcZPAONngPELwPgVYPwGMH4HGH8AjD8Bxl8A42+A0S2m9Y2hAMbQAGMYgDEswBgOYAwPMEYAGCMCjJEAxsgAYxSAMSrAGA1gjA4wxgAYYwKMsQDG2ABjHIAxLsAYD2CMDzAmABgTAoyJAMbEAGMSgDEpwJgMYEwOMKYAGFMCjKkAxtQAozvA6AEwpgEY0wKMngCjF8DoDTCmAxjTA4wZAMaMAGMmgDEzwOgDMNoAxiwAoy/A6Acw+gOMWQHGbABjAMAYCDBmBxhzAIw5AcZcAGNugDEPwJgXYMwHMOYHGAsAjAUBxkIAY2GAsQjAWBRgLAYwFgcYSwCMJQHGUgBjaYCxDMBYFmAsBzCWBxgrAIwVAcZKAGNlgLEKwFgVYKwGMFYHGGsAjDUBxloAY22AsQ7AWBdgrAcw1gcYGwCMDQHGIICxEcDYGGBsAjA2BRibAYzNAcYWAGNLgLEVwNgaYGwDMLYFGNsBjO0Bxg4AY0eAsRPA2Blg7AIwdgUYuwGM3QHGHgBjT4CxF8DYG2DsAzD2BRj7AYz9AcYBAONAgHEQwDgYYBwCMA4FGIcBjMMBxhEA40iAcRTAOBpgHAMwjgUYxwGM4wHGCQDjRIBxEsA4GWCcAjBOBRinAYzTAcYZAONMgHEWwDgbYJwDMM4FGOcBjPMBxgUA40KAcRHAuBhgXAIwLgUYlwGMywHGFQDjSoBxFcC4GmBcAzCuBRjXAYzrAcYNAONGgHETwLgZYNwCMG4FGLcBjNsBxh0A406AcRfAuBtg3AMw7gUY9wGM+wHGAwDjQYDxEMB4GGA8AjAeBRiPAYzHAcYTAONJgPEUwHgaYDwDMJ4FGM8BjOcBxgsA40WA8RLAeBlgvAIwXgUYrwGM1wHGGwDjTYDxFsB4G2C8AzDeBRjvAYz3AcYHAONDgPERwPgYYHwCMD4FGJ8BjM8BxhcA40uA8RXA+BpgfAMwvgUY3wGM7wHGDwDjR4DxE8D4GWD8AjB+BRi/AYzfAcYfAONPgPEXwPgbYHSLZX1jKIAxNMAYBmAMCzCGAxjDA4wRAMaIAGMkgDEywBgFYIwKMEYDGKMDjDEAxpgAYyyAMTbAGAdgjAswxgMY4wOMCQDGhABjIoAxMcCYBGBMCjAmAxiTA4wpAMaUAGMqgDE1wOgOMHoAjGkAxrQAoyfA6AUwegOM6QDG9ABjBoAxI8CYCWDMDDD6AIw2gDELwOgLMPoBjP4AY1aAMRvAGAAwBgKM2QHGHABjToAxF8CYG2DMAzDmBRjzAYz5AcYCAGNBgLEQwFgYYCwCMBYFGIsBjMUBxhIAY0mAsRTAWBpgLAMwlgUYywGM5QHGCgBjRYCxEsBYGWCsAjBWBRirAYzVAcYaAGNNgLEWwFgbYKwDMNYFGOsBjPUBxgYAY0OAMQhgbAQwNgYYmwCMTQHGZgBjc4CxBcDYEmBsBTC2BhjbAIxtAcZ2AGN7gLEDwNgRYOwEMHYGGLsAjF0Bxm4AY3eAsQfA2BNg7AUw9gYY+wCMfQHGfgBjf4BxAMA4EGAcBDAOBhiHAIxDAcZhAONwgHEEwDgSYBwFMI4GGMcAjGMBxnEA43iAcQLAOBFgnAQwTgYYpwCMUwHGaQDjdIBxBsA4E2CcBTDOFjSGcfv3z6/U//rzt+NPN/d/2/9jE74+Wf38grJlCbL52ur5ZAmsH+Dv4+dfP2uALcDmH+DfMEuAr29QgF9AtsD6gdl8Am1+vkG2Rv6Bvo0c/4d/pJYriGEL4zAam0jp+Ps/a79N1ozNpVTcm/H5oYVvvPGZUsZQ7vKNbvyEVuyTP/2s0O6C98JNPtjGPQntLt+PYQTvdfAMhQmWof+n++/zZz+2UO6WvP8+4Rx7Dev2nz/SffErtU5WpZ2/IU434TwEhNW9/02iWf9LSVOAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswHGOQDjXIBxHsA4H2BcADAuBBgXAYyLAcYlAONSgHEZwLgcYFwBMK4EGFcBjKsBxjUA41qAcR3AuB5g3AAwbgQYNwGMmwHGLQDjVoBxG8C4HWDcATDuBBh3AYy7AcY9AONegHEfwLgfYDwAMB4EGA8BjIcBxiMA41GA8RjAeBxgPAEwngQYTwGMpwHGMwDjWYDxHMB4HmC8ADBeBBgvAYyXAcYrAONVgPEawHgdYLwBMN4EGG8BjLcBxjsA412A8R7AeB9gfAAwPgQYHwGMjwHGJwDjU4DxGcD4HGB8ATC+BBhfAYyvAcY3AONbgPEdwPgeYPwAMH4EGD8BjJ8Bxi8A41eA8RvA+B1g/AEw/gQYfwGMvwFGt+jWN4YCGEMDjGEAxrAAYziAMTzAGAFgjAgwRgIYIwOMUQDGqABjNIAxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwpgIYUwOM7gCjB8CYBmBMCzB6AoxeAKM3wJgOYEwPMGYAGDMCjJkAxswAow/AaAMYswCMvgCjH8DoDzBmBRizAYwBAGMgwJgdYMwBMOYEGHMBjLkBxjwAY16AMR/AmB9gLAAwFgQYCwGMhQHGIgBjUYCxGMBYHGAsATCWBBhLAYylAcYyAGNZgLEcwFgeYKwAMFYEGCsBjJUBxioAY1WAsRrAWB1grAEw1gQYawGMtQHGOgBjXYCxHsBYH2BsADA2BBiDAMZGAGNjgLEJwNgUYGwGMDYHGFsAjC0BxlYAY2uAsQ3A2BZgbAcwtgcYOwCMHQHGTgBjZ4CxC8DYFWDsBjB2Bxh7AIw9AcZeAGNvgLEPwNgXYOwHMPYHGAcAjAMBxkEA42CAcQjAOBRgHAYwDgcYRwCMIwHGUQDjaIBxDMA4FmAcBzCOBxgnAIwTAcZJAONkgHEKwDgVYJwGME4HGGcAjDMBxlkA42yAcQ7AOBdgnAcwzgcYFwCMCwHGRQDjYoBxCcC4FGBcBjAuBxhXAIwrAcZVAONqgHENwLgWYFwHMK4HGDcAjBsBxk0A42aAcQvAuBVg3AYwbgcYdwCMOwHGXQDjboBxD8C4F2DcBzDuBxgPAIwHAcZDAONhgPEIwHgUYDwGMB4HGE8AjCcBxlMA42mA8QzAeBZgPAcwngcYLwCMFwHGSwDjZYDxCsB4FWC8BjBeBxhvAIw3AcZbAONtgPEOwHgXYLwHMN4HGB8AjA8BxkcA42OA8QnA+BRgfAYwPgcYXwCMLwHGVwDja4DxDcD4FmB8BzC+Bxg/AIwfAcZPAONngPELwPgVYPwGMH4HGH8AjD8Bxl8A42+A0S2G9Y2hAMbQAGMYgDEswBgOYAwPMEYAGCMCjJEAxsgAYxSAMSrAGA1gjA4wxgAYYwKMsQDG2ABjHIAxLsAYD2CMDzAmABgTAoyJAMbEAGMSgDEpwJgMYEwOMKYAGFMCjKkAxtQAozvA6AEwpgEY0wKMngCjF8DoDTCmAxjTA4wZAMaMAGMmgDEzwOgDMNoAxiwAoy/A6Acw+gOMWQHGbABjAMAYCDBmBxhzAIw5AcZcAGNugDEPwJgXYMwHMOYHGAsAjAUBxkIAY2GAsQjAWBRgLAYwFgcYSwCMJQHGUgBjaYCxDMBYFmAsBzCWBxgrAIwVAcZKAGNlgLEKwFgVYKwGMFYHGGsAjDUBxloAY22AsQ7AWBdgrAcw1gcYGwCMDQHGIICxEcDYGGBsAjA2BRibAYzNAcYWAGNLgLEVwNgaYGwDMLYFGNsBjO0Bxg4AY0eAsRPA2Blg7AIwdgUYuwGM3QHGHgBjT4CxF8DYG2DsAzD2BRj7AYz9AcYBAONAgHEQwDgYYBwCMA4FGIcBjMMBxhEA40iAcRTAOBpgHAMwjgUYxwGM4wHGCQDjRIBxEsA4GWCcAjBOBRinAYzTAcYZAONMgHEWwDgbYJwDMM4FGOcBjPMBxgUA40KAcRHAuBhgXAIwLgUYlwGMywHGFQDjSoBxFcC4GmBcAzCuBRjXAYzrAcYNAONGgHETwLgZYNwCMG4FGLcBjNsBxh0A406AcRfAuBtg3AMw7gUY9wGM+wHGAwDjQYDxEMB4GGA8AjAeBRiPAYzHAcYTAONJgPEUwHgaYDwDMJ4FGM8BjOcBxgsA40WA8RLAeBlgvAIwXgUYrwGM1wHGGwDjTYDxFsB4G2C8AzDeBRjvAYz3AcYHAONDgPERwPgYYHwCMD4FGJ8BjM8BxhcA40uA8RXA+BpgfAMwvgUY3wGM7wHGDwDjR4DxE8D4GWD8AjB+BRi/AYzfAcYfAONPgPEXwPgbYHSLaX1jKIAxNMAYBmAMCzCGAxjDA4wRAMaIAGMkgDEywBgFYIwKMEYDGKMDjDEAxpgAYyyAMTbAGAdgjAswxgMY4wOMCQDGhABjIoAxMcCYBGBMCjAmAxiTA4wpAMaUAGMqgDE1wOgOMHoAjGkAxrQAoyfA6AUwegOM6QDG9ABjBoAxI8CYCWDMDDD6AIw2gDELwOgLMPoBjP4AY1aAMRvAGAAwBgKM2QHGHABjToAxF8CYG2DMAzDmBRjzAYz5AcYCAGNBgLEQwFgYYCwCMBYFGIsBjMUBxhIAY0mAsRTAWBpgLAMwlgUYywGM5QHGCgBjRYCxEsBYGWCsAjBWBRirAYzVAcYaAGNNgLEWwFgbYKwDMNYFGOsBjPUBxgYAY0OAMQhgbAQwNgYYmwCMTQHGZgBjc4CxBcDYEmBsBTC2BhjbAIxtAcZ2AGN7gLEDwNgRYOwEMHYGGLsAjF0Bxm4AY3eAsQfA2BNg7AUw9gYY+wCMfQHGfgBjf4BxAMA4EGAcBDAOBhiHAIxDAcZhAONwgHEEwDgSYBwFMI4GGMcAjGMBxnEA43iAcQLAOBFgnAQwTgYYpwCMUwHGaQDjdIBxBsA4E2CcBTDOBhjnAIxzAcZ5AON8gHEBwLgQYFwEMC4GGJcAjEsBxmUA43KAcQXAuBJgXAUwrgYY1wCMawHGdQDjeoBxA8C4EWDcBDBuBhi3AIxbAcZtAON2gHEHwLgTYNwFMO4GGPcAjHsBxn0A436A8QDAeBBgPAQwHgYYjwCMRwHGYwDjcYDxBMB4EmA8BTCeBhjPAIxnAcZzAON5gPECwHgRYLwEMF4GGK8AjFcBxmsA43WA8QbAeBNgvAUw3gYY7wCMdwHGewDjfYDxAcD4EGB8BDA+BhifAIxPAcZnAONzgPEFwPgSYHwFML4GGN8AjG8BxncA43uA8QPA+BFg/AQwfgYYvwCMXwHGbwDjd4DxB8D4E2D8BTD+BhjdYlnfGApgDA0whgEYwwKM4QDG8ABjBIAxIsAYCWCMDDBGARijAozRAMboAGMMgDEmwBgLYIwNMMYBGOMCjPEAxvgAYwKAMSHAmAhgTAwwJgEYkwKMyQDG5ABjCoAxJcCYCmBMDTC6A4weAGMagDEtwOgJMHoBjN4AYzqAMT3AmAFgzAgwZgIYMwOMPgCjDWDMAjD6Aox+AKM/wJgVYMwGMAYAjIEAY3aAMQfAmBNgzAUw5gYY8wCMeQHGfABjfoCxAMBYEGAsBDAWBhiLAIxFAcZiAGNxgLEEwFgSYCwFMJYGGMsAjGUBxnIAY3mAsQLAWBFgrAQwVgYYqwCMVQHGagBjdYCxBsBYE2CsBTDWBhjrAIx1AcZ6AGN9gLEBwNgQYAwCGBsBjI0BxiYAY1OAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswWNoYIZUzr+HtbdzS2c/QpvvyLYr4j2K5L9imy/otivqPYrmv2Kbr9i2K+Y9iuW/Yptv+LYr7j2K579im+/EtivhPYrkf1KbL+S2K+k9iuZ/Upuv1LYr5T2K5X9Sm2/3N3/XS/xwoVyly1cGIfRKFhEx9//WQtnshbeZC2CyVpEk7VIJmuRTdaimKxFNVmLZrIW3WQthslaTJO1WCZrsU3W4pisxTVZi2eyFt9kLYHJWkKTtUQma4lN1pKYrCU1WUtmspbcZC2FyVpKk7VUJmupTdbcHWvBf8I4/szr+NPnz35ss1L/+7N8fbL6+QVlyxJk87XV88kSWD/A38fPv37WAFuAzT/Av2GWAF/foAC/gGyB9QOz+QTa/HyDbI38A30bOT4srLvcZ3kI5jec/TOiugUbNsF+pOeOpDu4N427IjiNu/znphVsBq19p3X/d4GFPtfHLdiPdFjnCoY1nOD98YSG1VMprF7uimAvhbB6Wzysxr69YWFdIBjW8IL3Jx00rOmUwpreXRGcXiGsGSweVmPfGZTCqvEtxdvkHv1pXTO6M4bUYsEhFUGwLzNBh1QmpSGV2V0RnFlhSPlYfEgZ+/aBDCljmGZUGFI2yJBaJjikIgr2ZRbokMqiNKR83RXBvgpDys/iQ8rYtx9kSBnD1KYwpPwhQ2ql4JCKJNiXWaFDKqvSkMrmrgjOpjCkAiw+pIx9B0CGlDFM/RWGVCBkSK0RHFKRBfsyO3RIZVcaUjncFcE5FIZUTosPKWPfOSFDyhimgQpDKhdkSK0XHFJRBPsyN3RI5VYaUnncFcF5FIZUXosPqf+6UZAhZQzTXApDKh9kSG0SHFJRBfsyP3RI5VcaUgXcFcEFFIZUQYsPKWPfBSFDyhim+RSGVCHIkNoqOKSiCfZlYeiQKqw0pIq4K4KLKAypohYfUsa+i0KGlDFMCykMqWKQIbVDcEhFF+zL4tAhVVxpSJVwVwSXUBhSJS0+pIx9l4QMKWOYFlMYUqUgQ2q34JCKIdiXpaFDqrTSkCrjrgguozCkylp8SBn7LgsZUsYwLaUwpMpBhtQ+wSEVU7Avy0OHVHmlIVXBXRFcQWFIVbT4kDL2XREypIxhWk5hSFWCDKmDgkMqlmBfVoYOqcpKQ6qKuyK4isKQqmrxIWXsuypkSBnDtJLCkKoGGVJHBIdUbMG+rA4dUtWVhlQNd0VwDYUhVdPiQ8rYd03IkDKGaTWFIVULMqSOCw6pOIJ9WRs6pGorDak67orgOgpDqq7Fh5Sx77qQIWUM01oKQ6oeZEidEhxScQX7sj50SNVXGlIN3BXBDRSGVEOLDylj3w0hQ8oYpvUUhlQQZEidFRxS8QT7shF0SDVSGlKN3RXBjRWGVBOLDylj300gQ8oYpkEKQ6opZEhdEBxS8QX7shl0SDVTGlLN3RXBzRWGVAuLDylj3y0gQ8oYpk0VhlRLyJC6LDikEgj2ZSvokGqlNKRauyuCWysMqTYWH1LGvttAhpQxTFsqDKm2kCF1TXBIJRTsy3bQIdVOaUi1d1cEt1cYUh0sPqSMfXeADCljmLZVGFIdIUPqpuCQSiTYl52gQ6qT0pDq7K4I7qwwpLpYfEgZ++4CGVLGMO2oMKS6QobUHcEhlViwL7tBh1Q3pSHV3V0R3F1hSPWw+JAy9t0DMqSMYdpVYUj1hAyp+4JDKolgX/aCDqleSkOqt7siuLfCkOpj8SFl7LsPZEgZw7SnwpDqCxlSjwSHVFLBvuwHHVL9lIZUf3dFcH+FITXA4kPK2PcAyJAyhmlfhSE1EDKkngoOqWSCfTkIOqQGKQ2pwe6K4MEKQ2qIxYeUse8hkCFlDNOBCkNqKGRIvRAcUskF+3IYdEgNUxpSw90VwcMVhtQIiw8pY98jIEPKGKZDFYbUSMiQei04pFII9uUo6JAapTSkRrsrgkcrDKkxFh9Sxr7HQIaUMUxHKgypsZAh9U5wSKUU7Mtx0CE1TmlIjXdXBI9XGFITLD6kjH1PgAwpY5iOVRhSEyFD6qPgkEol2JeToENqktKQmuyuCJ6sMKSmWHxIGfueAhlSxjCdqDCkpkKG1BfBIZVasC+nQYfUNKUhNd1dETxdYUjNsPiQMvY9AzKkjGE6VWFIzYQMqe+CQ8pdsC9nQYfULKUhNdtdETxbYUjNsfiQMvY9BzKkjGE6U2FIzXW39r6N+zNXYd/zLL7vUHbfPIV9hxIeqsY/RmHd/vNHuh6/Uuv8Yyrt/A1xugn/IxUQVvf+N4kmX1dpY1OAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswHGOQDjXIBxHsA4H2BcADAuBBgXAYyLAcYlAONSgHEZwLgcYFwBMK4EGFcBjKsBxjUA41qAcR3AuB5g3AAwbgQYNwGMmwHGLQDjVoBxG8C4HWDcATDuBBh3AYy7AcY9AONegHEfwLgfYDwAMB4EGA8BjIcBxiMA41GA8RjAeBxgPAEwngQYTwGMpwHGMwDjWYDxHMB4HmC8ADBeBBgvAYyXAcYrAONVgPEawHgdYLwBMN4EGG8BjLcBxjsA412A8R7AeB9gfAAwPgQYHwGMjwHGJwDjU4DxGcD4HGB8ATC+BBhfAYyvAcY3AONbgPEdwPgeYPwAMH4EGD8BjJ8Bxi8A41eA8RvA+B1g/AEw/gQYfwGMvwFGt+jWN4YCGEMDjGEAxrAAYziAMTzAGAFgjAgwRgIYIwOMUQDGqABjNIAxOsAYA2CMCTDGAhhjA4xxAMa4AGM8gDE+wJgAYEwIMCYCGBMDjEkAxqQAYzKAMTnAmAJgTAkwpgIYUwOM7gCjB8CYBmBMCzB6AoxeAKM3wJgOYEwPMGYAGDMCjJkAxswAow/AaAMYswCMvgCjH8DoDzBmBRizAYwBAGMgwJgdYMwBMOYEGHMBjLkBxjwAY16AMR/AmB9gLAAwFgQYCwGMhQHGIgBjUYCxGMBYHGAsATCWBBhLAYylAcYyAGNZgLEcwFgeYKwAMFYEGCsBjJUBxioAY1WAsRrAWB1grAEw1gQYawGMtQHGOgBjXYCxHsBYH2BsADA2BBiDAMZGAGNjgLEJwNgUYGwGMDYHGFsAjC0BxlYAY2uAsQ3A2BZgbAcwtgcYOwCMHQHGTgBjZ4CxC8DYFWDsBjB2Bxh7AIw9AcZeAGNvgLEPwNgXYOwHMPYHGAcAjAMBxkEA42CAcQjAOBRgHAYwDgcYRwCMIwHGUQDjaIBxDMA4FmAcBzCOBxgnAIwTAcZJAONkgHEKwDgVYJwGME4HGGcAjDMBxlkA42yAcQ7AOBdgnAcwzgcYFwCMCwHGRQDjYoBxCcC4FGBcBjAuBxhXAIwrAcZVAONqgHENwLgWYFwHMK4HGDcAjBsBxk0A42aAcQvAuBVg3AYwbgcYdwCMOwHGXQDjboBxD8C4F2DcBzDuBxgPAIwHAcZDAONhgPEIwHgUYDwGMB4HGE8AjCcBxlMA42mA8QzAeBZgPAcwngcYLwCMFwHGSwDjZYDxCsB4FWC8BjBeBxhvAIw3AcZbAONtgPEOwHgXYLwHMN4HGB8AjA8BxkcA42OA8QnA+BRgfAYwPgcYXwCMLwHGVwDja4DxDcD4FmB8BzC+Bxg/AIwfAcZPAONngPELwPgVYPwGMH4HGH8AjD8Bxl8A42+A0S2G9Y2hAMbQAGMYgDEswBgOYAwPMEYAGCMCjJEAxsgAYxSAMSrAGA1gjA4wxgAYYwKMsQDG2ABjHIAxLsAYD2CMDzAmABgTAoyJAMbEAGMSgDEpwJgMYEwOMKYAGFMCjKkAxtQAozvA6AEwpgEY0wKMngCjF8DoDTCmAxjTA4wZAMaMAGMmgDEzwOgDMNoAxiwAoy/A6Acw+gOMWQHGbABjAMAYCDBmBxhzAIw5AcZcAGNugDEPwJgXYMwHMOYHGAsAjAUBxkIAY2GAsQjAWBRgLAYwFgcYSwCMJQHGUgBjaYCxDMBYFmAsBzCWBxgrAIwVAcZKAGNlgLEKwFgVYKwGMFYHGGsAjDUBxloAY22AsQ7AWBdgrAcw1gcYGwCMDQHGIICxEcDYGGBsAjA2BRibAYzNAcYWAGNLgLEVwNgaYGwDMLYFGNsBjO0Bxg4AY0eAsRPA2Blg7AIwdgUYuwGM3QHGHgBjT4CxF8DYG2DsAzD2BRj7AYz9AcYBAONAgHEQwDgYYBwCMA4FGIcBjMMBxhEA40iAcRTAOBpgHAMwjgUYxwGM4wHGCQDjRIBxEsA4GWCcAjBOBRinAYzTAcYZAONMgHEWwDgbYJwDMM4FGOcBjPMBxgUA40KAcRHAuBhgXAIwLgUYlwGMywHGFQDjSoBxFcC4GmBcAzCuBRjXAYzrAcYNAONGgHETwLgZYNwCMG4FGLcBjNsBxh0A406AcRfAuBtg3AMw7gUY9wGM+wHGAwDjQYDxEMB4GGA8AjAeBRiPAYzHAcYTAONJgPEUwHgaYDwDMJ4FGM8BjOcBxgsA40WA8RLAeBlgvAIwXgUYrwGM1wHGGwDjTYDxFsB4G2C8AzDeBRjvAYz3AcYHAONDgPERwPgYYHwCMD4FGJ8BjM8BxhcA40uA8RXA+BpgfAMwvgUY3wGM7wHGDwDjR4DxE8D4GWD8AjB+BRi/AYzfAcYfAONPgPEXwPgbYHSLaX1jKIAxNMAYBmAMCzCGAxjDA4wRAMaIAGMkgDEywBgFYIwKMEYDGKMDjDEAxpgAYyyAMTbAGAdgjAswxgMY4wOMCQDGhABjIoAxMcCYBGBMCjAmAxiTA4wpAMaUAGMqgDE1wOgOMHoAjGkAxrQAoyfA6AUwegOM6QDG9ABjBoAxI8CYCWDMDDD6AIw2gDELwOgLMPoBjP4AY1aAMRvAGAAwBgKM2QHGHABjToAxF8CYG2DMAzDmBRjzAYz5AcYCAGNBgLEQwFgYYCwCMBYFGIsBjMUBxhIAY0mAsRTAWBpgLAMwlgUYywGM5QHGCgBjRYCxEsBYGWCsAjBWBRirAYzVAcYaAGNNgLEWwFgbYKwDMNYFGOsBjPUBxgYAY0OAMQhgbAQwNgYYmwCMTQHGZgBjc4CxBcDYEmBsBTC2BhjbAIxtAcZ2AGN7gLEDwNgRYOwEMHYGGLsAjF0Bxm4AY3eAsQfA2BNg7AUw9gYY+wCMfQHGfgBjf4BxAMA4EGAcBDAOBhiHAIxDAcZhAONwgHEEwDgSYBwFMI4GGMcAjGMBxnEA43iAcQLAOBFgnAQwTgYYpwCMUwHGaQDjdIBxBsA4E2CcBTDOBhjnAIxzAcZ5AON8gHEBwLgQYFwEMC4GGJcAjEsBxmUA43KAcQXAuBJgXAUwrgYY1wCMawHGdQDjeoBxA8C4EWDcBDBuBhi3AIxbAcZtAON2gHEHwLgTYNwFMO4GGPcAjHsBxn0A436A8QDAeBBgPAQwHgYYjwCMRwHGYwDjcYDxBMB4EmA8BTCeBhjPAIxnAcZzAON5gPECwHgRYLwEMF4GGK8AjFcBxmsA43WA8QbAeBNgvAUw3gYY7wCMdwHGewDjfYDxAcD4EGB8BDA+BhifAIxPAcZnAONzgPEFwPgSYHwFML4GGN8AjG8BxncA43uA8QPA+BFg/AQwfgYYvwCMXwHGbwDjd4DxB8D4E2D8BTD+BhjdYlnfGApgDA0whgEYwwKM4QDG8ABjBIAxIsAYCWCMDDBGARijAozRAMboAGMMgDEmwBgLYIwNMMYBGOMCjPEAxvgAYwKAMSHAmAhgTAwwJgEYkwKMyQDG5ABjCoAxJcCYCmBMDTC6A4weAGMagDEtwOgJMHoBjN4AYzqAMT3AmAFgzAgwZgIYMwOMPgCjDWDMAjD6Aox+AKM/wJgVYMwGMAYAjIEAY3aAMQfAmBNgzAUw5gYY8wCMeQHGfABjfoCxAMBYEGAsBDAWBhiLAIxFAcZiAGNxgLEEwFgSYCwFMJYGGMsAjGUBxnIAY3mAsQLAWBFgrAQwVgYYqwCMVQHGagBjdYCxBsBYE2CsBTDWBhjrAIx1AcZ6AGN9gLEBwNgQYAwCGBsBjI0BxiYAY1OAsRnA2BxgbAEwtgQYWwGMrQHGNgBjW4CxHcDYHmDsADB2BBg7AYydAcYuAGNXgLEbwNgdYOwBMPYEGHsBjL0Bxj4AY1+AsR/A2B9gHAAwDgQYBwGMgwHGIQDjUIBxGMA4HGAcATCOBBhHAYyjAcYxAONYgHEcwDgeYJwAME4EGCcBjJMBxikA41SAcRrAOB1gnAEwzgQYZwGMswWNoYMZfR1/n+/u5rbAfi20X4vs12L7tcR+LbVfy+zXcvu1wn6ttF+r7Ndq+7XGfq21X+vs13r7tcF+bbRfm+zXZvu1xX5ttV/b7Nd2+7XDfu20X7vs1277tcd+7bVf++zXfvt1wH4dtF+H7Ndh+3XEfh21X8fs13H7dcJ+nbRfp+zXaft1xn6dtV/n7Nd5+3XBfl10/9d+Lrn/+x6I34xQ7nI3w7CFcRiNm5DS8fd/1haYrC00WVtksrbYZG2JydpSk7VlJmvLTdZWmKytNFlbZbK22mRtjcnaWpO1dSZr603WNpisbTRZ22SyttlkbYvJ2laTtW0ma9tN1naYrO00WdtlsrbbZG2Pydpek7V9Jmv7TdYOmKwdNFk7ZLJ22GTtiMnaUZO1YyZrx03WTpisnTRZO2Wydtpk7YzJ2lmTtXMma+dN1i6YrF00WbvkWAvr9q8///86mIP//PMPUV7Hn74+Wf38grJlCbL52ur5ZAmsH+Dv4+dfP2uALcDmH+DfMEuAr29QgF9AtsD6gdl8Am1+vkG2Rv6Bvo0cs9SoodRnXXaXmvE2Wzj7Z0R1C/YPUrCfUCFq4PNnPzY597/+bfrn54q7Itj4cOnPvSrYDFr7vhosFEKfq2IN5bCG/Nw/res1d2vve3pqN7drCvu+LrjvMPbPSOz2nz+SddWo7XV36xtvSBul/8X7J5hSGzaa3dh0aOFChhIcxjctPjSMvd5UGBq33HWeOm85vnka31KiBevR4D+a39R8/uzHJtAPtn/+YrJ1sc8OXtfbjn/477i7/ffHgNuOxgm+dsdxg4L/hIXckP+lK4vDZbstODjuCDeKdMCNwXGb8Y3QV2vI3VUacneDZYhSi3vC3xL/2X/wH6nPd9Opre2eu/WN96WNWg1q5W91D5SC/8AJwbdyXR+6hojtIWCIPLL4EPmvpnyk8K/cY8Dj3GOFfT9RGnhPTJ4WpB7fghoZP0GS/wOoTfL+G4+wYYPt16hHQNj/Xgvp/mgSzfrDpSnA2AxgbA4wtgAYWwKMrQDG1gBjG4CxLcDYDmBsDzB2ABg7AoydAMbOAGMXgLErwNgNYOwOMPYAGHsCjL0Axt4AYx+AsS/A2A9g7A8wDgAYBwKMgwDGwQDjEIBxKMA4DGAcDjCOABhHAoyjAMbRAOMYgHEswDgOYBwPME4AGCcCjJMAxskA4xSAcSrAOA1gnA4wzgAYZwKMswDG2QDjHIBxLsA4D2CcDzAuABgXAoyLAMbFAOMSgHEpwLgMYFwOMK4AGFcCjKsAxtUA4xqAcS3AuA5gXA8wbgAYNwKMmwDGzQDjFoBxK8C4DWDcDjDuABh3Aoy7AMbdAOMegHEvwLgPYNwPMB4AGA8CjIcAxsMA4xGA8SjAeAxgPA4wngAYTwKMpwDG0wDjGYDxLMB4DmA8DzBeABgvAoyXAMbLAOMVgPEqwHgNYLwOMN4AGG8CjLcAxtsA4x2A8S7AeA9gvA8wPgAYHwKMjwDGxwDjE4DxKcD4DGB8DjC+ABhfAoyvAMbXAOMbgPEtwPgOYHwPMH4AGD8CjJ8Axs8A4xeA8SvA+A1g/A4w/gAYfwKMvwDG3wCjW3TrG0MBjKEBxjAAY1iAMRzAGB5gjAAwRgQYIwGMkQHGKABjVIAxGsAYHWCMATDGBBhjAYyxAcY4AGNcgDEewBgfYEwAMCYEGBMBjIkBxiQAY1KAMRnAmBxgTAEwpgQYUwGMqQFGd4DRA2BMAzCmBRg9AUYvgNEbYEwHMKYHGDMAjBkBxkwAY2aA0QdgtAGMWQBGX4DRD2D0BxizAozZAMYAgDEQYMwOMOYAGHMCjLkAxtwAYx6AMS/AmA9gzA8wFgAYCwKMhQDGwgBjEYCxKMBYDGAsDjCWABhLAoylAMbSAGMZgLEswFgOYCwPMFYAGCsCjJUAxsoAYxWAsSrAWA1grA4w1gAYawKMtQDG2gBjHYCxLsBYD2CsDzA2ABgbAoxBAGMjgLExwNgEYGwKMDYDGJsDjC0AxpYAYyuAsTXA2AZgbAswtgMY2wOMHQDGjgBjJ4CxM8DYBWDsCjB2Axi7A4w9AMaeAGMvgLE3wNgHYOwLMPYDGPsDjAMAxoEA4yCAcTDAOARgHAowDgMYhwOMIwDGkQDjKIBxNMA4BmAcCzCOAxjHA4wTAMaJAOMkgHEywDgFYJwKME4DGKcDjDMAxpkA4yyAcTbAOAdgnAswzgMY5wOMCwDGhQDjIoBxMcC4BGBcCjAuAxiXA4wrAMaVAOMqgHE1wLgGYFwLMK4DGNcDjBsAxo0A4yaAcTPAuAVg3AowbgMYtwOMOwDGnQDjLoBxN8C4B2DcCzDuAxj3A4wHAMaDAOMhgPEwwHgEYDwKMB4DGI8DjCcAxpMA4ymA8TTAeAZgPAswngMYzwOMFwDGiwDjJYDxMsB4BWC8CjBeAxivA4w3AMabAOMtgPE2wHgHYLwLMN4DGO8DjA8AxocA4yOA8THA+ARgfAowPgMYnwOMLwDGlwDjK4DxNcD4BmB8CzC+AxjfA4wfAMaPAOMngPEzwPgFYPwKMH4DGL8DjD8Axp8A4y+A8TfA6BbD+sZQAGNogDEMwBgWYAwHMIYHGCMAjBEBxkgAY2SAMQrAGBVgjAYwRgcYYwCMMQHGWABjbIAxDsAYF2CMBzDGBxgTAIwJAcZEAGNigDEJwJgUYEwGMCYHGFMAjCkBxlQAY2qA0R1g9AAY0wCMaQFGT4DRC2D0BhjTAYzpAcYMAGNGgDETwJgZYPQBGG0AYxaA0Rdg9AMY/QHGrABjNoAxAGAMBBizA4w5AMacAGMugDE3wJgHYMwLMOYDGPMDjAUAxoIAYyGAsTDAWARgLAowFgMYiwOMJQDGkgBjKYCxNMBYBmAsCzCWAxjLA4wVAMaKAGMlgLEywFgFYKwKMFYDGKsDjDUAxpoAYy2AsTbAWAdgrAsw1gMY6wOMDQDGhgBjEMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPgIYHwMMD4BGJ8CjM8AxucA4wuA8SXA+ApgfA0wvgEY3wKM7wDG9wDjB4DxI8D4CWD8DDB+ARi/AozfAMbvAOMPgPEnwPgLYPwNMLrFtL4xFMAYGmAMAzCGBRjDAYzhAcYIAGNEgDESwBgZYIwCMEYFGKMBjNEBxhgAY0yAMRbAGBtgjAMwxgUY4wGM8QHGBABjQoAxEcCYGGBMAjAmBRiTAYzJAcYUAGNKgDEVwJgaYHQHGD0AxjQAY1qA0RNg9AIYvQHGdABjeoAxA8CYEWDMBDBmBhh9AEYbwJgFYPQFGP0ARn+AMSvAmA1gDAAYAwHG7ABjDoAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYwOAsSHAGAQwNgIYGwOMTQDGpgBjM4CxOcDYAmBsCTC2AhhbA4xtAMa2AGM7gLE9wNgBYOwIMHYCGDsDjF0Axq4AYzeAsTvA2ANg7Akw9gIYewOMfQDGvgBjP4CxP8A4AGAcCDAOAhgHA4xDAMahAOMwgHE4wDgCYBwJMI4CGEcDjGMAxrEA4ziAcTzAOAFgnAgwTgIYJwOMUwDGqQDjNIBxOsA4A2CcCTDOAhhnA4xzAMa5AOM8gHE+wLgAYFwIMC4CGBcDjEsAxqUA4zKAcTnAuAJgXAkwrgIYVwOMawDGtQDjOoBxPcC4AWDcCDBuAhg3A4xbAMatAOM2gHE7wLgDYNwJMO4CGHcDjHsAxr0A4z6AcT/AeABgPAgwHgIYDwOMRwDGowDjMYDxOMB4AmA8CTCeAhhPA4xnAMazAOM5gPE8wHgBYLwIMF4CGC8DjFcAxqsA4zWA8TrAeANgvAkw3gIYbwOMdwDGuwDjPYDxPsD4AGB8CDA+AhgfA4xPAManAOMzgPE5wPgCYHwJML4CGF8DjG8AxrcA4zuA8T3A+AFg/AgwfgIYPwOMXwDGrwDjN4DxO8D4A2D8CTD+Ahh/A4xusaxvDAUwhgYYwwCMYQHGcABjeIAxAsAYEWCMBDBGBhijAIxRAcZoAGN0gDEGwBgTYIwFMMYGGOMAjHEBxngAY3yAMQHAmBBgTAQwJgYYkwCMSQHGZABjcoAxBcCYEmBMBTCmBhjdAUYPgDENwJgWYPQEGL0ARm+AMR3AmB5gzAAwZgQYMwGMmQFGH4DRBjBmARh9AUY/gNEfYMwKMGYDGAMAxkCAMTvAmANgzAkw5gIYcwOMeQDGvABjPoAxP8BYAGAsCDAWAhgLA4xFAMaiAGMxgLE4wFgCYCwJMJYCGEsDjGUAxrIAYzmAsTzAWAFgrAgwVgIYKwOMVQDGqgBjNYCxOsBYA2CsCTDWAhhrA4x1AMa6AGM9gLE+wNgAYGwIMAYBjI0AxsYAYxOAsSnA2AxgbA4wtgAYWwKMrQDG1gBjG4CxLcDYDmBsDzB2ABg7AoydAMbOAGMXgLErwNgNYOwOMPYAGHsCjL0Axt4AYx+AsS/A2A9g7A8wDgAYBwKMgwDGwQDjEIBxKMA4DGAcDjCOABhHAoyjAMbRAOMYgHEswDgOYBwPME4AGCcCjJMAxskA4xSAcSrAOA1gnA4wzgAYZwKMswDG2QpGDed9dzlnqGDGlI6/P7V//jP79dx+vbBfL+3XK/v12n69sV9v7dc7+/Xefn2wXx/t1yf79dl+fbFfX+3XN/v13X79sF8/7dcv+/Xbfrl52P9v2a/Q9iuM/Qprv8LZr/D2K4L9iujx73qJFy6UcOHCOIxGwSI6/v7P2jOTtecmay9M1l6arL0yWXttsvbGZO2tydo7k7X3JmsfTNY+mqx9Mln7bLL2xWTtq8naN5O17yZrP0zWfpqs/TJZ+22yZjRoyLVQJmuhTdbCmKyFNVkLZ7IW3mQtgslaRMeam5vCP8ip7Z9pr0lo4c8Nnjtfn6x+fkHZsgTZfG31fLIE1g/w9/Hzr581wBZg8w/wb5glwNc3KMAvIFtg/cBsPoE2P98gWyP/QN9Gjg+L5KGTYeNzU/4fXNfISnWN/D/U9U/NWnU1PlfKGEWprlGC1fWfnzDCdRDsCVvwOvxpTaMq1TSq4gww+tT4niCdgWhKtYj2P/w786fmWUq5nSWY2+hKdY0erK5auRXsCVt0wdzGUKppDMXvRKEcD0PSGYipVIuYirmdq5TbuYK5jaVU11hOyK1gT9hiCeY2tlJNYyvn9rlCbuMo1SKOYm4XKOV2gWBu4yrVNa4TcivYE7a4grmNp1TTeMq5faGQ2/hKtYivmNvFSrldLJjbBEp1TeCE3Ar2hC2BYG4TKtU0oXJuXyrkNpFSLRIp5naZUm6XCeY2sVJdEzsht4I9YUssmNskSjVNopzbVwq5TapUi6SKuV2plNuVgrlNplTXZE7IrWBP2JIJ5ja5Uk2TK+f2tUJuUyjVIoVibtco5XaNYG5TKtU1pRNyK9gTtpSCuU2lVNNUyrl9o5Db1Eq1SK2Y2/VKuV0vmFt3pbq6OyG3gj1hcxfMrYdSTT2Uc/tWIbdplGqRRjG3m5Ryu0kwt2mV6prWCbkV7AlbWsHceirV1FM5t+8UcuulVAsvxdxuVcrtVsHceivV1dsJuRXsCZu3YG7TKdU0nXJu3yvkNr1SLdIr5naHUm53COY2g1JdMzght4I9YcsgmNuMSjXNqJzbDwq5zaRUi0yKud2tlNvdgrnNrFTXzE7IrWBP2DIL5tZHqaY+yrn9qJBbm1ItbIq53aeU232Cuc2iVNcsTsitYE/Ysgjm1leppr7Kuf2kkFs/pVr4Keb2oFJuDwrm1l+prv5OyK1gT9j8BXObVammWZVz+1kht9mUapFNMbdHlHJ7RDC3AUp1DXBCbgV7whYgmNtApZoGKuf2i0JusyvVIrtibo8r5fa4YG5zKNU1hxNyK9gTthyCuc2pVNOcyrn9qpDbXEq1yKWY21NKuT0lmNvcSnXN7YTcCvaELbdgbvMo1TSPcm6/KeQ2r1It8irm9qxSbs8K5jafUl3zOSG3gj1hyyeY2/xKNc2vnNvvCrktoFSLAoq5vaCU2wuCuS2oVNeCTsitYE/YCgrmtpBSTQsp5/aHQm4LK9WisGJuLyvl9rJgboso1bWIE3Ir2BO2IoK5LapU06LKuf2pkNtiSrUoppjba0q5vSaY2+JKdS3uhNwK9oStuGBuSyjVtIRybn8p5LakUi1KKub2plJubwrmtpRSXUs5IbeCPWErJZjb0ko1La2c298KuS2jVIsyirm9o5TbO4K5LatU17JOyK1gT9jKCua2nFJNyynn9r9eQi+cgfJKtSivmNv7Srm9L5jbCkp1reCE3Ar2hK2CYG4rKtW0onJuQynktpJSLSop5vaRUm4fCea2slJdKzsht4I9YassmNsqSjWtopzb0Aq5rapUi6qKuX2qlNungrmtplTXak7IrWBP2KoJ5ra6Uk2rK+c2jEJuayjVooZibl8o5faFYG5rKtW1phNyK9gTtpqCua2lVNNayrkNq5Db2kq1qK2Y29dKuX0tmNs6SnWt44TcCvaErY5gbusq1bSucm7DKeS2nlIt6inm9p1Sbt8J5ra+Ul3rOyG3gj1hqy+Y2wZKNW2gnNvwCrltqFSLhoq5/aiU24+CuQ1SqmuQE3Ir2BO2IMHcNlKqaSPl3EZQyG1jpVo0VsztF6XcfhHMbROlujZxQm4Fe8LWRDC3TZVq2lQ5txEVcttMqRbNFHP7XSm33wVz21yprs2dkFvBnrA1F8xtC6WatnDUNJz9iub2774K/iPdw2uS//FebI4//Uy4Up/tE7wWLT3+9WcrD0dB/ilgS8dgCr5m/JdShkCFUSzi//Kzsjg+y9ZSsFFbecjd3HBu/67tP40YENbtf2xOnz/7sc2JJRc0LeNcgHEewDgfYFwAMC4EGBcBjIsBxiUA41KAcRnAuBxgXAEwrgQYVwGMqwHGNQDjWoBxHcC4HmDcADBuBBg3AYybAcYtAONWgHEbwLgdYNwBMO4EGHcBjLsBxj0A416AcR/AuB9gPAAwHgQYDwGMhwHGIwDjUYDxGMB4HGA8ATCeBBhPAYynAcYzAONZgPEcwHgeYLwAMF4EGC8BjJcBxisA41WA8RrAeB1gvAEw3gQYbwGMtwHGOwDjXYDxHsB4H2B8ADA+BBgfAYyPAcYnAONTgPEZwPgcYHwBML4EGF8BjK8BxjcA41uA8R3A+B5g/AAwfgQYPwGMnwHGLwDjV4DxG8D4HWD8ATD+BBh/AYy/AUa32NY3hgIYQwOMYQDGsABjOIAxPMAYAWCMCDBGAhgjA4xRAMaoAGM0gDE6wBgDYIwJMMYCGGMDjHEAxrgAYzyAMT7AmABgTAgwJgIYEwOMSQDGpABjMoAxOcCYAmBMCTCmAhhTA4zuAKMHwJgGYEwLMHoCjF4AozfAmA5gTA8wZgAYMwKMmQDGzACjD8BoAxizAIy+AKMfwOgPMGYFGLMBjAEAYyDAmB1gzAEw5gQYcwGMuQHGPABjXoAxH8CYH2AsADAWBBgLAYyFAcYiAGNRgLEYwFgcYCwBMJYEGEsBjKUBxjIAY1mAsRzAWB5grAAwVgQYKwGMlQHGKgBjVYCxGsBYHWCsATDWBBhrAYy1AcY6AGNdgLEewFgfYGwAMDYEGIMAxkYAY2OAsQnA2BRgbAYwNgcYWwCMLQHGVgBja4CxDcDYFmBsBzC2Bxg7AIwdAcZOAGNngLELwNgVYOwGMHYHGHsAjD0Bxl4AY2+AsQ/A2Bdg7Acw9gcYBwCMAwHGQQDjYIBxCMA4FGAcBjAOBxhHAIwjAcZRAONogHEMwDgWYBwHMI4HGCcAjBMBxkkA42SAcQrAOBVgnAYwTgcYZwCMMwHGWQDjbIBxDsA4F2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwDjb4DRLY71jaEAxtAAYxiAMSzAGA5gDA8wRgAYIwKMkQDGyABjFIAxKsAYDWCMDjDGABhjAoyxAMbYAGMcgDEuwBgPYIwPMCYAGBMCjIkAxsQAYxKAMSnAmAxgTA4wpgAYUwKMqQDG1ACjO8DoATCmARjTAoyeAKMXwOgNMKYDGNMDjBkAxowAYyaAMTPA6AMw2gDGLACjL8DoBzD6A4xZAcZsAGMAwBgIMGYHGHMAjDkBxlwAY26AMQ/AmBdgzAcw5gcYCwCMBQHGQgBjYYCxCMBYFGAsBjAWBxhLAIwlAcZSAGNpgLEMwFgWYCwHMJYHGCsAjBUBxkoAY2WAsQrAWBVgrAYwVgcYawCMNQHGWgBjbYCxDsBYF2CsBzDWBxgbAIwNAcYggLERwNgYYGwCMDYFGJsBjM0BxhYAY0uAsRXA2BpgbAMwtgUY2wGM7QHGDgBjR4CxE8DYGWDsAjB2BRi7AYzdAcYeAGNPgLEXwNgbYOwDMPYFGPsBjP0BxgEA40CAcRDAOBhgHAIwDgUYhwGMwwHGEQDjSIBxFMA4GmAcAzCOBRjHAYzjAcYJAONEgHESwDgZYJwCME4FGKcBjNMBxhkA40yAcRbAOBtgnAMwzgUY5wGM8wHGBQDjQoBxEcC4GGBcAjAuBRiXAYzLAcYVAONKgHEVwLgaYFwDMK4FGNcBjOsBxg0A40aAcRPAuBlg3AIwbgUYtwGM2wHGHQDjToBxF8C4G2DcAzDuBRj3AYz7AcYDAONBgPEQwHgYYDwCMB4FGI8BjMcBxhMA40mA8RTAeBpgPAMwngUYzwGM5wHGCwDjRYDxEsB4GWC8AjBeBRivAYzXAcYbAONNgPEWwHgbYLwDMN4FGO8BjPcBxgcA40OA8RHA+BhgfAIwPgUYnwGMzwHGFwDjS4DxFcD4GmB8AzC+BRjfAYzvAcYPAONHgPETwPgZYPwCMH4FGL8BjN8Bxh8A40+A8RfA+BtgdItrfWMogDE0wBgGYAwLMIYDGMMDjBEAxogAYySAMTLAGAVgjAowRgMYowOMMQDGmABjLIAxNsAYB2CMCzDGAxjjA4wJAMaEAGMigDExwJgEYEwKMCYDGJMDjCkAxpQAYyqAMTXA6A4wegCMaQDGtACjJ8DoBTB6A4zpAMb0AGMGgDEjwJgJYMwMMPoAjDaAMQvA6Asw+gGM/gBjVoAxG8AYADAGAozZAcYcAGNOgDEXwJgbYMwDMOYFGPMBjPkBxgIAY0GAsRDAWBhgLAIwFgUYiwGMxQHGEgBjSYCxFMBYGmAsAzCWBRjLAYzlAcYKAGNFgLESwFgZYKwCMFYFGKsBjNUBxhoAY02AsRbAWBtgrAMw1gUY6wGM9QHGBgBjQ4AxCGBsBDA2BhibAIxNAcZmAGNzgLEFwNgSYGwFMLYGGNsAjG0BxnYAY3uAsQPA2BFg7AQwdgYYuwCMXQHGbgBjd4CxB8DYE2DsBTD2Bhj7AIx9AcZ+AGN/gHEAwDgQYBwEMA4GGIcAjEMBxmEA43CAcQTAOBJgHAUwjgYYxwCMYwHGcQDjeIBxAsA4EWCcBDBOBhinAIxTAcZpAON0gHEGwDgTYJwFMM4GGOcAjHMBxnkA43yAcQHAuBBgXAQwLgYYlwCMSwHGZQDjcoBxBcC4EmBcBTCuBhjXAIxrAcZ1AON6gHEDwLgRYNwEMG4GGLcAjFsBxm0A43aAcQfAuBNg3AUw7gYY9wCMewHGfQDjfoDxAMB4EGA8BDAeBhiPAIxHAcZjAONxgPEEwHgSYDwFMJ4GGM8AjGcBxnMA43mA8QLAeBFgvAQwXgYYrwCMVwHGawDjdYDxBsB4E2C8BTDeBhjvAIx3AcZ7AON9gPEBwPgQYHwEMD4GGJ8AjE8BxmcA43OA8QXA+BJgfAUwvgYY3wCMbwHGdwDje4DxA8D4EWD8BDB+Bhi/AIxfAcZvAON3gPEHwPgTYPwFMP4GGN3iWd8YCmAMDTCGARjDAozhAMbwAGMEgDEiwBgJYIwMMEYBGKMCjNEAxugAYwyAMSbAGAtgjA0wxgEY4wKM8QDG+ABjAoAxIcCYCGBMDDAmARiTAozJAMbkAGMKgDElwJgKYEwNMLoDjB4AYxqAMS3A6AkwegGM3gBjOoAxPcCYAWDMCDBmAhgzA4w+AKMNYMwCMPoCjH4Aoz/AmBVgzAYwBgCMgQBjdoAxB8CYE2DMBTDmBhjzAIx5AcZ8AGN+gLEAwFgQYCwEMBYGGIsAjEUBxmIAY3GAsQTAWBJgLAUwlgYYywCMZQHGcgBjeYCxAsBYEWCsBDBWBhirAIxVAcZqAGN1gLEGwFgTYKwFMNYGGOsAjHUBxnoAY32AsQHA2BBgDAIYGwGMjQHGJgBjU4CxGcDYHGBsATC2BBhbAYytAcY2AGNbgLEdwNgeYOwAMHYEGDsBjJ0Bxi4AY1eAsRvA2B1g7AEw9gQYewGMvQHGPgBjX4CxH8DYH2AcADAOBBgHAYyDAcYhAONQgHEYwDgcYBwBMI4EGEcBjKMBxjEA41iAcRzAOB5gnAAwTgQYJwGMkwHGKQDjVIBxGsA4HWCcATDOBBhnAYyzAcY5AONcgHEewDgfYFwAMC4EGBcBjIsBxiUA41KAcRnAuBxgXAEwrgQYVwGMqwHGNQDjWoBxHcC4HmDcADBuBBg3AYybAcYtAONWgHEbwLgdYNwBMO4EGHcBjLsBxj0A416AcR/AuB9gPAAwHgQYDwGMhwHGIwDjUYDxGMB4HGA8ATCeBBhPAYynAcYzAONZgPEcwHgeYLwAMF4EGC8BjJcFjWHc/v3T2uNff7Zx/NnW49/2/9iEr09WP7+gbFmCbL62ej5ZAusH+Pv4+dfPGmALsPkH+DfMEuDrGxTgF5AtsH5gNp9Am59vkK2Rf6BvI8f/4ZYecgUxbGEcRmMTKR1//2etjclaW8ea1t6Mzw8tfOPbesgZ23nIN7rxE1qxT/70s9oL9pxZ3/j82Y/NuCftPeT7sYPgvQ6eoQ7BMvT/dP99/uzH1s6a998nnGOvYd3+80f8hURKWRV/KRHE2VY4DwFhde//nFjW/1IyF2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlgPEKwHgVYLwGMF4HGG8AjDcBxlsA422A8Q7AeBdgvAcw3gcYHwCMDwHGRwDjY4DxCcD4FGB8BjA+BxhfAIwvAcZXAONrgPENwPgWYHwHML4HGD8AjB8Bxk8A42eA8QvA+BVg/AYwfgcYfwCMPwHGXwDjb4DRLbb1jaEAxtAAYxiAMSzAGA5gDA8wRgAYIwKMkQDGyABjFIAxKsAYDWCMDjDGABhjAoyxAMbYAGMcgDEuwBgPYIwPMCYAGBMCjIkAxsQAYxKAMSnAmAxgTA4wpgAYUwKMqQDG1ACjO8DoATCmARjTAoyeAKMXwOgNMKYDGNMDjBkAxowAYyaAMTPA6AMw2gDGLACjL8DoBzD6A4xZAcZsAGMAwBgIMGYHGHMAjDkBxlwAY26AMQ/AmBdgzAcw5gcYCwCMBQHGQgBjYYCxCMBYFGAsBjAWBxhLAIwlAcZSAGNpgLEMwFgWYCwHMJYHGCsAjBUBxkoAY2WAsQrAWBVgrAYwVgcYawCMNQHGWgBjbYCxDsBYF2CsBzDWBxgbAIwNAcYggLERwNgYYGwCMDYFGJsBjM0BxhYAY0uAsRXA2BpgbAMwtgUY2wGM7QHGDgBjR4CxE8DYGWDsAjB2BRi7AYzdAcYeAGNPgLEXwNgbYOwDMPYFGPsBjP0BxgEA40CAcRDAOBhgHAIwDgUYhwGMwwHGEQDjSIBxFMA4GmAcAzCOBRjHAYzjAcYJAONEgHESwDgZYJwCME4FGKcBjNMBxhkA40yAcRbAOBtgnAMwzgUY5wGM8wHGBQDjQoBxEcC4GGBcAjAuBRiXAYzLAcYVAONKgHEVwLgaYFwDMK4FGNcBjOsBxg0A40aAcRPAuBlg3AIwbgUYtwGM2wHGHQDjToBxF8C4G2DcAzDuBRj3AYz7AcYDAONBgPEQwHgYYDwCMB4FGI8BjMcBxhMA40mA8RTAeBpgPAMwngUYzwGM5wHGCwDjRYDxEsB4GWC8AjBeBRivAYzXAcYbAONNgPEWwHgbYLwDMN4FGO8BjPcBxgcA40OA8RHA+BhgfAIwPgUYnwGMzwHGFwDjS4DxFcD4GmB8AzC+BRjfAYzvAcYPAONHgPETwPgZYPwCMH4FGL8BjN8Bxh8A40+A8RfA+BtgdItjfWMogDE0wBgGYAwLMIYDGMMDjBEAxogAYySAMTLAGAVgjAowRgMYowOMMQDGmABjLIAxNsAYB2CMCzDGAxjjA4wJAMaEAGMigDExwJgEYEwKMCYDGJMDjCkAxpQAYyqAMTXA6A4wegCMaQDGtACjJ8DoBTB6A4zpAMb0AGMGgDEjwJgJYMwMMPoAjDaAMQvA6Asw+gGM/gBjVoAxG8AYADAGAozZAcYcAGNOgDEXwJgbYMwDMOYFGPMBjPkBxgIAY0GAsRDAWBhgLAIwFgUYiwGMxQHGEgBjSYCxFMBYGmAsAzCWBRjLAYzlAcYKAGNFgLESwFgZYKwCMFYFGKsBjNUBxhoAY02AsRbAWBtgrAMw1gUY6wGM9QHGBgBjQ4AxCGBsBDA2BhibAIxNAcZmAGNzgLEFwNgSYGwFMLYGGNsAjG0BxnYAY3uAsQPA2BFg7AQwdgYYuwCMXQHGbgBjd4CxB8DYE2DsBTD2Bhj7AIx9AcZ+AGN/gHEAwDgQYBwEMA4GGIcAjEMBxmEA43CAcQTAOBJgHAUwjgYYxwCMYwHGcQDjeIBxAsA4EWCcBDBOBhinAIxTAcZpAON0gHEGwDgTYJwFMM4GGOcAjHMBxnkA43yAcQHAuBBgXAQwLgYYlwCMSwHGZQDjcoBxBcC4EmBcBTCuBhjXAIxrAcZ1AON6gHEDwLgRYNwEMG4GGLcAjFsBxm0A43aAcQfAuBNg3AUw7gYY9wCMewHGfQDjfoDxAMB4EGA8BDAeBhiPAIxHAcZjAONxgPEEwHgSYDwFMJ4GGM8AjGcBxnMA43mA8QLAeBFgvAQwXgYYrwCMVwHGawDjdYDxBsB4E2C8BTDeBhjvAIx3AcZ7AON9gPEBwPgQYHwEMD4GGJ8AjE8BxmcA43OA8QXA+BJgfAUwvgYY3wCMbwHGdwDje4DxA8D4EWD8BDB+Bhi/AIxfAcZvAON3gPEHwPgTYPwFMP4GGN3iWt8YCmAMDTCGARjDAozhAMbwAGMEgDEiwBgJYIwMMEYBGKMCjNEAxugAYwyAMSbAGAtgjA0wxgEY4wKM8QDG+ABjAoAxIcCYCGBMDDAmARiTAozJAMbkAGMKgDElwJgKYEwNMLoDjB4AYxqAMS3A6AkwegGM3gBjOoAxPcCYAWDMCDBmAhgzA4w+AKMNYMwCMPoCjH4Aoz/AmBVgzAYwBgCMgQBjdoAxB8CYE2DMBTDmBhjzAIx5AcZ8AGN+gLEAwFgQYCwEMBYGGIsAjEUBxmIAY3GAsQTAWBJgLAUwlgYYywCMZQHGcgBjeYCxAsBYEWCsBDBWBhirAIxVAcZqAGN1gLEGwFgTYKwFMNYGGOsAjHUBxnoAY32AsQHA2BBgDAIYGwGMjQHGJgBjU4CxGcDYHGBsATC2BBhbAYytAcY2AGNbgLEdwNgeYOwAMHYEGDsBjJ0Bxi4AY1eAsRvA2B1g7AEw9gQYewGMvQHGPgBjX4CxH8DYH2AcADAOBBgHAYyDAcYhAONQgHEYwDgcYBwBMI4EGEcBjKMBxjEA41iAcRzAOB5gnAAwTgQYJwGMkwHGKQDjVIBxGsA4HWCcATDOBBhnAYyzAcY5AONcgHEewDgfYFwAMC4EGBcBjIsBxiUA41KAcRnAuBxgXAEwrgQYVwGMqwHGNQDjWoBxHcC4HmDcADBuBBg3AYybAcYtAONWgHEbwLgdYNwBMO4EGHcBjLsBxj0A416AcR/AuB9gPAAwHgQYDwGMhwHGIwDjUYDxGMB4HGA8ATCeBBhPAYynAcYzAONZgPEcwHgeYLwAMF4EGC8BjJcBxisA41WA8RrAeB1gvAEw3gQYbwGMtwHGOwDjXYDxHsB4H2B8ADA+BBgfAYyPAcYnAONTgPEZwPgcYHwBML4EGF8BjK8BxjcA41uA8R3A+B5g/AAwfgQYPwGMnwHGLwDjV4DxG8D4HWD8ATD+BBh/AYy/AUa3eNY3hgIYQwOMYQDGsABjOIAxPMAYAWCMCDBGAhgjA4xRAMaoAGM0gDE6wBgDYIwJMMYCGGMDjHEAxrgAYzyAMT7AmABgTAgwJgIYEwOMSQDGpABjMoAxOcCYAmBMCTCmAhhTA4zuAKMHwJgGYEwLMHoCjF4AozfAmA5gTA8wZgAYMwKMmQDGzACjD8BoAxizAIy+AKMfwOgPMGYFGLMBjAEAYyDAmB1gzAEw5gQYcwGMuQHGPABjXoAxH8CYH2AsADAWBBgLAYyFAcYiAGNRgLEYwFgcYCwBMJYEGEsBjKUBxjIAY1mAsRzAWB5grAAwVgQYKwGMlQHGKgBjVYCxGsBYHWCsATDWBBhrAYy1AcY6AGNdgLEewFgfYGwAMDYEGIMAxkYAY2OAsQnA2BRgbAYwNgcYWwCMLQHGVgBja4CxDcDYFmBsBzC2Bxg7AIwdAcZOAGNngLELwNgVYOwGMHYHGHsAjD0Bxl4AY2+AsQ/A2Bdg7Acw9gcYBwCMAwHGQQDjYIBxCMA4FGAcBjAOBxhHAIwjAcZRAONogHEMwDgWYBwHMI4HGCcAjBMBxkkA42SAcQrAOBVgnAYwTgcYZwCMMwHGWQDjbIBxDsA4F2CcBzDOBxgXAIwLAcZFAONigHEJwLgUYFwGMC4HGFcAjCsBxlUA42qAcQ3AuBZgXAcwrgcYNwCMGwHGTQDjZoBxC8C4FWDcBjBuBxh3AIw7AcZdAONugHEPwLgXYNwHMO4HGA8AjAcBxkMA42GA8QjAeBRgPAYwHgcYTwCMJwHGUwDjaYDxDMB4FmA8BzCeBxgvAIwXAcZLAONlQWOoYMaUjr939HBz62S/OtuvLvarq/3qZr+6268e9qun/eplv3rbrz72q6/96me/+tuvAfZroP0aZL8G268h9muo/Rpmv4bbrxH2a6T9GmW/RtuvMfZrrP0aZ7/G268JHv+ul/zLHjxkCxfGYTQKFtHx93/WOpmsdTZZ62Ky1tVkrZvJWneTtR4maz1N1nqZrPU2WetjstbXZK2fyVp/k7UBJmsDTdYGmawNNlkbYrI21GRtmMnacJO1ESZrI03WRpmsjTZZG2OyNtZkbZzJ2niTtQmOteA/YRx/5nX86fNnP7YYwXLi65PVzy8oW5Ygm6+tnk+WwPoB/j5+/vWzBtgCbP4B/g2zBPj6BgX4BWQLrB+YzSfQ5ucbZGvkH+jbyPFhHQU/a6JgfsPZPyOqW7BhE+xHeu5IuoN7J3kogid5yH/uZMFm0Nr3ZI9/F1joc33cgv1IhzW2YE07CX7WFGhYpyiFdaqHIniqQlinWTysxr6nwcIaT7CmnQU/azo0rNOVwjrDQxE8QyGsMy0eVmPfM5XCqvEtZZrJPfrTus7yYAyphIK91EXws2ZDh9RspSE1x0MRPEdhSM21+JAy9j0XMqSMYTpLYUjNgwypJIK91FXws+ZDh9R8pSG1wEMRvEBhSC20+JAy9r0QMqSMYTpPYUgtggyp5IK91E3wsxZDh9RipSG1xEMRvERhSC21+JAy9r0UMqSMYbpIYUgtgwypVIK91F3ws5ZDh9RypSG1wkMRvEJhSK20+JAy9r0SMqSMYbpMYUitggwpD8Fe6iH4WauhQ2q10pBa46EIXqMwpNZafEgZ+14LGVLGMF2lMKTWQYaUp2Av9RT8rPXQIbVeaUht8FAEb1AYUhstPqSMfW+EDCljmK5TGFKbIEMqnWAv9RL8rM3QIbVZaUht8VAEb1EYUlstPqSMfW+FDCljmG5SGFLbIEMqo2Av9Rb8rO3QIbVdaUjt8FAE71AYUjstPqSMfe+EDCljmG5TGFK7IEPKR7CX+gh+1m7okNqtNKT2eCiC9ygMqb0WH1LGvvdChpQxTHcpDKl9kCHlK9hLfQU/az90SO1XGlIHPBTBBxSG1EGLDylj3wchQ8oYpvsUhtQhyJDKKthL/QQ/6zB0SB1WGlJHPBTBRxSG1FGLDylj30chQ8oYpocUhtQxyJAKFOyl/oKfdRw6pI4rDakTHorgEwpD6qTFh5Sx75OQIWUM02MKQ+oUZEjlFOylAYKfdRo6pE4rDakzHorgMwpD6qzFh5Sx77OQIWUM01MKQ+ocZEjlEeylgYKfdR46pM4rDakLHorgCwpD6qLFh5Sx74uQIWUM03MKQ+oSZEjlF+ylQYKfdRk6pC4rDakrHorgKwpD6qrFh5Sx76uQIWUM00sKQ+oaZEgVEuylwYKfdR06pK4rDakbHorgGwpD6qbFh5Sx75uQIWUM02sKQ+oWZEgVFeylIYKfdRs6pG4rDak7HorgOwpD6q7Fh5Sx77uQIWUM01sKQ+oeZEiVEOyloYKfdR86pO4rDakHHorgBwpD6qHFh5Sx74eQIWUM03sKQ+oRZEiVFuylYYKf9Rg6pB4rDaknHorgJwpD6qnFh5Sx76eQIWUM00cKQ+oZZEiVE+yl4YKf9Rw6pJ4rDakXHorgFwpD6qXFh5Sx75eQIWUM02cKQ+oVZEhVFOylEYKf9Ro6pF4rDak3HorgNwpD6q3Fh5Sx77eQIWUM01cKQ+odZEhVEeylkYKf9R46pN4rDakPHorgDwpD6qPFh5Sx74+QIWUM03cKQ+oTZEhVF+ylUYKf9Rk6pD4rDakvHorgLwpD6qvFh5Sx76+QIWUM008KQ+obZEjVEuyl0YKf9R06pL4rDakfHorgHwpD6qfFh5Sx75+QIWUM028KQ+oXZEjVFeylMYKf9Rs6pH4rDSm3NIpg48OlPzdUGmsPKWPfodL8u75Cn6tiNYbpL4UhFToNY0g1EBwsYwU/K0wa5pCSdAf3hk2jCA6rMKTCWXxIGfsOBxlSxjANnUZ+SIWHDKlGgoNlnOBnRYAOqQhKQypiGkVwRIUhFcniQ8rYdyTIkDKGaXiFIRUZMqSaCg6W8YKfFQU6pKIoDamoaRTBURWGVDSLDylj39EgQ8oYppEVhlR0yJBqIThYJgh+VgzokIqhNKRiplEEx1QYUrEsPqSMfceCDCljmEZXGFKx01h738b9ia2w7zgW33c7+yCNo7DvdsIH/cY/RmHd/vNHuh6tlf4HHmlnG4izrfD/cBIQVvf+z4klX1dp41yAcR7AOB9gXAAwLgQYFwGMiwHGJQDjUoBxGcC4HGBcATCuBBhXAYyrAcY1AONagHEdwLgeYNwAMG4EGDcBjJsBxi0A41aAcRvAuB1g3AEw7gQYdwGMuwHGPQDjXoBxH8C4H2A8ADAeBBgPAYyHAcYjAONRgPEYwHgcYDwBMJ4EGE8BjKcBxjMA41mA8RzAeB5gvAAwXgQYLwGMlwHGKwDjVYDxGsB4HWC8ATDeBBhvAYy3AcY7AONdgPEewHgfYHwAMD4EGB8BjI8BxicA41OA8RnA+BxgfAEwvgQYXwGMrwHGNwDjW4DxHcD4HmD8ADB+BBg/AYyfAcYvAONXgPEbwPgdYPwBMP4EGH8BjL8BRrfY1jeGAhhDA4xhAMawAGM4gDE8wBgBYIwIMEYCGCMDjFEAxqgAYzSAMTrAGANgjAkwxgIYYwOMcQDGuABjPIAxPsCYAGBMCDAmAhgTA4xJAMakAGMygDE5wJgCYEwJMKYCGFMDjO4AowfAmAZgTAswegKMXgCjN8CYDmBMDzBmABgzAoyZAMbMAKMPwGgDGLMAjL4Aox/A6A8wZgUYswGMAQBjIMCYHWDMATDmBBhzAYy5AcY8AGNegDEfwJgfYCwAMBYEGAsBjIUBxiIAY1GAsRjAWBxgLAEwlgQYSwGMpQHGMgBjWYCxHMBYHmCsADBWBBgrAYyVAcYqAGNVgLEawFgdYKwBMNYEGGsBjLUBxjoAY12AsR7AWB9gbAAwNgQYgwDGRgBjY4CxCcDYFGBsBjA2BxhbAIwtAcZWAGNrgLENwNgWYGwHMLYHGDsAjB0Bxk4AY2eAsQvA2BVg7AYwdgcYewCMPQHGXgBjb4CxD8DYF2DsBzD2BxgHAIwDAcZBAONggHEIwDgUYBwGMA4HGEcAjCMBxlEA42iAcQzAOBZgHAcwjgcYJwCMEwHGSQDjZIBxCsA4FWCcBjBOBxhnAIwzAcZZAONsgHEOwDgXYJwHMM4HGBcAjAsBxkUA42KAcQnAuBRgXAYwLgcYVwCMKwHGVQDjaoBxDcC4FmBcBzCuBxg3AIwbAcZNAONmgHELwLgVYNwGMG4HGHcAjDsBxl0A426AcQ/AuBdg3Acw7gcYDwCMBwHGQwDjYYDxCMB4FGA8BjAeBxhPAIwnAcZTAONpgPEMwHgWYDwHMJ4HGC8AjBcBxksA42WA8QrAeBVgvAYwXgcYbwCMNwHGWwDjbYDxDsB4F2C8BzDeBxgfAIwPAcZHAONjgPEJwPgUYHwGMD4HGF8AjC8BxlcA42uA8Q3A+BZgfAcwvgcYPwCMHwHGTwDjZ4DxC8D4FWD8BjB+Bxh/AIw/AcZfAONvgNEtjvWNoQDG0ABjGIAxLMAYDmAMDzBGABgjAoyRAMbIAGMUgDEqwBgNYIwOMMYAGGMCjLEAxtgAYxyAMS7AGA9gjA8wJgAYEwKMiQDGxABjEoAxKcCYDGBMDjCmABhTAoypAMbUAKM7wOgBMKYBGNMCjJ4AoxfA6A0wpgMY0wOMGQDGjABjJoAxM8DoAzDaAMYsAKMvwOgHMPoDjFkBxmwAYwDAGAgwZgcYcwCMOQHGXABjboAxD8CYF2DMBzDmBxgLAIwFAcZCAGNhgLEIwFgUYCwGMBYHGEsAjCUBxlIAY2mAsQzAWBZgLAcwlgcYKwCMFQHGSgBjZYCxCsBYFWCsBjBWBxhrAIw1AcZaAGNtgLEOwFgXYKwHMNYHGBsAjA0BxiCAsRHA2BhgbAIwNgUYmwGMzQHGFgBjS4CxFcDYGmBsAzC2BRjbAYztAcYOAGNHgLETwNgZYOwCMHYFGLsBjN0Bxh4AY0+AsRfA2Btg7AMw9gUY+wGM/QHGAQDjQIBxEMA4GGAcAjAOBRiHAYzDAcYRAONIgHEUwDgaYBwDMI4FGMcBjOMBxgkA40SAcRLAOBlgnAIwTgUYpwGM0wHGGQDjTIBxFsA4G2CcAzDOBRjnAYzzAcYFAONCgHERwLgYYFwCMC4FGJcBjMsBxhUA40qAcRXAuBpgXAMwrgUY1wGM6wHGDQDjRoBxE8C4GWDcAjBuBRi3AYzbAcYdAONOgHEXwLgbYNwDMO4FGPcBjPsBxgMA40GA8RDAeBhgPAIwHgUYjwGMxwHGEwDjSYDxFMB4GmA8AzCeBRjPAYznAcYLAONFgPESwHgZYLwCMF4FGK8BjNcBxhsA402A8RbAeBtgvAMw3gUY7wGM9wHGBwDjQ4DxEcD4GGB8AjA+BRifAYzPAcYXAONLgPEVwPgaYHwDML4FGN8BjO8Bxg8A40eA8RPA+Blg/AIwfgUYvwGM3wHGHwDjT4DxF8D4G2B0i2t9YyiAMTTAGAZgDAswhgMYwwOMEQDGiABjJIAxMsAYBWCMCjBGAxijA4wxAMaYAGMsgDE2wBgHYIwLMMYDGOMDjAkAxoQAYyKAMTHAmARgTAowJgMYkwOMKQDGlABjKoAxNcDoDjB6AIxpAMa0AKMnwOgFMHoDjOkAxvQAYwaAMSPAmAlgzAww+gCMNoAxC8DoCzD6AYz+AGNWgDEbwBgAMAYCjNkBxhwAY06AMRfAmBtgzAMw5gUY8wGM+QHGAgBjQYCxEMBYGGAsAjAWBRiLAYzFAcYSAGNJgLEUwFgaYCwDMJYFGMsBjOUBxgoAY0WAsRLAWBlgrAIwVgUYqwGM1QHGGgBjTYCxFsBYG2CsAzDWBRjrAYz1AcYGAGNDgDEIYGwEMDYGGJsAjE0BxmYAY3OAsQXA2BJgbAUwtgYY2wCMbQHGdgBje4CxA8DYEWDsBDB2Bhi7AIxdAcZuAGN3gLEHwNgTYOwFMPYGGPsAjH0Bxn4AY3+AcQDAOBBgHAQwDgYYhwCMQwHGYQDjcIBxBMA4EmAcBTCOBhjHAIxjAcZxAON4gHECwDgRYJwEME4GGKcAjFMBxmkA43SAcQbAOBNgnAUwzgYY5wCMcwHGeQDjfIBxAcC4EGBcBDAuBhiXAIxLAcZlAONygHEFwLgSYFwFMK4GGNcAjGsBxnUA43qAcQPAuBFg3AQwbgYYtwCMWwHGbQDjdoBxB8C4E2DcBTDuBhj3AIx7AcZ9AON+gPEAwHgQYDwEMB4GGI8AjEcBxmMA43GA8QTAeBJgPAUwngYYzwCMZwHGcwDjeYDxAsB4EWC8BDBeBhivAIxXAcZrAON1gPEGwHgTYLwFMN4GGO8AjHcBxnsA432A8QHA+BBgfAQwPgYYnwCMTwHGZwDjc4DxBcD4EmB8BTC+BhjfAIxvAcZ3AON7gPEDwPgRYPwEMH4GGL8AjF8Bxm8A43eA8QfA+BNg/AUw/gYY3eJZ3xgKYAwNMIYBGMMCjOEAxvAAYwSAMSLAGAlgjAwwRgEYowKM0QDG6ABjDIAxJsAYC2CMDTDGARjjAozxAMb4AGMCgDEhwJgIYEwMMCYBGJMCjMkAxuQAYwqAMSXAmApgTA0wugOMHgBjGoAxLcDoCTB6AYzeAGM6gDE9wJgBYMwIMGYCGDMDjD4Aow1gzAIw+gKMfgCjP8CYFWDMBjAGAIyBAGN2gDEHwJgTYMwFMOYGGPMAjHkBxnwAY36AsQDAWBBgLAQwFgYYiwCMRQHGYgBjcYCxBMBYEmAsBTCWBhjLAIxlAcZyAGN5gLECwFgRYKwEMFYGGKsAjFUBxmoAY3WAsQbAWBNgrAUw1gYY6wCMdQHGegBjfYCxAcDYEGAMAhgbAYyNAcYmAGNTgLEZwNgcYGwBMLYEGFsBjK0BxjYAY1uAsR3A2B5g7AAwdgQYOwGMnQHGLgBjV4CxG8DYHWDsATD2BBh7AYy9AcY+AGNfgLEfwNgfYBwAMA4EGAcBjIMBxiEA41CAcRjAOBxgHAEwjgQYRwGMowHGMQDjWIBxHMA4HmCcADBOBBgnAYyTAcYpAONUgHEawDgdYJwBMM4EGGcBjLMBxjkA41yAcR7AOB9gXAAwLgQYFwGMiwHGJQDjUoBxGcC4HGBcATCuBBhXAYyrAcY1AONagHEdwLgeYNwAMG4EGDcBjJsBxi0A41aAcRvAuB1g3AEw7gQYdwGMuwHGPQDjXoBxH8C4H2A8ADAeBBgPAYyHAcYjAONRgPEYwHgcYDwBMJ4EGE8BjKcBxjMA41mA8RzAeB5gvAAwXgQYLwGMlwWNoYMZfR1/j5vGzS2e/YpvvxLYr4T2K5H9Smy/ktivpPYrmf1Kbr9S2K+U9iuV/Uptv9ztl4f9SmO/0tovT/vlZb+87Vc6+5XefmWwXxntVyb7ldl++dgvm/3KYr987Zef/fK3X1ntVzb7FWC/Au1XdvuVw37ltF+57Fdu+5XHfuW1X/nsV377VcB+FbRfhexX4TT/2k+RNP++B/IvkPCQuxmGLYzDaNyElI6//7MWz2QtvslaApO1hCZriUzWEpusJTFZS2qylsxkLbnJWgqTtZQma6lM1lKbrLmbrHmYrKUxWUtrsuZpsuZlsuZtspbOZC29yVoGk7WMJmuZTNYym6z5mKzZTNaymKz5mqz5maz5m6xlNVnLZrIWYLIWaLKW3WQth8laTpO1XCZruU3W8pis5TVZy2eylt9krYDJWkGTtUIma4VN1oo41sLaL3e3//8O5uA///xDlNfxp69PVj+/oGxZgmy+tno+WQLrB/j7+PnXzxpgC7D5B/g3zBLg6xsU4BeQLbB+YDafQJufb5CtkX+gbyPHLDVqKPVZRdNIzXibLZz9M6K6BfsHKdhPqBA18PmzH5uc+1//Nv3zUyyNIrhYGvnPLS7YDFr7Lh4sFEKfq2I1vvAUN7lHf1rXEmmsve+o9n2XUNh3ScF9G/+AJHb7zx/JumrUtmQa6xtLSRul/8X7J5hSGzaa3dh0aOFCBn9i+tM9l7b40DD2WlphaJQR/pf9n2+eZRzfPI1vKdGC9WjwH81vaj5/9mMT6AfbP38x2brYZweva1nHP/zl0rj998eAso7GCb5WznGDgv+EhdyQ/6Uri8NlKyv4La6ccKNIB9wYHGUZ3wh9tYZceaUhVz5Yhii1qCD8LdHd7T9/pD7fTae2tgpprG+sKG3UalArf6urpBT8Sk4IvpXrWtk1RGyVAUOkisWHyH81ZRWFf+WqAh7nqirsu5rSwKtm8rQg9fgW1Mj4CZL8H0BtkvffeIQNG2y///U/QoX977WQ7o85saw/XOYCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvAwwXgEYrwKM1wDG6wDjDYDxJsB4C2C8DTDeARjvAoz3AMb7AOMDgPEhwPgIYHwMMD4BGJ8CjM8AxucA4wuA8SXA+ApgfA0wvgEY3wKM7wDG9wDjB4DxI8D4CWD8DDB+ARi/AozfAMbvAOMPgPEnwPgLYPwNMLrFtr4xFMAYGmAMAzCGBRjDAYzhAcYIAGNEgDESwBgZYIwCMEYFGKMBjNEBxhgAY0yAMRbAGBtgjAMwxgUY4wGM8QHGBABjQoAxEcCYGGBMAjAmBRiTAYzJAcYUAGNKgDEVwJgaYHQHGD0AxjQAY1qA0RNg9AIYvQHGdABjeoAxA8CYEWDMBDBmBhh9AEYbwJgFYPQFGP0ARn+AMSvAmA1gDAAYAwHG7ABjDoAxJ8CYC2DMDTDmARjzAoz5AMb8AGMBgLEgwFgIYCwMMBYBGIsCjMUAxuIAYwmAsSTAWApgLA0wlgEYywKM5QDG8gBjBYCxIsBYCWCsDDBWARirAozVAMbqAGMNgLEmwFgLYKwNMNYBGOsCjPUAxvoAYwOAsSHAGAQwNgIYGwOMTQDGpgBjM4CxOcDYAmBsCTC2AhhbA4xtAMa2AGM7gLE9wNgBYOwIMHYCGDsDjF0Axq4AYzeAsTvA2ANg7Akw9gIYewOMfQDGvgBjP4CxP8A4AGAcCDAOAhgHA4xDAMahAOMwgHE4wDgCYBwJMI4CGEcDjGMAxrEA4ziAcTzAOAFgnAgwTgIYJwOMUwDGqQDjNIBxOsA4A2CcCTDOAhhnA4xzAMa5AOM8gHE+wLgAYFwIMC4CGBcDjEsAxqUA4zKAcTnAuAJgXAkwrgIYVwOMawDGtQDjOoBxPcC4AWDcCDBuAhg3A4xbAMatAOM2gHE7wLgDYNwJMO4CGHcDjHsAxr0A4z6AcT/AeABgPAgwHgIYDwOMRwDGowDjMYDxOMB4AmA8CTCeAhhPA4xnAMazAOM5gPE8wHgBYLwIMF4CGC8DjFcAxqsA4zWA8TrAeANgvAkw3gIYbwOMdwDGuwDjPYDxPsD4AGB8CDA+AhgfA4xPAManAOMzgPE5wPgCYHwJML4CGF8DjG8AxrcA4zuA8T3A+AFg/AgwfgIYPwOMXwDGrwDjN4DxO8D4A2D8CTD+Ahh/A4xucaxvDAUwhgYYwwCMYQHGcABjeIAxAsAYEWCMBDBGBhijAIxRAcZoAGN0gDEGwBgTYIwFMMYGGOMAjHEBxngAY3yAMQHAmBBgTAQwJgYYkwCMSQHGZABjcoAxBcCYEmBMBTCmBhjdAUYPgDENwJgWYPQEGL0ARm+AMR3AmB5gzAAwZgQYMwGMmQFGH4DRBjBmARh9AUY/gNEfYMwKMGYDGAMAxkCAMTvAmANgzAkw5gIYcwOMeQDGvABjPoAxP8BYAGAsCDAWAhgLA4xFAMaiAGMxgLE4wFgCYCwJMJYCGEsDjGUAxrIAYzmAsTzAWAFgrAgwVgIYKwOMVQDGqgBjNYCxOsBYA2CsCTDWAhhrA4x1AMa6AGM9gLE+wNgAYGwIMAYBjI0AxsYAYxOAsSnA2AxgbA4wtgAYWwKMrQDG1gBjG4CxLcDYDmBsDzB2ABg7AoydAMbOAGMXgLErwNgNYOwOMPYAGHsCjL0Axt4AYx+AsS/A2A9g7A8wDgAYBwKMgwDGwQDjEIBxKMA4DGAcDjCOABhHAoyjAMbRAOMYgHEswDgOYBwPME4AGCcCjJMAxskA4xSAcSrAOA1gnA4wzgAYZwKMswDG2QDjHIBxLsA4D2CcDzAuABgXAoyLAMbFAOMSgHEpwLgMYFwOMK4AGFcCjKsAxtUA4xqAcS3AuA5gXA8wbgAYNwKMmwDGzQDjFoBxK8C4DWDcDjDuABh3Aoy7AMbdAOMegHEvwLgPYNwPMB4AGA8CjIcAxsMA4xGA8SjAeAxgPA4wngAYTwKMpwDG0wDjGYDxLMB4DmA8DzBeABgvAoyXAMbLAOMVgPEqwHgNYLwOMN4AGG8CjLcAxtsA4x2A8S7AeA9gvA8wPgAYHwKMjwDGxwDjE4DxKcD4DGB8DjC+ABhfAoyvAMbXAOMbgPEtwPgOYHwPMH4AGD8CjJ8Axs8A4xeA8SvA+A1g/A4w/gAYfwKMvwDG3wCjW1zrG0MBjKEBxjAAY1iAMRzAGB5gjAAwRgQYIwGMkQHGKABjVIAxGsAYHWCMATDGBBhjAYyxAcY4AGNcgDEewBgfYEwAMCYEGBMBjIkBxiQAY1KAMRnAmBxgTAEwpgQYUwGMqQFGd4DRA2BMAzCmBRg9AUYvgNEbYEwHMKYHGDMAjBkBxkwAY2aA0QdgtAGMWQBGX4DRD2D0BxizAozZAMYAgDEQYMwOMOYAGHMCjLkAxtwAYx6AMS/AmA9gzA8wFgAYCwKMhQDGwgBjEYCxKMBYDGAsDjCWABhLAoylAMbSAGMZgLEswFgOYCwPMFYAGCsCjJUAxsoAYxWAsSrAWA1grA4w1gAYawKMtQDG2gBjHYCxLsBYD2CsDzA2ABgbAoxBAGMjgLExwNgEYGwKMDYDGJsDjC0AxpYAYyuAsTXA2AZgbAswtgMY2wOMHQDGjgBjJ4CxM8DYBWDsCjB2Axi7A4w9AMaeAGMvgLE3wNgHYOwLMPYDGPsDjAMAxoEA4yCAcTDAOARgHAowDgMYhwOMIwDGkQDjKIBxNMA4BmAcCzCOAxjHA4wTAMaJAOMkgHEywDgFYJwKME4DGKcDjDMAxpkA4yyAcTbAOAdgnAswzgMY5wOMCwDGhQDjIoBxMcC4BGBcCjAuAxiXA4wrAMaVAOMqgHE1wLgGYFwLMK4DGNcDjBsAxo0A4yaAcTPAuAVg3AowbgMYtwOMOwDGnQDjLoBxN8C4B2DcCzDuAxj3A4wHAMaDAOMhgPEwwHgEYDwKMB4DGI8DjCcAxpMA4ymA8TTAeAZgPAswngMYzwOMFwDGiwDjJYDxMsB4BWC8CjBeAxivA4w3AMabAOMtgPE2wHgHYLwLMN4DGO8DjA8AxocA4yOA8THA+ARgfAowPgMYnwOMLwDGlwDjK4DxNcD4BmB8CzC+AxjfA4wfAMaPAOMngPEzwPgFYPwKMH4DGL8DjD8Axp8A4y+A8TfA6BbP+sZQAGNogDEMwBgWYAwHMIYHGCMAjBEBxkgAY2SAMQrAGBVgjAYwRgcYYwCMMQHGWABjbIAxDsAYF2CMBzDGBxgTAIwJAcZEAGNigDEJwJgUYEwGMCYHGFMAjCkBxlQAY2qA0R1g9AAY0wCMaQFGT4DRC2D0BhjTAYzpAcYMAGNGgDETwJgZYPQBGG0AYxaA0Rdg9AMY/QHGrABjNoAxAGAMBBizA4w5AMacAGMugDE3wJgHYMwLMOYDGPMDjAUAxoIAYyGAsTDAWARgLAowFgMYiwOMJQDGkgBjKYCxNMBYBmAsCzCWAxjLA4wVAMaKAGMlgLEywFgFYKwKMFYDGKsDjDUAxpoAYy2AsTbAWAdgrAsw1gMY6wOMDQDGhgBjEMDYCGBsDDA2ARibAozNAMbmAGMLgLElwNgKYGwNMLYBGNsCjO0AxvYAYweAsSPA2Alg7AwwdgEYuwKM3QDG7gBjD4CxJ8DYC2DsDTD2ARj7Aoz9AMb+AOMAgHEgwDgIYBwMMA4BGIcCjMMAxuEA4wiAcSTAOApgHA0wjgEYxwKM4wDG8QDjBIBxIsA4CWCcDDBOARinAozTAMbpAOMMgHEmwDgLYJwNMM4BGOcCjPMAxvkA4wKAcSHAuAhgXAwwLgEYlwKMywDG5QDjCoBxJcC4CmBcDTCuARjXAozrAMb1AOMGgHEjwLgJYNwMMG4BGLcCjNsAxu0A4w6AcSfAuAtg3A0w7gEY9wKM+wDG/QDjAYDxIMB4CGA8DDAeARiPAozHAMbjAOMJgPEkwHgKYDwNMJ4BGM8CjOcAxvMA4wWA8SLAeAlgvKxg1HBWTCPnDBXMmNLx9+r2z69hv2rar1r2q7b9qmO/6tqvevarvv1qYL8a2q8g+9XIfjW2X03sV1P71cx+NbdfLexXS/vVyn61tl9t7Fdb+9XOfrW3Xx3sV0f71cl+dbZfXexX1zT/rpf8Syk8ZAsXxmE0ChbR8fd/1mqYrNU0WatlslbbZK2OyVpdk7V6Jmv1TdYamKw1NFkLMllrZLLW2GSticlaU5O1ZiZrzU3WWpistTRZa2Wy1tpkrY3JWluTtXYma+1N1jqYrHU0WetkstbZZK2LyVpXx5qbm3w+otrzYWQktPDnBs+dr09WP7+gbFmCbL62ej5ZAusH+Pv4+dfPGmALsPkH+DfMEuDrGxTgF5AtsH5gNp9Am59vkK2Rf6BvI8eHdUujk2Hjc1P+H1zX7kp17f4/1PVPzVp1jSpY1x5Kde0RrK7//IQRroNgT9iC1+FPa9pTqaY9FWeA0afV08hnoJdSLXr9D//O/Kk5hlJuYwjmtrdSXXsHq6tWbgV7wtZbMLd9lGraR/E7kdGnNRRy21epFn0VcxtbKbexBXPbT6mu/ZyQW8GesPUTzG1/pZr2V85tTYXcDlCqxQDF3MZTym08wdwOVKrrQCfkVrAnbAMFcztIqaaDlHNbSyG3g5VqMVgxtwmVcptQMLdDlOo6xAm5FewJ2xDB3A5VqulQ5dzWVsjtMKVaDFPMbRKl3CYRzO1wpboOd0JuBXvCNlwwtyOUajpCObd1FHI7UqkWIxVzm1wpt8kFcztKqa6jnJBbwZ6wjRLM7Wilmo5Wzm1dhdyOUarFGMXcplLKbSrB3I5VqutYJ+RWsCdsYwVzO06ppuOUc1tPIbfjlWoxXjG3Hkq59RDM7QSluk5wQm4Fe8I2QTC3E5VqOlE5t/UVcjtJqRaTFHPrqZRbT8HcTlaq62Qn5FawJ2yTBXM7RammU5Rz20Aht1OVajFVMbfplHKbTjC305TqOs0JuRXsCds0wdxOV6rpdOXcNlTI7QylWsxQzG1GpdxmFMztTKW6znRCbgV7wjZTMLezlGo6Szm3QQq5na1Ui9mKufVRyq2PYG7nKNV1jhNyK9gTtjmCuZ2rVNO5yrltpJDbeUq1mKeYW1+l3PoK5na+Ul3nOyG3gj1hmy+Y2wVKNV2gnNvGCrldqFSLhYq5zaqU26yCuV2kVNdFTsitYE/YFgnmdrFSTRcr57aJQm6XKNViiWJuA5VyGyiY26VKdV3qhNwK9oRtqWBulynVdJlybpsq5Ha5Ui2WK+Y2p1JucwrmdoVSXVc4IbeCPWFbIZjblUo1Xamc22YKuV2lVItVirnNo5TbPIK5Xa1U19VOyK1gT9hWC+Z2jVJN1yjntrlCbtcq1WKtYm7zK+U2v2Bu1ynVdZ0TcivYE7Z1grldr1TT9cq5baGQ2w1KtdigmNtCSrktJJjbjUp13eiE3Ar2hG2jYG43KdV0k3JuWyrkdrNSLTYr5raoUm6LCuZ2i1Jdtzght4I9YdsimNutSjXdqpzbVgq53aZUi22KuS2hlNsSgrndrlTX7U7IrWBP2LYL5naHUk13KOe2tUJudyrVYqdibksr5ba0YG53KdV1lxNyK9gTtl2Cud2tVNPdyrlto5DbPUq12KOY23JKuS0nmNu9SnXd64TcCvaEba9gbvcp1XSfcm7bKuR2v1It9ivmtqJSbisK5vaAUl0POCG3gj1hOyCY24NKNT2onNt2Crk9pFSLQ4q5raKU2yqCuT2sVNfDTsitYE/YDgvm9ohSTY8o57a9Qm6PKtXiqGJuqyvltrpgbo8p1fWYE3Ir2BO2Y4K5Pa5U0+PKue2gkNsTSrU4oZjbWkq5rSWY25NKdT3phNwK9oTtpGBuTynV9JRybjsq5Pa0Ui1OK+a2rlJu6wrm9oxSXc84IbeCPWE7I5jbs0o1Pauc204KuT2nVItzirltoJTbBoK5Pa9U1/NOyK1gT9jOC+b2glJNLyjntrNCbi8q1eKiYm4bKeW2kWBuLynV9ZITcivYE7ZLgrm9rFTTy8q57aKQ2ytKtbiimNumSrltKpjbq0p1veqE3Ar2hO2qYG6vKdX0mnJuuyrk9rpSLa4r5raFUm5bCOb2hlJdbzght4I9YbshmNubSjW96ahpOMcVKljfdglRa+lcX4kntyct41WA8RrAeB1gvAEw3gQYbwGMtwHGOwDjXYDxHsB4H2B8ADA+BBgfAYyPAcYnAONTgPEZwPgcYHwBML4EGF8BjK8BxjcA41uA8R3A+B5g/AAwfgQYPwGMnwHGLwDjV4DxG8D4HWD8ATD+BBh/AYy/AUa3+NY3hgIYQwOMYQDGsABjOIAxPMAYAWCMCDBGAhgjA4xRAMaoAGM0gDE6wBgDYIwJMMYCGGMDjHEAxrgAYzyAMT7AmABgTAgwJgIYEwOMSQDGpABjMoAxOcCYAmBMCTCmAhhTA4zuAKMHwJgGYEwLMHoCjF4AozfAmA5gTA8wZgAYMwKMmQDGzACjD8BoAxizAIy+AKMfwOgPMGYFGLMBjAEAYyDAmB1gzAEw5gQYcwGMuQHGPABjXoAxH8CYH2AsADAWBBgLAYyFAcYiAGNRgLEYwFgcYCwBMJYEGEsBjKUBxjKCxn/eIWf83Erzrz9vO/68k8aB/+eFacZ/IWWItduOteA/4i8DEnyZnPGit/D2K6zbf/6IvwwqjXwzaThvKzndhJ3Gvl0v5nO9mE/K6Hoxn4zR9WI+GaPrxXwyRteL+WSMrhfzyRhdL+aTMbpezCdjdL2YT8boejGfjNH1Yj4Zo+vFfDJG14v5ZIyuF/PJGF0v5pMxul7MJ2N0vZhPxuh6MZ+M0fViPhmj68V8MkbXi/lkjK4X88kYXS/mkzG6XswnY3S9mE/G6Hoxn4zR9WI+GaPrxXwyRteL+WSMrhfzyRhdL+aTMbpezCdjdL2YT8boejGfjNH1Yj4Zo+vFfDJG14v5ZIyuF/PJGF0v5pMxul7MJ2N0vZhPxuh6MZ+M0fViPhmj68V8MkbXi/lkjK4X88kYXS/mkzG6XswnY3S9mE/G6Hoxn4zR9WI+GaPrxXwyRteL+WSMrhfzyRhdL+aTMbpezCdjdL2YT8boejGfjNH1Yj4Zo+SL+UIFM6Z0/P1uGje3e/brvv16YL8e2q9H9uux/Xpiv57ar2f267n9emG/XtqvV/brtf16Y7/e2q939uu9/fpgvz7ar0/267P9+mK/vtqvb/bru/36Yb9+2q9f9uu38SLAtG7//cV/BiZiiLV7Jmv3TdYemKw9NFl7ZLL22GTticnaU5O1ZyZrz03WXpisvTRZe2Wy9tpk7Y3J2luTtXcma+9N1j6YrH00WftksvbZZO2LydpXk7VvJmvfTdZ+mKz9NFn7ZbL222TNaD5jLfhPaMefeR1//umLIfvIvQTRdlfphYrSe+4vuOd7kD0PEtzzfciehwru+QFkzyME9/wQsufRgnt+BNnzOME9P4bseaLgnp9A9jxFcM9PIXueLrjnZ5A9zxLc83PInucK7vkFZM8LBPf8ErLnxYJ7fgXZ8zLBPb+G7Hml4J7fQPa8RnDPbyF7Xi+453eQPW8S3PN7yJ63Cu75A2TPOwT3/BGy592Ce/4E2fM+wT1/huz5oOCev0D2fERwz18hez4uuOdvkD2fEtzzd8iezwru+QdkzxcE9/wTsufLgnv+BdnzNcE9/4bs+abgno3/7Vhqz+HsnxHBzfXLA4M7Xb888N//N1y/PFDG6PrlgTJG1y8PlDG6fnmgjNH1ywNljK5fHihjdP3yQBmj65cHyhhdvzxQxuj65YEyRtcvD5Qxun55oIzR9csDZYyuXx4oY3T98kAZo+uXB8oYXb88UMbo+uWBMkbXLw+UMbp+eaCM0fXLA2WMrl8eKGN0/fJAGaPrlwfKGF2/PFDG6PrlgTJG1y8PlDG6fnmgjNH1ywNljK5fHihjdP3yQBmj65cHyhhdvzxQxuj65YEyRtcvD5Qxun55oIzR9csDZYyuXx4oY3T98kAZo+uXB8oYXb88UMbo+uWBMkbXLw+UMbp+eaCM0fXLA2WMrl8eKGN0/fJAGaPrlwfKGF2/PFDG6PrlgTJG1y8PlDG6fnmgjNH1ywNljK5fHihjdP3yQBmj65cHyhhdvzxQxuj65YEyRtcvD5Qx/p/2ywNDBzOG/+fvad3cQtuvMPYrrP0KZ7/Cp/3XfxYh5C/3M/7LKUOshTZZC2OyFtZkLZzJWnjHWvAf8f9H98Fe/ve/fSlhUKN//YQJVszgP0JWvf8PRWmtb4woaTTe0hjN7d9vpdRssIgKxZVvLptP8FpEcqQ+csjUG/9B2BBrkdP+5+suwygW8Q9Taosk8Fn/vIY0stLNDR2ifn/qlNxzFLk9ZzGCGNXt36EL/iP+/51F8F4F90ZNqwg2Plz8/z+KYDNo7Tta2n8XWOhzMQGLLteovs4MWHSlgMVIqwiOoRCwmBYPmLHvmEoBC2n90/1Hc1hDC9cgWlpr3m8jsMYvsg7+gOZ6KbXrpdRSRtdLqWWMrpdSyxhdL6WWMbpeSi1jdL2UWsboeim1jNH1UmoZo+ul1DJG10upZYyul1LLGF0vpZYxul5KLWN0vZRaxuh6KbWM0fVSahmj66XUMkbXS6lljK6XUssYXS+lljG6XkotY3S9lFrG6HoptYzR9VJqGaPrpdQyRtdLqWWMrpdSyxhdL6WWMbpeSi1jdL2UWsboeim1jNH1UmoZo+ul1DJG10upZYyul1LLGF0vpZYxul5KLWN0vZRaxuh6KbWM0fVSahmj66XUMkbXS6lljK6XUssYXS+lljG6XkotY3S9lFrG6HoptYzR9VJqGaPrpdQyRtdLqWWMrpdSyxhdL6WWMbpeSi1jdL2UWsboeim1jNH1UmoZo+ul1DJG10upZYyul1LLGMsoGDWcoRReTmj8mdLx91j2z49tv+LYr7j2K579im+/EtivhPYrkf1KbL+S2K+k9iuZ/Upuv1IY77i2X6nsV2r75W6/POxXGvuV1n552i8v++Vtv9LZr/T2K4P9ymi/MtmvzPbLJ+Rreg1MxBBrsU3W4pisxTVZi2eyFt9kLYHJWkKTtUQma4lN1pKYrCU1WUtmspbcZC2FyVpKk7VUJmupTdbcTdY8TNbSmKylNVnzNFnzMlnzNllLZ7KW3mQtg8laRpO1TCZrmU3WfBxrznyndizgO7VtjhduZgkZVpvJO7WzpNV/p3YswXdq2wTfgJnFSe/U9vmjH5uP5J59hf91+qePfB3htHofmdXhTz/LT6mmfn9h4MUGDjx/x8DLGnLg+ZsMvKxOGHixBQeev2CjZoUMPMk9Z1MKZzYnDLzYSnX4088KUKppwF8YeHGAAy/QMfCyhxx4gSYDL7sTBl4cwYEXKNio2SEDT3LPOZTCmcMJAy+OUh3+9LNyKtU0518YeHGBAy+XY+DlDjnwcpkMvNxOGHhxBQdeLsFGzQ0ZeJJ7zqMUzjxOGHhxlerwp5+VV6mmef/CwIsHHHj5HAMvf8iBl89k4OV3wsCLJzjw8gk2an7IwJPccwGlcBZwwsCLp1SHP/2sgko1LfgXBl584MAr5Bh4hUMOvEImA6+wEwZefMGBV0iwUQtDBp7knosohbOIEwZefKU6/OlnFVWqadG/MPASAAdeMcfAKx5y4BUzGXjFnTDwEggOvGKCjVocMvAk91xCKZwlnDDwEijV4U8/q6RSTUv+hYGXEDjwSjkGXumQA6+UycAr7YSBl1Bw4JUSbNTSkIEnuecySuEs44SBl1CpDn/6WWWValr2Lwy8RMCBV84x8MqHHHjlTAZeeScMvESCA6+cYKOWhww8yT1XUApnBScMvERKdfjTz6qoVNOKf2HgJQYOvEqOgVc55MCrZDLwKjth4CUWHHiVBBu1MmTgSe65ilI4qzhh4CVWqsOfflZVpZpW/QsDLwlw4FVzDLzqIQdeNZOBV90JAy+J4MCrJtio1SEDT3LPNZTCWcMJAy+JUh3+9LNqKtW05l8YeEmBA6+WY+DVDjnwapkMvNpOGHhJBQdeLcFGrQ0ZeJJ7rqMUzjpOGHhJlerwp59VV6mmdf/CwEsGHHj1HAOvfsiBV89k4NV3wsBLJjjw6gk2an3IwJPccwOlcDZwwsBLplSHP/2shko1bfgXBl5y4MALcgy8RiEHXpDJwGvkhIGXXHDgBQk2aiPIwJPcc2OlcDZ2wsBLrlSHP/2sJko1bfIXBl4K4MBr6hh4zUIOvKYmA6+ZEwZeCsGB11SwUZtBBp7knpsrhbO5EwZeCqU6/OlntVCqaYu/MPBSAgdeS8fAaxVy4LU0GXitnDDwUgoOvJaCjdoKMvAk99xaKZytnTDwUirV4U8/q41STdv8hYGXCjjw2joGXruQA6+tycBr54SBl0pw4LUVbNR2kIEnuef2SuFs74SBl0qpDn/6WR2UatrhLwy81MCB19Ex8DqFHHgdTQZeJycMvNSCA6+jYKN2ggw8yT13VgpnZycMvNRKdfjTz+qiVNMuf2HguQMHXlfHwOsWcuB1NRl43Zww8NwFB15XwUbtBhl4knvurhTO7k4YeO5KdfjTz+qhVNMef2HgeQAHXk/HwOsVcuD1NBl4vZww8DwEB15PwUbtBRl4knvurRTO3k4YeB5KdfjTz+qjVNM+f2HgpQEOvL6Ogdcv5MDrazLw+jlh4KURHHh9BRu1H2TgSe65v1I4+zth4KVRqsOfftYApZoO+AsDLy1w4A10DLxBIQfeQJOBN8gJAy+t4MAbKNiogyADT3LPg5XCOdgJAy+tUh3+9LOGKNV0yF8YeJ7AgTfUMfCGhRx4Q00G3jAnDDxPwYE3VLBRh0EGnuSehyuFc7gTBp6nUh3+9LNGKNV0xF8YeF7AgTfSMfBGhRx4I00G3ignDDwvwYE3UrBRR0EGnuSeRyuFc7QTBp6XUh3+9LPGKNV0zF8YeN7AgTfWMfDGhRx4Y00G3jgnDDxvwYE3VrBRx0EGnuSexyuFc7wTBp63Uh3+9LMmKNV0wl8YeOmAA2+iY+BNCjnwJpoMvElOGHjpBAfeRMFGnQQZeJJ7nqwUzslOGHjplOrwp581RammU/7CwEsPHHhTHQNvWsiBN9Vk4E1zwsBLLzjwpgo26jTIwJPc83SlcE53wsBLr1SHP/2sGUo1nfEXBl4G4MCb6Rh4s0IOvJkmA2+WEwZeBsGBN1OwUWdBBp7knmcrhXO2EwZeBqU6/OlnzVGq6Zy/MPAyAgfeXMfAmxdy4M01GXjznDDwMgoOvLmCjToPMvAk9zxfKZzznTDwMirV4U8/a4FSTRf8hYGXCTjwFjoG3qKQA2+hycBb5ISBl0lw4C0UbNRFkIEnuefFSuFc7ISBl0mpDn/6WUuUarrkLwy8zMCBt9Qx8JaFHHhLTQbeMicMvMyCA2+pYKMuE7y5zmxKG6IpfbIEr8VyR1OuCNmUxn8QIcSa8V8K5abblDa5pmy0XLApVwg3ZVS3/6ylRlOuEJ76//ysTKsIXplW/nNXCTaD1r5Xpf13gYU+V8Xq57CG/Nw/revqtNbet7Hn1Qr7XqP01WyNyddd6ZqsVvpXL7RwjSXzv1Zsz76Ngt8v43NTKt0nf6XMrlPq3XXBelfa/M/8kn0E/tdclDKuV6rreic8Agv2hG29YE03KNV0w//Qqz5/9mMLUMrtRqVabFTMrb9Sbv0Fe2yTUl03OSG3gj1h2yRY081KNd2smNtApdxuUarFFsXcBijlNkCwx7Yq1XWrE3Ir2BO2rYI13aZU022Kuc2plNvtSrXYrpjbQKXcBgr22A6luu5wQm4Fe8K2Q7CmO5VqulMxt7mUcrtLqRa7FHObUym3OQV7bLdSXXc7IbeCPWHbLVjTPUo13aOY27xKud2rVIu9irnNpZTbXII9tk+prvuckFvBnrDtE6zpfqWa7lfMbT6l3B5QqsUBxdzmVcptXsEeO6hU14NOyK1gT9gOCtb0kFJNDynmtqBSbg8r1eKwYm7zKeU2n2CPHVGq6xEn5FawJ2xHBGt6VKmmRxVzW0gpt8eUanFMMbcFlXJbULDHjivV9bgTcivYE7bjgjU9oVTTE4q5LaqU25NKtTipmNtCSrktJNhjp5TqesoJuRXsCdspwZqeVqrpacXcFlPK7RmlWpxRzG1RpdwWFeyxs0p1PeuE3Ar2hO2sYE3PKdX0nGJuSyrl9rxSLc4r5raYUm6LCfbYBaW6XnBCbgV7wnZBsKYXlWp6UTG3pZRye0mpFpcUc1tSKbclBXvsslJdLzsht4I9YbssWNMrSjW9opjbskq5vapUi6uKuS2llNtSgj12Tamu15yQW8GesF0TrOl1pZpeV8xtOaXc3lCqxQ3F3JZVym1ZwR67qVTXm07IrWBP2G4K1vSWUk1vKea2olJubyvV4rZibssp5bacYI/dUarrHSfkVrAnbHcEa3pXqaZ3FXNbSSm395RqcU8xtxWVcltRsMfuK9X1vhNyK9gTtvuCNX2gVNMHirmtqpTbh0q1eKiY20pKua0k2GOPlOr6yAm5FewJ2yPBmj5WquljxdxWU8rtE6VaPFHMbVWl3FYV7LGnSnV96oTcCvaE7algTZ8p1fSZYm5rKuX2uVItnivmtppSbqsJ9tgLpbq+cEJuBXvC9kKwpi+VavpSMbe1lHL7SqkWrxRzW1MptzUFe+y1Ul1fOyG3gj1hey1Y0zdKNX2jmNu6Srl9q1SLt4q5raWU21qCPfZOqa7vnJBbwZ6wvROs6Xulmr5XzG09pdx+UKrFB8Xc1lXKbV3BHvuoVNePTsitYE/YPgrW9JNSTT8p5rahUm4/K9Xis2Ju6ynltp5gj31RqusXJ+RWsCdsXwRr+lWppl8VcxuklNtvSrX4ppjbhkq5bSjYY9+V6vrdCbkV7Anbd8Ga/lCq6Q/F3DZRyu1PpVr8VMxtkFJugwR77JdSXX85IbeCPWH7JVjT30o1/a2Y26ZKuXXz1KmF8blauW2ilNsmgj0WSqmuoTz1cyvYE7bgdfjTmoZWqmloT73ctlDKbRilWoRRzG1Tpdw2FcxtWKW6hnVCbgV7whZWMLfhlGoaTjG3LZVyG16pFuEVc9tCKbctBHMbQamuEZyQW8GesEUQzG1EpZpGVMxtG6XcRlKqRSTF3LZUym1LwdxGVqprZCfkVrAnbJEFcxtFqaZRFHPbVim3UZVqEVUxt22UcttGMLfRlOoazQm5FewJWzTB3EZXqml0xdx2UMptDKVaxFDMbVul3LYVzG1MpbrGdEJuBXvCFlMwt7GUahpLMbcdlXIbW6kWsRVz20Eptx0EcxtHqa5xnJBbwZ6wxRHMbVylmsZVzG0XpdzGU6pFPMXcdlTKbUfB3MZXqmt8J+RWsCds8QVzm0CppgkUc9tVKbcJlWqRUDG3XZRy20Uwt4mU6prICbkV7AlbIsHcJlaqaWLF3PZQym0SpVokUcxtV6XcdhXMbVKluiZ1Qm4Fe8KWVDC3yZRqmkwxtz2VcptcqRbJFXPbQym3PQRzm0KprimckFvBnrClEMxtSqWaplTMbR+l3KZSqkUqxdz2VMptT8Hcplaqa2on5FawJ2ypBXPrrlRTd8Xc9lXKrYdSLTwUc9tHKbd9BHObRqmuaZyQW8GesKURzG1apZqmVcztAKXceirVwlMxt32VcttXMLdeSnX1ckJuBXvC5iWYW2+lmnor5nagUm7TKdUinWJuByjldoBgbtMr1TW9E3Ir2BO29IK5zaBU0wyKuR2ilNuMSrXIqJjbgUq5HSiY20xKdc3khNwK9oQtk2BuMyvVNLNibocq5dZHqRY+irkdopTbIYK5tSnV1eaE3Ar2hM0mmNssSjXNopjbEUq59VWqha9ibocq5XaoYG79lOrq54TcCvaEzU8wt/5KNfVXzO1IpdxmVapFVsXcjlDK7QjB3GZTqms2J+RWsCds2QRzG6BU0wDF3I5Rym2gUi0CFXM7Uim3IwVzm12prtmdkFvBnrBlF8xtDqWa5lDM7Vil3OZUqkVOxdyOUcrtGMHc5lKqay4n5FawJ2y5BHObW6mmuRVzO0Ept3mUapFHMbdjlXI7VjC3eZXqmtcJuRXsCVtewdzmU6ppPsXcTlTKbX6lWuRXzO0EpdxOEMxtAaW6FnBCbgV7wlZAMLcFlWpaUDG3U5RyW0ipFoUUcztRKbcTBXNbWKmuhZ2QW8GesBUWzG0RpZoWUcztVKXcFlWqRVHF3E5Ryu0UwdwWU6prMSfkVrAnbMUEc1tcqabFFXM7Qym3JZRqUUIxt1OVcjtVMLcllepa0gm5FewJW0nB3JZSqmkpxdzOVMptaaValFbM7Qyl3M4QzG0ZpbqWcUJuBXvCVkYwt2WValpWMbdzlHJbTqkW5RRzO1MptzMFc1teqa7lnZBbwZ6wlRfMbQWlmlZQzO1cpdxWVKpFRcXczlHK7RzB3FZSqmslJ+RWsCdslQRzW1mpppUVc7tAKbdVlGpRRTG3c5VyO1cwt1WV6lrVCbkV7AlbVcHcVlOqaTXF3C5Uym11pVpUV8ztAqXcLhDMbQ2lutZwQm4Fe8JWQzC3NZVqWlMxt0uUcltLqRa1FHO7UCm3CwVzW1uprrWdkFvBnrDVFsxtHaWa1lHM7VKl3NZVqkVdxdwuUcrtEsHc1lOqaz0n5FawJ2z1BHNbX6mm9R01DWe/orn9u6+C/0j38Nq0f7wX2z9/MeGKfXbwWjTw/NefDT0dBfmngMZ/ECrEmvFfShkCFUaxiP/Lz8ri+CxbA8FGbegpdwP+vzSlz5/92Hqm+fPPavRfPw2c1pRBjqZsFLIpg0yastH/i6b0+bOf/1bEP23KIMGmbOSpc3ND/iv8p07JIDYW/JfMzU0+cMZejXssPRglayjZg00sfj+MfmniKf+vveC+fTT2bcwsjX03Fdy3kZHEbv/5I1lXjdo29bS+sZm0URq4Ia1Ogza3eDCNPTdX2HcLpUepFopHIEYtminUoiWgB1oq7LuVUg+0MjmikD6qae5pzfsPPUKwmXBVntZaO57W2oR8Wmtt8rTWBnaE0FqwKdt46txc6SAKPO3+33tuK/h0ELyP2jr6yJlHKRJ7cfZRSjtHONuHDGc7k3C2d8JRSltPuXC2Ewxne8hRiuRA6mDxR3djr+0UjlIkayjZgx0tfj+Mfumo8K1VcN8q39bbKu27k+soxdbJ0/rGzlY/StmcVqdBu1g8mMaeuyjsu6vSY3RXxaMUoxadFWrRDdAD3RT23V2pB7o74Sili6c17z/0KCWLCVflaa2H42mtZ8intR4mT2s9YUcpPQSbsqenzs218lFKL7kgZgneR73+wlGKxF6cfZTS2xHOPiHD2dsknH2ccJTSS/AopbdgOPtAjlIkB1Jfiz+6G3vtrXCUIllDyR7sZ/H7YfRLP4VvrYL7Vvm23ktp3/1dRym2/p7WNw6w+lHKtrQ6DTrQ4sE09jxQYd+DlB6jBykepRi1GKBQi8GAHhissO8hSj0wxAlHKQM9rXn/oUcpviZclae1oY6ntWEhn9aGmjytDYMdpQwVbMphnjo318pHKcPlgugbvI+G/4WjFIm9OPsoZYQjnCNDhnOESThHOuEoZbjgUcoIwXCOhBylSA6kURZ/dDf2OkLhKEWyhpI9ONri98Pol9EK31oF963ybX240r7HuI5SbGM8rW8ca/WjlJ1pdRp0nMWDaex5nMK+xys9Ro9XPEoxajFWoRYTAD0wQWHfE5V6YKITjlLGeVrz/kOPUvxMuCpPa5McT2uTQz6tTTJ5WpsMO0qZJNiUkz11bq6Vj1KmyAXRL3gfTfkLRykSe3H2UcpURzinhQznVJNwTnPCUcoUwaOUqYLhnAY5SpEcSNMt/uhu7HWqwlGKZA0le3CGxe+H0S8zFL61Cu5b5dv6FKV9z3QdpdhmelrfOMvqRyl70uo06GyLB9PY82yFfc9Reoyeo3iUYtRilkIt5gJ6YK7Cvucp9cA8JxylzPa05v2HHqX4m3BVntbmO57WFoR8Wptv8rS2AHaUMl+wKRd46txcKx+lLJQLon/wPlr4F45SJPbi7KOURY5wLg4ZzkUm4VzshKOUhYJHKYsEw7kYcpQiOZCWWPzR3djrIoWjFMkaSvbgUovfD6Nflip8axXct8q39YVK+17mOkqxLfO0vnG51Y9S9qfVadAVFg+msecVCvteqfQYvVLxKMWoxXKFWqwC9MAqhX2vVuqB1U44Slnhac37Dz1KyWrCVXlaW+N4Wlsb8mltjcnT2lrYUcoawaZc66lzc618lLJOLohZg/fRur9wlCKxF2cfpax3hHNDyHCuNwnnBiccpawTPEpZLxjODZCjFMmBtNHij+7GXtcrHKVI1lCyBzdZ/H4Y/bJJ4Vur4L5Vvq2vU9r3ZtdRim2zp/WNW6x+lHIorU6DbrV4MI09b1XY9zalx+htikcpRi22KNRiO6AHtivse4dSD+xwwlHKVk9r3n/oUUo2E67K09pOx9ParpBPaztNntZ2wY5Sdgo25S5PnZtr5aOU3XJBzBa8j3b/haMUib04+yhljyOce0OGc49JOPc64Shlt+BRyh7BcO6FHKVIDqR9Fn90N/a6R+EoRbKGkj243+L3w+iX/QrfWgX3rfJtfbfSvg+4jlJsBzytbzxo9aOUo2l1GvSQxYNp7PmQwr4PKz1GH1Y8SjFqcVChFkcAPXBEYd9HlXrgqBOOUg55WvP+Q49SAky4Kk9rxxxPa8dDPq0dM3laOw47Sjkm2JTHPXVurpWPUk7IBTEgeB+d+AtHKRJ7cfZRyklHOE+FDOdJk3CecsJRygnBo5STguE8BTlKkRxIpy3+6G7s9aTCUYpkDSV78IzF74fRL2cUvrUK7lvl2/oJpX2fdR2l2M56Wt94zupHKSfS6jToeYsH09jzeYV9X1B6jL6geJRi1OKcQi0uAnrgosK+Lyn1wCUnHKWc97Tm/YcepQSacFWe1i47ntauhHxau2zytHYFdpRyWbApr3jq3FwrH6VclQtiYPA+uvoXjlIk9uLso5RrjnBeDxnOaybhvO6Eo5Srgkcp1wTDeR1ylCI5kG5Y/NHd2Os1haMUyRpK9uBNi98Po19uKnxrFdy3yrf1q0r7vuU6SrHd8rS+8bbVj1JOp9Vp0DsWD6ax5zsK+76r9Bh9V/EoxajFbYVa3AP0wD2Ffd9X6oH7TjhKueNpzfsPPUqpZ8JVeVp74Hhaexjyae2BydPaQ9hRygPBpnzoqXNzrXyU8kguiPWC99Gjv3CUIrEXZx+lPHaE80nIcD42CecTJxylPBI8SnksGM4nkKMUyYH01OKP7sZeHyscpUjWULIHn1n8fhj98kzhW6vgvlW+rT9S2vdz11GK7bmn9Y0vrH6Uci6tToO+tHgwjT2/VNj3K6XH6FeKRylGLV4o1OI1oAdeK+z7jVIPvHHCUcpLT2vef+hRSn0TrsrT2lvH09q7kE9rb02e1t7BjlLeCjblO0+dm2vlo5T3ckGsH7yP3v+FoxSJvTj7KOWDI5wfQ4bzg0k4PzrhKOW94FHKB8FwfoQcpUgOpE8Wf3Q39vpB4ShFsoaSPfjZ4vfD6JfPCt9aBfet8m39vdK+v7iOUmxfPK1v/Gr1o5SLaXUa9JvFg2ns+ZvCvr8rPUZ/VzxKMWrxVaEWPwA98ENh3z+VeuCnE45Svnla8/5Dj1IamHBVntZ+OZ7Wfod8Wvtl8rT2G3aU8kuwKX976txcKx+luHmJuRoE7yPjc1O6OfcoRWIvzj5KCeXl6BEvt/8eROM/CBnO0F76RynBi/in4QzlJdeooZVurvRRiuRACuMleF/d5AP3X/+AeMn/AyFZQ8keDGvx+2H0S1gv+W89gvtW+bbuprTvcIL7ph6lhPOyvjG8tFEaeCWtToNGsHgwjT1HUNh3RMF9B/+CZXyu1lGKUYvwCrWIBOiBSAr7jqzUA5G99I9SInhZ8/5Dj1IamnBVntaiOJ7WooZ8Woti8rQW1Yt1lBJFsCmjeuncXCsfpUSTC2LD4H0U7S8cpUjsxdlHKdEd4YwRMpzRTcIZwwlHKdEEj1KiC4YzBuQoRXIgxbT4o7ux1+gKRymSNZTswVgWvx9Gv8RS+NYquG+Vb+vRlPYd23WUYovtZX1jHKsfpVxPq9OgcS0eTGPPcRX2HU/pMTqe4lGKUYs4CrWID+iB+Ar7TqDUAwmccJQS18ua9x96lBJkwlV5WkvoeFpLFPJpLaHJ01oi2FFKQsGmTOSlc3OtfJSSWC6IQcH7KPFfOEqR2Iuzj1KSOMKZNGQ4k5iEM6kTjlISCx6lJBEMZ1LIUYrkQEpm8Ud3Y69JFI5SJGso2YPJLX4/jH5JrvCtVXDfKt/WEyvtO4XrKMWWwsv6xpRWP0q5lVanQVNZPJjGnlMp7Du10mN0asWjFKMWKRVq4Q7oAXeFfXso9YCHE45SUnlZ8/5Dj1IamXBVntbSOJ7W0oZ8Wktj8rSWFnaUkkawKdN66dxcKx+leMoFsVHwPvL8C0cpEntx9lGKlyOc3iHD6WUSTm8nHKV4Ch6leAmG0xtylCI5kNJZ/NHd2KuXwlGKZA0lezC9xe+H0S/pFb61Cu5b5du6p9K+M7iOUmwZvKxvzGj1o5S7aXUaNJPFg2nsOZPCvjMrPUZnVjxKMWqRUaEWPoAe8FHYt02pB2xOOErJ5GXN+888SrE57Wkti+NpzTfk01oWk6c1X9hRShbBpvT10rm5Vj5K8RMLou2/DSS/v3CUIrEXZx+l+DvCmTVkOP1NwpnVCUcpfoJHKf6C4cwKOUqRHEjZLP7obuzVX+EoRbKGkj0YYPH7YfRLgMK3VsF9q3xb91Pad6DrKMUW6GV9Y3arH6U8SKvToDksHkxjzzkU9p1T6TE6p+JRilGL7Aq1yAXogVwK+86t1AO5nXCUksPLmvcfepRiM+GqPK3lcTyt5Q35tJbH5GktL+woJY9gU+b10rm5Vj5KySd3lGIL3kf5/sJRisRenH2Ukt8RzgIhw5nfJJwFnHCUkk/wKCW/YDgLQI5SJAdSQYs/uht7za9wlCJZQ8keLGTx+2H0SyGFb62C+1b5tp5Pad+FXUcptsJe1jcWsfpRyuO0Og1a1OLBNPZcVGHfxZQeo4spHqUYtSiiUIvigB4orrDvEko9UMIJRylFvax5/6FHKVlMuCpPayUdT2ulQj6tlTR5WisFO0opKdiUpbx0bq6Vj1JKyx2lZAneR6X/wlGKxF6cfZRSxhHOsiHDWcYknGWdcJRSWvAopYxgOMtCjlIkB1I5iz+6G3sto3CUIllDyR4sb/H7YfRLeYVvrYL7Vvm2Xlpp3xVcRym2Cl7WN1a0+lHKs7Q6DVrJ4sE09lxJYd+VlR6jKysepRi1qKhQiyqAHqiisO+qSj1Q1QlHKZW8rHn/oUcpviZclae1ao6nteohn9aqmTytVYcdpVQTbMrqXjo318pHKTXkjlJ8g/dRjb9wlCKxF2cfpdR0hLNWyHDWNAlnLSccpdQQPEqpKRjOWpCjFMmBVNvij+7GXmsqHKVI1lCyB+tY/H4Y/VJH4Vur4L5Vvq3XUNp3XddRiq2ul/WN9ax+lPIyrU6D1rd4MI0911fYdwOlx+gGikcpRi3qKdSiIaAHGirsO0ipB4KccJRS38ua9x96lOJnwlV5WmvkeFprHPJprZHJ01pj2FFKI8GmbOylc3OtfJTSRO4oxS94HzX5C0cpEntx9lFKU0c4m4UMZ1OTcDZzwlFKE8GjlKaC4WwGOUqRHEjNLf7obuy1qcJRimQNJXuwhcXvh9EvLRS+tQruW+XbehOlfbd0HaXYWnpZ39jK6kcpb9LqNGhriwfT2HNrhX23UXqMbqN4lGLUopVCLdoCeqCtwr7bKfVAOyccpbT2sub9hx6l+JtwVZ7W2jue1jqEfFprb/K01gF2lNJesCk7eOncXCsfpXSUO0rxD95HHf/CUYrEXpx9lNLJEc7OIcPZySScnZ1wlNJR8Cilk2A4O0OOUiQHUheLP7obe+2kcJQiWUPJHuxq8fth9EtXhW+tgvtW+bbeUWnf3VxHKbZuXtY3drf6Ucr7tDoN2sPiwTT23ENh3z2VHqN7Kh6lGLXorlCLXoAe6KWw795KPdDbCUcpPbysef+hRylZTbgqT2t9HE9rfUM+rfUxeVrrCztK6SPYlH29dG6ulY9S+skdpWQN3kf9/sJRisRenH2U0t8RzgEhw9nfJJwDnHCU0k/wKKW/YDgHQI5SJAfSQIs/uht77a9wlCJZQ8keHGTx+2H0yyCFb62C+1b5tt5Pad+DXUcptsFe1jcOsfpRyqe0Og061OLBNPY8VGHfw5Qeo4cpHqUYtRiiUIvhgB4YrrDvEUo9MMIJRylDvax5/6FHKdlMuCpPayMdT2ujQj6tjTR5WhsFO0oZKdiUo7x0bq6Vj1JGyx2lZAveR6P/wlGKxF6cfZQyxhHOsSHDOcYknGOdcJQyWvAoZYxgOMdCjlIkB9I4iz+6G3sdo3CUIllDyR4cb/H7YfTLeIVvrYL7Vvm2Plpp3xNcRym2CV7WN060+lHK17Q6DTrJ4sE09jxJYd+TlR6jJysepRi1mKhQiymAHpiisO+pSj0w1QlHKZO8rHn/oUcpASZclae1aY6ntekhn9ammTytTYcdpUwTbMrpXjo318pHKTPkjlICgvfRjL9wlCKxF2cfpcx0hHNWyHDONAnnLCccpcwQPEqZKRjOWZCjFMmBNNvij+7GXmcqHKVI1lCyB+dY/H4Y/TJH4Vur4L5Vvq3PUNr3XNdRim2ul/WN86x+lPIjrU6Dzrd4MI09z1fY9wKlx+gFikcpRi3mKdRiIaAHFirse5FSDyxywlHKfC9r3n/oUUqgCVflaW2x42ltScintcUmT2tLYEcpiwWbcomXzs218lHKUrmjlMDgfbT0LxylSOzF2UcpyxzhXB4ynMtMwrncCUcpSwWPUpYJhnM55ChFciCtsPiju7HXZQpHKZI1lOzBlRa/H0a/rFT41iq4b5Vv60uV9r3KdZRiW+VlfeNqqx+l/E6r06BrLB5MY89rFPa9Vukxeq3iUYpRi9UKtVgH6IF1Cvter9QD651wlLLGy5r3H3qUUs+Eq/K0tsHxtLYx5NPaBpOntY2wo5QNgk250Uvn5lr5KGWT3FFKveB9tOkvHKVI7MXZRymbHeHcEjKcm03CucUJRymbBI9SNguGcwvkKEVyIG21+KO7sdfNCkcpkjWU7MFtFr8fRr9sU/jWKrhvlW/rm5T2vd11lGLb7mV94w6rH6WE9tRp0J0WD6ax550K+96l9Bi9S/EoxajFDoVa7Ab0wG6Ffe9R6oE9TjhK2ellzfsPPUqpb8JVeVrb63ha2xfyaW2vydPaPthRyl7BptznpXNzrXyUsl/uKKV+8D7a/xeOUiT24uyjlAOOcB4MGc4DJuE86ISjlP2CRykHBMN5EHKUIjmQDln80d3Y6wGFoxTJGkr24GGL3w+jXw4rfGsV3LfKt/X9Svs+4jpKsR3xsr7xqNWPUsJ56jToMYsH09jzMYV9H1d6jD6ueJRi1OKoQi1OAHrghMK+Tyr1wEknHKUc87Lm/YcepTQw4ao8rZ1yPK2dDvm0dsrkae007CjllGBTnvbSublWPko5I3eU0iB4H535C0cpEntx9lHKWUc4z4UM51mTcJ5zwlHKGcGjlLOC4TwHOUqRHEjnLf7obuz1rMJRimQNJXvwgsXvh9EvFxS+tQruW+Xb+hmlfV90HaXYLnpZ33jJ6kcpET11GvSyxYNp7Pmywr6vKD1GX1E8SjFqcUmhFlcBPXBVYd/XlHrgmhOOUi57WfP+Q49SGppwVZ7Wrjue1m6EfFq7bvK0dgN2lHJdsClveOncXCsfpdyUO0ppGLyPbv6FoxSJvTj7KOWWI5y3Q4bzlkk4bzvhKOWm4FHKLcFw3oYcpUgOpDsWf3Q39npL4ShFsoaSPXjX4vfD6Je7Ct9aBfet8m39ptK+77mOUmz3vKxvvG/1o5QonjoN+sDiwTT2/EBh3w+VHqMfKh6lGLW4r1CLR4AeeKSw78dKPfDYCUcpD7ysef+hRylBJlyVp7Unjqe1pyGf1p6YPK09hR2lPBFsyqdeOjfXykcpz+SOUoKC99Gzv3CUIrEXZx+lPHeE80XIcD43CecLJxylPBM8SnkuGM4XkKMUyYH00uKP7sZenyscpUjWULIHX1n8fhj98krhW6vgvlW+rT9T2vdr11GK7bWX9Y1vrH6UEt1Tp0HfWjyYxp7fKuz7ndJj9DvFoxSjFm8UavEe0APvFfb9QakHPjjhKOWtlzXvP/QopZEJV+Vp7aPjae1TyKe1jyZPa59gRykfBZvyk5fOzbXyUcpnuaOURsH76PNfOEqR2Iuzj1K+OML5NWQ4v5iE86sTjlI+Cx6lfBEM51fIUYrkQPpm8Ud3Y69fFI5SJGso2YPfLX4/jH75rvCtVXDfKt/WPyvt+4frKMX2w8v6xp9WP0qJ5anToL8sHkxjz78U9v1b6TH6t+JRilGLnwq1cPO2fg8YRul9h/LW6QHjc7WPUn55WfP+M49SsjjtaS2097/+DOPt9t+fzEJ7/+fTmvFfShkCZeWjlNDecq4w3jo318pHKWHFgpjlvw2ksN7OP0qR2Iuzj1LCOcIZPmQ4w5mEM/z/i3D6/NnPfyvin4YznGA4wyvdXOmjFMmBFEHuX0mVR3djr8Y9lv4HQrKGkj0Y0eL3w+iXiArfWgX3rfJtPazSviMJ7pt6lBLJ2/rGyNJGaWBcT50GjWLxYBp7jqKw76hKj9FRvfWOUoxaRFaoRTRAD0RT2Hd0pR6I7oSjlCje1rz/0KMUmwlX5WkthuNpLWbIp7UYJk9rMWFHKTEEmzKmt87NtfJRSiy5oxRb8D6K9ReOUiT24uyjlNiOcMYJGc7YJuGM44SjlFiCRymxBcMZB3KUIjmQ4lr80d3Ya2yFoxTJGkr2YDyL3w+jX+IpfGsV3LfKt/VYSvuO7zpKscX3tr4xgdWPUhJ46jRoQosH09hzQoV9J1J6jE6keJRi1CKBQi0SA3ogscK+kyj1QBInHKUk9Lbm/YcepWQx4ao8rSV1PK0lC/m0ltTkaS0Z7CglqWBTJvPWublWPkpJLneUkiV4HyX/C0cpEntx9lFKCkc4U4YMZwqTcKZ0wlFKcsGjlBSC4UwJOUqRHEipLP7obuw1hcJRimQNJXswtcXvh9EvqRW+tQruW+XbenKlfbu7jlJs7t7WN3pY/SglsadOg6axeDCNPadR2HdapcfotIpHKUYtPBRq4QnoAU+FfXsp9YCXE45S0nhb8/5Dj1J8TbgqT2vejqe1dCGf1rxNntbSwY5SvAWbMp23zs218lFKermjFN/gfZT+LxylSOzF2UcpGRzhzBgynBlMwpnRCUcp6QWPUjIIhjMj5ChFciBlsviju7HXDApHKZI1lOzBzBa/H0a/ZFb41iq4b5Vv6+mV9u3jOkqx+Xhb32iz+lFKMk+dBs1i8WAae86isG9fpcdoX8WjFKMWNoVa+AF6wE9h3/5KPeDvhKOULN7WvP/QoxQ/E67K01pWx9NatpBPa1lNntaywY5Ssgo2ZTZvnZtr5aOUALmjFL/gfRTwF45SJPbi7KOUQEc4s4cMZ6BJOLM74SglQPAoJVAwnNkhRymSAymHxR/djb0GKhylSNZQsgdzWvx+GP2SU+Fbq+C+Vb6tByjtO5frKMWWy9v6xtxWP0pJ6anToHksHkxjz3kU9p1X6TE6r+JRilGL3Aq1yAfogXwK+86v1AP5nXCUksfbmvcfepTib8JVeVor4HhaKxjyaa2AydNaQdhRSgHBpizorXNzrXyUUkjuKMU/eB8V+gtHKRJ7cfZRSmFHOIuEDGdhk3AWccJRSiHBo5TCguEsAjlKkRxIRS3+6G7stbDCUYpkDSV7sJjF74fRL8UUvrUK7lvl23ohpX0Xdx2l2Ip7W99YwupHKe6eOg1a0uLBNPZcUmHfpZQeo0spHqUYtSihUIvSgB4orbDvMko9UMYJRyklva15/6FHKVlNuCpPa2UdT2vlQj6tlTV5WisHO0opK9iU5bx1bq6Vj1LKyx2lZA3eR+X/wlGKxF6cfZRSwRHOiiHDWcEknBWdcJRSXvAopYJgOCtCjlIkB1Iliz+6G3utoHCUIllDyR6sbPH7YfRLZYVvrYL7Vvm2Xl5p31VcRym2Kt7WN1a1+lFKWk+dBq1m8WAae66msO/qSo/R1RWPUoxaVFWoRQ1AD9RQ2HdNpR6o6YSjlGre1rz/0KOUbCZclae1Wo6ntdohn9ZqmTyt1YYdpdQSbMra3jo318pHKXXkjlKyBe+jOn/hKEViL84+SqnrCGe9kOGsaxLOek44SqkjeJRSVzCc9SBHKZIDqb7FH92NvdZVOEqRrKFkDzaw+P0w+qWBwrdWwX2rfFuvo7Tvhq6jFFtDb+sbg6x+lOLtqdOgjSweTGPPjRT23VjpMbqx4lGKUYsghVo0AfRAE4V9N1XqgaZOOEpp5G3N+w89Sgkw4ao8rTVzPK01D/m01szkaa057CilmWBTNvfWublWPkppIXeUEhC8j1r8haMUib04+yilpSOcrUKGs6VJOFs54SilheBRSkvBcLaCHKVIDqTWFn90N/baUuEoRbKGkj3YxuL3w+iXNgrfWgX3rfJtvYXSvtu6jlJsbb2tb2xn9aOUDJ46Ddre4sE09txeYd8dlB6jOygepRi1aKdQi46AHuiosO9OSj3QyQlHKe29rXn/oUcpgSZclae1zo6ntS4hn9Y6mzytdYEdpXQWbMou3jo318pHKV3ljlICg/dR179wlCKxF2cfpXRzhLN7yHB2MwlndyccpXQVPErpJhjO7pCjFMmB1MPij+7GXrspHKVI1lCyB3ta/H4Y/dJT4Vur4L5Vvq13Vdp3L9dRiq2Xt/WNva1+lJLZU6dB+1g8mMae+yjsu6/SY3RfxaMUoxa9FWrRD9AD/RT23V+pB/o74Silj7c17z/0KKWeCVflaW2A42ltYMintQEmT2sDYUcpAwSbcqC3zs218lHKILmjlHrB+2jQXzhKkdiLs49SBjvCOSRkOAebhHOIE45SBgkepQwWDOcQyFGK5EAaavFHd2OvgxWOUiRrKNmDwyx+P4x+GabwrVVw3yrf1gcp7Xu46yjFNtzb+sYRVj9KyeKp06AjLR5MY88jFfY9SukxepTiUYpRixEKtRgN6IHRCvseo9QDY5xwlDLS25r3H3qUUt+Eq/K0NtbxtDYu5NPaWJOntXGwo5Sxgk05zlvn5lr5KGW83FFK/eB9NP4vHKVI7MXZRykTHOGcGDKcE0zCOdEJRynjBY9SJgiGcyLkKEVyIE2y+KO7sdcJCkcpkjWU7MHJFr8fRr9MVvjWKrhvlW/r45X2PcV1lGKb4m1941SrH6X4e+o06DSLB9PY8zSFfU9XeoyerniUYtRiqkItZgB6YIbCvmcq9cBMJxylTPO25v2HHqU0MOGqPK3NcjytzQ75tDbL5GltNuwoZZZgU8721rm5Vj5KmSN3lNIgeB/N+QtHKRJ7cfZRylxHOOeFDOdck3DOc8JRyhzBo5S5guGcBzlKkRxI8y3+6G7sda7CUYpkDSV7cIHF74fRLwsUvrUK7lvl2/ocpX0vdB2l2BZ6W9+4yOpHKQGeOg262OLBNPa8WGHfS5Qeo5coHqUYtVikUIulgB5YqrDvZUo9sMwJRymLva15/6FHKQ1NuCpPa8sdT2srQj6tLTd5WlsBO0pZLtiUK7x1bq6Vj1JWyh2lNAzeRyv/wlGKxF6cfZSyyhHO1SHDucoknKudcJSyUvAoZZVgOFdDjlIkB9Iaiz+6G3tdpXCUIllDyR5ca/H7YfTLWoVvrYL7Vvm2vlJp3+tcRym2dd7WN663+lFKDk+dBt1g8WAae96gsO+NSo/RGxWPUoxarFeoxSZAD2xS2PdmpR7Y7ISjlA3e1rz/0KOUIBOuytPaFsfT2taQT2tbTJ7WtsKOUrYINuVWb52ba+WjlG1yRylBwfto2184SpHYi7OPUrY7wrkjZDi3m4RzhxOOUrYJHqVsFwznDshRiuRA2mnxR3djr9sVjlIkayjZg7ssfj+Mftml8K1VcN8q39a3Ke17t+soxbbb2/rGPVY/SsntqdOgey0eTGPPexX2vU/pMXqf4lGKUYv/i727AI/ibNs+npAEd3fXYAnB3d3d3d3dtUApbqVAKVZqQHF3d3d3d7fv3OfJlJPpXunulR2a/d4nx/E7Ssn/nvue2Z3NziTAZguOxTY3eA5ss2C/t1v0HNj+FW6lbEkXMh9/N72V0tzOci25WtsReLW203y1tsPO1dpON7uVssOFT8qd6ax5cEPyrZRdrruV0pyfR7v+hVsprtiXr30rZXfgybnHfHLutnNy7vkKt1J2ufBWym4Xnpx73ORWiitfkPaG8Et3277utuBWiiuPoSufg/tC+ONhe77ss+Bdqwv325J367ss2u/9/7uV4r8/Xchf44GQfiulUBprnqAHQ/iJadvngxbs9yGLLqMPWXgrxXYsDlhwLA67wXPgsAX7fcSi58CRr3Ar5WC6kPn4u+etlICvdrV2NPBq7Zj5au2onau1Y252K+WoC5+Ux9JZ8+CG5Fspx112IgZ88YJ0/F+4leKKffnat1JOBJ6cJ80n5wk7J+fJr3Ar5bgLb6WccOHJedJNbqW48gXpVAi/dLft6wkLbqW48hi68jl4OoQ/Hrbny2kL3rW6cL8tebd+3KL9PvO/Wyn+Z9KF/DWeDem3UoqmseYJei6En5i2fT5nwX6ft+gy+ryFt1Jsx+KsBcfighs8By5YsN8XLXoOXPwKt1LOpQuZj7+b3krxt7NcS67WLgVerV02X61dsnO1dtnNbqVccuGT8nI6ax7ckHwr5YrrbqX48/Poyr9wK8UV+/K1b6VcDTw5r5lPzqt2Ts5rX+FWyhUX3kq56sKT85qb3Epx5QvS9RB+6W7b16sW3Epx5TF05XPwRgh/PGzPlxsWvGt14X5b8m79ikX7ffN/t1L8b6YL+Wu8FdJvpZRIY80T9HYIPzFt+3zbgv2+Y9Fl9B0Lb6XYjsUtC47FXTd4Dty1YL/vWfQcuPcVbqXcThcyH383vZWSxc5yLblaux94tfbAfLV2387V2gM3u5Vy34VPygfprHlwQ/KtlIeuu5WShZ9HD/+FWymu2JevfSvlUeDJ+dh8cj6yc3I+/gq3Uh668FbKIxeenI/d5FaKK1+QnoTwS3fbvj6y4FaKK4+hK5+DT0P442F7vjy14F2rC/fbknfrDy3a72f/u5Xi/yxdyF/j85B+K6V0GmueoC9C+Ilp2+cXFuz3S4suo19aeCvFdiyeW3AsXrnBc+CVBfv92qLnwOuvcCvlRbqQ+fi76a2UADvLteRq7U3g1dpb89XaGztXa2/d7FbKGxc+Kd+ms+bBDcm3Ut657lZKAD+P3v0Lt1JcsS9f+1bK+8CT84P55Hxv5+T88BVupbxz4a2U9y48OT+4ya0UV74gfQzhl+62fX1vwa0UVx5DVz4HP4Xwx8P2fPlkwbtWF+63Je/W31m03x6+/7uV4spjYNUaPV29RlcvsFwaa56goXxD9olp22fbGl29314u3G9+g2XbrlW3Uv7z+FtwLLzd4DngbcF++1j0HPDxtf5WCp+3Ienxd9NbKVntLNeSq7XQvv/9bxhfjy+vzEL7/v1qzRYlNS0qJN9KCe3CJ2UYX2se3JB8KyWsy07EgKz8PArr+/VvpbhiX772rZRwgSdnePPJGc7OyRnegZPTL3gfXxzE4J6c4Vx4coa36MF19a0UV74gRXDdV0lLLt1t+2p7jF39BcKVx9CVz8GIIfzxsD1fIlrwrtWF+23Ju/WwFu13pP/dSvGP5Bvy1xg5pN9KqZjGmidolBB+Ytr2OYoF+x3VosvoqBbeSrEdi8gWHItobvAciGbBfke36DkQ/SvcSoniGzIffze9lZLNznItuVqLEXi1FtN8tRbDztVaTDe7lRLDhU/KmL7WPLgh+VZKLNfdSsnGz6NY/8KtFFfsy9e+lRI78OSMYz45Y9s5OeN8hVspsVx4KyW2C0/OOG5yK8WVL0hxQ/ilu21fY1twK8WVx9CVz8F4IfzxsD1f4lnwrtWF+23Ju/VYFu13/P/dSvGP7xvy15ggpN9KqZLGmidowhB+Ytr2OaEF+53IosvoRBbeSrEdiwQWHIvEbvAcSGzBfiex6DmQ5CvcSknoGzIffze9lZLdznItuVpLGni1lsx8tZbUztVaMje7lZLUhU/KZL7WPLgh+VZKctfdSsnOz6Pk/8KtFFfsy9e+lZIi8ORMaT45U9g5OVN+hVspyV14KyWFC0/OlG5yK8WVL0ipQvilu21fU1hwK8WVx9CVz8HUIfzxsD1fUlvwrtWF+23Ju/XkFu13mv/dSvFP4xvy15g2pN9KqZ7GmidouhB+Ytr2OZ0F++1r0WW0r4W3UmzHIq0FxyK9GzwH0luw3xkseg5k+Aq3UtL5hszH301vpeSws1xLrtYyBl6tZTJfrWW0c7WWyc1upWR04ZMyk681D25IvpWS2XW3UnLw8yjzv3ArxRX78rVvpfgFnpz+5pPTz87J6f8VbqVkduGtFD8Xnpz+bnIrxZUvSFlC+KW7bV/9LLiV4spj6MrnYEAIfzxsz5cAC961unC/LXm3ntmi/c76v1sp/ll9Q/4as4X0Wym10ljzBM0ewk9M2z5nt2C/c1h0GZ3DwlsptmORzYJjkdMNngM5LdjvXBY9B3J9hVsp2X1D5uPvprdSctpZriVXa7kDr9bymK/Wctu5WsvjZrdScrvwSZnH15oHNyTfSsnrulspOfl5lPdfuJXiin352rdS8gWenPnNJ2c+Oydn/q9wKyWvC2+l5HPhyZnfTW6luPIFqUAIv3S37Ws+C26luPIYuvI5WDCEPx7/eb5Y8K7Vhfttybv1vBbtd6H/3UrxL+Qb8tdYOKTfSqmbxponaJEQfmLa9rmIBftd1KLL6KIW3kqxHYvCFhyLYm7wHChmwX4Xt+g5UPwr3Eop4hsyH383vZWSy85yLblaKxF4tVbSfLVWws7VWkk3u5VSwoVPypK+1jy4IflWSinX3UrJxc+jUv/CrRRX7MvXvpVSOvDkLGM+OUvbOTnLfIVbKaVceCultAtPzjJucivFlS9IZUP4pbttX0tbcCvFlcfQlc/BciH88bA9X8pZ8K7Vhfttybv1Uhbtd/n/3UrxL+8b8tdYIaTfSmmQxponaMUQfmLa9rmiBftdyaLL6EoW3kqxHYsKFhyLym7wHKhswX5Xseg5UOUr3Eqp6BsyH383vZXSyM5yLblaqxp4tVbNfLVW1c7VWjU3u5VS1YVPymq+1jy4IflWSnXX3UppxM+j6v/CrRRX7MvXvpVSI/DkrGk+OWvYOTlrfoVbKdVdeCulhgtPzppucivFlS9ItUL4pbttX2tYcCvFlcfQlc/B2iH88bA9X2pb8K7Vhfttybv16hbtd53/3Urxr+Mb8tdYN6TfSmmcxponaL0QfmLa9rmeBftd36LL6PoW3kqxHYu6FhyLBm7wHGhgwX43tOg50PAr3Eqp5xtyH3/jw9UXFnzV6he8D38X3EH46/g1suh51OhfuAJuZNFFkodr1mn3Crhx4BVwE/MVcJOvcLXbyIVXu41deFI3seiBdPWLcGMXXhHZHtvQHi5/0v31IR0Dv+B9+HunDvlrbGrRFwmX3z6Jmjjk77Sr3w14u/CrWTMXnpD8Ytws8MXYXU/SZr4hf43N3eUkjZY45O90SD5JW7hun7PwSdrCzU/SFm5wkrZ0l5M0euKQv9Mh+SRt5bp9DuCTtJWbn6St3OAkbe0uJ2mMxCF/p0PySdrGdfuclU/SNm5+krZxg5O0rbucpDETh/ydDsknaTvX7fMX/7R1Ozc/Sdu5wUna3l1O0liJQ/5Oh+STtIPr9vmLfzStg5ufpB3c4CTt6C4naezEIX+nQ/JJ2sl1+/zFX8ffyc1P0k5ucJJ2dpeTNE7ikL/TIfkk7eK6ff7iL3rs4uYnaRc3OEm7ustJGjdxyN/pkHySdnPdPn/xV4h0c/OTtJsbnKTd3eUkjZc45O90SD5Je7hun7/4w2k93Pwk7eEGJ2lPdzlJ4ycO+Tsdkk/SXq7b58Z8kvZy85O0lxucpL3d5SRNkDjk73RIPkn7uG6fm/BJ2sfNT9I+bnCS9nWXkzRh4pC/0yH5JO3nun1uyidpPzc/Sfu5wUna311O0kSJQ/5Oh+STdIDr9rkZn6QD3PwkHeAGJ+lAdzlJEycO+Tsdkk/SQa7b5+Z8kg5y85N0kBucpIPd5SRNkjjk73RIPkmHuGyf/b/4g9dD3PwkHeIGJ+lQdzlJkyYO+Tsdkk/SYa47Sb/486TD3PwkHeYGJ+lwdzlJkyUO+Tsdkk/SEa47Sb/486Qj3PwkHeEGJ+k37nKSJk8c8nc6JJ+kI113kn7x50lHuvlJOtINTtJR7nKSpkgc8nc6JJ+ko113kn7x50lHu/lJOtoNTtJv3eUkTZk45O90SD5Jx7juJP3iz5OOcfOTdIwbnKTfuctJmipxyN/pkHySjnXdSfrFnycd6+Yn6Vg3OEnHuctJmjpxyN/pkHySjnfdSfrFnycd7+Yn6Xg3OEknuMtJmiZxyN/pkHySTnTdSfrFnyed6OYn6UQ3OEknuctJmjZxyN/pkHySTnbdSfrFnyed7OYn6WQ3OEmnuMtJmi5xyN/pkHySTnXdSfrFnyed6uYn6VQ3OEmnuctJ6ps45O90SD5Jp7vuJP3iz5NOd/OTdLobnKTfu8tJmj5xyN/pkHySznDdSfrFnyed4eYn6Qw3OEl/cJeTNEPikL/TIfkknem6k/SLP086081P0plucJLOcpeTNGPikL/TIfkkne26k/SLP086281P0tlucJL+6C4naabEIX+nQ/JJOsd1J+kXf550jpufpHPc4CT9yV1O0syJQ/5Ou/rfX60U23XHr7oLtzXXhcfP9g8AR6QnNn+4+snuynXzeuf5Wrhg28Zdvd35vq57Mli13/N9Px9gF233P0+2cB5f51+b5hPOL5gfVq6zUmxrTooF9Lz926KD+6Sb77oz+Ys/eGss2vZECe/xdV6VXPkA8BN7YeAJ9LNtn6x4ABZY8Mq0wMVfmq3a71AW7ndw17jI4mPoF7wPf9sTc5Gv6x+bX1z85d14UbBtd2Dgdl19LH626Fj8atGx+DWIYxHcNVv1vLic/l99TWnyD+uz7DlwJX3Ifh2wfeFbZMFrqQsfb39XHkPbm4oIHvbffXo4eQz+6TnF27Ti9dtVx4TfYP0W1DtGv+B9+C+y6AWRF+3kmv3/aR7bmn+z4IXhhotfGIwPbycfM2feyAR3n3/3DZkvMK58LPh5+Tt9odY+Pv90zF35+PxB2/IPCMC50TSHf/OmzQOy5ciVpbF/9oDs2ZtnbZ4je86sTZtny9qoaY5m/lkbBWTJ1SyHX3P/nM2a5cgW0CRH9ua5mjbJ3pxftP2bBgRkbZqrcRP/bFmyN2rsl7NpQCO/5llzBGTxa9Q0IEfTpgE5s2dvFBDQNHvO5jlz5cySpVHzgJx+2XLkyOWXPUtArixWPT5/BD4+X/NKs7pFV5qLA680l7jLC7hV61tswYv1Uou+cC218KrGdiyWWHAs/rToWPxp4VWNVc+L2yH8qsaq58CdEH5VU92iqxoXPt7+d/53VWP+8F9s0VXNMne8qllm8VXNMgteGB78H7yqWe4bMl9gHlj0rnm5m13VrHDhVc0dF17VWPX4rKCrGumLQki+HWXlOq36ArPSHb/ArLT4C8xKC77APLLoC4yPi9fpyhewVS7clitvm7nyi9Uji14MVznwxSq4x3S1r+u+KHxx2ywEfbGy6vFZ/f/RLbg1gbfg1tr7YQ+/4H34Sz/04Mqf4gnutlz4gyP+VjzwxjH0cpNjGNxtrQvhj4fthFlnwZuE9Ra9YVpv4e3atRYdiw0WHYsNFt6utep58TyE36616jnwwg1u166z4HatCx9v/xf/u11r/vjP67erjgm/8dto5dX0OoteEDdaeDVtW/NGC14Y3rjJ7dp1LnxTtMk3ZL7AvLHoCmvTV7hd68rHZ7MLb9e+cOEVsFWPz+Z/4QrYqj/usCXwCniru7yAW7W+LRa8WG+z6AvXNguvamzHYqsFx2K7Rcdiu4VXNVY9L96H8Ksaq54DH9zgR+utuKpx4ePt/+F/VzXmD/8tFl3V7HDHq5odFl/V7LDghcEzw/+9q5qdviHzBcaVjwU/L3e62VXNLhde1Xxw4VWNVY/Prn/hh1DW+Fpz3rvLF5jd7vgFZrfFX2B2W/AFxsuiLzCu/iEUV76A7XHhtlx528yVX6y8LHox3PMVfghlrwt/COVF+pD5xcqqx2evhVf984Xv6fkF78Pld8GMD1f/fIkLf9jGv0Zs99jnyi7c55puss9VXLjPtdxkn6u6cJ9ru8k+V3PhPtdxk33+0cN1+1zXTfZ5jgv3uZ6b7PNPLtzn+m6yz3NduM8N3GSf57lwnxu6yT7Pd+E+N3KTfV7gwn1u7Cb7vNCF+9zETfb5Zxfuc1M32edFLtznZm6yz7+4cJ+bu8k+/+rCfW7hJvv8mwv3uaWb7PPvLtznVm6yz3+4cJ9bu8k+L3bhPrdxk31e4sJ9busm+7zUhfvczk32+U8X7nN7N9nnZS7c5w5uss/LXbjPHd1kn1e4cJ87uck+r3ThPnd2k31e5cJ97uIm+7zahfvc1U32eY0L97mbm+zzWhfuc3c32ed1LtznHm6yz+tduM893WSfN7hwn3u5yT5vdOE+93aTfd7kwn3u4+J/dsn4mS7bz6kYH56Bx8Ar8PO2n/Gz/UOKYSCsx3//KazwHv/9IVnbv8EWCSJDFIgK0SA6xICYEAtsm48DcSEexIcEkBASQWJIAkkhGSSHFJASUkFqSANpIR3Y/tReesgAGSETZLYdE7D9UYsstscNskI2yA45ICfkgtyQB/JCPsgPBQIfp0JQGIpAUSgGxaEElIRSUBrKQFkoB+WhAlSESlAZqkBVqAbVbccYakItqA11oC7Ug/rQABpCI2gMTaApNIPm0AJaQitoDW2gLbSD9tABOkIn6AxdoCt0g+7QA3pCL+gNfaAv9IP+MMDjvz9TNggGwxAYCsNgOIyAb2AkjILR8C2Mge9gLIyD8TABJsIkmAxTYCpMg+nwPcyAH2AmzILZ8CPYvo//E9i+z2v7vqft+4C274vZvk9k+76J7fsItvvqtvvMtvuutvuQtvtytvtUtvs2tvsYtut623Wu7brPdh1kuy6wvU+2vW+0vY+yva+wfZ21fd2xvQ7bXpds5+lm2AJbYRtshx2wE3bBbtgDe2Ef7IcDcBAOwWE4AkfhGByHE3ASTsFpOANn4RychwtwES7BZbgCV+EaXIcbcBNuwW24A3fhHtyHB/AQHsFjeAJP4Rk8hxfwEl7Ba3gDb+EdvIcP8BE+ge3kt/1FUKHAC7zBB0JDGAgL4SA8RICIEAkiQxSICtEgOsSAmBALYkMciAvxID4kgISQCBJDEkgKySA5pICUkApSQxpIC+nAF9JDBsgImSAz2F7UbP80WxYIgKyQDbJDDsgJuSA35IG8kA/yQwEoCIWgMBSBolAMikMJKAmloDSUgbJQDspDBagIlaAyVIGqUA2qQw2oCbWgNtSBulAP6kMDaAiNoDE0Adu/EW/7J6ht/8JtC2gJraA1tIG20A7aQwfoCJ2gM3SBrtANukMP6Am9oDf0gb7QD/rDABgIg2AwDIGhMAyGwwj4BkbCKBgN38IY+A7GwjgYDxNgIkyCyTAFpsI0mA7fwwz4AWbCLJgNP8Ic+AnmwjyYDwtgIfwMi+AX+BV+g9/hD1gMS2Ap/AnLYDmsgJWwClbDGlgL62A9bICNsAk2wxbYCttgO+yAnbALdsMe2Av7YD8cgINwCA7DETgKx+A4nICTcApOwxk4C+fgPFyAi3AJLsMVuArX4DrcgJtwC27DHbgL9+A+PICH8AgewxN4Cs/gObyAl/AKXsMbeAvv4D18gI/wCWxf+D0hFHiBN/hAaAgDYSEchIcIEBEiQWSIAlEhGkSHGBATYkFsiANxIR7EhwSQEBJBYkgCSSEZJIcUkBJSQWpIA2khHfhCesgAGSETZAbbn+33hywQAFkhG2SHHJATckFuyAN5IR/khwJQEApBYSgCRaEYFIcSUBJKQWkoA2WhHJSHClARKkFlqAJVoRpUhxpQE2pBbagDdaEe1IcG0BAaQWNoAk2hGTSHFtASWkFraANtoR20hw7QETpBZ+gCXaEbdIce0BN6QW/oA32hH/SHATAQBsFgGAJDYRgMhxHwDYyEUTAavoUx8B2MhXEwHibARJgEk2EKTIVpMB2+hxnwA8yEWTAbfoQ58BPMhXkwHxbAQvgZFsEv8Cv8Br/DH7AYlsBS+BOWwXJYASthFayGNbAW1sF62AAbYRNshi2wFbbBdtgBO2EX7IY9sBf2wX44AAfhEByGI3AUjsFxOAEn4RSchjNwFs7BebgAF+ESXIYrcBWuwXW4ATfhFtyGO3AX7sF9eAAP4RE8hifwFJ7Bc3gBL+EVvIY38BbewXv4AB/hE9je9HtCKPACb/CB0BAGwkI4CA8RICJEgsgQBaJCNIgOMSAmxILYEAfiQjyIDwkgISSCxJAEkkIySA4pICWkgtSQBtJCOvCF9JABMkImyAx+4A9ZIACyQjbIDjkgJ+SC3JAH8kI+yA8FoCAUgsJQBIpCMSgOJaAklILSUAbKQjkoDxWgIlSCylAFqkI1qA41oCbUgtpQB+pCPagPDaAhNILG0ASaQjNoDi2gJbSC1tAG2kI7aA8doCN0gs7QBbpCN+gOPaAn9ILe0Af6Qj/oDwNgIAyCwTAEhsIwGA4j4BsYCaNgNHwLY+A7GAvjYDxMgIkwCSbDFJgK02A6fA8z4AeYCbNgNvwIc+AnmAvzYD4sgIXwMyyCX+BX+A1+hz9gMSyBpfAnLIPlsAJWwipYDWtgLayD9bABNsIm2AxbYCtsg+2wA3bCLtgNe2Av7IP9cAAOwiE4DEfgKByD43ACTsIpOA1n4Cycg/NwAS7CJbgMV+AqXIPrcANuwi24DXfgLtyD+/AAHsIjeAxP4Ck8g+fwAl7CK3gNb+AtvIP38AE+wiewXfB7QijwAm/wgdAQBsJCOAgPESAiRILIEAWiQjSIDjEgJsSC2BAH4kI8iA8JICEkgsSQBJJCMkgOKSAlpILUkAbSQjrwhfSQATJCJsgMfuAPWSAAskI2yA45ICfkgtyQB/JCPsgPBaAgFILCUASKQjEoDiWgJJSC0lAGykI5KA8VoCJUgspQBapCNagONaAm1ILaUAfqQj2oDw2gITSCxtAEmkIzaA4toCW0gtbQBtpCO2gPHaAjdILO0AW6QjfoDj2gJ/SC3tAH+kI/6A8DYCAMgsEwBIbCMBgOI+AbGAmjYDR8C2PgOxgL42A8TICJMAkmwxSYCtNgOnwPM+AHmAmzYDb8CHPgJ5gL82A+LICF8DMsgl/gV/gNfoc/YDEsgaXwJyyD5bACVsIqWA1rYC2sg/WwATbCJtgMW2ArbIPtsAN2wi7YDXtgL+yD/XAADsIhOAxH4Cgcg+NwAk7CKTgNZ+AsnIPzcAEuwiW4DFfgKlyD63ADbsItuA134C7cg/vwAB7CI3gMT+ApPIPn8AJewit4DW/gLbyD9/ABPsInsN3s84RQ4AXe4AOhIQyEhXAQHiJARIgEkSEKRIVoEB1iQEyIBbEhDsSFeBAfEkBCSASJIQkkhWSQHFJASkgFqSENpIV04AvpIQNkhEyQGWx/pYs/ZIEAyArZIDvkgJyQC3JDHsgL+SA/FICCUAgKQxEoCsWgOJSAklAKSkMZKAvloDxUgIpQCSpDFagK1aA61ICaUAtqQx2oC/WgPjSAhtAIGkMTaArNoDm0gJbQClpDG2gL7aA9dICO0Ak6QxfoCt2gO/SAntALekMf6Av9oD8MgIEwCAbDEBgKw2A4jIBvYCSMgtHwLYyB72AsjIPxMAEmwiSYDFNgKkyD6fA9zIAfYCbMgtnwI8yBn2AuzIP5sAAWws+wCH6BX+E3+B3+gMWwBJbCn7AMlsMKWAmrYDWsgbWwDtbDBtgIm2AzbIGtsA22ww7YCbtgN+yBvbAP9sMBOAiH4DAcgaNwDI7DCTgJp+A0nIGzcA7OwwW4CJfgMlyBq3ANrsMNuAm34DbcgbtwD+7DA3gIj+AxPIGn8Ayewwt4Ca/gNbyBt/AO3sMH+AifwHaj3xNCgRd4gw+EhjAQFsJBeIgAESESRIYoEBWiQXSIATEhFsSGOBAX4kF8SAAJIREkhiSQFJJBckgBKSEVpIY0kBbSgS+khwyQETJBZvADf8gCAZAVskF2yAE5IRfkhjyQF/JBfigABaEQFIYiUBSKQXEoASWhFJSGMlAWykF5qAAVoRJUhipQFapBdagBNaEW1IY6UBfqQX1oAA2hETSGJtAUmkFzaAEtoRW0hjbQFtpBe+gAHaETdIYu0BW6QXfoAT2hF/SGPtAX+kF/GAADYRAMhiEwFIbBcBgB38BIGAWj4VsYA9/BWBgH42ECTIRJMBmmwFSYBtPhe5gBP8BMmAWz4UeYAz/BXJgH82EBLISfYRH8Ar/Cb/A7/AGLYQkshT9hGSyHFbASVsFqWANrYR2shw2wETbBZtgCW2EbbIcdsBN2wW7YA3thH+yHA3AQDsFhOAJH4RgchxNwEk7BaTgDZ+EcnIcLcBEuwWW4AlfhGlyHG3ATbsFtuAN34R7chwfwEB7BY3gCT+EZPIcX8BJewWt4A2/hHbyHD/ARPoHtm3yeEAq8wBt8IDSEgbAQDsJDBIgIkSAyRIGoEA2iQwyICbEgNsSBuBAP4kMCSAiJIDEkgaSQDJJDCkgJqSA1pIG0kA58IT1kgIyQCTKDH/hDFgiArJANskMOyAm5IDfkgbyQD/JDASgIhaAwFIGiUAyKQwkoCaWgNJSBslAOykMFqAiVoDJUgapQDapDDagJtaA21IG6UA/qQwNoCI2gMTSBptAMmkMLaAmtoDW0gbbQDtpDB+gInaAzdIGu0A26Qw/oCb2gN/SBvtAP+sMAGAiDYDAMgaEwDIbDCPgGRsIoGA3fwhj4DsbCOBgPE2AiTILJMAWmwjSYDt/DDPgBZsIsmA0/whz4CebCPJgPC2Ah/AyL4Bf4FX6D3+EPWAxLYCn8CctgOayAlbAKVsMaWAvrYD1sgI2wCTbDFtgK22A77ICdsAt2wx7YC/tgPxyAg3AIDsMROArH4DicgJNwCk7DGTgL5+A8XICLcAkuwxW4CtfgOtyAm3ALbsMduAv34D48gIfwCB7DE3gKz+A5vICX8Apewxt4C+/gPXyAj/AJbN/g94RQ4AXe4AOhIQyEhXAQHiJARIgEkSEKRIVoEB1iQEyIBbEhDsSFeBAfEkBCSASJIQkkhWSQHFJASkgFqSENpIV04AvpIQNkhEyQGfzAH7JAAGSFbJAdckBOyAW5IQ/khXyQHwpAQSgEhaEIFIViUBxKQEkoBaWhDJSFclAeKkBFqASVoQpUhWpQHWpATagFtaEO1IV6UB8aQENoBI2hCTSFZtAcWkBLaAWtoQ20hXbQHjpAR+gEnaELdIVu0B16QE/oBb2hD/SFftAfBsBAGASDYQgMhWEwHEbANzASRsFo+BbGwHcwFsbBeJgAE2ESTIYpMBWmwXT4HmbADzATZsFs+BHmwE8wF+bBfFgAC+FnWAS/wK/wG/wOf8BiWAJL4U9YBsthBayEVbAa1sBaWAfrYQNshE2wGbbAVtgG22EH7IRdsBv2wF7YB/vhAByEQ3AYjsBROAbH4QSchFNwGs7AWTgH5+ECXIRLcBmuwFW4BtfhBtyEW3Ab7sBduAf34QE8hEfwGJ7AU3gGz+EFvIRX8BrewFt4B+/hA3yET2D74R5PCAVe4A0+EBrCQFgIB+EhAkSESBAZokBUiAbRIQbEhFgQG+JAXIgH8SEBJIREkBiSQFJIBskhBaSEVJAa0kBaSAe+kB4yQEbIBJnBD/whCwRAVsgG2SEH5IRckBvyQF7IB/mhABSEQlAYikBRKAbFoQSUhFJQGspAWSgH5aECVIRKUBmqQFWoBtWhBtSEWlAb6kBdqAf1oQE0hEbQGJpAU2gGzaEFtIRW0BraQFtoB+2hA3SETtAZukBX6AbdoQf0hF7QG/pAX+gH/WEADIRBMBiGwFAYBsNhBHwDI2EUjIZvYQx8B2NhHIyHCTARJsFkmAJTYRpMh+9hBvwAM2EWzIYfYQ78BHNhHsyHBbAQfoZF8Av8Cr/B7/AHLIYlsBT+hGWwHFbASlgFq2ENrIV1sB42wEbYBJthC2yFbbAddsBO2AW7YQ/shX2wHw7AQTgEh+EIHIVjcBxOwEk4BafhDJyFc3AeLsBFuASX4QpchWtwHW7ATbgFt+EO3IV7cB8ewEN4BI/hCTyFZ/AcXsBLeAWv4Q28hXfwHj7AR/gEth/s84RQ4AXe4AOhIQyEhXAQHiJARIgEkSEKRIVoEB1iQEyIBbEhDsSFeBAfEkBCSASJIQkkhWSQHFJASkgFqSENpIV04AvpIQNkhEyQGfzAH7JAAGSFbJAdckBOyAW5IQ/khXyQHwpAQSgEhaEIFIViUBxKQEkoBaWhDJSFclAeKkBFqASVoQpUhWpQHWpATagFtaEO1IV6UB8aQENoBI2hCTSFZtAcWkBLaAWtoQ20hXbQHjpAR+gEnaELdIVu0B16QE/oBb2hD/SFftAfBsBAGASDYQgMhWEwHEbANzASRsFo+BbGwHcwFsbBeJgAE2ESTIYpMBWmwXT4HmbADzATZsFs+BHmwE8wF+bBfFgAC+FnWAS/wK/wG/wOf8BiWAJL4U9YBsthBayEVbAa1sBaWAfrYQNshE2wGbbAVtgG22EH7IRdsBv2wF7YB/vhAByEQ3AYjsBROAbH4QSchFNwGs7AWTgH5+ECXIRLcBmuwFW4BtfhBtyEW3Ab7sBduAf34QE8hEfwGJ7AU3gGz+EFvIRX8BrewFt4B+/hA3yET2D7oV5PCAVe4A0+EBrCQFgIB+EhAkSESBAZokBUiAbRIQbEhFgQG+JAXIgH8SEBJIREkBiSQFJIBskhBaSEVJAa0kBaSAe+kB4yQEbIBJnBD/whCwRAVsgG2SEH5IRckBvyQF7IB/mhABSEQlAYikBRKAbFoQSUhFJQGspAWSgH5aECVIRKUBmqQFWoBtWhBtSEWlAb6kBdqAf1oQE0hEbQGJpAU2gGzaEFtIRW0BraQFtoB+2hA3SETtAZukBX6AbdoQf0hF7QG/pAX+gH/WEADIRBMBiGwFAYBsNhBHwDI2EUjIZvYQx8B2NhHIyHCTARJsFkmAJTYRpMh+9hBvwAM2EWzIYfYQ78BHNhHsyHBbAQfoZF8Av8Cr/B7/AHLIYlsBT+hGWwHFbASlgFq2ENrIV1sB42wEbYBJthC2yFbbAddsBO2AW7YQ/shX2wHw7AQTgEh+EIHIVjcBxOwEk4BafhDJyFc3AeLsBFuASX4QpchWtwHW7ATbgFt+EO3IV7cB8ewEN4BI/hCTyFZ/AcXsBLeAWv4Q28hXfwHj7AR/gEth/o94RQ4AXe4AOhIQyEhXAQHiJARIgEkSEKRIVoEB1iQEyIBbEhDsSFeBAfEkBCSASJIQkkhWSQHFJASkgFqSENpIV04AvpIQNkhEyQGfzAH7JAAGSFbJAdckBOyAW5IQ/khXyQHwpAQSgEhaEIFIViUBxKQEkoBaWhDJSFclAeKkBFqASVoQpUhWpQHWpATagFtaEO1IV6UB8aQENoBI2hCTSFZtAcWkBLaAWtoQ20hXbQHjpAR+gEnaELdIVu0B16QE/oBb2hD/SFftAfBsBAGASDYQgMhWEwHEbANzASRsFo+BbGwHcwFsbBeJgAE2ESTIYpMBWmwXT4HmbADzATZsFs+BHmwE8wF+bBfFgAC+FnWAS/wK/wG/wOf8BiWAJL4U9YBsthBayEVbAa1sBaWAfrYQNshE2wGbbAVtgG22EH7IRdsBv2wF7YB/vhAByEQ3AYjsBROAbH4QSchFNwGs7AWTgH5+ECXIRLcBmuwFW4BtfhBtyEW3Ab7sBduAf34QE8hEfwGJ7AU3gGz+EFvIRX8BrewFt4B+/hA3yET2D7wzyeEAq8wBt8IDSEgbAQDsJDBIgIkSAyRIGoEA2iQwyICbEgNsSBuBAP4kMCSAiJIDEkgaSQDJJDCkgJqSA1pIG0kA58IT1kgIyQCTKDH/hDFgiArJANskMOyAm5IDfkgbyQD/JDASgIhaAwFIGiUAyKQwkoCaWgNJSBslAOykMFqAiVoDJUgapQDapDDagJtaA21IG6UA/qQwNoCI2gMTSBptAMmkMLaAmtoDW0gbbQDtpDB+gInaAzdIGu0A26Qw/oCb2gN/SBvtAP+sMAGAiDYDAMgaEwDIbDCPgGRsIoGA3fwhj4DsbCOBgPE2AiTILJMAWmwjSYDt/DDPgBZsIsmA0/whz4CebCPJgPC2Ah/AyL4Bf4FX6D3+EPWAxLYCn8CctgOayAlbAKVsMaWAvrYD1sgI2wCTbDFtgK22A77ICdsAt2wx7YC/tgPxyAg3AIDsMROArH4DicgJNwCk7DGTgL5+A8XICLcAkuwxW4CtfgOtyAm3ALbsMduAv34D48gIfwCB7DE3gKz+A5vICX8Apewxt4C+/gPXyAj/AJbH+QzxNCgRd4gw+EhjAQFsJBeIgAESESRIYoEBWiQXSIATEhFsSGOBAX4kF8SAAJIREkhiSQFJJBckgBKSEVpIY0kBbSgS+khwyQETJBZvADf8gCAZAVskF2yAE5IRfkhjyQF/JBfigABaEQFIYiUBSKQXEoASWhFJSGMlAWykF5qAAVoRJUhipQFapBdagBNaEW1IY6UBfqQX1oAA2hETSGJtAUmkFzaAEtoRW0hjbQFtpBe+gAHaETdIYu0BW6QXfoAT2hF/SGPtAX+kF/GAADYRAMhiEwFIbBcBgB38BIGAWj4VsYA9/BWBgH42ECTIRJMBmmwFSYBtPhe5gBP8BMmAWz4UeYAz/BXJgH82EBLISfYRH8Ar/Cb/A7/AGLYQkshT9hGSyHFbASVsFqWANrYR2shw2wETbBZtgCW2EbbIcdsBN2wW7YA3thH+yHA3AQDsFhOAJH4RgchxNwEk7BaTgDZ+EcnIcLcBEuwWW4AlfhGlyHG3ATbsFtuAN34R7chwfwEB7BY3gCT+EZPIcX8BJewWt4A2/hHbyHD/ARPoHtD/F6QijwAm/wgdAQBsJCOAgPESAiRILIEAWiQjSIDjEgJsSC2BAH4kI8iA8JICEkgsSQBJJCMkgOKSAlpILUkAbSQjrwhfSQATJCJsgMfuAPWSAAskI2yA45ICfkgtyQB/JCPsgPBaAgFILCUASKQjEoDiWgJJSC0lAGykI5KA8VoCJUgspQBapCNagONaAm1ILaUAfqQj2oDw2gITSCxtAEmkIzaA4toCW0gtbQBtpCO2gPHaAjdILO0AW6QjfoDj2gJ/SC3tAH+kI/6A8DYCAMgsEwBIbCMBgOI+AbGAmjYDR8C2PgOxgL42A8TICJMAkmwxSYCtNgOnwPM+AHmAmzYDb8CHPgJ5gL82A+LICF8DMsgl/gV/gNfoc/YDEsgaXwJyyD5bACVsIqWA1rYC2sg/WwATbCJtgMW2ArbIPtsAN2wi7YDXtgL+yD/XAADsIhOAxH4Cgcg+NwAk7CKTgNZ+AsnIPzcAEuwiW4DFfgKlyD63ADbsItuA134C7cg/vwAB7CI3gMT+ApPIPn8AJewit4DW/gLbyD9/ABPsInsP0Bfk8IBV7gDT4QGsJAWAgH4SECRIRIEBmiQFSIBtEhBsSEWBAb4kBciAfxIQEkhESQGJJAUkgGySEFpIRUkBrSQFpIB76QHjJARsgEmcEP/CELBEBWyAbZIQfkhFyQG/JAXsgH+aEAFIRCUBiKQFEoBsWhBJSEUlAaykBZKAfloQJUhEpQGapAVagG1aEG1IRaUBvqQF2oB/WhATSERtAYmkBTaAbNoQW0hFbQGtpAW2gH7aEDdIRO0Bm6QFfoBt2hB/SEXtAb+kBf6Af9YQAMhEEwGIbAUBgGw2EEfAMjYRSMhm9hDHwHY2EcjIcJMBEmwWSYAlNhGkyH72EG/AAzYRbMhh9hDvwEc2EezIcFsBB+hkXwC/wKv8Hv8AcshiWwFP6EZbAcVsBKWAWrYQ2shXWwHjbARtgEm2ELbIVtsB12wE7YBbthD+yFfbAfDsBBOASH4QgchWNwHE7ASTgFp+EMnIVzcB4uwEW4BJfhClyFa3AdbsBNuAW34Q7chXtwHx7AQ3gEj+EJPIVn8BxewEt4Ba/hDbyFd/AePsBH+AS2v7zDE0KBF3iDD4SGMBAWwkF4iAARIRJEhigQFaJBdIgBMSEWxIY4EBfiQXxIAAkhESSGJJAUkkFySAEpIRWkhjSQFtKBL6SHDJARMkFm8AN/yAIBkBWyQXbIATkhF+SGPJAX8kF+KAAFoRAUhiJQFIpBcSgBJaEUlIYyUBbKQXmoABWhElSGKlAVqkF1qAE1oRbUhjpQF+pBfWgADaERNIYm0BSaQXNoAS2hFbSGNtAW2kF76AAdoRN0hi7QFbpBd+gBPaEX9IY+0Bf6QX8YAANhEAyGITAUhsFwGAHfwEgYBaPhWxgD38FYGAfjYQJMhEkwGabAVJgG0+F7mAE/wEyYBbPhR5gDP8FcmAfzYQEshJ9hEfwCv8Jv8Dv8AYthCSyFP2EZLIcVsBJWwWpYA2thHayHDbARNsFm2AJbYRtshx2wE3bBbtgDe2Ef7IcDcBAOwWE4AkfhGByHE3ASTsFpOANn4RychwtwES7BZbgCV+EaXIcbcBNuwW24A3fhHtyHB/AQHsFjeAJP4Rk8hxfwEl7Ba3gDb+EdvIcP8BE+ge0v7vGEUOAF3uADoSEMhIVwEB4iQESIBJEhCkSFaBAdYkBMiAWxIQ7EhXgQHxJAQkgEiSEJJIVkkBxSQEpIBakhDaSFdOAL6SEDZIRMkBn8wB+yQABkhWyQHXJATsgFuSEP5IV8kB8KQEEoBIWhCBSFYlAcSkBJKAWloQyUhXJQHipARagElaEKVIVqUB1qQE2oBbWhDtSFelAfGkBDaASNoQk0hWbQHFpAS2gFraENtIV20B46QEfoBJ2hC3SFbtAdekBP6AW9oQ/0hX7QHwbAQBgEg2EIDIVhMBxGwDcwEkbBaPgWxsB3MBbGwXiYABNhEkyGKTAVpsF0+B5mwA8wE2bBbPgR5sBPMBfmwXxYAAvhZ1gEv8Cv8Bv8Dn/AYlgCS+FPWAbLYQWshFWwGtbAWlgH62EDbIRNsBm2wFbYBtthB+yEXbAb9sBe2Af74QAchENwGI7AUTgGx+EEnIRTcBrOwFk4B+fhAlyES3AZrsBVuAbX4QbchFtwG+7AXbgH9+EBPIRH8BiewFN4Bs/hBbyEV/Aa3sBbeAfv4QN8hE9g+0u7PCEUeIE3+EBoCANhIRyEhwgQESJBZIgCUSEaRIcYEBNiQWyIA3EhHsSHBJAQEkFiSAJJIRkkhxSQElJBakgDaSEd+EJ6yAAZIRNkBj/whywQAFkhG2SHHJATckFuyAN5IR/khwJQEApBYSgCRaEYFIcSUBJKQWkoA2WhHJSHClARKkFlqAJVoRpUhxpQE2pBbagDdaEe1IcG0BAaQWNoAk2hGTSHFtASWkFraANtoR20hw7QETpBZ+gCXaEbdIce0BN6QW/oA32hH/SHATAQBsFgGAJDYRgMhxHwDYyEUTAavoUx8B2MhXEwHibARJgEk2EKTIVpMB2+hxnwA8yEWTAbfoQ58BPMhXkwHxbAQvgZFsEv8Cv8Br/DH7AYlsBS+BOWwXJYASthFayGNbAW1sF62AAbYRNshi2wFbbBdtgBO2EX7IY9sBf2wX44AAfhEByGI3AUjsFxOAEn4RSchjNwFs7BebgAF+ESXIYrcBWuwXW4ATfhFtyGO3AX7sF9eAAP4RE8hifwFJ7Bc3gBL+EVvIY38BbewXv4AB/hE9j+wj5PCAVe4A0+EBrCQFgIB+EhAkSESBAZokBUiAbRIQbEhFgQG+JAXIgH8SEBJIREkBiSQFJIBskhBaSEVJAa0kBaSAe+kB4yQEbIBJnBD/whCwRAVsgG2SEH5IRckBvyQF7IB/mhABSEQlAYikBRKAbFoQSUhFJQGspAWSgH5aECVIRKUBmqQFWoBtWhBtSEWlAb6kBdqAf1oQE0hEbQGJpAU2gGzaEFtIRW0BraQFtoB+2hA3SETtAZukBX6AbdoQf0hF7QG/pAX+gH/WEADIRBMBiGwFAYBsNhBHwDI2EUjIZvYQx8B2NhHIyHCTARJsFkmAJTYRpMh+9hBvwAM2EWzIYfYQ78BHNhHsyHBbAQfoZF8Av8Cr/B7/AHLIYlsBT+hGWwHFbASlgFq2ENrIV1sB42wEbYBJthC2yFbbAddsBO2AW7YQ/shX2wHw7AQTgEh+EIHIVjcBxOwEk4BafhDJyFc3AeLsBFuASX4QpchWtwHW7ATbgFt+EO3IV7cB8ewEN4BI/hCTyFZ/AcXsBLeAWv4Q28hXfwHj7AR/gEtr+s0xNCgRd4gw+EhjAQFsJBeIgAESESRIYoEBWiQXSIATEhFsSGOBAX4kF8SAAJIREkhiSQFJJBckgBKSEVpIY0kBbSgS+khwyQETJBZvADf8gCAZAVskF2yAE5IRfkhjyQF/JBfigABaEQFIYiUBSKQXEoASWhFJSGMlAWykF5qAAVoRJUhipQFapBdagBNaEW1IY6UBfqQX1oAA2hETSGJtAUmkFzaAEtoRW0hjbQFtpBe+gAHaETdIYu0BW6QXfoAT2hF/SGPtAX+kF/GAADYRAMhiEwFIbBcBgB38BIGAWj4VsYA9/BWBgH42ECTIRJMBmmwFSYBtPhe5gBP8BMmAWz4UeYAz/BXJgH82EBLISfYRH8Ar/Cb/A7/AGLYQkshT9hGSyHFbASVsFqWANrYR2shw2wETbBZtgCW2EbbIcdsBN2wW7YA3thH+yHA3AQDsFhOAJH4RgchxNwEk7BaTgDZ+EcnIcLcBEuwWW4AlfhGlyHG3ATbsFtuAN34R7chwfwEB7BY3gCT+EZPIcX8BJewWt4A2/hHbyHD/ARPoHtL+r1hFDgBd7gA6EhDISFcBAeIkBEiASRIQpEhWgQHWJATIgFsSEOxIV4EB8SQEJIBIkhCSSFZJAcUkBKSAWpIQ2khXTgC+khA2SETJAZ/MAfskAAZIVskB1yQE7IBbkhD+SFfJAfCtj+bmUoBIWhCBSFYlAcSkBJKAWloQyUhXJQHipARagEtn9P2/bvS9v+vWXbvz9cnf5+5VSB/7X9ncu2fyvb9m9H2/4tZdu/LWz7t3Zt//as7d9itf3bpLZ/q9P2b1fa/i1H279taPu3/mz/9p3t34Kz/dtotn8rzPZvZ9n+LSnbv61k+7eGbP/2ju3forH92yy2f6vE9m932P4tC9u/7WD7tw5sf/e/7e/Ct/3d8La/K932d4fb/i5t298tbfuzosbHt7TmhIH/bdS1a7N2Hbsm7dohaaOmTZP2aNW1ZdIO3Zt1bt62g+2vF/b4TjFmlmLMj4oxSxRj/lSM2aoYs10x5rhizEnFmJuKMbcVY14rxrxVjAkfx/kxERVjEirGJFaMyaQY46cYU1AxprBiTGXFmKqKMU0VY5orxnRXjOmpGPONYswoxZjvFWN+UIz5TTHmD8WYjYoxmxVjDivGHFWMuaoYc10x5rlizEvFmNBxnR8TVjEmrmJMfMUYX8WYDIoxeRVj8ivGlFeMqagY01AxprFiTGfFmK6KMf0UY4YrxnxHY5L9fUy7bm27turYttffB05STFYmnvNjyinG1FOMaaAY00ExppNizCDFmCGKMRMVYyYrxsxXjFmoGLNKMWaNYswexZh9ijHnFGMuKMY8UIx5pBjzSTHGM77zY6IpxsRQjEmhGJNKMSabYkwOxZgSijGlFGNqKcbUUYxpoxjTTjGmn2LMAMWYsYox4xVj5ijGzFWMWaYYs0IxZodizC7FmFOKMWcUY+4oxtxTjHmnGPNBMSZSAufHRFGMSaIYk0wxxl8xJkAxJq9iTDHFmHI0xqmLhiqKyXwTOj8mg2JMXsWY/Iox5RVjKirGNFSMaawY01kxpqtizFDFmOGKMVMUY6YpxvysGPOLYsxaxZj1ijH7FWMOKsZcVIy5rBjzWDHmqWJMqETOj/FWjImpGBNbMSa1YkxaxZicijG5FWNKK8aUVYypqxhTXzGmvWJMR8WYgYoxgxVjJijGTFKMmacYs0AxZqVizGrFmN2KMXsVY84qxpxXjLmvGPNQMeajYsx//glzJ8dEVYyJrhiTQDEmpWJMZhrj1EVDNsVkRRVjymkXWEExWU3tZLUVkzXRTtZMMVl77WQdFZP10k7WRzHZUO1kwxWTjdVONl4x2ffayX5QTDZfO9lCxWRLtJP9qZhsnXayDYrJdmon262Y7Ih2smOKyc5rJ7uomOyWdrI7ismeaid7rpjsg3ayT4rJwiZRThY+ifOTxdBOFksxWWLtZEkVk6XTTpZeMVlW7WTZFZMV0E5WSDFZae1kZRWTVdNOVkMxWUPtZI0Vk7XUTtZaMVlH7WSdFZP11E7WWzFZ36An69KtcdfOjZp0/fvAUYrJpmn37EfFZAu0k/2hmGyZdrJ1isk2ayfbrZjsgHayE4rJzmonu6qY7JZ2skeKyZ5rJ3uvmMwzqXKycEmdnyyydrLYiskSaCdLoZgsrXYyP8Vk2bST5VNMVlg7WWnFZBW0k9VQTFZXO1lTxWSttJN1UkzWXTtZf8VkQ7STjVZMNk472TTFZDO1k81XTPaLdrI/FZOt0k62STHZdu1k+xWTHdFOdkYx2UXtZDcVk93TTvZMMdlr7WR/1U5M5pNMOVkkxWTRtZPFV0yWRDtZGsVkGWhMjMD/lmrftFnPpB26dU3aoXnSxh26tW/axfbbGR1PM2t3wV87MECx79m0k+XQDsylHZhHOzCfdmAB7cBC2oFFtAOLaQeW0A4spR1YRjuwnHZgBe3AStqBVbQDq2kH1tAOrKUdWEc7sJ52YAPtwEbagU20A5tpB7bQDmylHdhGO7CddmAH7cBO2oE9tAN7BT1Qvnc7QDvjIO2MI7QzjtTOOFY743jtjFO1M07XzjhbO+Mc7YwLtTMu0s64WDvjUu2Mq7QzrtHOuEk74xbtjLu0M+7RznhIO+MR7YyntDOe0c54STvjFe2Mt7Qz3tHO+Eg74xPtjK+0M77RzvhJO6NncuWMYZIrZwynnTGKdsZo2hnjaGeMp50xiXbGZNoZ02hnTKedMbN2Rn/tjDm0M+bSzlhAO2Mh7YwltDOW0s5YQTtjJe2MNbQz1tLO2EA7YyPtjC20M7bSzthBO2Mn7YxdtAMHaJc6kAZGC/xvqfbdG7Vt1TRp00ZdGyXt2qtjM9tvFkrxOYxoCls26tLyP6ugxuGfdqcxaQP/W+i/Y5o1tY3q3KxR06QdG3XpmrRZ+6a2e9+Fbfe+mzWt3qyJrR2eQrnnoxSLHaudbBwNjGw6em2btW/R9T/Hb5l28yu0A1cpDsIa7WTrtAM3KFa5STvZFu3AbYpV7tBOtks7cI9ilfu0kx3QDjykWOUR7WTHtANPKFZ5SjvZGe3Ac4pVXtBOdkk78Ipilde0k93QDrylWOUd7WT3tAMfKFb5SDvZE+3AZ4pVvtBO9ko78I1ile+0k33QDvykWKVnSuVkXtqBPimdX2UY7WThtAMjKFYZSTtZFO3AaIpVxtBOFks7MI5ilfG0kyXQDkykWGUS7WTJtANTKFaZSjtZGu3AdIpVptdOllE7MLNilf7ayQK0A7MpVplDO1ku7cA8ilXm005WQDuwkGKVRbSTFdMOLKFYZSntZGW0A8spVllBO1kl7cAqilVW005WQzuwlmKVdbST1dMObKBYZSPtZE20A5spVtlCO1kr7cA2ilW2007WQTuwk2KV/bST9aeBQd6FLpDqcyjdhR6YyvmVD6MxmrvQI1Ip93y0YrHjtJONp4HyXejl2s2vVOzLau1ka7UD1ytWuVE72WbtwK2KVW7XTrZTO3C3YpV7tZPt1w48qFjlYe1kR7UDjytWeVI72WntwLOKVZ7XTnZRO/CyYpVXtZNd1w68qVjlbe1kd7UD7ytW+VA72WPtwKeKVT7XTvZSO/C1YpVvtZO91w78qFilR2rlZKG0A71TO7/K0NrJwmoHhlesMqJ2ssjagVEVq4yunSymdmBsxSrjaieLrx2YULHKxNrJkmoHJlesMqV2stTagWkVq/TVTpZBOzCTYpV+2smyaAdmVawyu3aynNqBuRWrzKudLL92YEHFKgtrJyuqHVhcscqS2slKaweWVayyvHayitqBlRWrrKqdrLp2YE3FKmtrJ6urHVhfscqG2skaawc2VayyuXayltqBrRWrbKudrL12YEfFKjtrJ+uqHdhdscrB2smG0MAgb3kXTfM5lG55D03j/MpH0hjNLe/RaZR7Plax2EnaySbTQPmW92rFktZql7ReO3CjYpWbtZNt1Q7crljlTu1ku7UD9ypWuV872UHtwMOKVR7VTnZcO/CkYpWntZOd1Q48r1jlRe1kl7UDrypWeV072U3twNuKVd7VTnZfO/ChYpWPtZM91Q58rljlS+1kr7UD3ypW+V472UftwL/eyDixylBplZN5aweGVqwyrHay8NqBERWrjKydLKp2YHTFKmNqJ4utHRhXscr42skSagcmVqwyqXay5NqBKRWrTK2dLK12oK9ilRm0k2XSDvRTrDKLdrKs2oHZFavMqZ0st3ZgXsUq82snK6gdWFixyqLayYprB5ZUrLK0drKy2oHlFausqJ2ssnZgVcUqq2snq6kdWFuxyrrayeprBzZUrLKxdrKm2oHNFatsqZ2stXZgW8Uq22sn66gd2Fmxyq7aybprB/ZUrLK3drK+2oH9FascpZ1sNA0M8v562XSfQ+n++rfpnF/5eBqjub8+MZ1yz6cqFvuDdrKZNFC+v75ZsaSt2iVt1w7cqVjlbu1ke7UD9ytWeVA72WHtwKOKVR7XTnZSO/C0YpVntZOd1w68qFjlZe1kV7UDrytWeVM72W3twLuKVd7XTvZQO/CxYpVPtZM91w58qVjla+1kb7UD3ytW+VE7mYevcmAoX+dX6a2dLLR2YFjFKsNrJ4uoHRhZscqo2smiawfGVKwytnayuNqB8RWrTKidLLF2YFLFKpNrJ0upHZhascq02sl8tQMzKFaZSTuZn3ZgFsUqs2ony64dmFOxytzayfJqB+ZXrLKgdrLC2oFFFassrp2spHZgacUqy2onK68dWFGxysrayapqB1ZXrLKmdrLa2oF1Fausr52soXZgY8Uqm2ona64d2FKxytbaydpqB7ZXrLKjdrLO2oFdFavsrp2sp3Zgb8Uq+2on668dOFCxysHayYZqBw5XrHKCdrKJNDDI++tV038Opfvrk9I7v/LpNEZzf31GeuWez1Ysdp52svk0UL6/vluxpL3aJe3XDjyoWOVh7WRHtQOPK1Z5UjvZae3As4pVntdOdlE78LJilVe1k13XDrypWOVt7WR3tQPvK1b5UDvZY+3Ap4pVPtdO9lI78LVilW+1k73XDvyoWKVHBuVkobQDvTM4v8rQ2snCageGV6wyonayyNqBURWrjK6dLKZ2YGzFKuNqJ4uvHZhQscrE2smSagcmV6wypXay1NqBaRWr9NVOlkE7MJNilX7aybJoB2ZVrDK7drKc2oG5FavMq50sv3ZgQcUqC2snK6odWFyxypLayUprB5ZVrLK8drKK2oGVFausqp2sunZgTcUqa2snq6sdWF+xyobayRprBzZVrLK5drKW2oGtFatsq52svXZgR8UqO2sn66od2F2xyp7ayXprB/ZVrLK/drKB2oGDFascqp1suHbgN4pVjtJO9q124HeKVU6gMUHeJl9OYURTaNwmX+FAs9KBZpUDzWoHmjUONGsdaNY50Kx3oNngQLPRgWaTA81mB5otDjRbHWi2OdBsd6DZ4UCz04FmlwPNbgeaPQ40ex1o9jnQ7HegOeBAc9CB5pADzWEHmiMONEcdaI450JyjRv5G0x07r51lmzVqju+zdW7VtVfSjp2bNW/VE6+h+K5b42ZJsyTt0DlpgC2KmvHvAx160Y0e9ED5n0SOq50xvnbGpNoZk2tnTKud0Vc7o592xizaGXNqZ8ytnbGgdsbC2hlLamcsrZ2xonbGytoZa2pnrK2dsaF2xsbaGVtqZ2ytnbGjdsbO2hl7amfsrZ1xoHbGwdoZv9HOOEo74zjtjBO0M07Tzvi9dsYftTP+pJ3xZ+2Mv2hnXKKd8U/tjKu1M67VzrhZO+NW7Yy7tTPu1c54WDvjUe2Mp7UzntXOeFk741XtjLe1M97VzvhYO+NT7YyvtTO+1c4YNpNyxnA0ME7gfyvavZDzs30qAuWO3v+KpF1bFO3AaIpVxtBOFks7MI5ilfG0kyXQDkykWGUS7WTJtANTKFaZSjtZGu3AdIpVptdOllE7MLNilf7ayQK0A7MpVplDO1ku7cA8ilXm005WQDuwkGKVRbSTFdMOLKFYZSntZGW0A8spVllBO1kl7cAqilVW005WQzuwlmKVdbST1dMObKBYZSPtZE20A5spVtlCO1kr7cA2ilW2007WQTuwk2KVXbSTddMO7KFYZS/tZH20A/spVjlAO9kg7cAhilUO0042QjtwpGKVo7WTjdEOHKtY5XjtZBO1AycrVjlVO9l07cAZilXO1E42WztwjmKVc7WTzdcOXKhY5SLtZL9qB/6uWOVi7WRLtQOXKVa5QjvZKu3ANYpVrtNOtkE7cJNilVu0k23TDtyhWOUu7WR7tAP3KVZ5QDvZIe3AI4pVHtNOdkI78JRilWe0k53TDrygWOUl7WRXtAOvKVZ5QzvZLe3AO4pV3tNO9kA78JFilU+0kz3TDnyhWOUr7WRvtAPfKVb5QTvZJ+1Az8zOr9Irs3IyH+3AMIpVhtNOFkE7MJJilVG0k0XTDoyhWGUs7WRxtAPjKVaZQDtZIu3AJIpVJtNOlkI7MJVilWm0k6XTDkyvWGVG7WSZtQP9FasM0E6WTTswh2KVubST5dEOzKdYZQHtZIW0A4soVllMO1kJ7cBSilWW0U5WTjuwgmKVlbSTVdEOrKZYZQ3tZLW0A+soVllPO1kD7cBGilU20U7WTDuwhWKVrbSTtdEObKdYZU8aEyPwv6XaN23WM2mHbl1tf61fY9tf69fF9tv9tOsaqB04iAbGDfxvmWa9krZr1aVdo65NWiZt1T5p15bNkrZt1qi57XMjFAfgO8cPwETtfkzRDpzq5AGYqTgA8xw/AIu0+/GbduDvTh6AZYoDsNbxA7BJux9btQO3OXkA9igOwGHHD8AJ7X6c1g484+QBuKQ4ADcdPwD3tPvxUDvwkZMH4IXiALx3/AB4+in3w1s70MfPuQMQwc/5AxDdz+EDEEe7H/G1AxM4eQCSKQ5AWscPQEbtfvhpB/o7eQByKA5AfscPQBHtfhTXDizh5AEopzgAVR0/ALW0+1FXO7CekwegieIAtHb8AHTQ7kdn7cAuTh6AXooDMNDxAzBMux/faAeOdPIAjFUcgCmOH4AZ2v2YpR0428kDMF9xAH5z/AAs1e7Hcu3AFU4egHWKA7DV8QOwS7sfe7UD9zl5AI4oDsBpxw/ABe1+XNYOvOLkAbilOAAPHT8Az7T78VI78JWTB+CD4gB4+zt8AML5K/cjonZgJH/nDkAMf+cPQHzHD0AS7X4k1w5M4eQBSKc4AH6OH4Bs2v3IqR2Yy8kDUEBxAIo7fgDKaPejvHZgBScPQDXFAajr+AFopN2PptqBzZw8AG0UB6Cz4wegh3Y/emsH9nHyAAxSHIBvHD8AY7T7MU47cLyTB2Cq4gDMcvwAzNXuxwLtwIVOHoDfFQdgueMHYI12P9ZrB25w8gBsUxyAvY4fgEPa/TiqHXjMyQNwRnEALjt+AG5o9+O2duAdJw/AI8UBeOn4AXin3Y+P2oGfnDwAPlmcPwARszh8AKJlUe5HTO3AWFmcOwAJFAcgueMHII12P3y1A9M7eQD8FQcgp+MHIJ92PwpqBxZy8gCUUByA8o4fgCra/aiuHVjDyQNQT3EAmjp+AFpp96OtdmA7Jw9AF8UB6O34ARig3Y/B2oFDnDwAIxUHYJzjB2Cydj+maQdOd/IAzFYcgAWOH4Bftfvxh3bgYicPwArFAVjv+AHYot2P7dqBO5w8APsUB+Co4wfglHY/zmoHnnPyAFxRHIDbjh+AB9r9eKwd+MTJA/BKcQA+On4AvAKU+xFaOzBMgHMHIFKA8wcgZoDDByCedj8SagcmcvIApFAcAF/HD0Bm7X5k0Q4McPIA5FIcgIKOH4Bi2v0oqR1YyskDUEFxAKo7fgDqaPejvnZgAycPQDPFAWjr+AHopN2PrtqB3Zw8AH0UB2Cw4wdghHY/RmkHjnbyAIxXHIBpjh+Amdr9+FE7cI6TB2Ch4gD84fgBWKbdj5XagaucPAAbFAdgu+MHYI92P/ZrBx5w8gAcUxyAs44fgEva/biqHXjNyQNwR3EAHjt+AF5o9+O1duAbJw/AJ8UBCJ3V4QMQIatyPyJrB0bJ6twBiJXV+QOQ0PEDkEy7Hym1A1M5eQDSKw5AFscPQA7tfuTWDszj5AEopDgAJR0/AOW0+1FRO7CSkweghuIA1Hf8ADTR7kdz7cAWTh6AdooD0NXxA9BLux99tQP7OXkABigOwBAakyLwv8V6dmzWpGuzprZBTTq079KtXbOkjdq2TdoGc7dv1bhx22b/OSDDaGjkwP9Wb9S2W7O/Fmj7nRGKRY10aMujFVse49CWxyq2PN6hLU9UbHmyQ1ueqtjydIe2PEOx5ZkObXm2YstzHNryXMWW5zu05YWKLS9yaMu/Krb8u0NbXqzY8lKHtrxMseUVDm15lWLLaxza8jrFljc4tOVNii1vcWjL2xRb3uHQlncptrzHoS3vU2z5gENbPqTY8hGHtnxMseUTDm35lGLLZxza8jnFli84tOVLii1fcWjL1xRbvuHQlm8ptnzHoS3fU2z5gUNbfqTY8hOHtvxMseUXDm35lWLLbxza8jvFlj84tOVPii17ZnNkyxGoShD43ya298y2zXbp0qxz1wbtGvVs0LhV1wZdWvVuZvt0JOeHxHJ+SBznh8R3fkhC54ekdH5IaueHpHd+SEbnh/g7PyTA+SF5nB+Sz/khBZ0fUtj5IaWdH1LW+SGVnB9SxfkhVWlI8sD/Fvr8qoLXklbNe+FXHZK2bNWiZdLGjdo2at+kmSeqg4EzdPq8AYdel3hsHxrr8N0F3sBg2kA8Y/mdOzfqhdsLf7sRwgO/C3pm+/8YJW9gknbm19qBUT31BzqhZzAPdLJgTJ7aU7nHmbQD8wRjteW0k9YO7jFuEIxVN9Wuup12YK9grHZiMMb+oF3wPO3AJcFY7frgPimOaFd9IRirvh2MsQ+0C34fjEm9QyknjagdGDeUfrVJaazxtrxK10ZN2vznC23TZs062uqegV+Px3s7P5MxdjmNDeJbBDxkrbeTR8QYuIcGOvVUNzZwMBg7eiIYY+8FY2x0H6cPcFwf5QFO4xPMA5zBR7+jAcEYW4nGys/3QYF1K8XDYYydEIyxP2ifv8YG5jp75hgDFwc9s/xm1NjACu3MsXyUAzMqng7G2Fza57GxgfzBmLyIdo/LaAfWDMZqW2sn7RHcY9w3GKsepF31KO3AKcFY7ZJgjF2jXfAW7cADwVjtmeA+KR5qV/02GKv2Ca0fGz60csHxgjFpMu2k6bQDswVjtflorPzFuXDgz1e0VnyBNcbOc/arlDFwSzAm3Uljowf+t2O3Li3l2Y5q3wcYGzil3c9rwdjP29pJnwRj0pfaST8FY9IwPvqxEYMxNkYwxsZ36B3w+MB6mOLoGGNHOfuQGAMnaAfOCsZqF3g7cly6p/zvZzRXwsZYJ66EjSFOXwkbA9VXwsYGDgZjR08EY+y9YIx14krYGOL0lbAxUH0lbGxAcyVsjA0IxljHroQHBNaaK2Fj7IRgjFVfCRsbcPpK2BiovhI2NrBCO7PTV8LGQM2VsDFWfSVsbCB/MCYvot3jMtqBNYOx2tbaSXsE9xj3DcaqB2lXPUo7cEowVrskGGPXaBe8RTvwQDBWeya4T4qH2lW/DcaqNVfCxlinr4SNgfGCMWky7aTptAOzBWO1jl0JF0z1389oroSNsU5fCRsDtwRjUsevhI0R6ithYwOntPt5LRj7eVs76ZNgTPpSO+mnYEyquRI2xkYMxtgYwRjr2JXwhMBacyVsjHX6StgYOEE7cFYwVuvYlXCf1P/9jOZK2BjrxJWwMcTpK2FjoPpK2NjAwWDs6IlgjL0XjLFOXAkbQ5y+EjYGqq+EjQ1oroSNsQHBGOvYlfDQwFpzJWyMnRCMseorYWMDTl8JGwPVV8LGBlZoZ3b6StgYqLkSNsaqr4SNDeQPxuRFtHtcRjuwZjBW21o7aY/gHuO+wVj1IO2qR2kHTgnGapcEY+wa7YK3aAceCMZqzwT3SfFQu+q3wVi15krYGOv0lbAxMF4wJk2mnTSddmC2YKzWsSvhYmn++xnNlbAx1ukrYWPglmBM6viVsDFCfSVsbOCUdj+vBWM/b2snfRKMSV9qJ/0UjEk1V8LG2IjBGBsjGGMduxKeElhrroSNsU5fCRsDJ2gHzgrGah27Eh6S9r+f0VwJG2OduBI2hjh9JWwMVF8JGxs4GIwdPRGMsfeCMdaJK2FjiNNXwsZA9ZWwsQHNlbAxNiAYYx27Ev42sNZcCRtjJwRjrPpK2NiA01fCxkD1lbCxgRXamZ2+EjYGaq6EjbHqK2FjA/mDMXkR7R6X0Q6sGYzVttZO2iO4x7hvMFY9SLvqUdqBU4Kx2iXBGLtGu+At2oEHgrHaM8F9UjzUrvptMFatuRI2xjp9JWwMjBeMSZNpJ02nHZgtGKt17Eq4XLr/fkZzJWyMdfpK2Bi4JRiTOn4lbIxQXwkbGzil3c9rwdjP29pJnwRj0pfaST8FY1LNlbAxNmIwxsYIxljHroRnBdaaK2FjrNNXwsbACdqBs4KxWseuhEf7/vczmithY6wTV8LGEKevhI2B6ithYwMHg7GjJ4Ix9l4wxjpxJWwMcfpK2BiovhI2NqC5EjbGBgRjrGNXwpMCa82VsDF2QjDGqq+EjQ04fSVsDFRfCRsbWKGd2ekrYWOg5krYGKu+EjY2kD8YkxfR7nEZ7cCawVhta+2kPYJ7jPsGY9WDtKsepR04JRirXRKMsWu0C96iHXggGKs9E9wnxUPtqt8GY9WaK2FjrNNXwsbAeMGYNJl20nTagdmCsVrHroSrpf/vZzRXwsZYp6+EjYFbgjGp41fCxgj1lbCxgVPa/bwWjP28rZ30STAmfamd9FMwJtVcCRtjIwZjbIxgjHXsSnhBYK25EjbGOn0lbAycoB04KxirdexKeGyG/37miIfzMxljn9PYf7hQM4a89XDyiBgDw3l+HujUK4ixgcie+h2NFYyx6YMxtrKn0we4pqfyALcI7gFuG4wd7RKMseNprPx8nxhYL/JwfiZj7NFgjD3voTy8xgau0QYcemCNgY+Cnlm+EjY28EI7czVP5cB2iqeDMbaX9nlsbKB/MCYfot3j0dqB04Kx2l+0k64K7jFeH4xVb9Gueq924MlgrPZxMMa+0S7YM5RyYCTF39RpjI1HY1VPikzaVecOxqqLBWNsae2CawVj0kbaSVtpB3YLxmr7OfTXtx43XpA8nJ/JGHvFw8ndMwZ+DMakXnSGBn0lbIyIon3pNDYQ09kXBWNgUsUrkTE2lXbSTMGYNEA7ad5gTFo0GGNLBWNsxWCMreHQO+C7gfUOD+dnMsbu9XDyIblr562zUwMvBmO1Nz0cOS6hA/9ZhxgO1WED60QO1dEC6+QO1XGd2nZSp7adxqk6k1MryeHUtvM7te3iTm27nMP1X79tfBEPF/j/xhcs2+a8oGDg//sF78M/HG3X1dvP6ZczaziPLz9cvP6AcLRN128/i7+xfW9r1u8XJnA7RQZ+uX0P07xeps48hscVpaao0BSjppjQFKemuNCUoKaE0JSkpqTQlKKmlNCUpqa00JShpozQlKWmrNCUo6ac0JSnprzQVKCmgtBUpKai0FSippLQVKamstBUoaaK0FSlpqrQVKOmmtBUp6a60NSgpobQ1KSmptDUoqaW0NSmprbQ1KGmjtDUpaau0NSjpp7Q1KemvtA0oKaB0DSkpqHQNKKmkdA0pqax0DShpgk1ts+Ho55/v2Dg//sF4yOnX9YAa1+Ls/hFMu2rB+2LMbePNXP7e5rm8/D48uuAh2n+8B5Wft3z8/c0zWesx3x8jPclkYxm4Of1eJo+5z3w7/thfM6HPmc8vmEhH3X2nlv8Obqo/+u5adtGSY8v1xTKzj552tknK99b5PTLnvVrPJ//s48DP2/f/Hh5D/xybv7cPz0mtkuTpoFNUtoH20eYwN/3oO160e8Z2zbmCsu96XPh6HO8XttH+MD/96Z5eFvGOnxMfYnA/48S+N/QNMYYH9XO/KFN83+xbju/x+/bzdvysvN7Rm/7UY2Cgb+O4PHf456QrgmsfN6Yz30fj8/nCc9pPk/4cx4ernuPbKzH+PEVnodfj71pvdxXNK0zjCXHzc/PuNXmQds35opkWqPxeV6XNV9bcubSfm2x6JonyK8tfHzMz6/QtB5P163Hz9rnRc6cnqbt8/6GsXP8jedKWDufM7ZlXFfzucl9GDqG3POvjfH8ew0C/xvVzjbNxz+sx9/3h3+PX8tqBf46iod83gb1vPCxs92odsabjyGP8xT+a8xj/j3zPPbWbPH9AX+rX7PM73l5Ltvj1op+nx9fft7x2FD0ee4/eX7eZlvTsQtryb59Pu/4+e5lWqd5fpvwtP/2+nCmfTT6zqb9imDJftn/OhNB2Acv2odwQewz32f0Mm2De2PfIlq0b56m/fGm9US0sx4fU9/XtF+RnTwOkezMG5ma8KZ5I5nmNY5PFIuOj73H3pgriof8dcPec9KFX0P/ep2KZMl+fz6XI9Pxt3duRvL48vEx+iEh4PGxdz3G55Xtw3ugJccvl22e5KE+r4PPp/8cL5qXj6OHx9/PP9sHH3M+ztzzc8H8tZTPKfNz0vy9DvM5a36/YBxDfr3mxvx6bfRjA//7b75e2/sa6LrzMqeftfv2+bzk887eeRnB9BgY/WTTcYhsyTrtPwaRTcc8An3ekee8vXOEj7P5Oc/ng/F4G+ciP78jmsbx+85wpuPFa/L2cP37Qn4/72mam9fsusfKP4unaT7j+PLv8fzhPf5+DllxvWrvfaS96x1rzzl//6CerxHsHB/z6735sZPOX+4j0D6an8t8HpjP70WB/41qZ5vm8yminf2xd/7ZXufnBv46iofj7215u+HsbNfeNa/5GPI4T+G/xjzm3zPPY2/N5q8Hto+Cgf/1C96Hv/l56bJt+3++h2LNdYH/395fuvC4+Fn8tSfnP11jr6Tf5/eL0jV2RPo898s9P29zTeDvBXUfxNrrb/9Gjr6OG/OH9/j71zsrXsft3beyd3/J4tfxXI6+jpvfK9h7HxHUc4d78+s4XwdFoXWYn1u7Av9r772MI++L+Pf4dXxL4K+DunYN6nGz9/XX3vsm8zG0975G+zpub83/dM4fot/nYyid8+b7Dkafn875o8LcxjZsH//7Pvbfj6+Hx9/PeWve237+3lpQ70nsPY/C2/mc+fWDnzvc870982sLv/aY76VdDvxvVDvbNH8vILzH3/eHf4/P+bOBv7b3vQAv03ad/V4Aj/9a3wv46/u4HpY+l7Pa+z6Yy7bv//maj1/P+TXrLv0+P6+ka34v+jz3z2ibDwJ/HcXOeB/T58zPDf61+ZhL53dUO+PNP0fCnzPGRaB1fP374p/fK/zTfRbze0Ojf2Na579x/9PTtEYPj6BfK8z7zL2960jj8eHXt0jCPObXvkh2fs/8NdOi73k4/P15Y/7wdvbTiq+Z9h4nPj7GcY8WKKivEca2/nrfZe03DP570fWfhQ/8+yLs/fBTJFpgDtONcv7CzC+Ixp/+N38R5JOTx/I3L7iPQW/iIpq2+U/fvDTfDNd+8zJa4Lz/5s3wSEGsl78A2XshNr8pMh5r/oYmX+Cb3/BZ9YJofhHjbyxGsbMe8wt3ItPzIVrg7/M3NIO6qRbVzrzRqDE/J6Oa5jWOT3SLjo+950N00z780xcA883Mv36oT+jN3yQ0+uSmfY76Fff5rx829LD0+ZjT/LyQXquimI6R0acxHaNoX/EY8Vy8Rg+PoL9AmfeZez7Oxv4bry/8nDE/PtY8Nz5fIBr7Kt3I4ceP+8wh4Ly197U3PB0/24f3QEuOn7+9b3R/cWOL5v2n54Ttw/wciman5+eCse9RPf7+nA3qG3vmN8n2LqiD+ia4se3QQm++gWT0eU3PF4vej9l9vhhzRQpivfbeZxmPCX9Ns3ejzXyzrB+9zyrk+eXc0kVvEdPc9n4oOqgLMKMvQXMXp18bfzeLvZshxptlexc25gtPa75efL7wjPoP+y19vSj///HXC/OFp73XZ3uPnfR+hd+relFjPKesPobm/ZbeM5qf40Zfx3SuxKBj52Xn+EU0HYfoduaNYdpXnje6aV7j+MS06PjYe47FNO2Do88Z89eT0EIvfZ1vGAK+zlv7fPz8gw7R6Rh4efz9a2400zEy+mamYxTjKx4jnovX6OHh2GtPdDs9H2fz6ws/Z8zXT/zDZt4ef3+tiuLx5XEKqV9L2oeAryX23tvyD9naPrwHWnL8Gtl7b/vFD9/QvNLXO3vfiHX2tSuqx9/PQfMPcdr7xk1Q962M8dJ9K37fxX1v03Pi37ixbe8bweb3tvb2hd9f/tP70AGmr63a96FTPD9vczD92vw+1N4fkHDkh0ks+mEJh3+YxJj/a/0wib0f3ghFv+fINzPsfUMzmsffv07Eo21FMv1eUN9A8/T4+7qCWqu961NHfughqHn4sZL+wFdooTffGzX6SaZz/9+8Z21vvfyDHs5e35l/0Neir8n+wf2aPDMEfE0O6uud1dd3If090/z/vWf623umL37ohea18jlk7z1TJNO2nH3PZIx39D2T0S8Noe+Zgvo+IH+NML8XMo6p9L0+47XZ6mtlYz3G857vY0S3sx7zNf0G034Z9xb4/klUO9sx+hh25uX7E+bv9cUwzWscn1gWHR97zwdjrkimY2F83t5/jWNi/j3zucavdeb349FdOA8/tub3ynxu8fv5HabH2ngs+PWdx0qP3RXPz9vcHfhre/cEzN/bsnf/xN5zlTvpfqC9exX2tm9sw9rz8PN7GnvH1MvOus3H9KjpfPg37ifa+5rJ92lsH94DLTl+Wex9zeTz0vw1M6h7VbYP89fMGHZ6e6+PUU29+XnFx4S3FdS1hjFeutaQ3kddND0n/o37rfb+4BC/x5L2hf+QiXH+x7CzDeNzMe3MbXyOvzaYr/tie3z+sPc6YP4eZxxan73e2J6Pqb9jeizi0hirHwtjLmvn/vwHa+PRMfAyHRee38fUPzQdo/iWrNP+MeK5eI0etA+x6PfMrw/x7PR8nI39N56Tcehz8YR5uPOwsy3jh+P5uR/L1MY0/X8MO9ux994jpmm9PC66MEcoO20E0xzR7YwL6jWWzz/z66IxXvo+FH8t5f6D6Xn2b753tLdefq/lyF+QEd6S9Wf5219s4ugf9PmrD/XlOq36C1jsHWfz92nt/WyKJ/2e+Xy2d4/UfJxtH/b+MK/5L0qw+i8y4Pvm9h4f819k8NfPFJsen3/r52j+c4wHfv7cv/kXjPDzxIfm/afnhO3D/BwK6ofR+TGy9wfNzT9vYe8PEgb1npF/Btleb/7LiIw+nuk58W/cn7Z3L984zpGC2Bf+y7+sfO7kyPnf+ya2D+N560Nr4g9v+jz3yeg4W7VOe8eZ5zL+gNB/jt3Az5/nc9H2ESbw//kvLOWev9fBferAT9gel7R0nv2ntTOfrcseROcp/Pc/27Dze94Dv/w9e3+RKf8Fr0ZvzB1+4N/XaHwuAn2OXydsHxED/5+PF2/LWIePqc8auO/GY8J/KasxPqqd+cOa5v9i3XZ+j1+nzNvysvN7/L2hjIH/89fXfJrbld+r5OeC7Xn61+uZNfP99Re4GPtj3L+0fXgP/OtQ/DW/vb8E2Oj++j6YNWv1Mz/O/NrDz3FjX0KZevOvfUy/VyrU53XzPvLrblB/YbC95xOfZ8Ya7b32RBjo3LbCmrYVJhjbMtZl7xwLo1yXvW2FNm3Lmb9gOQ+dE/0CH7hwps7V5yK/F3H19nNmzdGM/7yYBesPsPcXT7ls+1kDclr8h6jt/oMr5n3xoP/+7x9c+fLX5qYMNWWE5n//4MqXvzY3//sHV778tbn53z+48uWvzU1TapoKTTNqmglNc2qaC00LaloITUtqWgpNK2paCU1raloLTRtq2ghNW2raCk07atoJTXtq2gtNB2o6CE1HajoKTSdqOglNZ2o6C00XaroITVdqugpNN2q6CU13aroLTQ9qeghNT2p6Ck0vanoJTW9qegtNH2r6CE1favoKTT9q+glNf2r6C80AagYIzUBqBgrNIGoGCc1gagYLzRBqhgjNUGqGCs0waoYJzXBqhgvNCGpGCM031HwjNCOpGSk0o6gZJTSjqRktNN9S863QjKFmjNB8R813QjOWmrFCM46acUIznprxQjOBmglCM5GaiUIziZpJQjOZmslCM4WaKUIzlZqpQjONmmlCM52a6ULzPTXfC80MamYIzQ/U/CA0M6mZKTSzqJklNLOpmS00P1Lzo9DMoWaO0PxEzU9CM5eauUIzj5p5QjOfmvlCs4CaBUKzkJqFQvMzNT8LzSJqFgnNL9T8IjS/UvOr0PxGzW9C8zs1vwvNH9T8ITSLqVksNEuoWSI0S6lZKjR/UvOn0CyjZpnQLKdmudCsoGaF0KykZqXQrKJmldCspma10KyhZo3QrKVmrdCso2ad0KynZr3QbKBmg9BspGaj0GyiZpPQbKZms9BsoWaL0GylZqvQbKNmm9Bsp2a70OygZofQ7KRmp9DsomaX0OymZrfQ7KFmj9DspWav0OyjZp/Q7Kdmv9AcoOaA0Byk5qDQHKLmkNAcpuaw0Byh5ojQHKXmqNAco+aY0Byn5rjQnKDmhNCcpOak0Jyi5pTQnKbmtNCcoeaM0Jyl5qzQnKPmnNCcp+a80Fyg5oLQXKTmotBcouaS0Fym5rLQXKHmitBcpeaq0Fyj5prQXKfmutDcoOaG0Nyk5qbQ3KLmltDcpua20Nyh5o7Q3KXmrtDco+ae0Nyn5r7QPKDmgdA8pOah0Dyi5pHQPKbmsdA8oeaJ0Dyl5qnQPKPmmdA8p+a50Lyg5oXQvKTmpdC8ouaV0Lym5rXQvKHmjdC8peat0Lyj5p3QvKfmvdB8oOaD0Hyk5qPQfKLmk9B4DPrcGL82N57UeApNKGpCCY0XNV5C402Nt9D4UOMjNKGpCS00YagJIzRhqQkrNOGoCSc04akJLzQRqIkgNBGpiSg0kaiJJDSRqYksNFGoiSI0UamJKjTRqIkmNNGpiS40MaiJITQxqYkpNLGoiSU0samJLTRxqIkjNHGpiSs08aiJJzTxqYkvNAmoSSA0CalJKDSJqEkkNImpSSw0SahJIjRJqUkqNMmoSSY0yalJLjQpqEkhNCmpSSk0qahJJTSpqUktNGmoSSM0aalJKzTpqEknNL7U+ApNemrSC00GajIITUZqMgpNJmoyCU1majILjR81fkLjT42/0GShJovQBFATIDRZqckqNNmoySY02anJLjQ5qMkhNDmpySk0uajJJTS5qcktNHmoySM0eanJKzT5qMknNPmpyS80BagpIDQFqSkoNIWoKSQ0hakpLDRFqCkiNEWpKSo0xagpJjTFqSkuNCWoKSE0JakpKTSlqCklNKWpKS00ZagpIzRlqSkrNOWoKSc05akpLzQVqKkgNBWpqSg0laipJDSVqaksNFWoqSI0VampKjTVqKkmNNWpqS40NaipITQ1qakpNLWoqSU0tampLTR1qKkjNHWpqSs09aipJzT1qakvNA2oaSA0DalpKDSNqGkkNI2paSw0TahpIjRNqWkqNM2oaSY0zalpLjQtqGkhNC2paSk0rahpJTStqWktNG2oaSM0balpKzTtqGknNO2paS80HajpIDQdqekoNJ2o6SQ0nanpLDRdqOkiNF2p6So03ajpJjTdqekuND2o6SE0PanpKTS9qOklNL2p6S00fajpIzR9qekrNP2o6Sc0/anpLzQDqBkgNAOpGSg0g6gZJDSDqRksNEOoGSI0Q6kZKjTDqBkmNMOpGS40I6gZITTfUPON0IykZqTQjKJmlNCMpma00HxLzbdCM4aaMULzHTXfCc1YasYKzThqxgnNeGrGC80EaiYIzURqJgrNJGomCc1kaiYLzRRqpgjNVGqmCs00aqYJzXRqpgvN99R8LzQzqJkhND9Q84PQzKRmptDMomaW0MymZrbQ/EjNj0Izh5o5QvMTNT8JzVxq5grNPGrmCc18auYLzQJqFgjNQmoWCs3P1PwsNIuoWSQ0v1Dzi9D8Ss2vQvMbNb8Jze/U/C40f1Dzh9Aspmax0CyhZonQLKVmqdD8Sc2fQrOMmmVCs5ya5UKzgpoVQrOSmpVCs4qaVUKzmprVQrOGmjVCs5aatUKzjpp1QrOemvVCs4GaDUKzkZqNQrOJmk1Cs5mazUKzhZotQrOVmq1Cs42abUKznZrtQrODmh1Cs5OanUKzi5pdQrObmt1Cs4eaPUKzl5q9QrOPmn1Cs5+a/UJzgJoDQnOQmoNCc4iaQ0JzmJrDQnOEmiNCc5Sao0JzjJpjQnOcmuNCc4KaE0JzkpqTQnOKmlNCc5qa00JzhpozQnOWmrNCc46ac0JznprzQnOBmgtCc5Gai0JziZpLQnOZmstCc4WaK0JzlZqrQnONmmtCc52a60Jzg5obQnOTmptCc4uaW0Jzm5rbQnOHmjtCc5eau0Jzj5p7QnOfmvtC84CaB0LzkJqHQvOImkdC85iax0LzhJonQvOUmqdC84yaZ0LznJrnQvOCmhdC85Kal0LzippXQvOamtdC84aaN0Lzlpq3QvOOmndC856a90LzgZoPQvORmo9C84maT0LjMfhzY/za3HhS4yk0oagJJTRe1HgJjTc13kLjQ42P0ISmJrTQhKEmjNCEpSas0ISjJpzQhKcmvNBEoCaC0ESkJqLQRKImktBEpiay0EShJorQRKUmqtBEoyaa0ESnJrrQxKAmhtDEpCam0MSiJpbQxKYmttDEoSaO0MSlJq7QxKMmntDEpya+0CSgJoHQJKQmodAkoiaR0CSmJrHQJKEmidAkpSap0CSjJpnQJKcmudCkoCaF0KSkJqXQpKImldCkpia10KShJo3QpKUmrdCkoyad0PhS4ys06alJLzQZqMkgNBmpySg0majJJDSZqcksNH7U+AmNPzX+QpOFmixCE0BNgNBkpSar0GSjJpvQZKcmu9DkoCaH0OSkJqfQ5KIml9Dkpia30OShJo/Q5KUmr9Dkoyaf0OSnJr/QFKCmgNAUpKag0BSippDQFKamsNAUoaaI0BSlpqjQFKOmmNAUp6a40JSgpoTQlKSmpNCUoqaU0JSmprTQlKGmjNCUpaas0JSjppzQlKemvNBUoKaC0FSkpqLQVKKmktBUpqay0FShporQVKWmqtBUo6aa0FSnprrQ1KCmhtDUpKam0NSippbQ1KamttDUoaaO0NSlpq7Q1KOmntDUp6a+0DSgpoHQNKSmodA0oqaR0DSmprHQNKGmidA0paap0DSjppnQNKemudC0oKaF0LSkpqXQtKKmldC0pqa10LShpo3QtKWmrdC0o6ad0LSnpr3QdKCmg9B0pKaj0HSippPQdKams9B0oaaL0HSlpqvQdKOmm9B0p6a70PSgpofQ9KSmp9D0oqaX0PSmprfQ9KGmj9D0paav0PSjpp/Q9Kemv9AMoGaA0AykZqDQDKJmkNAMpmaw0AyhZojQDKVmqNAMo2aY0AynZrjQjKBmhNB8Q803QjOSmpFCM4qaUUIzmprRQvMtNd8KzRhqxgjNd9R8JzRjqRkrNOOoGSc046kZLzQTqJkgNBOpmSg0k6iZJDSTqZksNFOomSI0U6mZKjTTqJkmNNOpmS4031PzvdDMoGaG0PxAzQ9CM5OamUIzi5pZQjObmtlC8yM1PwrNHGrmCM1P1PwkNHOpmSs086iZJzTzqZkvNAuoWSA0C6lZKDQ/U/Oz0CyiZpHQ/ELNL0LzKzW/Cs1v1PwmNL9T87vQ/EHNH0KzmJrFQrOEmiVCs5SapULzJzV/Cs0yapYJzXJqlgvNCmpWCM1KalYKzSpqVgnNampWC80aatYIzVpq1grNOmrWCc16atYLzQZqNgjNRmo2Cs0majYJzWZqNgvNFmq2CM1WarYKzTZqtgnNdmq2C80OanYIzU5qdgrNLmp2Cc1uanYLzR5q9gjNXmr2Cs0+avYJzX5q9gvNAWoOCM1Bag4KzSFqDgnNYWoOC80Rao4IzVFqjgrNMWqOCc1xao4LzQlqTgjNSWpOCs0pak4JzWlqTgvNGWrOCM1Zas4KzTlqzgnNeWrOC80Fai4IzUVqLgrNJWouCc1lai4LzRVqrgjNVWquCs01aq4JzXVqrgvNDWpuCM1Nam4KzS1qbgnNbWpuC80dau4IzV1q7grNPWruCc19au4LzQNqHgjNQ2oeCs0jah4JzWNqHgvNE2qeCM1Tap4KzTNqngnNc2qeC80Lal4IzUtqXgrNK2peCc1ral4LzRtq3gjNW2reCs07at4JzXtq3gvNB2o+CM1Haj4KzSdqPgmNx5DPjfFrc+NJjafQhKImlNB4UeMlNN7UeAuNDzU+QhOamtBCE4aaMEITlpqwQhOOmnBCE56a8EITgZoIQhORmohCE4maSEITmZrIQhOFmihCE5WaqEITjZpoQhOdmuhCE4OaGEITk5qYQhOLmlhCE5ua2EITh5o4QhOXmrhCE4+aeEITn5r4QpOAmgRCk5CahEKTiJpEQpOYmsRCk4SaJEKTlJqkQpOMmmRCk5ya5EKTgpoUQpOSmpRCk4qaVEKTmprUQpOGmjRCk5aatEKTjpp0QuNLja/QpKcmvdBkoCaD0GSkJqPQZKImk9Bkpiaz0PhR4yc0/tT4C00WarIITQA1AUKTlZqsQpONmmxCk52a7EKTg5ocQpOTmpxCk4uaXEKTm5rcQpOHmjxCk5eavEKTj5p8QpOfmvxCU4CaAkJTkJqCQlOImkJCU5iawkJThJoiQlOUmqJCU4yaYkJTnJriQlOCmhJCU5KakkJTippSQlOamtJCU4aaMkJTlpqyQlOOmnJCU56a8kJTgZoKQlORmopCU4maSkJTmZrKQlOFmipCU5WaqkJTjZpqQlOdmupCU4OaGkJTk5qaQlOLmlpCU5ua2kJTh5o6QlOXmrpCU4+aekJTn5r6QtOAmgZC05CahkLTiJpGQtOYmsZC04SaJkLTlJqmQtOMmmZC05ya5kLTgpoWQtOSmpZC04qaVkLTmprWQtOGmjZC05aatkLTjpp2QtOemvZC04GaDkLTkZqOQtOJmk5C05mazkLThZouQtOVmq5C042abkLTnZruQtODmh5C05OankLTi5peQtObmt5C04eaPkLTl5q+QtOPmn5C05+a/kIzgJoBQjOQmoFCM4iaQUIzmJrBQjOEmiFCM5SaoUIzjJphQjOcmuFCM4KaEULzDTXfCM1IakYKzShqRgnNaGpGC8231HwrNGOoGSM031HzndCMpWas0IyjZpzQjKdmvNBMoGaC0EykZqLQTKJmktBMpmay0EyhZorQTKVmqtBMo2aa0EynZrrQfE/N90Izg5oZQvMDNT8IzUxqZgrNLGpmCc1samYLzY/U/Cg0c6iZIzQ/UfOT0MylZq7QzKNmntDMp2a+0CygZoHQLKRmodD8TM3PQrOImkVC8ws1vwjNr9T8KjS/UfOb0PxOze9C8wc1fwjNYmoWC80SapYIzVJqlgrNn9T8KTTLqFkmNMupWS40K6hZITQrqVkpNKuoWSU0q6lZLTRrqFkjNGupWSs066hZJzTrqVkvNBuo2SA0G6nZKDSbqNkkNJup2Sw0W6jZIjRbqdkqNNuo2SY026nZLjQ7qNkhNDup2Sk0u6jZJTS7qdktNHuo2SM0e6nZKzT7qNknNPup2S80B6g5IDQHqTkoNIeoOSQ0h6k5LDRHqDkiNEepOSo0x6g5JjTHqTkuNCeoOSE0J6k5KTSnqDklNKepOS00Z6g5IzRnqTkrNOeoOSc056k5LzQXqLkgNBepuSg0l6i5JDSXqbksNFeouSI0V6m5KjTXqLkmNNepuS40N6i5ITQ3qbkpNLeouSU0t6m5LTR3qLkjNHepuSs096i5JzT3qbkvNA+oeSA0D6l5KDSPqHkkNI+peSw0T6h5IjRPqXkqNM+oeSY0z6l5LjQvqHkhNC+peSk0r6h5JTSvqXktNG+oeSM0b6l5KzTvqHknNO+peS80H6j5IDQfqfkoNJ+o+SQ0HkM/N8avzY0nNZ5CE4qaUELjRY2X0HhT4y00PtT4CE1oakILTRhqwghNWGrCCk04asIJTXhqwgtNBGoiCE1EaiIKTSRqIglNZGoiC00UaqIITVRqogpNNGqiCU10aqILTQxqYghNTGpiCk0samIJTWxqYgtNHGriCE1cauIKTTxq4glNfGriC00CahIITUJqEgpNImoSCU1iahILTRJqkghNUmqSCk0yapIJTXJqkgtNCmpSCE1KalIKTSpqUglNampSC00aatIITVpq0gpNOmrSCY0vNb5Ck56a9EKTgZoMQpORmoxCk4maTEKTmZrMQuNHjZ/Q+FPjLzRZqMkiNAHUBAhNVmqyCk02arIJTXZqsgtNDmpyCE1OanIKTS5qcglNbmpyC00eavIITV5q8gpNPmryCU1+avILTQFqCghNQWoKCk0hagoJTWFqCgtNEWqKCE1RaooKTTFqiglNcWqKC00JakoITUlqSgpNKWpKCU1pakoLTRlqyghNWWrKCk05asoJTXlqygtNBWoqCE1FaioKTSVqKglNZWoqC00VaqoITVVqqgpNNWqqCU11aqoLTQ1qaghNTWpqCk0tamoJTW1qagtNHWrqCE1dauoKTT1q6glNfWrqC00DahoITUNqGgpNI2oaCU1jahoLTRNqmghNU2qaCk0zapoJTXNqmgtNC2paCE1LaloKTStqWglNa2paC00batoITVtq2gpNO2raCU17atoLTQdqOghNR2o6Ck0najoJTWdqOgtNF2q6CE1XaroKTTdquglNd2q6C00PanoITU9qegpNL2p6CU1vanqbmnD0aw8aVzDw//2C8ZHTL2tAONNaXLl9bD5npMBthvq8i3/tizG3tzVz5/I0zedh2k8P0/zhTWt16Xr8/Pw9TfMZ6zEfH+PXkYxm4Of1eJo+5z3w7/thfM5n4Jf7YfsICxW8P3fm51Yo6mp7f7m9PqbnJn+u79C/b8P4XL+hf19HDNqe+TEJM9Djrw/jc170e8Z+GdsPy73pc+Hoc94Dv5wnfOD/e9M8vC1jHT6mvlbgcYkS+PuhaYwxPqqd+UOb5v9i3XZ+j5+H5m152fk9ow8NlQPXGMHjv49lucCdMM65MLRtV57vxnPDh9bpZZqT12qsJ5wV6/HzCzDWE9bjy2NnPgbG/MY5EZp6T+G/xrbMnzPmCm/allWvJ/b2LbSdYx3V1JuPgbStsE5u6998TPlYhzPtWzg7vaedfbP3uhvO9Dlv+lxY0+f4ddc4Jvy6a+XXdD4Hzee4tL/GeiJYsR56vMLT3PYeL2P+KB5/f26FNx1jfmxC037YPrwHWrIf/rb1VPH5vA7zc8p43O09vp4uW0dOP0/Tfvt4/P385fktfb7hI5zpMXL1cfcx7W+xwMfA9v99TedUREuOeeO/zqm/znHhmEf0sL8eD8fX4v9Pq/ExrSU7HY9BpuMR1ZLj0eSv52C0fzgef70PsrMeJ47JP334G9uPbsn+ft5+DNq+y57j/p/PoZhWbN/PL4uP6fG65f35OTPS9JyJY8kxbP7XORT3H54zcUyfN/rTtOYx3l+u0Wj49/i5YH5djOfxeVv2evMajX6C6VjFpzGufE2N7vHlB8/lFcR6PYTfM/fm1ymer6BL9qF5Dg/TsTM/Vjyvl53jaR7nZWd8fFq3l51x3HoJ2+D3kfZ+z9xHNH3O/DUnbBD7Fz2IcV5BjOdtRLSzTmN8JA/767f3X2Ob5t8L6j2+0RnzxLHzOds5Nc90fhqf86H94LEx6fPc/0bn/EK67vY07U9Y07qi0efimT4XK4j9iU2fC0/7c83J/TE/ttH/oTdfhxnPt1Cm3/ewsz3ul9LxOuLkmsOYtmn0K0yvefwctvo1z/z13N75wO/BjeMVxc5487bi/sPxkI7xuhDwNSCch/3XNxfNHeDI8TbPz//PPR934/jaO4fjBjHO07SfQb0G2DuHvOz0MUzHMoGHJcfyr/fKxmPnTetJYGc9PqZ+r+k8TkTHyd7Xsxim45DQzryJTA3Pm9A0r3F8Elt0fOw9zxOb1udJnw/q/Y/5WIf2CPr5ZD7Wh0z7bNVzwt4+G3MF9XU3qNd1Pjb8OhbetJ3odo5NnCCOjdGfNB0bi1577B4bYy5H33fYO9/tvc8LY/p/7s3vkfk4F3TJvjbxM6/N07QuntfefWvzOHv7zfvoFcT2jfH23kPx/Tfb/8eys31H30MZXSTqopm2EZk+F8v0uSj0udi0/dA+X+6TMY5/L6hrQt6Wvd7Yno+pvx/E9bPV54Uxl1cQ6/UQfs/cW39N2Piva0J+jpifT+ZrJj6e5nFedsbHoXV72RnHrZewDUeuCWPZOXbm//f0+Ptz7f/3a8Jodj5nO6c+mr5u2bsm4rHma0KjD0/3Oz0Df228H7T32mjv9Sa26XP8emN+PYsi7E9o0/cCfKiLZNoGf58jsulz/H2XKLT9QqbXs386XubnTqx/6M1fA4zzhq85g3r9++u9PD0emZ1cs/ma0+hjmL5fbT5nCwb+v18wP+y9pprvD/BrpiPXnLGC2Facfzge0jGOZzoe/8Z7L4u/vgU4crzN80uv93zcjeNr755AnCDGme9z2BsfVlgLX3Nyb77mjGfNsfzrmtN47PjaL56d9ZjvcaQ1nccJ6DjZ+7psvub8p2td872V+KZ5jeOT0KLjY+95ntC0D/a+ztp7n2E+1qE9gn4+mY91RtM+W/WcsLfPxlz2vq7zdaL0us7Hxt71gvmcDi305mNj9FlNx+bfeG8dKYj18vuaoK7PPITfM/fm9+B87VbQJfua869rTvPPx9j7WR577z/N4/5pv72C2L4x3t57KPM1Z2g727f3Hsoz8Nf8Hsr8c6g8VyRah4dpLuNz/DOqEWj7pYLYvmcQ2w8fxPY9g9i+J3WhPOS5vYKY25jLth9W/sxMjpz//Tpk+zB+XseH1sIf3vR57ivT+W/VOm0f0YNYk+042ftZT/4ZJNtHeP6cqbF98PtE2wf/nGt4B7YVPohthQ1iW+Ec3JannfFedtbqPfDLPkLg//PP0Ya2s30fU1+Prhua+Xy5TZ+Bf1+zVxBrCGtnzWHt9OFN23fx88jfWE/EgX9fP+8TX0+be/PjZ29bER3clnEM/vOzUqZzKdJAS45BQFDr5uedMb/55yaNNdn7L2+Lf8+Y6//a42ts6998THm/eX7+f+6D+pn8KHb6SHb213jORLUzt/G5aPS5iKZ5ogf+P79m8baMdfiY+j50v8n2EZnGGOOj2pk/sml+nsve/ObX5Gh2+mh2ett53pV/PjLw17avYS0C39SEszOHK88Rfn/o6u3nzJqrGd97sWD9f/2ZKB8rtp81oLGxfYv+XICf8d66yMDP2+d9Meb1MnXmMV7UFKWmqNAUo6aY0BSnpjg1/HW7BDUlhKYkNSWFphQ1pYSmNDWlhaYMNWWEpiw1ZYWmHDXlhKY8NeWFpgI1FYSmIjUVhaYSNZWEpjI1lYWmCjVVhKYqNVWFpho11YSmOjXVhaYGNTWEpiY1NYWmFjW1hKY2NbWFpg41dYSmLjV1haYeNfWEpj419YWmATUNhKYhNQ2FphE1jYSmMTWNhaYJNU2Epik1TYWmGTXNhKY5Nc2FpgU1LYSmJTUthaYVNa2EpjU1rYWmDTVthKYtNcavzU27wN/nX5ub9tS0F5oO1HQQmo7UdBSaTtR0EprO1HQWmi7UdBGartR0FZpu1HQTmu7UdBeaHtT0EJqe1PQUml7U9BKa3tT0Fpo+1PQRmr7U9BWaftT0E5r+1PQXmgHUDBCagdQMFJpB1AwSmsHUDBaaIdQMEZqh1AwVmmHUDBOa4dQMF5oR1IwQmm+o+UZoRlIzUmhGUTNKaEZTM1povqXmW6EZQ80YofmOmu+EZiw1Y4VmHDXjhGY8NeOFZgI1E4RmIjUThWYSNZOEZjI1k4VmCjVThGYqNVOFZho104RmOjXTheZ7ar4XmhnUzBCaH6j5QWhmUjNTaGZRM0toZlMzW2h+pOZHoZlDzRyh+Yman4RmLjVzhWYeNfOEZj4184VmATULhGYhNQuF5mdqfhaaRdQsEppfqPlFaH6l5leh+Y2a34Tmd2p+F5o/qPlDaBZTs1hollCzRGiWUrNUaP6k5k+hWUbNMqFZTs1yoVlBzQqhWUnNSqFZRc0qoVlNzWqhWUPNGqFZS81aoVlHzTqhWU/NeqHZQM0GodlIzUah2UTNJqHZTM1modlCzRah2UrNVqHZRs02odlOzXah2UHNDqHZSc1OodlFzS6h2U3NbqHZQ80eodlLzV6h2UfNPqHZT81+oTlAzQGhOUjNQaE5RM0hoTlMzWGhOULNEaE5Ss1RoTlGzTGhOU7NcaE5Qc0JoTlJzUmhOUXNKaE5Tc1poTlDzRmhOUvNWaE5R805oTlPzXmhuUDNBaG5SM1FoblEzSWhuUzNZaG5Qs0VoblKzVWhuUbNNaG5Ts11oblBzQ2huUnNTaG5Rc0toblNzW2huUPNHaG5S81doblHzT2huU/NfaF5QM0DoXlIzUOheUTNI6F5TM1joXlCzROheUrNU6F5Rs0zoXlOzXOheUHNC6F5Sc1LoXlFzSuheU3Na6F5Q80boXlLzVuheUfNO6F5T817oflAzQeh+UjNR6H5RM0nofEY9Lkxfm1uPKnxFJpQ1IQSGi9qvITGmxpvofGhxkdoQlMTWmjCUBNGaMJSE1ZowlETTmjCUxNeaCJQE0FoIlITUWgiURNJaCJTE1loolATRWiiUhNVaKJRE01oolMTXWhiUBNDaGJSE1NoYlETS2hiUxNbaOJQE0do4lITV2jiURNPaOJTE19oElCTQGgSUpNQaBJRk0hoElOTWGiSUJNEaJJSk1RoklGTTGiSU5NcaFJQk0JoUlKTUmhSUZNKaFJTk1po0lCTRmjSUpNWaNJRk05ofKnxFZr01KQXmgzUZBCajNRkFJpM1GQSmszUZBYaP2r8hMafGn+hyUJNFqEJoCZAaLJSk1VoslGTTWiyU5NdaHJQk0NoclKTU2hyUZNLaHJTk1to8lCTR2jyUpNXaPJRk09o8lOTX2gKUFNAaApSU1BoClFTSGgKU1NYaIpQU0RoilJTVGiKUVNMaIpTU1xoSlBTQmhKUlNSaEpRU0poSlNTWmjKUFNGaMpSU1ZoylFTTmjKU1NeaCpQU0FoKlJTUWgqUVNJaCpTU1loqlBTRWiqUlNVaKpRU01oqlNTXWhqUFNDaGpSU1NoalFTS2hqU1NbaOpQU0do6lJTV2jqUVNPaOpTU19oGlDTQGgaUtNQaBpR00hoGlPTWGiaUNNEaJpS01RomlHTTGiaU9NcaFpQ00JoWlLTUmhaUdNKaFpT01po2lDTRmjaUtNWaNpR005o2lPTXmg6UNNBaDpS01FoOlHTSWg6U9NZaLpQ00VoulLTVWi6UdNNaLpT011oelDTQ2h6UtNTaHpR00toelPTW2j6UNNHaPpS01do+lHTT2j6U9NfaAZQM0BoBlIzUGgGUTNIaAZTM1hohlAzRGiGUjNUaIZRM0xohlMzXGhGUDNCaL6h5huhGUnNSKEZRc0ooRlNzWih+Zaab4VmDDVjhOY7ar4TmrHUjBWacdSME5rx1IwXmgnUTBCaidRMFJpJ1EwSmsnUTBaaKdRMEZqp1EwVmmnUTBOa6dRMF5rvqfleaGZQM0NofqDmB6GZSc1MoZlFzSyhmU3NbKH5kZofhWYONXOE5idqfhKaudTMFZp51MwTmvnUzBeaBdQsEJqF1CwUmp+p+VloFlGzSGh+oeYXofmVml+F5jdqfhOa36n5XWj+oOYPoVlMzWKhWULNEqFZSs1SofmTmj+FZhk1y4RmOTXLhWYFNSuEZiU1K4VmFTWrhGY1NauFZg01a4RmLTVrhWYdNeuEZj0164VmAzUbhGYjNRuFZhM1m4RmMzWbhWYLNVuEZis1W4VmGzXbhGY7NduFZgc1O4RmJzU7hWYXNbuEZjc1u4VmDzV7hGYvNXuFZh81+4RmPzX7heYANQeE5iA1B4XmEDWHhOYwNYeF5gg1R4TmKDVHheYYNceE5jg1x4XmBDUnhOYkNSeF5hQ1p4TmNDWnheYMNWeE5iw1Z4XmHDXnhOY8NeeF5gI1F4TmIjUXheYSNZeE5jI1l4XmCjVXhOYqNVeF5ho114TmOjXXheYGNTeE5iY1N4XmFjW3hOY2NbeF5g41d4TmLjV3heYeNfeE5j4194XmATUPhOYhNQ+F5hE1j4TmMTWPheYJNU+E5ik1T4XmGTXPhOY5Nc+F5gU1L4TmJTUvheYVNa+E5jU1r4XmDTVvhOYtNW+F5h0174TmPTXvheYDNR+E5iM1H4XmEzWfhMZj8OfG+LW58aTGU2hCURNKaLyo8RIab2q8hcaHGh+hCU1NaKEJQ00YoQlLTVihCUdNOKEJT014oYlATQShiUhNRKGJRE0koYlMTWShiUJNFKGJSk1UoYlGTTShiU5NdKGJQU0MoYlJTUyhiUVNLKGJTU1soYlDTRyhiUtNXKGJR008oYlPTXyhSUBNAqFJSE1CoUlETSKhSUxNYqFJQk0SoUlKTVKhSUZNMqFJTk1yoUlBTQqhSUlNSqFJRU0qoUlNTWqhSUNNGqFJS01aoUlHTTqh8aXGV2jSU5NeaDJQk0FoMlKTUWgyUZNJaDJTk1lo/KjxExp/avyFJgs1WYQmgJoAoclKTVahyUZNNqHJTk12oclBTQ6hyUlNTqHJRU0uoclNTW6hyUNNHqHJS01eoclHTT6hyU9NfqEpQE0BoSlITUGhKURNIaEpTE1hoSlCTRGhKUpNUaEpRk0xoSlOTXGhKUFNCaEpSU1JoSlFTSmhKU1NaaEpQ00ZoSlLTVmhKUdNOaEpT015oalATQWhqUhNRaGpRE0loalMTWWhqUJNFaGpSk1VoalGTTWhqU5NdaGpQU0NoalJTU2hqUVNLaGpTU1toalDTR2hqUtNXaGpR009oalPTX2haUBNA6FpSE1DoWlETSOhaUxNY6FpQk0ToWlKTVOhaUZNM6FpTk1zoWlBTQuhaUlNS6FpRU0roWlNTWuhaUNNG6FpS01boWlHTTuhaU9Ne6HpQE0HoelITUeh6URNJ6HpTE1noelCTReh6UpNV6HpRk03oelOTXeh6UFND6HpSU1PoelFTS+h6U1Nb6HpQ00foelLTV+h6UdNP6HpT01/oRlAzQChGUjNQKEZRM0goRlMzWChGULNEKEZSs1QoRlGzTChGU7NcKEZQc0IofmGmm+EZiQ1I4VmFDWjhGY0NaOF5ltqvhWaMdSMEZrvqPlOaMZSM1ZoxlEzTmjGUzNeaCZQM0FoJlIzUWgmUTNJaCZTM1loplAzRWimUjNVaKZRM01oplMzXWi+p+Z7oZlBzQyh+YGaH4RmJjUzhWYWNbOEZjY1s4XmR2p+FJo51MwRmp+o+Ulo5lIzV2jmUTNPaOZTM19oFlCzQGgWUrNQaH6m5mehWUTNIqH5hZpfhOZXan4Vmt+o+U1ofqfmd6H5g5o/hGYxNYuFZgk1S4RmKTVLheZPav4UmmXULBOa5dQsF5oV1KwQmpXUrBSaVdSsEprV1KwWmjXUrBGatdSsFZp11KwTmvXUrBeaDdRsEJqN1GwUmk3UbBKazdRsFpot1GwRmq3UbBWabdRsE5rt1GwXmh3U7BCandTsFJpd1OwSmt3U7BaaPdTsEZq91OwVmn3U7BOa/dTsF5oD1BwQmoPUHBSaQ9QcEprD1BwWmiPUHBGao9QcFZpj1BwTmuPUHBeaE9ScEJqT1JwUmlPUnBKa09ScFpoz1JwRmrPUnBWac9ScE5rz1JwXmgvUXBCai9RcFJpL1FwSmsvUXBaaK9RcEZqr1FwVmmvUXBOa69RcF5ob1NwQmpvU3BSaW9TcEprb1NwWmjvU3BGau9TcFZp71NwTmvvU3BeaB9Q8EJqH1DwUmkfUPBKax9Q8Fpon1DwRmqfUPBWaZ9Q8E5rn1DwXmhfUvBCal9S8FJpX1LwSmtfUvBaaN9S8EZq31LwVmnfUvBOa99S8F5oP1HwQmo/UfBSaT9R8EhqPIZ8b49fmxpMaT6EJRU0oofGixktovKnxFhofanyEJjQ1oYUmDDVhhCYsNWGFJhw14YQmPDXhhSYCNRGEJiI1EYUmEjWRhCYyNZGFJgo1UYQmKjVRhSYaNdGEJjo10YUmBjUxhCYmNTGFJhY1sYQmNjWxhSYONXGEJi41cYUmHjXxhCY+NfGFJgE1CYQmITUJhSYRNYmEJjE1iYUmCTVJhCYpNUmFJhk1yYQmOTXJhSYFNSmEJiU1KYUmFTWphCY1NamFJg01aYQmLTVphSYdNemExpcaX6FJT016oclATQahyUhNRqHJRE0moclMTWah8aPGT2j8qfEXmizUZBGaAGoChCYrNVmFJhs12YQmOzXZhSYHNTmEJic1OYUmFzW5hCY3NbmFJg81eYQmLzV5hSYfNfmEJj81+YWmADUFhKYgNQWFphA1hYSmMDWFhaYINUWEpig1RYWmGDXFhKY4NcWFpgQ1JYSmJDUlhaYUNaWEpjQ1pYWmDDVlhKYsNWWFphw15YSmPDXlhaYCNRWEpiI1FYWmEjWVhKYyNZWFpgo1VYSmKjVVhaYaNdWEpjo11YWmBjU1hKYmNTWFphY1tYSmNjW1haYONXWEpi41dYWmHjX1hKY+NfWFpgE1DYSmITUNhaYRNY2EpjE1jYWmCTVNhKYpNU2Fphk1zYSmOTXNhaYFNS2EpiU1LYWmFTWthKY1Na2Fpg01bYSmLTVthaYdNe2Epj017YWmAzUdhKYjNR2FphM1nYSmMzWdhaYLNV2Epis1XYWmGzXdhKY7Nd2Fpgc1PYSmJzU9haYXNb2Epjc1vYWmDzV9hKYvNX2Fph81/YSmPzX9hWYANQOEZiA1A4VmEDWDhGYwNYOFZgg1Q4RmKDVDhWYYNcOEZjg1w4VmBDUjhOYbar4RmpHUjBSaUdSMEprR1IwWmm+p+VZoxlAzRmi+o+Y7oRlLzVihGUfNOKEZT814oZlAzQShmUjNRKGZRM0koZlMzWShmULNFKGZSs1UoZlGzTShmU7NdKH5nprvhWYGNTOE5gdqfhCamdTMFJpZ1MwSmtnUzBaaH6n5UWjmUDNHaH6i5iehmUvNXKGZR808oZlPzXyhWUDNAqFZSM1CofmZmp+FZhE1i4TmF2p+EZpfqflVaH6j5jeh+Z2a34XmD2r+EJrF1CwWmiXULBGapdQsFZo/qflTaJZRs0xollOzXGhWULNCaFZSs1JoVlGzSmhWU7NaaNZQs0Zo1lKzVmjWUbNOaNZTs15oNlCzQWg2UrNRaDZRs0loNlOzWWi2ULNFaLZSs1VotlGzTWi2U7NdaHZQs0NodlKzU2h2UbNLaHZTs1to9lCzR2j2UrNXaPZRs09o9lOzX2gOUHNAaA5Sc1BoDlFzSGgOU3NYaI5Qc0RojlJzVGiOUXNMaI5Tc1xoTlBzQmhOUnNSaE5Rc0poTlNzWmjOUHNGaM5Sc1ZozlFzTmjOU3NeaC5Qc0FoLlJzUWguUXNJaC5Tc1lorlBzRWiuUnNVaK5Rc01orlNzXWhuUHNDaG5Sc1NoblFzS2huU3NbaO5Qc0do7lJzV2juUXNPaO5Tc19oHlDzQGgeUvNQaB5R80hoHlPzWGieUPNEaJ5S81RonlHzTGieU/NcaF5Q80JoXlLzUmheUfNKaF5T81po3lDzRmjeUvNWaN5R805o3lPzXmg+UPNBaD5S81FoPlHzSWg8hn5ujF+bG09qPIUmFDWhhMaLGi+h8abGW2h8qPERmtDUhBaaMNSEEZqw1IQVmnDUhBOa8NSEF5oI1EQQmojURBSaSNREEprI1EQWmijURBGaqNREFZpo1EQTmujURBeaGNTEEJqY1MQUmljUxBKa2NTEFpo41MQRmrjUxBWaeNTEE5r41MQXmgTUJBCahNQkFJpE1CQSmsTUJBaaJNQkEZqk1CQVmmTUJBOa5NQkF5oU1KQQmpTUpBSaVNSkEprU1KQWmjTUpBGatNSkFZp01KQTGl9qfIUmPTXphSYDNRmEJiM1GYUmEzWZhCYzNZmFxo8aP6Hxp8ZfaLJQk0VoAqgJEJqs1GQVmmzUZBOa7NRkF5oc1OQQmpzU5BSaXNTkEprc1OQWmjzU5BGavNTkFZp81OQTmvzU5BeaAtQUEJqC1BQUmkLUFBKawtQUFpoi1BQRmqLUFBWaYtQUE5ri1BQXmhLUlBCaktSUFJpS1JQSmtLUlBaaMtSUEZqy1JQVmnLUlBOa8tSUF5oK1FQQmorUVBSaStRUEprK1FQWmirUVBGaqtRUFZpq1FQTmurUVBeaGtTUEJqa1NQUmlrU1BKa2tTUFpo61NQRmrrU1BWaetTUE5r61NQXmgbUNBCahtQ0FJpG1DQSmsbUNBaaJtQ0EZqm1DQVmmbUNBOa5tQ0F5oW1LQQmpbUtBSaVtS0EprW1LQWmjbUtBGattS0FZp21LQTmvbUtBeaDtR0EJqO1HQUmk7UdBKaztR0Fpou1HQRmq7UdBWabtR0E5ru1HQXmh7U9BCantT0FJpe1PQSmt7U9BaaPtT0EZq+1PQVmn7U9DM1kejXxkeRgf/9r/G5UPS5oqbPedHnigV+Llzg57w9Ps9l6woG/r9fMD5y+mXNbmw/tAXb98sakNPYNx/aN+P4GHOHsWbuXJ6m+Tw8Ph9j/pwxf3jTWl26Hj8/f0/TfMZ6zMfHeI5EMpqBn9fjbfqc98C/74fxOR/6nPH4hoVa3p8783PLh7qm3p9/3/zc9fL4+3Pd+LzxuPKxdtlzNmuOZlaeE35+WfzsHXfzY+I98Mu5+XN83L3peBrHPQb0D3ztSEr7YPsIEzjWg7brRb9nbNuYKyz3ps+Fo8/xem0f4QP/35vm4W0Z6/Ax9U0C9yFK4O+HpjHG+Kh25g9tmv+Lddv5PeN4e9rZlped3zN62/O8buAaI3j897jnCv15W3wuGNvyNM3nafp1GNq2vd7Yno+pbx24DuP5GpbGuPB1xS+6x5cfPFc4O/vkytd382uDj8ffXxv4GNlbj4cLj4X5MePXCHuPsfkx6xQCHjN77yPMXzNDWbGurFn9Hf2aacwf3sPC5xd9zXT2aw+/p/B03Xr8LH1eZM361/M3rJ39DWvn+BvPlXB2PmdsK3zg//O5yX1YOobc86+N8fx7AwPPlah2tmk+/uHs7A//Hr9+96avMf/02mzveRHKznaj2hlvPoY8zlP4rzGP+ffM89hbs6WvxThXrH7NMr+X57lsj9so0/tF4zjx847Hmr9uGn3C0J+3Ocb0emzNe76cf30d4/fhXqZ1mufn53Boofcx7aPRTzTtV3hL9sv+15nwwj54edh/nMz7bHwulIf91xOjN/YtgkX7Zn5986b1RLCzHvPr10zT8/Wv9/0OHoeIduaNRE0407wRTfMaxyeyRcfH3mNvzBXF4+/PBfPX0Aim/S3omnX99ToVyYr9pq+hken42zs3I3l8+fgY/TzT4xPFinX62X98jLnsXYOGp8fH9uE90JLj5297TS8Q+vM6+Ln7n+NF8/Jx9PD4fJy5N38tjGyn5+eC8RhF9fj7+WF+TprvW5nPWfP7BeMY8us1N+bXa6NfYnpOWPWaZu85YcwVTtg/18yd08/SfaPzks87e+dlBNNjYPQrQ8DrpqdpjR4ejj3n7Z0jfJzNz3k+H4zH2zgX+TU7omkczxveNC6oe7CW3P/1y+nwPVhj/q91D9bePSB792DtvT/zdt16rD3n6H2tveerveef+fXe/NyQzl/uI9AxND+X+Twwn997TdeTvE3ze9aIdvbH3vlnW/t20/WkvffnQT0vQtvZblQ7483HkMd5Cv815jH/nnkee2s2fz2wfRQM/K9fMD8s/jqX09h+RNev/W/vL122bf/P18D8mPE18EnTNYW996A81nxtYvRHfD5v84zp+zX8fULz67g118f+jRx9HTfmD29nX614Hfc2rcd8fMyv49Z8XfHP5enx93MxqGtIe6+z5uvLf3qd5etwZ15nb1n0OnvF9Dprfi7ydu09bt52thvVQz5nItkZF9zXWXtrtvL7mXju+JvvP5pfUx6bXlP4GsXe96PM9x2Mvg69pjxz4jXFmnMmi8Pfa/jre5AeX+c1xd45HNRrijXvnbP4OfKehNdr73sB5vc3//S9gNC0j+bXg6C+F+AZOJGrvxfwzvSaYn4u8naDeu3l7dp7TTEfQ3vXStrXFHtrtvY1xS+rpc9Neh8kvWZF8Pn8+/wckF6z+HsF3Eel16zIgb+OQtv1MB3jCPT5oO5JR7TkuH9+HxDpH/Y3oml/jT62z5fr/Dfvcdj72m/vPDXvM/d8nI3e3r3nSMI85tedSHZ+z/z1yprH1s/hexnG/OHt7KcVX6/sPU58fIzjHi2Q9JrP2/rr+8+W3qzHhaC9G93GIuz9sFUkWmBV001q/kLDL0apTS9G/AbJy85Y8w1Io/ejF6N0wguch4djP1Rk7xuH3IcR1pDJ9ALxb3zjMFIQ6+UXf3svxOY3JMZjzd9M5JsO5jdbVr0gml/E+Jt6ke2sx/zCndv0fDB+CI6/mWjvxdDoo9iZNyo15udkFNO8xvGJZtHxsfd8iGbah3/6AmB+I2gc19BCL32DroBpn/+Nb9BZ/HzMaX5eSK9VkU3HyOiLmo5R1K94jHguXqOHR9BfoMz7zD0fZ2P/jdcXfs6YHx9rnhufL86MfeXHJ5Kd9fiY+rIh4Lz9f+3dBXgUV9/38d24koTgpe6eAIVQpS3u7u7ubg1S91IBKtAWatSoF6m7u7u7u773cu8h3/3n/JbQZgj3+2SuK1dmZz5zbM6cOeO+fW86yi8yJBUHUn7ei8ysJ8mId0t1IjLYOpTr8awLLu+5odJ11l5U4z7LdpJ9B7O2neO4CztFeHXTSC9TXwLqj3nri4srO056ff0sV27cp/kOGO2JquXoZ/VPjo1b3Xw20MTtO9HhOxC3JzKGIu4hGF9p+jT2giDn+U7qBru/KDnwzNlCvtX+Ysx2vr+Id3F9S/sLl3+3fnzts2/dpYh0sa/qO4kRdBmWtc9o67jzM822UhVl5ys/e6ItzxNvVRjbR84z8bryyQ+ofHx1LN/koax1xu5PUoRX+/l528F+Ptj6WHKTQR7KwLfPzTVl5PxCU0ZVt2EZMS6mMRQqW9uT5/EsZ9u+sM7Y4ycXT6QckkKl26oqodhy2l73JaduB/uSCruB8j8Xy31925gLsohX7e/o/+n+LjdUehvMMmFleMKybR/Hff1Xeva76C/YDk5s+y7y2r6tLy/sX26pH3pROfVDb0bfc0Wcfmi8mwu2/Unyst8osj2cJPddHHTedy5LnVS3+4naCCvbTPOtN3vTxdZeyOTydttP2sp44p2z9t08neCJ29bltWbbD+gCjXfb57UElV7eZLG1x3f2wdZg2rWion+7T173f/z4bnvvM91X2WfaqodOgqpDvj5Ttglra/tMbvmy9pmcf2o77TPZNlX1mWxfyJWputZnz58Edazs0uPqPc9j5HnSY4/pXzP5cucWeP4kxxOO81U98fL8hL3WV9XE68qnWkDl46sPLq5sUxZuvu+/KxM7zfZf2NbZG7HyyjEerltbh7ltsT//njhXxvbd94CaXXd/oQ//oenDc3nXn3DzfOdPfHWVTp0P9J2r8IXvwgh2Oyzp0/jKNNGTblumX28H5xN9+0yep4kMScWBlF9j3z6T26XdZ8Y7VxUZ7D6zqsf72sdc4229YpkwLNsucnzzC4aEV/2o37eD862+h3bYx1J54QMkbvuv6gnDzcv3xO3mcd9g12v1UMngawfsNc4aSJ/Pu/CSrY8WgFsXNbFM0OvCxRVo3HiotRbKINGUC+NPNj7TlFHtbVhGjItpDCEP1TDN1qNaHs9ydvl3dbIG5tUS8dCFPGG5G9NZ96sZm29+V/WE4+t75Jv0crk8EUeCx9p7C/I8y8VrY+32x3G3vLoOxX0pfR1Tzyqy7+hLL/taOUiXc/EeyC2/7bl+qQdm1XG8PWZzfjdTzhVxrits0hhCHnwPWdk80/vOLfru67QvKQj6JQK8gd63fmw/3Pn9zPqpqPtoNpVxcWzcLl2RIak4kPLz3ncV82AP4t1SnYgMtg75zrOzLtjzLKyz6SasRE9Y8c6z+O6pjnetxfmGpk5UxMs9tuYFDswLX7wVZN1pVPTf8yaRwdXb5FDsOgqZ+JONPxLlHFQ6feXMuNwDQpvKrrhkPrfFyJAa/c0XpNLzHhf6Y/HysmbYzjZZT3wR0iWOC4v/m8LwTEsqjp3me3EqXyjrvIs7o7h0Gt28TMxjOxEZsqK/WV4My6Uj2fhO0by7dcKXwLrlcz3xp5n4Y9LtmcbtyoaV6JnGhxBbR9O4eZ+PuMvzWiXrQqSebm7PgomvXtjkx52/jAxJxZuLYnP8vpcOO7f5vuFg0lpg1zPbHtZxl5cE4+14spk2HC8JZh7Z1sZ7QbGvPnE7c2n0tT2ZxVsXVpoJK/VfhOXS5dvGUv9hunxhpZiwtuaFzj2xTRTi/A5deW+L7IuUd/hFDQbX433jAaS/fqAP7zeoPzjYh98LCtw95u4DCjYvLt5E4+wybNOawjQVphlMM2GawzSHYVvRAqaFMC1hWgrTCqaVMK1hWgvTBqaNMG1h2grTDqadMO1h2gvTAaaDMB1hOgrTCaaTMJ1hOgvTBaaLMF1hugrTDaabMN1hugvTA6aHMD1hegrTC6aXML1hegvTB6aPMH1h+grTD6afMP1h+gszAGaAMANhBgozCGaQMINhBgszBGaIMENhhgozDGaYMMNhhgszAmaEMCNhRgozCmaUMKNhRgszBmaMMGNhxgozDmacMONhxgszAWaCMBNhJgozCWaSMJNhJgszBWaKMFNhpgozDWaaMNNhpgszA2aGMDNhZgozC2aWMLNhZgszB2aOMHNh5gozD2aeMPNh5gtzHMxxwhTDFAuzAGaBMAthFgqzCGaRMIthFgtzPMzxwpwAc4IwJ8KcKMxJMCcJczLMycKcAnOKMKfCnCrMaTCnCXM6zOnCnAFzhjBnwpwpzFkwZwlzNszZwpwDc44wS2CWCHMuzLnCnAdznjDnw5wvzAUwFwizFGapMMtglgmzHGa5MBfCXCjMRTAXCXMxzMXCXAJziTArYFYIsxJmpTCXwlwqzGUwlwlzOczlwqyCWSXMapjVwlwBc4UwV8JcKcxVMFcJczXM1cJcA3ONMGtg1ghzLcy1wlwHc50w18NcL8wNMDcIcyPMjcKshVkrzE0wNwlzM8zNwtwCc4swt8LcKsxtMLcJczvM7cLcAXOHMHfC3CnMOph1wqyHWS/MBpgNwmyE2SjMXTB3CXM3zN3C3ANzjzD3wtwrzH0w9wlzP8z9wjwA84AwD8I8KMxDMA8J8zDMw8I8AvOIMI/CPCrMYzCPCfM4zOPCPAHzhDBPwjwpzFMwTwnzNMzTwjwD84wwz8I8K8xzMM8J8zzM88K8APOCMC/CvCjMSzAvCfMyzMvCvALzijCvwrwqzGswrwnzOszrwrwB84Ywb8K8KcxbMG8J8zbM28K8A/OOMO/CvCvMezDvCfM+zPvCfADzgTAfwnwozEcwHwnzMczHwnwC84kwn8J8KsxnMJ8J8znM58J8AfOFMF/CfCnMVzBfCfM1zNfCfAPzjTDfwnwrzHcw3wnzPcz3wvwA84MwP8L8KMxPMD8J8zPMz8L8AvOLML/C/CrMbzC/CfM7zO/C/AHzhzB/wvwpzF8wfwnzN8zfwoQWlBg3bk0YJixMAkyCMIkwicIkwSQJkwyTLEwKTIowqTCpwqTBpAmTDpMuTAZMhjCZMJnCZMFkCZMNky1MFZgqwuTA5AiTC5MrTB5MnjBVYaoKkw+TL0w1mGrCVIepLkwNmBrC1ISpKUwtmFrC1IapLUwdmDrC7ACzgzB1YeoKsyPMjsLsBLOTMDvD7CzMLjC7CLMrzK7C7AazmzC7w+wuzB4wewizJ8yewuwFs5cwe8PsLcw+MPsIsy/MvsLsB7OfMPvD7C/MATAHCHMgzIHCHARzkDAHwxwsTAFMgTCFMIXC1IOpJ0x9mPrCNIBpIMwhMIcI0xCmoTCNYBoJUwRTJExjmMbCHApzqDCHwRwmzOEwhwtzBMwRwhwJc6QwR8EcJUwTmCbCHA1ztDDHwBwjzLEwxwrTFKapMM1gmgnTHKa5MC1gWgjTEqalMK1gWgnTGqa1MG1g2gjTFqatMO1g2gnTHqa9MB1gOgjTEaajMJ1gOgnTGaazMF1gugjTFaarMN1gugnTHaa7MD1gegjTE6anML1gegnTG6a3MH1g+gjTF6avMP1g+gnTH6a/MANgBggzEGagMINgBgkzGGawMENghggzFGaoMMNghgkzHGa4MCNgRggzEmakMKNgRgkzGma0MGNgxggzFmasMONgxgkzHma8MBNgJggzEWaiMJNgJgkzGWayMFNgpggzFWaqMNNgpgkzHWa6MDNgZggzE2amMLNgZgkzG2a2MHNg5ggzF2auMPNg5gkzH2a+MMfBHCdMMUyxMAtgFgizEGahMItgFgmzGGaxMMfDHC/MCTAnCHMizInCnARzkjAnw5wszCkwpwhzKsypwpwGc5owp8OcLswZMGcIcybMmcKcBXOWMGfDnC3MOTDnCLMEZokw58KcK8x5MOcJcz7M+cJcAHOBMEthlgqzDGaZMMthlgtzIcyFwlwEc5EwF8NcLMwlMJcIswJmhTArYVYKcynMpcJcBnOZMJfDXC7MKphVwqyGWS3MFTBXCHMlzJXCXAVzlTBXw1wtzDUw1wizBmaNMNfCXCvMdTDXCXM9zPXC3ABzgzA3wtwozFqYtcLcBHOTMDfD3CzMLTC3CHMrzK3C3AZzmzC3w9wuzB0wdwhzJ8ydwqyDWSfMepj1wmyA2SDMRpiNwtwFc5cwd8PcLcw9MPcIcy/MvcLcB3OfMPfD3C/MAzAPCPMgzIPCPATzkDAPwzwszCMwjwjzKMyjwjwG85gwj8M8LswTME8I8yTMk8I8BfOUME/DPC3MMzDPCPMszLPCPAfznDDPwzwvzAswLwjzIsyLwrwE85IwL8O8LMwrMK8I8yrMq8K8BvOaMK/DvC7MGzBvCPMmzJvCvAXzljBvw7wtzDsw7wjzLsy7wrwH854w78O8L8wHMB8I8yHMh8J8BPORMB/DfCzMJzCfCPMpzKfCfAbzmTCfw3wuzBcwXwjzJcyXwnwF85UwX8N8Lcw3MN8I8y3Mt8J8B/OdMN/DfC/MDzA/CPMjzI/C/ATzkzA/w/wszC8wvwjzK8yvwvwG85swv8P8LswfMH8I8yfMn8L8BfOXMH/D/C1MaGGJcePWhGHCwiTAJAiTCJMoTBJMkjDJMMnCpMCkCJMKkypMGkyaMOkw6cJkwGQIkwmTKUwWTJYw2TDZwlSBqSJMDkyOMLkwucLkweQJUxWmqjD5MPnCVIOpJkx1mOrC1ICpIUxNmJrC1IKpJUxtmNrC1IGpI8wOMDsIUxemrjA7wuwozE4wOwmzM8zOwuwCs4swu8LsKsxuMLsJszvM7sLsAbOHMHvC7CnMXjB7CbM3zN7C7AOzjzD7wuwrzH4w+wmzP8z+whwAc4AwB8IcKMxBMAcJczDMwcIUwBQIUwhTKEw9mHrC1IepL0wDmAbCHAJziDANYRoK0wimkTBFMEXCNIZpLMyhMIcKcxjMYcIcDnO4MEfAHCHMkTBHCnMUzFHCNIFpIszRMEcLcwzMMcIcC3OsME1hmgrTDKaZMM1hmgvTAqaFMC1hWgrTCqaVMK1hWgvTBqaNMG1h2grTDqadMO1h2gvTAaaDMB1hOgrTCaaTMJ1hOgvTBaaLMF1hugrTDaabMN1hugvTA6aHMD1hegrTC6aXML1hegvTB6aPMH1h+grTD6afMP1h+gszAGaAMANhBgozCGaQMINhBgszBGaIMENhhgozDGaYMMNhhgszAmaEMCNhRgozCmaUMKNhRgszBmaMMGNhxgozDmacMONhxgszAWaCMBNhJgozCWaSMJNhJgszBWaKMFNhpgozDWaaMNNhpgszA2aGMDNhZgozC2aWMLNhZgszB2aOMHNh5gozD2aeMPNh5gtzHMxxwhTDFAuzAGaBMAthFgqzCGaRMIthFgtzPMzxwpwAc4IwJ8KcKMxJMCcJczLMycKcAnOKMKfCnCrMaTCnCXM6zOnCnAFzhjBnwpwpzFkwZwlzNszZwpwDc44wS2CWCHMuzLnCnAdznjDnw5wvzAUwFwizFGapMMtglgmzHGa5MBfCXCjMRTAXCXMxzMXCXAJziTArYFYIsxJmpTCXwlwqzGUwlwlzOczlwqyCWSXMapjVwlwBc4UwV8JcKcxVMFcJczXM1cJcA3ONMGtg1ghzLcy1wlwHc50w18NcL8wNMDcIcyPMjcKshVkrzE0wNwlzM8zNwtwCc4swt8LcKsxtMLcJczvM7cLcAXOHMHfC3CnMOph1wqyHWS/MBpgNwmyE2SjMXTB3CXM3zN3C3ANzjzD3wtwrzH0w9wlzP8z9wjwA84AwD8I8KMxDMA8J8zDMw8I8AvOIMI/CPCrMYzCPCfM4zOPCPAHzhDBPwjwpzFMwTwnzNMzTwjwD84wwz8I8K8xzMM8J8zzM88K8APOCMC/CvCjMSzAvCfMyzMvCvALzijCvwrwqzGswrwnzOszrwrwB84Ywb8K8KcxbMG8J8zbM28K8A/OOMO/CvCvMezDvCfM+zPvCfADzgTAfwnwozEcwHwnzMczHwnwC84kwn8J8KsxnMJ8J8znM58J8AfOFMF/CfCnMVzBfCfM1zNfCfAPzjTDfwnwrzHcw3wnzPcz3wvwA84MwP8L8KMxPMD8J8zPMz8L8AvOLML/C/CrMbzC/CfM7zO/C/AHzhzB/wvwpzF8wfwnzN8zfwoQWlRg3bk0YJixMAkyCMIkwicIkwSQJkwyTLEwKTIowqTCpwqTBpAmTDpMuTAZMhjCZMJnCZMFkCZMNky1MFZgqwuTA5AiTC5MrTB5MnjBVYaoKkw+TL0w1mGrCVIepLkwNmBrC1ISpKUwtmFrC1IapLUwdmDrC7ACzgzB1YeoKsyPMjsLsBLOTMDvD7CzMLjC7CLMrzK7C7AazmzC7w+wuzB4wewizJ8yewuwFs5cwe8PsLcw+MPsIsy/MvsLsB7OfMPvD7C/MATAHCHMgzIHCHARzkDAHwxwsTAFMgTCFMIXC1IOpJ0x9mPrCNIBpIMwhMIcI0xCmoTCNYBoJUwRTJExjmMbCHApzqDCHwRwmzOEwhwtzBMwRwhwJc6QwR8EcJUwTmCbCHA1ztDDHwBwjzLEwxwrTFKapMM1gmgnTHKa5MC1gWgjTEqalMK1gWgnTGqa1MG1g2gjTFqatMO1g2gnTHqa9MB1gOgjTEaajMJ1gOgnTGaazMF1gugjTFaarMN1gugnTHaa7MD1gegjTE6anML1gegnTG6a3MH1g+gjTF6avMP1g+gnTH6a/MANgBggzEGagMINgBgkzGGawMENghggzFGaoMMNghgkzHGa4MCNgRggzEmakMKNgRgkzGma0MGNgxggzFmasMONgxgkzHma8MBNgJggzEWaiMJNgJgkzGWayMFNgpggzFWaqMNNgpgkzHWa6MDNgZggzE2amMLNgZgkzG2a2MHNg5ggzF2auMPNg5gkzH2a+MMfBHCdMMUyxMAtgFgizEGahMItgFgmzGGaxMMfDHC/MCTAnCHMizInCnARzkjAnw5wszCkwpwhzKsypwpwGc5owp8OcLswZMGcIcybMmcKcBXOWMGfDnC3MOTDnCLMEZokw58KcK8x5MOcJcz7M+cJcAHOBMEthlgqzDGaZMMthlgtzIcyFwlwEc5EwF8NcLMwlMJcIswJmhTArYVYKcynMpcJcBnOZMJfDXC7MKphVwqyGWS3MFTBXCHMlzJXCXAVzlTBXw1wtzDUw1wizBmaNMNfCXCvMdTDXCXM9zPXC3ABzgzA3wtwozFqYtcLcBHOTMDfD3CzMLTC3CHMrzK3C3AZzmzC3w9wuzB0wdwhzJ8ydwqyDWSfMepj1wmyA2SDMRpiNwtwFc5cwd8PcLcw9MPcIcy/MvcLcB3OfMPfD3C/MAzAPCPMgzIPCPATzkDAPwzwszCMwjwjzKMyjwjwG85gwj8M8LswTME8I8yTMk8I8BfOUME/DPC3MMzDPCPMszLPCPAfznDDPwzwvzAswLwjzIsyLwrwE85IwL8O8LMwrMK8I8yrMq8K8BvOaMK/DvC7MGzBvCPMmzJvCvAXzljBvw7wtzDsw7wjzLsy7wrwH854w78O8L8wHMB8I8yHMh8J8BPORMB/DfCzMJzCfCPMpzKfCfAbzmTCfw3wuzBcwXwjzJcyXwnwF85UwX8N8Lcw3MN8I8y3Mt8J8B/OdMN/DfC/MDzA/CPMjzI/C/ATzkzA/w/wszC8wvwjzK8yvwvwG85swv8P8LswfMH8I8yfMn8L8BfOXMH/D/C1MaHGJcePWhGHCwiTAJAiTCJMoTBJMkjDJMMnCpMCkCJMKkypMGkyaMOkw6cJkwGQIkwmTKUwWTJYw2TDZwlSBqSJMDkyOMLkwucLkweQJUxWmqjD5MPnCVIOpJkx1mOrC1ICpIUxNmJrC1IKpJUxtmNrC1IGpI8wOMDsIUxemrjA7wuwozE4wOwmzM8zOwuwCs4swu8LsKsxuMLsJszvM7sLsAbOHMHvC7CnMXjB7CbM3zN7C7AOzjzD7wuwrzH4w+wmzP8z+whwAc4AwB8IcKMxBMAcJczDMwcIUwBQIUwhTKEw9mHrC1IepL0wDmAbCHAJziDANYRoK0wimkTBFMEXCNIZpLMyhMIcKcxjMYcIcDnO4MEfAHCHMkTBHCnMUzFHCNIFpIszRMEcLcwzMMcIcC3OsME1hmgrTDKaZMM1hmgvTAqaFMC1hWgrTCqaVMK1hWgvTBqaNMG1h2grTDqadMO1h2gvTAaaDMB1hOgrTCaaTMJ1hOgvTBaaLMF1hugrTDaabMN1hugvTA6aHMD1hegrTC6aXML1hegvTB6aPMH1h+grTD6afMP1h+gszAGaAMANhBgozCGaQMINhBgszBGaIMENhhgozDGaYMMNhhgszAmaEMCNhRgozCmaUMKNhRgszBmaMMGNhxgozDmacMONhxgszAWaCMBNhJgozCWaSMJNhJgszBWaKMFNhpgozDWaaMNNhpgszA2aGMDNhZgozC2aWMLNhZgszB2aOMHNh5gozD2aeMdkYd8Oxxf/97+YlYF5TMy8R85pF56VH5yWFSuKKuCbR3wX/YigqaNDQhZ8SQPgFDeoXubwlI2+ufFzcqcHE3Ths4guFSsqY81z8GSat5ZqegoLCsInPpceWj6sj2c4Ul6QnycxLKi6dDzcvGfPc+k37z1/vpBJn61Yy3LCkkum2fiaGStd1l+5A62yDRsPSQ0Gup/r1feW++fxd9H8S5tl1wnJnebLcI8NatB+u7PL/8zc/Or0B8hcZUotDm4dEk0bG68JPozfz0jGPeYkMGdHfSYiHYbl0JBs/NJq/nOj0FCzjls/1xJ9i4o9Jt2eaK6uwJ6xEzzTnI9tAv2gaM0P/XSc1kkvC4nbiwgqb+MJmPBVh+7wLL9n4MdF0uLqchmXKsc0pqBqKHRhXuie95Rl3dqh0e2fb/mDyXb9BWdt+F39GKMB9Edr+NJMeWz62DU0Ppnzqh034TE+6p3xcejICSU9BfVdXsjxxs38VGZKRVvp0lCE9x93ynFZs9oeZWM6Fn+uZZ9uFzFDpsuS0hAoKK8sTFsvNrdNIWzUNbbhdB6kmXF9dTouTRi7vXLZnubD47+Kx02w8vjTHa4v+aTzMT4KJJ70c4+H2aNtPG2aT6P+CfzcU2u29/MIuKnBhs86WX1tSuDntWYGEX1I22VtfNoVbCtyFXSWYtNd34eeYOlVe69Ye73HbiLQv54ljCrbpXDYT8+kvTCoJc6lps3z795xQ6bbRbb+ZmM/t0W53uZ600tu+nvMrkNac5Nj05Hric+uoKuaV5zG5y0++Jz9MT1WTH+dXm75rtSDSWeDvuzIupjGEPCRhmt0X5ns8y9nl362fPMzLN2HlmvKxPsfMd/461Ic1pu/B+uTar4i7IY5L8DhbPmVNo/PrkMabouO+8nJhhcQ067PjzLNpc/seF2++WC4Rxre+tpR2F4YrW982ECmHDWYd0GV5nK8O2TbFV39tuujzEY/Pq232vu1gm/WVR6rIX7LIX6bI38Mmf3nbMH95cfJn9z/5nrznhEqvE1su1aO/E1Au9K6/4PJfM6D8u/TUiIaXhPTU9KQn2fjnTftUOzqd23B1TzjO1/LEWxummom3lonXlU+dgMrHVz9cXOmmLMo37pJj+pooA1+Z1jBl5PwrpoxqbcMycnH5zr3mofwiQ1JxIOXXILKt1k0uSQfr06byQrwsx1Co9DYZGWzfo6bHsy64dZQbKr09qf0kw+I6zjKe+zGfd+HZfsAHpk4EU3f9dcLFle5JbxDbDbcL376nuikj5z81ZRRU2+srI8bFNIZCZauTvjrsqxe5odLr3/V/3LbCOmr76dU88bBss0Q+VD/HtvPOf/d/vL6y3FV9/Xk7r69cbmvrq8u/r77ac3S+fnPYkwbf8Yetry7elFD845Vk493JjmDrjH9d2P0Nz5va7T7Vk5d/enyTa/JI7zu+Kcs5iTRTjhV5TiLRk+d4dS3Xk2ffMaA9j5Bt8py/DfPs4vKdo05EfnKSt1w2PN+XVYaySQ5tuWyqmbKpiOPB7Djp5bnQIPu1jYr+e8y2qbyLS8oqMVR6SMJ8+h1QlkGl01eWjMudo91UdsUl83mcEBncvQm8d4He7QOSjd8lOiGyXnbDMcAm64kv4griuLD4vykMz7Sk4thpvnsaeK+H8y7ujOLSaXTzMjEv2cSTFf3N8mJYLh3Jxh+E89iRgfdnuOVzPfGnmfhj0u2ZZu/1yPT4TI+PrJ+9o2l05xGZ9/K8HsS6EKmnG812HdD9FYVsc8s7/KIGjYfwGmYA6d98LSoxiPAb1G8c5H1okcH1iY419Spk4k00zi7D5ZrCNBWmGUwzYZrDNBemBUwLYVrCtBSmFUwrYVrDtBamDUwbYdrCtBWmHUw7YdrDtBemA0wHYTrCdBSmE0wnYTrDdBamC0wXYbrCdBWmG0w3YbrDdBemB0wPYXrC9BSmF0wvYXrD9BamD0wfYfrC9BWmH0w/YfrD9BdmAMwAYQbCDBRmEMwgYQbDDBZmCMwQYYbCDBVmGMwwYYbDDBdmBMwIYUbCjBRmFMwoYUbDjBZmDMwYYcbCjBVmHMw4YcbDjBdmAswEYSbCTBRmEswkYSbDTBZmCswUYabCTBVmGsw0YabDTBdmBswMYWbCzBRmFswsYWbDzBZmDswcYebCzBVmHsw8YebDzBfmOJjjhCmGKRZmAcwCYRbCLBRmEcwiYRbDLBbmeJjjhTkB5gRhToQ5UZiTYE4S5mSYk4U5BeYUYU6FOVWY02BOE+Z0mNOFOQPmDGHOhDlTmLNgzhLmbJizhTkH5hxhlsAsEeZcmHOFOQ/mPGHOhzlfmAtgLhBmKcxSYZbBLBNmOcxyYS6EuVCYi2AuEuZimIuFuQTmEmFWwKwQZiXMSmEuhblUmMtgLhPmcpjLhVkFs0qY1TCrhbkC5gphroS5UpirYK4S5mqYq4W5BuYaYdbArBHmWphrhbkO5jphroe5XpgbYG4Q5kaYG4VZC7NWmJtgbhLmZpibhbkF5hZhboW5VZjbYG4T5naY24W5A+YOYe6EuVOYdTDrhFkPs16YDTAbhNkIs1GYu2DuEuZumLuFuQfmHmHuhblXmPtg7hPmfpj7hXkA5gFhHoR5UJiHYB4S5mGYh4V5BOYRYR6FeVSYx2AeE+ZxmMeFeQLmCWGehHlSmKdgnhLmaZinhXkG5hlhnoV5VpjnYJ4T5nmY54V5AeYFYV6EeVGYl2BeEuZlmJeFeQXmFWFehXlVmNdgXhPmdZjXhXkD5g1h3oR5U5i3YN4S5m2Yt4V5B+YdYd6FeVeY92DeE+Z9mPeF+QDmA2E+hPlQmI9gPhLmY5iPhfkE5hNhPoX5VJjPYD4T5nOYz4X5AuYLYb6E+VKYr2C+EuZrmK+F+QbmG2G+hflWmO9gvhPme5jvhfkB5gdhfoT5UZifYH4S5meYn4X5BeYXYX6F+VWY32B+E+Z3mN+F+QPmD2H+hPlTmL9g/hLmb5i/hQktKDFu3JowTFiYBJgEYRJhEoVJgkkSJhkmWZgUmBRhUmFShUmDSRMmHSZdmAyYDGEyYTKFyYLJEiYbJluYKjBVhMmByREmFyZXmDyYPGGqwlQVJh8mX5hqMNWEqQ5TXZgaMDWEqQlTU5haMLWEqQ1TW5g6MHWE2QFmB2HqwtQVZkeYHYXZCWYnYXaG2VmYXWB2EWZXmF2F2Q1mN2F2h9ldmD1g9hBmT5g9hdkLZi9h9obZW5h9YPYRZl+YfYXZD2Y/YfaH2V+YA2AOEOZAmAOFOQjmIGEOhjlYmAKYAmEKYQqFqQdTT5j6MPWFaQDTQJhDYA4RpiFMQ2EawTQSpgimSJjGMI2FORTmUGEOgzlMmMNhDhfmCJgjhDkS5khhjoI5SpgmME2EORrmaGGOgTlGmGNhjhWmKUxTYZrBNBOmOUxzYVrAtBCmJUxLYVrBtBKmNUxrYdrAtBGmLUxbYdrBtBOmPUx7YTrAdBCmI0xHYTrBdBKmM0xnYbrAdBGmK0xXYbrBdBOmO0x3YXrA9BCmJ0xPYXrB9BKmN0xvYfrA9BGmL0xfYfrB9BOmP0x/YQbADBBmIMxAYQbBDBJmMMxgYYbADBFmKMxQYYbBDBNmOMxwYUbAjBBmJMxIYUbBjBJmNMxoYcbAjBFmLMxYYcbBjBNmPMx4YSbATBBmIsxEYSbBTBJmMsxkYabATBFmKsxUYabBTBNmOsx0YWbAzBBmJsxMYWbBzBJmNsxsYebAzBFmLsxcYebBzBNmPsx8YY6DOU6YYphiYRbALBBmIcxCYRbBLBJmMcxiYY6HOV6YE2BOEOZEmBOFOQnmJGFOhjlZmFNgThHmVJhThTkN5jRhToc5XZgzYM4Q5kyYM4U5C+YsYc6GOVuYc2DOEWYJzBJhzoU5V5jzYM4T5nyY84W5AOYCYZbCLBVmGcwyYZbDLBfmQpgLhbkI5iJhLoa5WJhLYC4RZgXMCmFWwqwU5lKYS4W5DOYyYS6HuVyYVTCrhFkNs1qYK2CuEOZKmCuFuQrmKmGuhrlamGtgrhFmDcwaYa6FuVaY62CuE+Z6mOuFuQHmBmFuhLlRmLUwa4W5CeYmYW6GuVmYW2BuEeZWmFuFuQ3mNmFuh7ldmDtg7hDmTpg7hVkHs06Y9TDrhdkAs0GYjTAbhbkL5i5h7oa5W5h7YO4R5l6Ye4W5D+Y+Ye6HuV+YB2AeEOZBmAeFeQjmIWEehnlYmEdgHhHmUZhHhXkM5jFhHod5XJgnYJ4Q5kmYJ4V5CuYpYZ6GeVqYZ2CeEeZZmGeFeQ7mOWGeh3lemBdgXhDmRZgXhXkJ5iVhXoZ5WZhXYF4R5lWYV4V5DeY1YV6HeV2YN2DeEOZNmDeFeQvmLWHehnlbmHdg3hHmXZh3hXkP5j1h3od5X5gPYD4Q5kOYD4X5COYjYT6G+ViYT2A+EeZTmE+F+QzmM2E+h/lcmC9gvhDmS5gvhfkK5ithvob5WphvYL4R5luYb4X5DuY7Yb6H+V6YH2B+EOZHmB+F+QnmJ2F+hvlZmF9gfhHmV5hfhfkN5jdhfof5XZg/YP4Q5k+YP4X5C+YvYf6G+VuY0MIS48atCcOEhUmASRAmESZRmCSYJGGSYZKFSYFJESYVJlWYNJg0YdJh0oXJgMkQJhMmU5gsmCxhsmGyhakCU0WYHJgcYXJhcoXJg8kTpipMVWHyYfKFqQZTTZjqMNWFqQFTQ5iaMDWFqQVTS5jaMLWFqQNTR5gdYHYQpi5MXWF2hNlRmJ1gdhJmZ5idhdkFZhdhdoXZVZjdYHYTZneY3YXZA2YPYfaE2VOYvWD2EmZvmL2F2QdmH2H2hdlXmP1g9hNmf5j9hTkA5gBhDoQ5UJiDYA4S5mCYg4UpgCkQphCmUJh6MPWEqQ9TX5gGMA2EOQTmEGEawjQUphFMI2GKYIqEaQzTWJhDYQ4V5jCYw4Q5HOZwYY6AOUKYI2GOFOYomKOEaQLTRJijYY4W5hiYY4Q5FuZYYZrCNBWmGUwzYZrDNBemBUwLYVrCtBSmFUwrYVrDtBamDUwbYdrCtBWmHUw7YdrDtBemA0wHYTrCdBSmE0wnYTrDdBamC0wXYbrCdBWmG0w3YbrDdBemB0wPYXrC9BSmF0wvYXrD9BamD0wfYfrC9BWmH0w/YfrD9BdmAMwAYQbCDBRmEMwgYQbDDBZmCMwQYYbCDBVmGMwwYYbDDBdmBMwIYUbCjBRmFMwoYUbDjBZmDMwYYcbCjBVmHMw4YcbDjBdmAswEYSbCTBRmEswkYSbDTBZmCswUYabCTBVmGsw0YabDTBdmBswMYWbCzBRmFswsYWbDzBZmDswcYebCzBVmHsw8YebDzBfmOJjjhCmGKRZmAcwCYRbCLBRmEcwiYRbDLBbmeJjjhTkB5gRhToQ5UZiTYE4S5mSYk4U5BeYUYU6FOVWY02BOE+Z0mNOFOQPmDGHOhDlTmLNgzhLmbJizhTkH5hxhlsAsEeZcmHOFOQ/mPGHOhzlfmAtgLhBmKcxSYZbBLBNmOcxyYS6EuVCYi2AuEuZimIuFuQTmEmFWwKwQZiXMSmEuhblUmMtgLhPmcpjLhVkFs0qY1TCrhbkC5gphroS5UpirYK4S5mqYq4W5BuYaYdbArBHmWphrhbkO5jphroe5XpgbYG4Q5kaYG4VZC7NWmJtgbhLmZpibhbkF5hZhboW5VZjbYG4T5naY24W5A+YOYe6EuVOYdTDrhFkPs16YDTAbhNkIs1GYu2DuEuZumLuFuQfmHmHuhblXmPtg7hPmfpj7hXkA5gFhHoR5UJiHYB4S5mGYh4V5BOYRYR6FeVSYx2AeE+ZxmMeFeQLmCWGehHlSmKdgnhLmaZinhXkG5hlhnoV5VpjnYJ4T5nmY54V5AeYFYV6EeVGYl2BeEuZlmJeFeQXmFWFehXlVmNdgXhPmdZjXhXkD5g1h3oR5U5i3YN4S5m2Yt4V5B+YdYd6FeVeY92DeE+Z9mPeF+QDmA2E+hPlQmI9gPhLmY5iPhfkE5hNhPoX5VJjPYD4T5nOYz4X5AuYLYb6E+VKYr2C+EuZrmK+F+QbmG2G+hflWmO9gvhPme5jvhfkB5gdhfoT5UZifYH4S5meYn4X5BeYXYX6F+VWY32B+E+Z3mN+F+QPmD2H+hPlTmL9g/hLmb5i/hQktKjFu3JowTFiYBJgEYRJhEoVJgkkSJhkmWZgUmBRhUmFShUmDSRMmHSZdmAyYDGEyYTKFyYLJEiYbJluYKjBVhMmByREmFyZXmDyYPGGqwlQVJh8mX5hqMNWEqQ5TXZgaMDWEqQlTU5haMLWEqQ1TW5g6MHWE2QFmB2HqwtQVZkeYHYXZCWYnYXaG2VmYXWB2EWZXmF2F2Q1mN2F2h9ldmD1g9hBmT5g9hdkLZi9h9obZW5h9YPYRZl+YfYXZD2Y/YfaH2V+YA2AOEOZAmAOFOQjmIGEOhjlYmAKYAmEKYQqFqQdTT5j6MPWFaQDTQJhDYA4RpiFMQ2EawTQSpgimSJjGMI2FORTmUGEOgzlMmMNhDhfmCJgjhDkS5khhjoI5SpgmME2EORrmaGGOgTlGmGNhjhWmKUxTYZrBNBOmOUxzYVrAtBCmJUxLYVrBtBKmNUxrYdrAtBGmLUxbYdrBtBOmPUx7YTrAdBCmI0xHYTrBdBKmM0xnYbrAdBGmK0xXYbrBdBOmO0x3YXrA9BCmJ0xPYXrB9BKmN0xvYfrA9BGmL0xfYfrB9BOmP0x/YQbADBBmIMxAYQbBDBJmMMxgYYbADBFmKMxQYYbBDBNmOMxwYUbAjBBmJMxIYUbBjBJmNMxoYcbAjBFmLMxYYcbBjBNmPMx4YSbATBBmIsxEYSbBTBJmMsxkYabATBFmKsxUYabBTBNmOsx0YWbAzBBmJsxMYWbBzBJmNsxsYebAzBFmLsxcYebBzBNmPsx8YY6DOU6YYphiYRbALBBmIcxCYRbBLBJmMcxiYY6HOV6YE2BOEOZEmBOFOQnmJGFOhjlZmFNgThHmVJhThTkN5jRhToc5XZgzYM4Q5kyYM4U5C+YsYc6GOVuYc2DOEWYJzBJhzoU5V5jzYM4T5nyY84W5AOYCYZbCLBVmGcwyYZbDLBfmQpgLhbkI5iJhLoa5WJhLYC4RZgXMCmFWwqwU5lKYS4W5DOYyYS6HuVyYVTCrhFkNs1qYK2CuEOZKmCuFuQrmKmGuhrlamGtgrhFmDcwaYa6FuVaY62CuE+Z6mOuFuQHmBmFuhLlRmLUwa4W5CeYmYW6GuVmYW2BuEeZWmFuFuQ3mNmFuh7ldmDtg7hDmTpg7hVkHs06Y9TDrhdkAs0GYjTAbhbkL5i5h7oa5W5h7YO4R5l6Ye4W5D+Y+Ye6HuV+YB2AeEOZBmAeFeQjmIWEehnlYmEdgHhHmUZhHhXkM5jFhHod5XJgnYJ4Q5kmYJ4V5CuYpYZ6GeVqYZ2CeEeZZmGeFeQ7mOWGeh3lemBdgXhDmRZgXhXkJ5iVhXoZ5WZhXYF4R5lWYV4V5DeY1YV6HeV2YN2DeEOZNmDeFeQvmLWHehnlbmHdg3hHmXZh3hXkP5j1h3od5X5gPYD4Q5kOYD4X5COYjYT6G+ViYT2A+EeZTmE+F+QzmM2E+h/lcmC9gvhDmS5gvhfkK5ithvob5WphvYL4R5luYb4X5DuY7Yb6H+V6YH2B+EOZHmB+F+QnmJ2F+hvlZmF9gfhHmV5hfhfkN5jdhfof5XZg/YP4Q5k+YP4X5C+YvYf6G+VuY0OIS48atCcOEhUmASRAmESZRmCSYJGGSYZKFSYFJESYVJlWYNJg0YdJh0oXJgMkQJhMmU5gsmCxhsmGyhakCU0WYHJgcYXJhcoXJg8kTpipMVWHyYfKFqQZTTZjqMNWFqQFTQ5iaMDWFqQVTS5jaMLWFqQNTR5gdYHYQpi5MXWF2hNlRmJ1gdhJmZ5idhdkFZhdhdoXZVZjdYHYTZneY3YXZA2YPYfaE2VOYvWD2EmZvmL2F2QdmH2H2hdlXmP1g9hNmf5j9hTkA5gBhDoQ5UJiDYA4S5mCYg4UpgCkQphCmUJh6MPWEqQ9TX5gGMA2EOQTmEGEawjQUphFMI2GKYIqEaQzTWJhDYQ4V5jCYw4Q5HOZwYY6AOUKYI2GOFOYomKOEaQLTRJijYY4W5hiYY4Q5FuZYYZrCNBWmGUwzYZrDNBemBUwLYVrCtBSmFUwrYVrDtBamDUwbYdrCtBWmHUw7YdrDtBemA0wHYTrCdBSmE0wnYTrDdBamC0wXYbrCdBWmG0w3YbrDdBemB0wPYXrC9BSmF0wvYXrD9BamD0wfYfrC9BWmH0w/YfrD9BdmAMwAYQbCDBRmEMwgYQbDDBZmCMwQYYbCDBVmGMwwYYbDDBdmBMwIYUbCjBRmFMwoYUbDjBZmDMwYYcbCjBVmHMw4YcbDjBdmAswEYSbCTBRmEswkYSbDTBZmCswUYabCTBVmGsw0YabDTBdmBswMYWbCzBRmFswsYWbDzBZmDswcmMj8dHhObxL9XfAvhqKCBvVd+EkBhP+f4IuyTV5DyIuLOzmYuBuHTXwhpIPzXPwZJq3lmp6CgsKwic+lx5ZPQvR/tjPFJekJm3lJxaXz4eYlY55bv2n/+euWVOJ8dYvzXFoig6ubkTAGJsWmKcGTp7AnT+mh4Mq4qEGjIYHW54J6Bb51YtdXUnFs3Jy3pXWS/5+/udFy3gV5iAyp0WVDCDcR01zYLq40ejMvHfOY3siQEf2dhHgYlktHsvEDonnIiU5PwTJu+VxP/Ckm/ph0e6a58g57wkr0THM+5T9/PaNpzAz9t9wvi/721ZvIX5Po74J/Objtidu+bQdTML0c62xhWdtBF39GKMB2Ge1gikmPLR/bZqQGUz4FYRM+05PqKR+3LtM881xY6dHfyQiLPhV5pOe4W57TJkYraK4nTFt30zz54TRuF6Ox7dr8JJtwfestxRNurmd5W4ZcLiz+u3jsNBuPL83B7g8KCgPtw/ynbgZb90vaJZaviytSnnPMft7NY71O9JR7svHFSSVhzjd1zdcGZWK+bxuMV8cTTFnRpyNvPp9m0u/8CWY/kWHiaBL9XfAvh6qh2IFxBRr3f/rqrowyUQa+tivDlJHzp5oyygoinaKMGBfTGArF74/aPNOznF3+XZ1ke+2WDbZulOynfOuH9VytnyXbwfrx9Z9TUX6RIak4kPIrjKzDq8yxD9sP9s1VHfLtP8tah9w6yjXe1ieWCcPiOrb7el+75mvTbbu2Yjto13z7b1fOZd0/BVl3GhUVFLi2w9Xb5FDsMXvIxJ9s/JXbIJ2+cmZcbp+6qeyKS+ZzW4wM7viOx3/0rt4nG38t9vHXYzvbZD3xRdyGOG5r+4NJxbHTfMeFPF523sWdUVw6jW5eJuaxnYgMWdHfLC+G5dKRbPw6c7zMY1y3fK4n/jQTf0y6PdPs8XKmx2d6fGT93BxN4+Z9CuIuz34060Kknm6MJjbdk4fy7r+7cMs7/KKCwcN4LBdA+jefvw2mfBoVBXm+LjK4tvzY4pLwff33ROPsMrRNYZoK0wymmTDNYZoL0wKmhTAtYVoK0wqmlTCtYVoL0wamjTBtYdoK0w6mnTDtYdoL0wGmgzAdYToK0wmmkzCdYToL0wWmizBdYboK0w2mmzDdYboL0wOmhzA9YXoK0wumlzC9YXoL0wemjzB9YfoK0w+mnzD9YfoLMwBmgDADYQYKMwhmkDCDYQYLMwRmiDBDYYYKMwxmmDDDYYYLMwJmhDAjYUYKMwpmlDCjYUYLMwZmjDBjYcYKMw5mnDDjYcYLMwFmgjATYSYKMwlmkjCTYSYLMwVmijBTYaYKMw1mmjDTYaYLMwNmhjAzYWYKMwtmljCzYWYLMwdmjjBzYeYKMw9mnjDzYeYLcxzMccIUwxQLswBmgTALYRYKswhmkTCLYRYLczzM8cKcAHOCMCfCnCjMSTAnCXMyzMnCnAJzijCnwpwqzGkwpwlzOszpwpwBc4YwZ8KcKcxZMGcJczbM2cKcA3OOMEtglghzLsy5wpwHc54w58OcL8wFMBcIsxRmqTDLYJYJsxxmuTAXwlwozEUwFwlzMczFwlwCc4kwK2BWCLMSZqUwl8JcKsxlMJcJcznM5cKsglklzGqY1cJcAXOFMFfCXCnMVTBXCXM1zNXCXANzjTBrYNYIcy3MtcJcB3OdMNfDXC/MDTA3CHMjzI3CrIVZK8xNMDcJczPMzcLcAnOLMLfC3CrMbTC3CXM7zO3C3AFzhzB3wtwpzDqYdcZsq/v8EgMIP3KeyHe/mMtLsNfgG5X5Pj8Xf4ZJa/mmp+T+liSTHls+//Q+vyQzL7k4Nh+RIXL95Ew4W7cS4Jab8NYX63RsKC4dhpu30ZOOfIRn10lqdDrnbU/3sy2L/t6e72c7Jzru7mc7PRpIsPeNNNp8r0Ay0plo4mRaXXrSA0lPQX2XHt/9ICwDF/+/vf+IcWWYsIJqT3x5i3ffle9+s3hhpW1lWBW5TlnW9tp5useHPXnztbvpZl4S5qWZeWx3XZmw3Q1yn85t0G7jKr8uPZmBpKdkffnum+D6cvHnhErXrQxTxlw3KchHZEgqDiQfm+4TWRIuSYetU269+9ZvuNzSUbT5fh+X7+RQ6e2X8Qdb3woKAr5HpDDZ5Pf4aEY2XRs2ecwKpMwHb96mNm/josyzRHpCZU9L4ZZSk2zSMh3lca+JPzeQ8hiyuQ7mbaE8cuOkZyvKZEvD5vttqwaS35Lw8xF+udXxwpJtqFoQ4RcU1Es262tv1JlHzTqqGUgZDt+8DdXaQp2paeY7XwtpftKk0RlOY12w7WLtUElYPm/T6PxzpqzqYJnybFN998W5uBLjpDckpllv2ynG16Rc8jC8UciUnV1XjDfRU552uUTP8nWQ7kTPcrSJIgz2I33TrM8y8+w+Jy1O/qrGWS4xzvIMI8uTTrd8tki/778L006L18d3zsVT0zMvsk19YKa7ebw3mctWw3z6LxDmx9Fx3/MB9r7QPMyrbeZVD+n81MC8DMS9e3jr8mPXbdUteHsc5uqbvZc45AmP/lukOW8r02zvBXb+x+h/3z426DbP7s992wP74K68cjzL27BqbaE8VBn/bsqjIvYB6SF/+1ZOcdcvS3nb+PmbnuXuyte3DdeKs1zY5DNeG+DbhhI9Pt+U5Q6hQMpyc1/ZrbskpGcHT3qSjc8w2/GOKCff/izflENdT7w7GsN465p4XfnsFFD5+Or5TiZ9YcyP1/+xZZ0Sil+fbFnnmDwHVSd8eXZxxdvvxmvXWTZsxzJMOFU9ZVMzTtk4X8OUTUBtj7dsXFxl7Xf4tndfPy/V/Ka3fWSWc5NyyeuQApu2sEkX4/Wdt7bL+fK9peeXbdvq60Px/Fvkd3VP+GXtQzmXDZdnwqiCedXNvBzMq4Hwm5vtwi3HafGOCRmWz7vwko0/wGwXrJtBbxcursQ46Q2JadYHf0w4ePMxIeuIrU/2mInlaZdL9CxfE+lO9CxHmyjCKMsxYXVP2dnf4VDpuvb/+zFhnmdeZJs60myfvmMiLmuPCZ1vHS4J8+jouO+ZcHtMyPamhpnH9sa2ZzkiP81Ne8Zn/bNNGLzOUcXM43WXHIS/YCvLy9ad6lvwdh/gthsec8Zr/5zvgPUxYSvTbI85ne9i2lS7zTaJ/i74l4OvTbXnB9hmluWYs3qcsGpuoTxUGfcy5VERfa+A92/1y1LeNn7+pme5u/L1nROoGWc5e57Dt3yaSAuPOentMWftYMpy8zGnW3c89qvtSY89xzHSbMc7oJx8+2V7zLmlY117bqWOideVT92AysdXz+uaPPj2s75+hi3rlFD8+mTLepzJc1B1wpdnF5dvv87jRNWus2x8xwt2m04R3paN81NN2VRE3zo7TnrZr4l3fBYS06y3fXAeuzUpl7wWbT7mtPfH+O7l8fU/7XJbyndinPDd8r4+lD3mjPceiEyTplAotg9l70NlXL53Sdj3UfEe1UyEf3Kc8MNxws+IE344TvhhuISQjjsxTtwurkg+tvf3Y5yD7T+odEaG8ng/hu99C7xvlf3EyMD7XDPKEFZGnLDS4oSVXsawwp7lEz1pTSqO9e4dEWV9L4jzF0cDiNTz1eHYMJOLS6c5MU4a0jxpTvP4oN9X4dKT5Uk/88Tjaevt+vOFlVXGsFwZbLpXymxL2cWBlEH9eOlmvXPxl8c7Xlxc/9fWrwurItcp8834+Zs+3j35OR6f7cmvqzO5nrjdvDzMyzLxVI3+ZpvFsFw6ko1fHw3AtbtVsIxbPtcTfxUTP+PyxW/b5DyPz/P4yHZ+C9pVt81H9mFXRtH/9rtzhm6zd+cE8+7ORoODfa+v/905vnetJhpnl0mEaQrTVJhmMM2EqXx3Tuy4NZXvzokdt6by3Tmx49ZUvjsndtyaynfnxI5bU/nunNhxayrfnRM7bk3lu3Nix62pfHdO7Lg1le/OiR23pvLdObHj1lS+Oyd23JrKd+fEjltT+e6c2HFr/pfenePMepj1wmyA2SDMRpiNxtjrc5HBnUvxvQOnqZmXiHnNovOCfD9OUUGDhsGehyp590+8b1sF9B6SMr/7x8W/rb5t5bsX2/dtK997Duz7fZKKS+fD9w4Kt34j18yXwdm6lQy3CtNt3U0Mla7r9l0SLOvyq7P/fW96UNtEkN/xc+UeuU/qrqjZBXmIDKnR6SGEuz299+jy6O/t+b1HF0XH3XuPZiWUhMVtwYUVDulnLLldqe9C2XdwOH+NS2d0ur0nu0n0d8G/HHz3LaWZuMOBxF3ynhle30/0xJkSJz2hciwLu87YRvjWsV1na0MVv858/Qi7zwzmul1RmfeZLv6MUJD1q2SfubX7HntfezmlpyDYelG0eXva0r1z9r6vdM88Fxa/+ZXo8WkoQ3qOu+U57Z7o/1xPmLb8fe/d8t0/H2kn1kXHc0Jbbpt99SLBE26uZ3l171woVLp9irc9+OLxpTngdzAVBt1m+e7PdHFF1ttjJs+unFjvfNegk43vm1AS5pOm7ILp8xWVemdhCGnmsVFZvq3m+9ao/bba8yZfFfFtNZuHxJB/Pdk8u3l8viHd4wN+p1yBbd/4nEGmJz22/XrT5Gtzv7+M5ZDliZfPl6WbeLNMvK58qgRUPr517+LK8eTJ7kNtPWlSPukq9L2nLYhtme9p822bWWb9OP/BdrB+4h37B3sfdFHjSJt+XEJJOrg9bSovxMtyDIVKb3+Rwe4Lsz2edcGto9xQ6W3K1km7P7DbrO0vuLDZXtPY9tr5b6L/K7K9Thf5K5+4iwJ+h2PJdsntLtGzHu03ap3/yZRDdiDp9K+DbFPmvveYxqvzvm2E5ezynxsqvT3YZ1R870v19TvV8ytufmQI9j7HwnphE5/LP6cx/oxQkP28kuNJXz+P5WP3hbYPWE7pCXibKyyMV18zPOXve5bKtje+7Zc+A2Vo6zK3A7t9u3cN+b6BbL/t7vuesm/7iyyXFA03J1T2vi3D9Z2bz/Usb8vQd82jLNuDLx5fmu0xUWRoEv1f8O+GQlsvyy1svOc0mOOCwsJ/8d7dLQ4B73uKfM/q8Ri7ZrhkOvuL6nvv/B48fR6OsetEw/Rdh7T7iWDa5cJBZd1P2O90BHGNqWAL3+lg+cQ7ZirH8mlc1nac1wdt22vbOl/dobftOI+DqiAdtm7tY9pxX98+Xr+I09iO72bacVsXGa5vvfn277me5W0Z+vpN/7Qd96XZ9+wut/kCs837zqtxWXvewfkLwyVh1t+KbT6YvmG9wrJu87ZvGPQ27+sDxNvmg7l3ol6pd/wzPb5zjL5rAbbvtqVrASnIo21b4l0LONps8+V1LeCwOH03u81vbd+Ny2+rvtvma9ehQOtyg0DrZmHJtQDVZrUxbRbf8eRrs9im0XdEm9Xe1AVfG5GJ+dv+nHTJfjprC/m1/TLnu4dj01kR5x7DJo2hUPzt1OaZnuXsvFs/bFuyRDy23cn2TLP7q4CuN5T52riLP8OTzyD2V771xPJx5Z4X/VNtPsPafP052JP1/z3g2ZTw4tKJ8N1slYUEnmtOUvtePhPJ3HDTGLGDlOhZ1n7gxfmJaIxGiQYuFCrbTUW+C4f0qSIN400DUREnorPjpJeNv68hth0St655MZEH17azFVSDaBsxXtSr4kmPbbhnm/rgboLjxURfY+h8jidefijH1skcE68rn7yAysdXH+xLPre0A7AdQVeuKcLbC3TOH2fynLMN8+ziCrg+Ftl6odqqKqaMnF9syih3G5aR/eAUTxbE20HZPNP7Xs7q2hffy1ODrRslB2cur+okCtcf/WnbwXYb7yOHwV5krlfou8gcc1IJ8W6pTkQGW4dyPZ51wa2j3FDpOmsvqnGfZTvJvoNZ9WJ1hp0ivD154/wyU18C6o9564uLKztOen39LNc55j7Nd8BoT1S9Fi4J85JwbNzqxPhKEzdvLivLiXHnVyHuyzH+junT+G4K8x3Y2APPYPYXJQeeOVvIt9pfrPn/eH/h8u/Wj6999q27ZJEu9lV9B/VBl6HNt+oz2jru/B1mW+HL6H3lZ1+smeeJly84tn3kPBOvK59APqQo6ph9OXFZ64zdn6QIr/bzG7eD/Xyw9bHkJgN+CNS3z801ZeT8faaMKvLjYr5+Q7y2J8/jWc62fWGdscdPvNErKVS6raoSii2n7XVf8vh2sC+puI9EFw7y9W1jbnxBvGp/57sIurVtV26o9DZob6D0XVyybR/H+TEfn7c39Tv/sqkTFXFi23cR1vZtfXlh/3JL/dA3zL71n/ZDvw+XhPk2xt+Jjud4wrIXrrlu3XoM+EaFMt/I4eLPMGkt5/oQ9wa4REwry8WMFI/PC5XeT/Dl/Vlmmm+92ZsiEsuY1tyQv+w4L2kr44l3ztp383S8i3jOf2u2/e3lnHUi8lNgtquyHt+5Y4SA98mF/3af/Nt2sE+Ot78L+vhue+8zJSTEprOyz2RuOEG8QdYhX5/JflRra/tMbvmy9pmcr2LqxPbSZ7Jtquoz2b7Q5roe8l/rc+EEfazs0uPqPc9j5HnSY4/p6yTE5sudW+D5kxxPOM5X9cTL8xP2Wl9VE68rn2oBlY+vPri4sk1ZuPm+/65M7DTbf2FbZ/vjeeUYD9et7Stz22J/fjezrn0fs+Oyat0diRuu94yO+84JuP6Em+c7f+Krqzkmb75zEb5zFb7wXRjBboclfRpfmSZ60m3L9GCzPVTE+UTfPpPnaSJDUnEg5VfPt8/kdmn3mfHOVUUGu8/c0ge+7D6T59LsBzN9++t4+0x+BHNr+lGHmTpREedbfdcN2cdSeeEDHr4PDbow3Lx8T9xuHvcNdr36Pq6Y40mP8/woss+rjyI3N+uiIj7cFmzcJQ+11kIZJJpyYfzJxrcxZVQRH/4LmzSGkIdqmGbrUS2PZzm7/Ls6yQ8w1xLx0IU8Ybkb01n3qxmbb377PmDr63vkm/RyuTwRR4LHZpg48jzLxWtj7fbHcbe8ug5lP6LofO/tqO/oSy/7Wr5zZNvmQauSF5rxvKwrZ7bn9iF15webcq6I+zTCJo0h5MH3EJTNM73vXJfvvk577TuYm7Djv0Qg2ZMee0w92qyfiniJgK/PyGPfyJBUHEj5Nd7a8yxlvbncrhd638PkvocD001YvvPT9p4MjvvuqfY9fGPvqZ5u6kRQLyzy1Yl4L3Cw51l8eeGLt4KsO+XxIc/5KOeg0ukrZ8ZV1g95pkZ/l/WDls4vwnH+8djONllPfBG3JI4Li/+bwvBMSyqOneZ7carvI5ou7gxPGt28TMxjOxEZ3Mf1WF4My6Uj2fizsc+PDL6PmOZ64ufHPm1cvvi5XdmwEj3TnI+sn1OiP4L+sCTrAj/MmxJMfJtfzuLy485fRoak4s1FsTl+30uHndt833AwaS2w65ltD+u4y0uC8XY82Uy7Auf5mEe2tfFeUOyrT9zOXBp9bU9m8daFlWbCSv0XYbl0+bax1H+YLl9YKSasrXmh81JsE3z+ia68t0X2Rco7/KKCIYfwvvEA0l/5AUukyZmmME2FaQbTTJjmMM1h2Fa0gGkhTOUHLGPHran8gGXsuDWVH7CMHbem8gOWsePWVH7AMnbcmsoPWMaOW1P5AcvYcWsqP2AZO25N5QcsY8etqfyAZey4NZUfsIwdt6byA5ax49ZUfsAydtyayg9Yxo5bU/kBy9h5iZjXLDovyBfHVn7AMjb+/ysfsFwOZ+tWMtxqTLf1MzFUuq7be0yCqbMlH7AMaD01jHd/ga/c7TphubM8lxv3AJwrO37cktvFpt/R6ZvSZtLIeCvq45aror+3549bXhwddx+37BIuCYvbiQsrHArm45ZrXDqj0yvy45YBXQMqsO+7cXFsg3w3Kmvb7+LPCAW5Lypp+30fJmT5sO0Ph0LeDw36XhJs62hZXxJcGVb5heXu62Odtu+yivdhSl88vndyZnuWC4v/Lh47zcbjS3O87fefxsP8qLpeHvHYe+FCoZI2x4bZJPq/4N8NwX30Ax+XCujeunoB329baO8X3YqyKdxS4AE/31nf9y7EcDmuW9/9ieyzPGfidfW/rPfuOv8KwnwxOu57GXiamce20m2/fFE4t0e73fne70hv+0fOv4G0tg3HpifXE1+w7z4qua8935Mfpkc9P/CeSWdFPD8QNmkMIQ/x7mvP9/h4z1XFe17DvsPKevUesM+i/yP14ZPouO9ZMD4r/kUcl+BxtnzKmkbnf0aYX0fHfeXFZ2F806zPjjPPpi3DxJsvlkuE8a2vLaXdhWGfm6SPlMOv0XGfy/I4Xx2ybUpZn6u09TdFeLXN/h39X5HbrK88UkX+kkX+MkX+3IfdKvJZT1/+7P4n35N333Oatlz4zFuix9v3wQX1fKVLj3suj8+X1/Skxz4HmhuOzZd77pDbcHVPOM7X8sTLZxermXhrmXhd+dQJqHx89cPFlW7Kopzjbhg260E9f1rDlJHz1U0Z1Qomnd4ycnH5zlfy3ZWRIak4kHQ1imyrvcIl6WB92lReiJflGAqV3iYjg+17+J6pZV2wz6Nye1L7SYbFdWyf/+N+zOfVexV2NXUioLrrrRMurnRPeoPYbrhd+PY96tn2vUwZVcSz7XY/EQqVrU766rCvXuSGSq9/+x4D1lHbT6/miYdlmyXyofo5tp13/uD/4/WV5a7qa4PtvL5yua2try7/vvpqz9H5+s1hTxp8xx+2vrp4U0Lxj1eSjT/CrIuA6ox3Xdj9Dc+b2u0+1ZOXf3p8Y99nR+87vinLOYlmphwr8pxEoifP8eqa733iZXn3WGuT54p455HvHHUi8uPOd8UrG57vyypD2SSXoWw6mbKpqG+qqPTyXOj2/qx2T5RlUOn0lSXjCvpZ7X7RACLrZUB0fEvPao+L48Li/6YwPNOSimOnbe/Pao+JBrA9P6s9NLrQtnhW29WFSD39Mxru//ZzqUOHbKvnUhMDCb9R4yDv3YoMvudSmRcXb6Jxdhku1xSmqTDNYJoJU/lcauy4NZXPpcaOW1P5XGrsuDWVz6XGjltT+Vxq7Lg1lc+lxo5bU/lcauy4NZXPpcaOW1P5XGrsuDWVz6XGjltT+Vxq7Lg1lc+lxo5bU/lcauy4NZXPpcaOW/P/03Opkfm++9Uj05tEfxf8i6GooEH9YM/1lDz7mViSxc15Cfj9amV+9nPzM2wmreWbnpLnf5JNemz5xHv2M2zmJRWXzofvGUS3fiPXKs+D89UtznNpiQyubkbCWBmKTVOCJ09hT56CPHdZVDB4SLD1uV6Bb53Y9ZVUHBs3521pnUSuD7rnzndBHiJDanR6COFuT89+roj+3p6f/VwaHXfPftp78llvIn9Nor8L/uVQlmfgg3n+vl5hWdtBF/+2egbe95yt7xn4YN8RUG/zvbm+Z/JTPeVjn72z6y4cKrmGxXuMfM/XJRjPcbc8p90Y/e+798TW3bI+ZxhJ+zXRcd+3O+374n3rzfddV983fGwZ+r6vW5b66ovHl+aAr2UVBtuHqVcQbN0vaZdYvnyefT2mc556lisZ8+nvQZh3Rcd9z525dchny3zbYLw6bq8b0/u+b0CfZtLv/EPR//b5zvJeH/G+v1uR321J86THfrflcZPO7e27Lb62w+aZnuVsn0eJ992WYNZPyX7Kt35Yz9X6ed6ksyLWj6//nIp0RYak4kDKrzCyDu1zg2w/2DdXdci3/yxrHXLrKNd4W59YJgyL69ju633tmq9Nt+3a29H/Fdmu+fbf9j0HW9o/be/3An68DdLpK2fGFfS9gO4Z2sh6+So6vqV7Af+I47a2P5hUHDtte78X8Lfo7+35XsDvXXjR/8x7efajWRci9dTdY/+/fS/gf9+tx6Gc0x/wvYAl7wSp6HsB/+l7FSP7kUyEERmaIS4XXr6Z7pblN++ZtpRQ6WOXBJFWLsdvEiUVx85vEp1e8C+G8thXuecyKnpftbNJR2Ub4B3qB/wOt8KA2xhvG+A7ho/XBvi286YIL2zmNfPElY9l3LRIuHzW3pYD6wyfrfelP+SZFg7pdsRe+4sMTaL/C7ZuKPX+JKZ5S3mz52bt/iApFP9cUMgzLRzy71dCnjgSxbK+cBPi5GNLy/ra8ARPev4X2vCdor8rug3fx6Sjsg33DpX9uFCw/bidECbTkxzS7W+ysW4/EOn7uX5hsOf///se4nAo9jpJCOUQmWffecN5aZ58hT1h+fZRfG/xHgjXOpse1jH7HklfnYjkrW503He/S2RoEv1f8O+GQl86wp50/K/34XcPlZRnUOmMDFtq/33bXnkeQ7n/AT23vnm/EtT7BXieN2Tywnjt/jNUjmlw4bnyTfakyZ7z23xfhklfOfRV7VAYMoPv3J8b+O46tv9MY0DnuOu58IP69rmvrvAaRaaZ59ZZkme5sPidYP7Hs+E44WZ75vE4y077f4xccLfek1YA", debug_symbols: "7b3djuNKkqX7LnVdF3T7cTefVzloDHp6egYFFLoH3T0HOBj0ux9G7ZQiilKIE0oZ9ZHOm43MnSJ9uUm+fNFpy+z//Om///N/+9//87/+5V/+x7/++5/+y//zf/7013/9p3/8j7/867/Mf/s/f/JW7G//99//1z/+y8f/+Pf/+Md/+48//Zcydf3zn/75X/77/MdS2n/++U//4y9//ec//Zfa//PPNx828fbrwyZNrx+WeufDblP99WE3sa8f/oc/f+BxGJ4Kw9NgeAKGp7PwyATDU2B4BIZHYXhg/CwwfhYYPwuMnwXGzwLjZ4Xxs8L4WWH8rDB+Vhg/K4yfFcbPCuNnhfGzwvjZYPxsMH42GD8bjJ8Nxs8G42eD8bPB+NlewM91sgueKtPtED19CJ/yhyj5Q7yA66r7dYh2ZwjNH8Lyh/D8IWr+EC3/F5W/uj1/ddf81V1L+tdd81d3zV/dNX911/zVXfNXd235Q0T+ED19iDblD5G/ulv+6m75q7vlr+7m6WTeav4Q+Xt3y9+7W/7qjvzVHfmrO/JXd+Sv7shf3ZG/d0f+3h35e3fk792Rv7p7/uru+au756/urulk3i1/iPy9u+fv3T1/dff81d3TV3dMU/4QJX8IyR9C84ew/CE8f4iaP0TLHyLyh8hf3SV/dZf0M/Mokj+E5g9h+UPkr+6Sv7pL/uou+au75K9uyV/dkr93S/7eLfl79ytyXNeGyF/dkr+6JX91S/7qlvQ3YqFT/hD5e7fm792av7o1f3Vr/urW/NWt+atb81e35u/dlr93W/7ebfl7t+Wvbstf3Za/ui1/dVv6G7HIz1WL/Fy1yM9VC89f3fm5apGfqxb5uWqRn6sW+blq4fl7t+fv3Z6/d9f8vTs/Vy3yc9UiP1ct8nPVoqa/EYta84fI37tr/t6dn6sW+blqkZ+rFvm5apGfqxb5uWrR8vfulr93t/y9u+Xv3fm5apGfqxb5uWqRn6sWkf9G7CW5aitD5O/dkb935+eqRX6uWuTnqkV+rlrk56pFfq5a9Py9+yW5aitD5O/dPX/vzs9Vi/xctcjPVev5uWp9Sn8j1ifJH0Lzh7D8ITz/6675Q7T8ISJ/iPzVnZ+r1kvJH0Lyh9D8ISx/iPzVnZ+r1vNz1Xp+rlov6W/Eukz5Q+Tv3ZK/d+fnqvX8XLWen6vW83PVen6uWs/PVeuSv3dr/t6t+Xu35u/d+blqPT9XrefnqvX8XLWu6W/Eukb+EPl7t+Xv3fm5aj0/V63n56r1/Fy1np+r1vNz1brl792Wv3db/t7t+Xt3fq5az89V6/m5aj0/V617+hux7jV/iPy9O7+uWs/PVev5uWo9P1et5+eq9fxctZ6fq9bz66r1/LpqPb+uWs+vq9bzc9V6fq5az89V6/m5ar3lvxF7Sa7ayhD5e3d+XbWen6vW83PVen6uWs/PVev5uWo9P1et59dV6/l11Xp+XbWeX1et5+eq9fxctZ6fq9bzc9V6z38j1vPfiOXXVev5ddV6fq5az89V6/m5aj0/V62n56rVKT1XbR6i5A8h+UNo/hCWP4TnD1Hzh2j5Q0T+ENlvxOpUpvwhSv4Qkj9E/uou+au75K/ukr+6S/7qLvmru+Tv3ZK/d0v+3i35e7fkr27JX92Sv7olf3VL9huxeYjIHyJ/79b8vVvzV7fmr27NX92av7o1f3Vr/urW/L1b8/duzd+7LX/vtvzVbfmr2/JXt+Wvbst+Izb/Y80fIn/vtvy92/JXt+evbs9f3Z6/uj1/dXv+6vb8vdvz927P37s9f+/2/NVd81d3zV/dNX911+w3YvMQlj9E/t5d8/fumr+6a/7qrvmru+Wv7pa/ulv+6m75e3d6XbV5iPy9u+Xv3S1/dbf81d3yV3fkr+7IfyMW+W/EIn/vTq+rNg+Rv7ojf3VH/uqO/NUd+au756/unr939/y9u+fv3el11eYh8ld3z1/dPX919/zV3dPfiJVpyh+i5A8h+UOkr+4yWf4Qnj9EzR+i5Q8R+UOk790lva7aPETJH0Lyh8hf3fm5aiU/V63k56qVkv5GrJTIHyJ/75b8vTs/V63k56qV/Fy1kp+rVvJz1Up+rlqR/L1b8vduyd+7NX/vzs9VK/m5aiU/V63k56oVTX8jVrTmD5G/d2v+3p2fq1byc9VKfq5ayc9VK/m5aiU/V61Y/t5t+Xu35e/dlr935+eqlfxctZKfq1byc9WKp78RKy/JVVsZIn/v9vy9Oz9XreTnqpX8XLWSn6tW8nPVSn6uWqn5e3d6XbV5iPy9u+bv3fm5aiU/V63k56qV/Fy10vLfiLX8N2Itf+9Or6s2D5G/uvNz1Up+rlrJz1Ur+blqJT9XrUT+3h35e3fk793pddXmIfJXd36uWsnPVSv5uWol8t+I9fw3Yj1/7+75e3d+rlrJz1Ur+blqJT9XreTnqpX8XLWSX1dN8uuqSX5dNcmvqyb5uWoyWf4Qnj9EzR8i/Y2YTJE/RPreLfl11SQ/V03yc9UkP1dN8nPVJD9XTfJz1SS/rprk11WT/Lpqkl9XTfJz1SQ/V03yc9UkP1dNJP2NmEjNHyJ/786vqyb5uWqSn6sm+blqkp+rJvm5apKfqyb5ddUkv66a5NdVk/y6apKfqyb5uWqSn6sm+blqYulvxOQluWorQ+Tv3fl11SQ/V03yc9UkP1dN8nPVJD9XTfJz1SS/rprk11WT/Lpqkl9XTfJz1SQ/V03yc9UkP1dNavobMamSP0T+3p2fqyb5uWqSn6sm+blqkp+rJvm5atLyz8zzc9UkP1dN8uuqSX5dNcnPVZP8XDXJz1WT/Fw1aflvxCJ/defXVZP8umqSn6sm+blqkp+rJvm5apKfqyb5uWqSX1dN8uuqSX5dNcmvqyavyFVrUS5DtNDbIe6v7uLtMsT80uzxEPPJ3K/Pzk+O1482ufPR3qfLbafWPz+rv8D4K8GEfwXzxwD1twfQ6RJ8lfJ4tmV+r3K9b/Wv071z3yj1cuOon9+qxL07R4nLnUM/YUj7Nc82yDxjkHn2Ieap3+Q5Hm+eZZB5yiDz1EHmaYPM0weZ5xh6SKcx9JBOY+ghnQbRQ2UQPVQG0UNlED1UBtFDZRA9VAbRQ2UQPVQG0UNlED1UBtFDMogekkH0kAyih2QQPSSD6CEZRA/JIHpIBtFDMogekkH0kA6ih3QQPaSD6CEdRA/pIHpIB9FDOoge0kH0kA6ih3QQPWSD6CEbRA/ZIHrIBtFDNogeskH0kA2ih2wQPWSD6CEbRA/5IHrIB9FDPoge8kH0kA+ih3wQPeSD6CEfRA/5IHrIB9FDdRA9VAfRQ3UQPVQH0UN1ED1UB9FDdRA9VAfRQ3UQPVQH0UNtED3UBtFDbRA91AbRQ20QPdQG0UPtIHpIwi8flmh2O8+D6CHVcilYpSr16zzvBKXrpZqXdP/y5dc7H/bpWpfLp96/fviPCB5Eab0xggfRcO+LYBxEHb4xggfRnW+M4EEU7RsjeBCt/MYI2hnB34zgQfT9GyN4kCeHN0bwfCb53QiezyS/G8HzmeQ3I9jPZ5LfjeD5TPK7ETyfSX43guczye9G0M4I/mYEz2eS343g+UzyuxE8n0l+N4LnM8nvRvB8Jvm9CNpRula8MYLnM8nvRvB8JvndCJ7PJL8bQTsj+JsRPJ9JfjeC5zPJ70bwfCb53QiezyS/G8HzmeQ3I3iUzjFvjOD5TPK7ETyfSX43guczye9G0M4I/mYEz2eS343g+UzyuxFcfybR+jiCJtcPmzRdwTM/R17w2Jfv5oonYHg6C8//RZ+ebfEUGB6B4VEYHoPhcRieCsMD42eB8bPA+Flh/KwwflYYPyuMnxXGzwrjZ4Xxs8L4WWH8rDB+Nhg/G4yfDcbPBuNng/GzwfjZYPxsMH42GD8bjJ8dxs/+An6uk13wVJluh5D8ITR/CMsf4gVcV92vQ7Q7Q9T8IVr+EJE/RE8fok7pv6iav7pr/uqu+au7Wv7Xnb+6a/7qrvmru+av7pq/utuUP0TJH0Lyh9D8IfJXd8tf3S1/dbf81d0incxbTx8i8vfuyN+7I391R/7qjvzVHfmrO/JXd+Sv7sjfuyN/7+75e3fP37t7/uru+au756/unr+6e00n897yh8jfu3v63u1T+ur2qeQPIflDaP4Qlj+E5w9R84do+UNE/hDpe7eX/NVd8ld3yV/dJX91F0sn8+L5Q9T8IVr+EPmru+Svbslf3ZK/uiV/dUv+6n5Fqu3aEPl7t+Tv3ZK/d0v+6pb81a35q1vzV7emvxFz1fwh8vduzd+7NX91a/7q1vzVrfmr2/JXt+Wvbsvfuy1/735Fmt/aEPl7t+Wvbstf3Za/ui1/dXv6GzHPz1Xz/Fw1z89Vc89f3fm5ap6fq+b5uWqen6vm+blqXvP37pq/d9f8vbvm7935uWqen6vm+blqnp+r5jX9jZjX/DdiLX/vbvl7d36umufnqnl+rprn56p5fq6a5+eqecvfu1v+3h35e3fk7935uWqen6vm+blqnp+r5pH/Rizy34hF/t4d+Xt3fq6a5+eqeX6umufnqnl+rprn56p5z9+7e/7e3fP37p6+d9f8XLWan6tW83PVan6u2szD2WReJ88fouYP0fKHiPyvO3915+eq1fxctZqfq1bzc9XqS3LVVobw/CFq/hAtf4j81Z2fq1bzc9Vqfq5alfQ3YlU0f4j8vVvy9+78XLWan6tW83PVan6uWs3PVav5uWpV8/duzd+7X5KrtjJE/t6dn6tW83PVan6uWs3PVauW/kasWskfIn/vtvy9Oz9XrebnqtX8XLWan6tW83PVan6uWvX8vdvz927P37s9f+/Oz1Wr+blqNT9XrebnqlVPfyNWPf2NWM2vq1bz66rV/Fy1mp+rVvNz1Wp+rlrNz1Wr+blqNb+uWs2vq1bz66rV/LpqNT9XrebnqtX8XLWan6tWW/4bsZb/Riy/rlrNr6tW83PVan6uWs3PVav5uWo1P1et5ueq1fy6ajW/rlrNr6tW8+uq1fxctZqfq1bzc9Vqfq5afUmu2mMy7/lvxPLrqtX8umo1P1et5ueqtfxctZafq9byc9Vafq5amyx/CM8fouYP0fKHiPwh8ld3fq5ay89VayX9jVgrmj+E5Q/h+UPkr+78XLWWn6vW8nPVWn6uWsvPVWv5ddVafl21ll9XreXXVWv5uWotP1et5eeqtfxctabpb8Salvwh8vfu/LpqLT9XreXnqrX8XLWWn6vW8nPVWn6uWsuvq9by66q1/LpqLb+uWsvPVWv5uWotP1et5eeqNUt/I9Ys/Y1Yy6+r1vLrqrX8XLWWn6vW8nPVWn6uWsvPVWv5uWotv65ay6+r1vLrqrX8umotP1et5eeqtfxctZafq9Zq+huxVlv+EPl7d35dtZafq9byc9Vafq5ay89Va/m5ai0/V63l11Vr+XXVWn5dtZZfV63l56q1/Fy1lp+r1vJz1dpLctUek3nkvxHLr6vW8uuqtfxctZafq9byc9Vafq5ay89Va/m5ai2/rlrLr6vW8uuqtfy6ai0/V63l56pFfq5a5OeqxZT+RiwmzR/C8ofw/CFq/tfd8oeI/CHyV3d+rlrk56pFfl21yK+rFvl11SK/rlrk56pFfq5a5OeqRX6uWkj6G7GQkj9E/t6dX1ct8nPVIj9XLfJz1SI/Vy3yc9UiP1ct8uuqRX5dtcivqxb5ddUiP1ct8nPVIj9XLfJz1ULT34iFpr8Ri/y6apFfVy3yc9UiP1ct8nPVIj9XLfJz1SI/Vy3y66pFfl21yK+rFvl11SI/Vy3yc9UiP1ct8nPVwtPfiIW3/CHy9+78umqRn6sW+blqkZ+rFvm5apGfqxb5uWqRX1ct8uuqRX5dtcivqxb5uWqRn6sW+blqkZ+rFi/JVXtM5i3/jVh+XbXIr6sW+blqkZ+rFvm5apGfqxb5uWqRn6sW+XXVIr+uWuTXVYv8umqRn6sW+blqkZ+rFvm5atHz34j1/Ddi+XXVIr+uWuTnqkV+rlrk56pFfq5az89V6/m5aj2/rlrPr6vWJ8sfwvOHqPlDtPwhIn+I/NVd0t+I9VLyh5D8ITR/iPzVnZ+r1vNz1Xp+rlrPz1Xr+blqPb+uWs+vq9bz66r1/LpqPT9XrefnqvX8XLWen6vWJf2NWJf0N2I9v65az6+r1vNz1Xp+rlrPz1Xr+blqPT9XrefnqvX8umo9v65az6+r1vPrqvX8XLWen6vW83PVen6uWrf0N2LdWv4Q+Xt3fl21np+r1vNz1Xp+rlrPz1Xr+blqPT9XrefXVev5ddV6fl21nl9XrefnqvX8XLWen6vW83PV+kty1R6TefX8IfL37vxctZ6fq9bzc9V6fq5az89V6/m5ar3ln5nn56r1/Fy1nl9XrefXVev5uWo9P1et5+eq9fxctR75b8Qif3Xn11Xr+XXVen6uWs/PVev5uWo9P1et5+eq9fxctZ5fV63n11Xr+XXVen5dtf6KXLUW5TJEC70d4v7qliuwolOsDCF2nYU0u364lTsf1ij114c1avvEE3c+XKLEBUZo+fxw+wU+9gy+7xZ8m77J3NsJ+LJn8LJn8Lpn8LZn8L5n8HXP4Pe7w87g97vDzuD3vMOWPe+wZc87bNnzDlv2vMOWPe+wZc87bNnzDlv2vMOWPe+wZc87rOx5h5U977Cy5x1W9rzDyp53WNnzDit73mFlzzus7HmHlT3vsLrnHVb3vMPqnndY3fMOq3veYXXPO6zueYfVPe+wuucdVve8w9qed1jb8w5re95hbc87rO15h7U977C25x3W9rzD2p53WNvzDut73mF9zzus73mH9T3vsL7nHdb3vMP6nndY3/MO63veYX3PO2zd8w5b97zD1j3vsHXPO2zd8w5b97zD1j3vsHXPO2zd8w5b97zDtj3vsG3PO2zb8w7b9rzDtj3vsG3PO2zb8w7byDushF8+LPHlzlfw5B1WtUyXD6vUr+DvzLTrBYZ0//I11Tsf9unqcfap968f/iMs5L37fWEJsip4Y1jIeuONYSErmTeGhayR3hgWO8NyLyxkXffGsJAV4xvDQtaibwzLqXLvhuVUuffC0k+Vezcsp8q9G5ZT5d4Ny6ly74bFzrDcC8upcu+G5VS5d8Nyqty7YTlV7t2wnCr3TlgKuh7jG8Nyqty7YTlV7t2wnCr3bljsDMu9sJwq925YTpV7Nyynyr0bllPl3g3LqXLvhQVdE/WNYTlV7t2wnCr3blhOlXs3LHaG5V5YTpV7Nyynyr0bllPl3g3LK1RuXMDb1w/PYfljiJ4+xEvq5a4MUfKHkPwhNH8Iyx/C84eo+UO0/CHyV7fkr27NX92av7o1f3Vr/urW/NWt+atb81e35q9uzV/dmr+6LX91W/7qtvzVbfmr2/JXt+Wvbstf3Za/ui1/dVv+6vb81f1NJbH5Oeo6RPWVIbRf+paalZUnO5Nrk9P5MVBXnr9susDw+fnx5vnrm0piOwGvewZvewbvewZf9wy+7Rl87Bl83zH4byqJ7QT8nnfYuucdtu55h6173mHrnnfYuucdtu55h6173mHrnnfYtucdtu15h2173mHbnnfYtucdtu15h2173mHbnnfYtucdtu15h40977Cx5x029rzDxp532NjzDht73mFj6x22Tnb5cJXpFk+D4QkYns7C07ferer1nabVdgdPgeERGB6F4TEYHoetLxg/dxg/dxg/9476PcvE4meZWPwsE4ufZWLxs0wsfpbJYXgqDE+D4QkYHhg/Fxg/Fxg/Fxg/F0XpDSkGw8PSz1JY+lkKjJ8LjJ8LjJ8Fxs8C42eB8bPA9LPA9LPA9LPA9LPA+Flg/CwwflYYP2th6Q0VGB6YflaYflYYPyuMnxXGzwrjZ4Xxs8H42WD62WD62WD62WD62WD8bDB+Nhg/G4yfjZW/IT7B8MD0s8P0s8P42WH87DB+dhg/O4yfHcbPDtPPFaafK0w/V5h+rjB+rjB+rjB+rjB+rqz8Oqms/DqpMP3cYPq5wfi5wfi5wfi5wfi5wfi5wfi5wfRzg+nnBtPPAdPPAePngPFzwPg5YPwcsPw6mH9QYP5BgfkHJWD8DPMPCsw/KDD/oMD8gwLzD0qH6ecO088dpp87TD/D/IMK8w8qzD+oMP+gTqz8Op0Mhoeln3Vi6WeF+QcV5h9UmH9QYf5BhfkHFeYf1MLSz7q9f3AFD0s/a2HpZ4X5BxXmH1SYf1Bh/kEVVn6dCiu/TgWmn7f3D67ggfEzzD+oMP+gwvyDCvMPKsw/qArTzwrTzwrTz9v7B1fwwPgZ5h9UmH9QYf5BVVZ+nRorv04Npp8Npp9h/kGF+QcV5h9UmH9QYf5BhfkH1WD62WH62WH62WH6GeYfVJh/UGH+QYX5B9VZ+XXqrPw6dZh+rjD9DPMPKsw/qDD/oML8gwrzDyrMP6gVpp8rTD9XmH5uMP0M8w8qzD+oMP+gwvyD2mD5dQ2WX9dg+rnB9DPMP6gw/6DC/IMK8w8qzD+oMP+gBkw/B0w/B0w/B0w/w/yDCvMPKsw/qDD/oHZYft32/sEVPDD9DOs/qDD/oML8gwrzDxrMP2gw/6DB/IMG6z9oE0s/G6z/oMH6DxrMP2gw/6DB/IMG8w9aYeXXWWHl1xms/6DB+g8azD9oMP+gwfyDBvMPGsw/aDD/oMH6Dxqs/6DB+g8arP+gwfyDBvMPGsw/aDD/oAkrv86UlV9nsP6DBus/aDD/oMH8gwbzDxrMP2gw/6DB/IMG6z9osP6DBus/aLD+gwbzDxrMP2gw/6DB/INmrPw6M1Z+ncH6Dxqs/6DB/IMG8w8azD9oMP+gwfyDBvMPGqz/oMH6Dxqs/6DB+g8azD9oMP+gwfyDBvMPWmXl11ll5dcZrP+gwfoPGsw/aDD/oMH8gwbzDxrMP2gw/6DB+g8arP+gwfoPGqz/oMH8gwbzDxrMP2gw/6AFLL9ue//gCh6Yfob1HzSYf9Bg/kGD+QcN5h80mH/QYP5Bg/UfNFj/QYP1HzRY/0GD+QcN5h80mH/QYf5Bn1j5dT6x8usc1n/QJ5Z+dph/0GH+QYf5Bx3mH3SYf9Bh/kGH9R90WP9Bh/UfdFj/QYf5Bx3mH3SYf9Bh/kEvrPw6F1Z+ncP6Dzqs/6DD/IMO8w86zD/oMP+gw/yDDvMPOqz/oMP6Dzqs/6DD+g86zD/oMP+gw/yDDvMPurLy61xZ+XUO6z/osP6DDvMPOsw/6DD/oMP8gw7zDzrMP+iw/oMO6z/osP6DDus/6DD/oMP8gw7zDzrMP+jOyq9zZ+XXOaz/oMP6DzrMP+gw/6DD/IMO8w86zD/oMP+gw/oPOqz/oMP6Dzqs/6DD/IMO8w86zD/oMP+gN1h+3fb+wRU8MP0M6z/oMP+gw/yDDvMPOsw/6DD/oMP8gw7rP+iw/oMO6z/osP6DDvMPOsw/6DD/oMP8g95h+XUdll8H6z/osP6DDvMPOsw/6DD/oMP8gw7zD1aYf7DC+g9WWP/BCus/OLMlDA+LnyvMP1hh/sEK8w/WiZVfVwsrv67C+g9WWP/BCvMPVph/sML8gxXmH6ww/2CF+QcrrP9ghfUfrLD+gxXWf7DC/IMV5h+sMP9ghfkHq7Dy66qw8usqrP9ghfUfrDD/YIX5ByvMP1hh/sEK8w9WmH+wwvoPVlj/wQrrP1hh/QcrzD9YYf7BCvMPVph/sBorv64aK7+uwvoPVlj/wQrzD1aYf7DC/IMV5h+sMP9ghfkHK6z/YIX1H6yw/oMV1n+wwvyDFeYfrDD/YIX5B2tl5dfV7f2DK3hg+hnWf7DC/IMV5h+sMP9ghfkHK8w/WGH+wQrrP1hh/QcrrP9ghfUfrDD/YIX5ByvMP1hh/sEasPy6gOXXwfoPVlj/wQrzD1aYf7DC/IMV5h+sMP9ghfkHK6z/YIX1H6yw/oMV1n+wwvyDFeYfrDD/YIX5B2tn5de1iZVf12D9BxvMP9hg/sE2sfi5wfyDDeYfbDD/YJtY+RsN5h9sMP9gg/UfbLD+gw3mH2ww/2CD+QcbzD/YCiu/rhUYP8P6DzZY/8EG8w82mH+wwfyDDeYfbDD/YIP5Bxus/2CD9R9ssP6DDdZ/sMH8gw3mH2ww/2Db3D/Yolw+3EJv8byAn03jiqfGYzzSY/r1YeldPj/sv/BUGJ4GwxNb46nliqf5LZ7OwvMK/+BL8RQYHmH9nl/hH3wpHoPh2Zyf6xc8eounwvA0GJ6A4YHxs8P42WH87DB+dhg/O4yfHcbPDuNnh/Gzw/jZOwtPhfFzhfFzFRgeGD9XGD9X2PlGhfFzhfFzhfFzhfFzm2B4YPzcYPzcFIYHxs8Nxs8Ndv7cYPzcYPzcYPwcMH6OAsMD4+eA8XMYDA+MnwPGzwF7Pxgwfg4YP3cYP3cYP3eB4YHxc4fxc3cYHhg/dxg/94DhYfFzTCx+jonFzzGx+DkmheFh8XNMLH6OqcLwsPg5JhY/x9RZeAqMnwuMnwuMnwuMn4vB8MD4ucD4uTQYHhg/Fxg/ywTDA+NngfGzwPhZYPwsrPy6EBg/C4yfheVPCYHxs8L4WQsMD4yfFcbPCuNnhfGzsvLrQmH8DPMPBsw/GAbjZ4PxM8w/GAbjZ4PxM8w/GDD/YMD8g2Ewfob5BwPmHwyH8TPMPxgw/2A4jJ9h/sGA+QcD5h8MmH8wHMbPMP9gwPyDUWH8DPMPBsw/GBXGzzD/YMD8gwHzDwbMPxgNxs8w/2DA/IPRYPwM8w8GzD8YDcbPMP9gwPyDAfMPBsw/GAHjZ5h/MGD+wQgYP8P8gwHzD0bA+BnmHwyYfzBg/sGA+Qejw/gZ5h8MmH8wOoyfYf7BgPkHo8P4GeYf7DD/YIf5BzvMP9gnFj/3icXPHeYf7BOLnzvMP9hh/sE+wfgZ5h/sMP9gh/kHO8w/2AuMn2H+wQ7zD/YC42eYf7DD/INdYPwM8w92mH+ww/yDHeYf7ALjZ5h/sMP8g11g/AzzD3aYf7ArjJ9h/sEO8w92mH+ww/yDXWH8DPMPdph/sCuMn2H+wQ7zD3aD8TPMP9hh/sEO8w92mH+wG4yfYf7BDvMPdofxM8w/2GH+we4wfob5BzvMP9hh/sEO8w92h/EzzD/YYf7BXmH8DPMPdph/sFcYP8P8gx3mH+ww/2CH+Qd7hfEzzD/YYf7B3mD8DPMPdph/sDcYP8P8gx3mH+ww/2CH+Qd7wPgZ5h/sMP9gDxg/w/yDHeYf7AHjZ5h/sMP8gx3mH+ww/2DvMH6G+Qc7zD/YO4yfYf7BDvMP9g7jZ5h/sLP8gzGx/IMzHlR+3YwHxc8zHhQ/z3gMhgfFzzMeFD/PeFD+lBkPip9nPDB+ZvkHZzwwfmb5B2c8MH5m+QdnPCh/yowHxs8s/+CMB+VPmfHA+JnlH5zxwPiZ5R+c8aDy62Y8MH5m+QdnPCh/yowHxs8s/+CMB+VPiUlh/MzyD854YPzM8g/OeAyGB8bPLP/gjAflT5nxwM43FKafDcbPBuNnln9wxgM733iDf/AxHhg/s/yDMx7U+8EZD4yfDcbPDuNnR+VvzHhg7wcdxs8s/+CMB5X/POOB8TPLPzjjgfHz1v5BlemCR6XEDZ6t/YOreMrWeKRf8Vi7xSMwPArDYzA8vjUelyueegdPfSOeZrd4GgxPwPB0Fp6t/YOqcvmwqt3uX1v7B1fxCAzP1vxs0xWPye1+urV/cBWPb46nXfHo7fPF1v7BVTwNhidgeLbmZ2v1iueOnt/aP7iKp8DwCAzP1vzsn/uF39GrW/sHV/E4DE+F4WkwPAHDA+PnDuPnDuPnDuPnvjk/q37+nustHoPhcRieCsMD4+cO4+et/YMreMrW/sFVPAWGR2B4FLVflMlgeByGp8LwNNR+UaaA4eksPGWC4YHxc4Hxc2Gdb5St/YOreFjnG6XA+Lk0GJ6A4WGdbxSB8bMUGB6B4WGdbxSB8bPA+FlY589FWOcbRVjnG0Vg/Kys8+eirPPnoqzz56IwflaD4WGdPxdlnT8XhfGzwvhZYefPBjt/Ntj5hsH42WDnz1v7B1fxwM6fDcbPBjt/Ntj5s8HOnx3Gzw7jZ4edPzvs/Hlr/+AqHhg/O+z82WHnzw47f3YYP1fY+XOFnT9X2PlzhfFzhfFzhZ0/V9j5c4Wdb1QYP1fY+XODnT832Plzg/Fzg50/b+4fXMMDO39uMH5uMH5usPPnBjt/Dtj5Bsw/WGD+wRKw8+fN/YNreGD8HLDz54CdPwfs/Dlg/Nxh/Nxh588ddv7cYecbHcbPHXb+3GHnzx12/txh/NxZ588ysc6fZWKdPwvMPygTi59lMhge1vmzTKzzDZlY/CwT6/xZJtb5sxTW+bMUGD8X1vmzFNb5s2zvH1zBA+PnAuPnwjp/lsI6f5bCOt8QgfGzsM6fRVjnzyKs82cRGD8L6/xZhHX+LMI6fxaYf1AExs/KOn8WZZ0/i8LONxTGz5v7B9fwsM6fRVnnz6IwflbW+bMo7PzZYOfPMP+gGIyfDXb+vLl/cA0P7HzDYPxssPNng50/G+z82WH87LDzZ4edPzvs/BnmHxSH8bPDzp8ddv7ssPMNh/FzhZ0/V9j5c4WdP1cYP2/vH1zBAzt/rrDzZ5h/UCqMnyvs/LnBzp8b7Hyjwfi5wc6ft+8/uIIHdv7cYPzcYOfPDXb+3GDnzzD/oASMnwN2/gzrPyiw/oMSMH4O2PlzwM6fA3b+HDB+7rDz5w47f+6w82eYf1A6jJ877Py5w86fYf0HpcP4ubPOn3VinT/rxDp/1onFzzqxzp91Mhge1vmzwvyDOrH4WSfW+bNOrPNnLazzDS0wfi6s82ctrPNn3dw/uIYHxs+Fdf6shXX+rIV1/qww/6AKjJ+Fdf6swjp/VmGdb6jA+FlY588qrPNnFdb5swqMn4V1/qzKOn9WZZ0/K8w/qArj5+37D67gYZ0/q8LONxTGz8o6f1aFnT8b7PzZYPxssPNng50/b+8fXMED42eD8bPBzp8Ndv5ssPMNh/Gzw86fHXb+7LDzZ4fxs8POnx12/uyw82eYf1Adxs8Vdv5cYefPFXa+UWH8vLl/cA0P7Py5ws6fK4yfK+z8ucLOnxvs/BnmH9QG4+cGO3/evv/gCh7Y+UaD8XODnT832Plzg50/B4yfA3b+HLDz54CdP8P8gxowfg7Y+XPAzp8Ddr4RMH7usPPnDjt/7rDz5w7j5+39gyt4YOfPHXb+DPMPaofxc2edP9vEOn+2iXW+YROLn21inT/bZDA8rPNnm1j8bBPr/Nkm1vmzTazzZ4P5B63A+Lmwzp+tsM6fbfv+gyt4YPxcWOfPVljnz1ZY589WYPwsrPNnE9b5swnr/Nlg/kETGD8L6/zZhHX+bMI63zCB8bOwzp9NWefPpqzzZ1MYPyvr/Nm29w+u4GGdPxvMP2gK42dlnT+bws6fDXa+YTB+Ntj5s8HOnzf3D67hgfGzwc6fDXb+bLDzZ5h/0BzGzw47f3bY+bPDzjccxs8OO3922Pmzw86fHcbPDjt/rrDz5wo7f4b5B63C+Hn7/oMreGDnzxV2vlFh/Fxh588Vdv7cYOfPDcbPDXb+3GDnz9v7B1fwwPi5wfi5wc6fG+z8ucHONwLGzwE7fw7Y+XPAzp8Dxs8BO38O2PlzwM6fYf5BCxg/d9j5c4edP3fY+cb2/sEiVzzit3i25mf9jI/a7X6xuX9wDU+F4WkwPAHD01F4HOYfdJh/0CcWP/vEOn/2yWB4WOcbDus/6LD+gw7rP+iw/oMO8w86zD/oMP+gw/yDDvMPeoHxc4Hxc4Hxc4HxM6z/oMP6Dzqs/6DD+g86zD/oMP+gw/yDDvMPOsw/6ALjZ4Hxs8L4WWH8DOs/6LD+gw7rP+iw/oMO8w86zD/oMP+gw/yDDvMPusH42WD8bDB+Nhg/w/oPOqz/oMP6Dzqs/6DD/IMO8w86zD/oMP+gw/yD7jB+dhg/O4yfHcbPsP6DDus/6LD+gw7rP+jf+QfbJeuszK9YV/BU+/XZ+W3RYzTRyq+PRpfHHy12RVC/wLZ7c5TpMkWpXz/6xwz18DO0w8/QDz/DeoAZ2ifVxO0M2+FnGEeYoT2aYT/6DL/zsx6Hab5zyB5ohofXNO3wmqYdQdM83C3aETTN4xkeQtM83C0OoWkezvAImuYx0xxB0zycYRxe08ThNU0cQdM83C3iCJrm8Qzt6LtFHELTPJzhETTNY6Y5gqZ5PMPDa5o4vKbpR9A0D3eLfgRN83iGh9A0j3aLfghN83CGdnimOfy7p354TdMPr2n6Id49PdwtDvHu6cEM63QITWOPZngITfNwhkd/91Sno797qpMdfoZH1zR1Ono+TZ2Onk9Tp6Pn09Tp6Pk0tRz93VMtR3/3VMvhNU05vKYpR9A0D3eLcvR8mlqOnk9Ty9HzaWo5+runWo7+7qnK4TWNHF7TyNHzaaocPZ+myiE0zaPdQo6eT1Pl6O+eqhz93VOVw2saObym0aPn01Q9ej5N1aPn01Q9ej5N1SNomsdMc/h3T3p4TaOH1zR69HyaqofPp7HD59PY4fNp7PDvnuzw757s8JrGDq9p7PD5NHb4fBo7fD6NHT6fxg//7skP/+7JD69p/PCaxo+gaR7uFn74fBo/fD6NHz6fxg//7skP/+6pHl7T1MNrmkPUEX64WxyijvDjGdrRd4tD1BF+PMPDv3s6RB3hxzM8vKY5RB3hhzM8RB3hh7vFIeoIP57h4fNpDlFH+PEM7fBMc/h3T4eoI/x4hofXNIeoI/x4tzh8Ps0h6gg/3C0OUUf48QwP/+7pEHWEH8/QDj/Dw2uaQ9QRfrxbHD6f5hB1hB/vFofPpzlEHeGHTHOIOsKPZ3h4TXOIOsKPZ2hH3y0OUUf48QwPn09ziDrCj2d4+HdPh6gj/GiG7RB1hB/P8Oiaph2ijvCj3aIdoo7w4xnawXeLdog6wo9nePR3T+0QdYQfz/DomqYdoo7wwxkeoo7ww93iEHWEH8/w6Pk07RB1hB/P0A7PNEd/99QOUUf48QwPr2kOUUf48W5x9Hyadog6wg93i0PUEX48w6O/e2qHqCP8eIZ2+BkeXtMcoo7w493i6Pk07RB1hB/vFkfPp2mHqCP8kGkOUUf48QwPr2kOUUf48Qzt6LvFIeoIP57h0fNp2iHqCD+e4eHfPR2ijvDDGR6ijvDjGR5e0xyijvDD3eIQdYQfz9COvlscoo7w4xke/t3TIeoIP57h4TXNIeoIP5zhIeoIP9wtDlFH+PEMD59Pc4g6wo9naIdnmsO/ezpEHeHHMzy8pjlEHeHHu8Xh82kOUUf44W5xiDrCj2d4+HdPh6gj/HiGdvgZHl7THKKO8OPd4vD5NIeoI/x4tzh8Ps0h6gg/ZJpD1BF+PMPDa5pD1BF+PEM7+m5xiDrCj2d4+HyaQ9QRfjzDw797OkQd4YczPEQd4cczPLymOUQd4Ye7xSHqCD+eoR19tzhEHeHHMzz8u6dD1BF+PMPDa5pD1BF+OMND1BF+uFscoo7w4xkePp/mEHWEH8/QDs80h3/3dIg6wo9neHhNc4g6wo93i6Pn08Qh6gg/2i3iEHWEH8/w6O+e4hB1hB/P0A4/w6NrmjhEHeHHu8XR82niEHWEH+8WR8+niUPUEX7INIeoI/x4hofXNIeoI/x4hnb03eIQdYQfz/Do+TRxiDrCj2e4qaYp03S971TK1w//gaaT0Gxbn7f3eAimkMAICYySwGy6r5VSLptsKaq3aByFpqLQNBSabXm4uF3R9HqLppPQbFtTdBVNQaERFJpNqbhI18t9VewWjaHQOApNRaFpKDSBQtNJaLathbiKpqDQCAoNiosNxcWG4mJDcbGhuNhQXGwoLnYUFzuKix3FxY7iYkdxsaO42FFc7CgudhQXO4qLK4qLK4qLK4qLK4qLK4qLK4qLt61BVNT8iubrS7W7H+5Tv3y4l/4J4u6h2dSuh2byBfCvWbYhZhlDzLKPMMttaxK9bZZliFnKELPUIWZpQ8zSh5jlENqnDaF9Glj7RP+cpfQb5EPomRhCz8QQeiaG0DMB1jOPGWXbmkNv+36G0CgxhEaJITRK7FajxBAapQ+hUfoQGqUPoVH6bjXKtjWE3vb9DKFR+hAapQ+hUfpuNUofQaP0aQSN0qcRNEqfRtAofdqrRumTDfH9jKBR+jSCRunTCBqlT3vVKH0aQqOUITRKGUKjlCE0StmtRtm2xs/bvp8hNEoZQqOUITRK2a1GKUNoFBlCo8gQGkWG0CiyW42ycb2md30/Q2gUGUKjyBAaRXarUWQIjaJDaBQdQqPoEBpFd6tRNq5j9q7vZwiNokNoFB1Co+huNYoOoVFsCI1iQ2gUG0Kj2G41ysb1/d71/QyhUWwIjWJDaBTbrUaxITSKD6FRfAiN4kNoFN+tRtm47uW7vp8hNIoPoVF8CI3iu9UoPoRGqUNolDqERqlDaJS6W42ycT3Yd30/Q2iUIerX9iHq13Zy/doVRhlCowxRk7YPUZO2D1GTtpNr0j5mlCHqzPYh6sz2IerM9iHqzPbd1pntQ9SZ7UPUme1D1JntQ9SZ7butM9uHqDPbh6gz24eoM9uHqDPbd1tntg9RZ7YPUWe2D1Fntg9RZ7bvts5sH6LObB+izmwfos5sH6LObN9tndk+Qp3ZPo1QZ3ae5QAaZZ7lABplnuVONcqM3Ib4fgbQKPMsB9Ao8ywH0CjzLHeqUWbkQ2iUEerMzrMcQqOMUGd2nuVuNcoIdWbnWQ6hUUaoMzvPcgiNstc6szPyITTKCHVm51kOoVFGqDM7z3K3GgVTZ/YPNBQt8Qeabfd8a/5537hF01BoAoWmk9BsXIN0DU1BoREUGkWhMRQaR6FBcbGiuFhRXKwoLjYUFxuKiw3FxYbiYkNxsaG42FBcbCguNhQXG4qLHcXFjuJiR3Gxo7jYUVzsKC52FBc7iosdxcWO4uKK4uKK4uKK4uKK4uKK4uKK4uKK4uKK4uKK4uKK4uKG4uKG4uKG4uKG4uKG4uKG4uKG4uKG4uKG4uKG4uKNa6G4XdMK/M4b6I1rlqyhERQaRaHZlos96uW+tZRbNI5CU1FoGgrNtlxcu17u2yZ//GEVv0BXafL54V/I+16Rb1xL4pXIy26Ry26RKxf5jPeCXO3Lh+9hKNdZWml+M0sbYpY+xCzrELNsQ8wSrA9eOEuwlnjZLMsE1h0vnOW2GqXp5yzdlvq6bFzHYQ2NotAYCs22e3P7tEWE1Fs0FYWmodAECk0nodnYX7+GpqDQCAqNotAYCg2KiwuKiwuKiwuKiwuKiwXFxYLiYkFxsaC4WFBcLCguFhQXC4qLBcXFguJiRXGxorhYUVysKC5WFBcriosVxcWK4uJtPbG9x+W20+1L/rKtJXYFzLaO2DUwhQRGSGCUBMZIYJwEppLANBIYEgMbiYGdxMBOYmAnMbCTGNhJDOwkBnYSAzuJgZ3EwE5i4Epi4Epi4Epi4Epi4Epi4Epi4Epi4Epi4Epi4Epi4EZi4EZi4EZi4EZi4EZi4EZi4EZi4EZi4EZi4EZi4CAxcJAYOEgMHCQGDhIDB4mBg8TAQWLgIDFwkBi4kxi4kxi4kxi4kxi4kxi4kxi4kxi4kxi4kxi4gxhYJhADywRiYJlADCwTiIFlAjGwTCAGlgnEwDKBGFgmEAPLRGLgQmLgQmLgQmLgQmLgQmLgQmLgQmLgQmLgQmLgQmJgITGwkBhYSAwsJAYWEgMLiYGFxMBCYmAhMbCQGFhJDKwkBlYSAyuJgZXEwEpiYCUxsJIYmOSJE5InTkieOCF54oTkiROSJ05InjgheeKE5IkTkidOSJ44IXnihOSJE5InTkieOCF54oTkiROSJ05InjgheeKE5IkTkidOSJ44IXnihOSJE5InTkieOCF54oTkiROSJ05InjgheeKE5IkTkidOSJ44IXnihOSJE5InTkieOCF54oTkiROSJ05InjgheeKE5IkTkidOSJ44IXnihOSJE5InTkieOCF54oTkiROSJ05InjgheeKE5IkTkidOSJ44IXnihOSJE5InTkmeOCV54pTkiVOSJ04nEAMryROnJE+ckjxxSvLEKckTpyRPnJI8cUryxCnJE6ckT5ySPHFK8sQpyROnJE+ckjxxSvLEKckTpyRPnJI8cUryxCnJE6ckT5ySPHFK8sQpyROnJE+ckjxxSvLEKckTpxv3iitluty3qN6icRSaikLTUGi27dtZ3K5oer1F00lotnXGraIpKDSCQrNt3875FeDlvrP0vUVjKDSOQlNRaBoKTaDQdBKabT1yq2gKCo2g0KC42FFc7CgudhQXO4qLHcXFjuLiiuLiiuLiiuLiiuLiiuLiiuLiiuLiiuLiiuLiiuLihuLihuLihuLihuLihuLihuLibd1zZT6huaKpbeXDfeqXD/fSP0HcPTSb2vXQTL4A/jXLNsQsY4hZ9hFmua1D8W2zLEPMUoaYpQ4xSxtilj7ELIfQPjGE9gmw9on+OUvpN8iH0DN9CD3Th9AzfQg908F65jGjbOuTftv3M4RG6UNolD6ERum71Sh9BI1i0wgaxaYRNIpNI2gUm/aqUWyyIb6fETSKTSNoFJtG0Cg27VWj2DSERilDaJQyhEYpQ2iUsluNsm2tjbd9P0NolDKERilDaJSyW41ShtAoMoRGkSE0igyhUWS3GmXbajRv+36G0CgyhEaRITSK7FajyBAaRYfQKDqERtEhNIruVqNsXK/pXd/PEBpFh9AoOoRG0d1qFB1Co9gQGsWG0Cg2hEax3WqUjeuYvev7GUKj2BAaxYbQKLZbjWJDaBQfQqP4EBrFh9AovluNsnF9v3d9P0NoFB9Co/gQGsV3q1F8CI1Sh9AodQiNUofQKHW3GmXjupfv+n6G0Ch1CI1Sh9AodbcapQ6hUdoQGqUNoVHaEBql7VajbFwP9l3fzxAaZYj6tTZE/Voj169dYZQhNMoQNWltiJq0NkRNWiPXpH3MKEPUmbUh6szaEHVmbYg6s7bbOrM2RJ1ZG6LOrA1RZ9aGqDNru60za0PUmbUh6szaEHVmbYg6s7bbOrM2RJ1ZH6LOrA9RZ9aHqDPru60z65MN8f2MoFF8iDqzPkSdWd9tnVkfos6sD1Fn1oeoM+tD1Jn13daZ9SHqzPoQdWZ9iDqzPkSdWd9tnVkfos6sD1Fn1oeoM+tD1Jn13daZ9SHqzPoQdWZ9iDqzPkSdWd9tnVkfos6sD1Fn1oeoM+tD1Jn13daZdUyd2T/QULTEH2i23fOt+ed94xZNQ6EJFJpOQrNxDdI1NAWFRlBoFIXGUGgchQbFxYbiYkNxsaG42FFc7CgudhQXO4qLHcXFjuJiR3Gxo7jYUVzsKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC4OFBcHiosDxcWB4uJAcXGguDhQXBwoLg4UFweKizeuhTK/Sbje984b6I1rlqyhERQaRaHZlotnfrvct052i8ZRaCoKTUOhibehKeUWTQehqRvXfFhDsy0X166X+7bJH39YxS/QVZp8fvgXctktct0tctstct8t8spFPuO9IFf78uF7GMp1llaa38yyDTHLGGKWfYRZblwX4V2zBOuDF84SrCVeOEuw7njhLG3TWTb9nKXfPAnVjWsdrKGpKDQNhWbbvbl9GlhC6i2aTkKzsb9+DU1BoREUGkWhMRQaR6GpKDQNhQbFxYLiYkVxsaK4WFFcrCguVhQXK4qLFcXFiuJiRXGxorjYUFxsKC42FBcbiosNxcWG4mJDcbGhuNhQXGwoLnYUF2/siQ2brmjunG1t7IldQ6MoNIZCsykX9x6X2053kkO2tcSugWkkMEEC00FgtrXDroEpJDBCAqMkMEYCQ2LgSmLgSmLgSmLgSmLgRmLgRmLgRmLgRmLgRmLgRmLgRmLgRmLgRmLgRmLgIDFwkBg4SAwcJAYOEgMHiYGDxMBBYuAgMXCQGLiTGLiTGLiTGLiTGLiTGLiTGLiTGLiTGLiTGLiDGLhNIAZuE4iB2wRi4DaBGLhNIAZuE4iB2wRi4DaBGLhNIAZuE4mBC4mBC4mBC4mBC4mBC4mBC4mBC4mBC4mBC4mBC4mBhcTAQmJgITGwkBhYSAwsJAYWEgMLiYGFxMBCYmAlMbCSGFhJDKwkBlYSAyuJgZXEwEpiYCUxsJIY2EgMbCQGNhIDG4mBjcTARmJgIzGwkRjYSAxsJAZ2EgM7iYGdxMBOYmAnMTDJE9dInrhG8sQ1kieukTxxjeSJayRPXCN54hrJE9dInrhG8sQ1kieukTxxjeSJayRPXCN54hrJE9dInrhG8sQ1kieukTxxjeSJayRPXCN54hrJE9dInrhG8sQ1kieukTxxjeSJayRPXCN54hrJE9dInrhG8sQ1kieukTxxjeSJayRPXCN54hrJE9dInrhG8sQ1kieukTxxQfLEBckTFyRPXJA8cTGBGDhInrggeeKC5IkLkicuSJ64IHniguSJC5InLkieuCB54oLkiQuSJy5InrggeeKC5IkLkicuSJ64IHniguSJC5InLkieuCB54oLkiQuSJy5InrggeeKC5IkLkicuSJ64IHniguSJC5InLkieuCB54oLkiQuSJy5InrggeeKC5IkLkicuSJ64IHniguSJC5InLkieuCB54mLjXnGlXDuQFdVbNIJCoyg0hkKzbd/O4nZF0+stmopC01BoAoWmk9Bsa44r0vVyXxW7RVNQaASFRlFoDIXGUWgqCk1DoQkUmk5C01Bc3FBc3FBc3FBc3FBc3FBc3FBc3FBc3FBc3FBcHCguDhQXB4qLA8XFgeLiQHFxoLg4UFwcKC4OFBd3FBd3FBd3FBdv654ran5FU9vKh/vULx/upX+CuHtoNrXroZl8AfxrljbELH2IWdYhZtmGmGUMMcs+wCz7tmbNt82yDDFLGWKWI2ifPtkQswRrn3kDuM5S+g3yEfRMn0bQM30aQc/0aQg9U8B65jGjlCE0ShlCo5QhNMq2lvG3zXK3GqUMoVHKEBqlDKFRyhAaRXarUWQIjSJDaBQZQqNsW1ThbbPcrUaRITSKDKFRZAiNIkNoFN2tRtEhNIoOoVF0CI2ybdmRt81ytxpFh9AoOoRG0SE0ig6hUWy3GsWG0Cg2hEaxITTKtoV53jbL3WoUG0Kj2BAaxYbQKDaERvHdahQfQqP4EBrFh9AoG9etetcsd6tRfAiN4kNoFB9Co/gQGqXuVqPUITRKHUKj1CE0ysb13N41y91qlDqERqlDaJQ6hEapQ2iUtluN0obQKG0IjdKG0Cgb1zl81yx3q1HaEBqlDaFR2hAapQ2hUWK3GiWG0CgxhEaJITTKxvU/3zXL3WqUGEKjxBAaJYbQKDGERum71Sh9CI3Sh9AoQ9Sv7UPUr+3k+rUrjDKERhmiJm0foiZtH6EmbZkmclHaR5TyAX0AlfIxzQFkysc0B9ApH9O0Maa5U6XyAX0AqfIxzQG0ysc0BxArH9McQ63steTsB/Qx1MoIRWc/pjmGWhmh7OzHNPerVkYoPPsxzTHUygilZz+mOYZa2Wvx2Q/oY6iVEcrPfkxzDLUyQgHaj2nuV62MUIL2Y5pjqJURitB+THMMtbLXMrQf0MdQKyMUov2Y5hhqZYRStB/T3K9aGaEY7cc0x1ArI5Sj/ZjmGGplrwVpP6CPoVZGKEn7Mc0x1MoIRWk/prlftTJCWdqPaY6hVkYoTPsxzTHUyl5L035Ap6iVX3AoquIXnG13f2v+ed+4A8dYcJwFp7LgNBacYMHpKDgbF+5chVNYcIQFh8XKlcXKlcXKlcXKlcXKlcXKlcXKjcXKjcXKjcXKjcXKjcXKjcXKjcXKjcXKjcXKjcXKwWLlYLFysFg5WKwcLFYOFisHi5WDxcrBYuVgsXJnsXJnsXJnsXJnsXJnsXJnsXJnsXJnsXJnsXJHsXKZUKxcJhQrlwnFymVCsXKZUKxcJhQrlwnFymXjeitu14QEv/PiumxcF2UVTkfB2bjOyCqcbVnZo17uWye7A0dYcJQFx94Gp5Q7cJwFp7LgbMvKtevlvm3yxx9W8Qt2lSafH75Aj/1C77uFvnFNh5dCL/uFLlzoM+ALdLUvH76HoVynaaX57TR1jGnaGNP0MaZZx5gmWCm8cppgVfHKaYIVyAunuXFNh6af0/Q7j0Yb12lYhSMsOMqCs+0u3T5tKCH1DhxnwaksOI0FJ1hwOgrOxt71VTiFBUdYcJQFh8XKxmJlY7GysVjZWKxsLFZ2Fis7i5WdxcrOYmVnsbKzWNlZrOwsVnYWKzuLlSuLlSuLlSuLlSuLlSuLlSuLlSuLlTf23YZNVzj3Tr829t2uwukoOBv7blfhFBYcYcFRFhxjwdmUlXuPy22ne/lI29puV9E0FJpAoekkNNtablfRFBQaQaFRFBpDoUFxcaC4OFBcHCguDhQXdxQXdxQXdxQXdxQXdxQXdxQXdxQXdxQXdxQXdxIXy0TiYplIXCwTiYtlInGxTCQulonExTKRuFgmEhfLROJimVBcXFBcXFBcXFBcXFBcXFBcXFBcXFBcXFBcXFBcXFBcLCguFhQXC4qLBcXFguJiQXGxoLhYUFwsKC4WFBcriosVxcWK4mJFcbGiuFhRXKwoLlYUFyuKixXFxYbiYkNxsaG42FBcbCguNhQXG4qLDcXFhuJiQ3Gxo7jYUVzsKC52FBc7iosdxcWO4mJHcbGjuNhRXFxRXFxRXFxRXFxRXFxRXFxRXFxRXFxRXFxRXFxRXNxQXNxQXNxQXNxQXNxQXIzy3QnKdyco352gfHeC8t0JyncnKN+doHx3gvLdCcp3JyjfnaB8d4Ly3QnKdyco352gfHeC8t0JyncnKN+doHx3gvLdCcp3JyjfnaB8d4Ly3SnKd6co352ifHeK8t3pROJiRfnuFOW7U5TvTlG+O0X57hTlu1OU705RvjtF+e4U5btTlO9OUb47RfnuFOW7U5TvTlG+O0X57hTlu1OU705RvjtF+e4U5btTlO9OUb47RfnuFOW7U5TvTlG+O0X57hTlu1OU705RvjtF+e4U5btTlO9OUb47RfnuFOW7U5TvTlG+O0X57hTlu1OU705RvjtF+e4U5btTlO9OUb47RfnuFOW7U5TvTlG+O0X57hTlu1OU705RvjtF+e4U5btTlO9OUb47RfnuFOW7U5TvTlG+O0X57hTlu9ONe96Vcm2jVlTvwBEWHGXBMRacbTuRFrcrnF7vwKksOI0FJ1hwOgrOtga8Il0v953fyd+BU1hwhAVHWXCMBcdZcCoLTmPBCRacjoLTWazcWazcWazcWazcWazcWazcWazcWazcWazcUaxsE4qVbUKxsk0oVrYJxco2oVjZJhQr24RiZZtQrGwTipVtYrFyYbFyYbFyYbHytg69ouZXOLWtfLhP/fLhXvoniLvHalO7HqvJF8CXadoY0/QxplnHmGYbY5oxxjT7ENPc1hD6vmmWMaYpY0xzDBW0ren2fdMEq6Don9OUfgt9DGUjYygbGUPZyBjKRsHKZoVWdAy1omOoFR1DrWxrS3/fNPerVnQMtaJjqBUdQ63oGGrF9qtWbAy1YmOoFRtDrWxbuOF909yvWrEx1IqNoVZsDLViY6gV369a8THUio+hVnwMtbJtaZP3TXO/asXHUCs+hlrxMdSKj6FW6n7VSh1DrdQx1EodQ61sW/znfdPcr1qpY6iVOoZaqWOolTqGWmn7VSttDLXSxlArbQy1snFtrLdNc79qpY2hVtoYaqWNoVbaGGol9qtWYgy1EmOolRhDrWxcM+5t09yvWokx1EqMoVZiDLUSY6iVvl+10sdQK30MtdLHUCsb11J82zT3q1b6GGqlj6FW+hhqpQ+hVnzarVrxaQi14tMQasWnIdSKTzbGNHerVnwaQq34NIRa8WkIteLTGGql7FetlDHUShlDrYxRI9fHqJHr5Bq5a7QyhloZo+6tj1H31seoe+vkurcrtDJGLVsfo5atj1HL1seoZev7rWXrY9Sy9TFq2foYtWx9jFq2vt9atj5GLVsfo5atj1HL1seoZev7rWXrY9Sy9TFq2foYtWx9jFq2vt9atj5GLVsfo5atj1HL1seoZev7rWXrY9Sy9TFq2foYtWx9jFq2vt9atj5GLVsfo5atj1HL1seoZev7rWXrY9Sy9TFq2foYtWx9jFq2vt9atj5GLVsfo5atj1HL1seoZev7rWXrY9Sy9TFq2foYtWx9jFq2vt9ato6pZfsLDkVV/IKz7e5vzT/vG3fgGAuOs+BUFpzGghMsOB0FZ+P6nqtwCguOsOCwWDlYrBwsVg4WKweLlYPFysFi5c5i5c5i5c5i5c5i5c5i5c5i5c5i5c5i5c5i5Y5i5TqhWLlOKFauE4qV64Ri5TqhWLlOKFauE4qV64Ri5TqhWLlOLFYuLFYuLFYuLFYuLFYuLFYuLFYuLFYuLFYuLFYuLFYWFisLi5WFxcrCYmVhsbKwWFlYrLxxvRW3a0KC33lxXTeui7IKp6PgbFxnZBXOtqw8v5K53Hd+Hr8DR1hwlAXH3ganlDtwnAWnsuBsy8q16+W+bfLHH1bxC3aVJp8fvkCP/ULvu4W+cU2Hl0Iv+4UuXOgz4At0tS8fvoehXKdppfntNHWMadoY0/QxplnHmCZYKbxymmBV8cppghXIC6e5cU2Hpp/T9DuPRhvXaViFIyw4yoKz7S7dPm0oIfUOHGfBqSw4jQUnWHA6Cs7G3vVVOIUFR1hwlAWHxcqVxcqVxcqVxcqVxcqVxcqNxcqNxcqNxcqNxcqNxcqNxcqNxcqNxcqNxcqNxcrBYuVgsXKwWDlYrBwsVg4WKweLlTf23YZNVzj3Tr829t2uwukoOBv7blfhFBYcYcFRFhxjwdmUlXuPy22ne/lI29puV9E0FJpAoekgNG1by+0qmoJCIyg0ikJjKDQkLm4TiYvbROLiNpG4uE0oLi4oLi4oLi4oLi4oLi4oLi4oLi4oLi4oLi4oLi4oLhYUFwuKiwXFxYLiYkFxsaC4WFBcLCguFhQXC4qLFcXFiuJiRXGxorhYUVysKC5WFBcriosVxcWK4mJDcbGhuNhQXGwoLjYUFxuKiw3FxYbiYkNxsaG42FFc7CgudhQXO4qLHcXFjuJiR3Gxo7jYUVzsKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC6uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC5uKC4OFBcHiosDxcWB4uJAcXGguDhQXBwoLg4UFweKizuKizuKizuKizuKizuKi1G+u4by3TWU766hfHcN5bsLlO8uUL67QPnuAuW7i4nExYHy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxco312gfHeB8t0FyncXKN9doHx3gfLdBcp3FyjfXaB8d4Hy3QXKdxcb97wr5dpGrajegSMsOMqCYyw423YiLW5XOL3egVNZcBoLTrDgdBKcvq0Br0jXy31V7A6cwoIjLDjKgmMsOM6CU1lwGgtOsOB0FJzCYuXCYuXCYuXCYuXCYuXCYuXCYuXCYuXCYuXCYmVhsbKwWFlYrCwsVhYWKwuLlYXFysJiZWGxsrBYWVmsrCxWVhYrb+vQK2p+hVPbyofnh8DLh2fl8Qni7rHa1K7HavIF8GWaNsY0fYxp1jGm2caYZowxzT7ENLc1hL5vmmWMacoY0xxDBW1run3fNMEqaH7dfJ2m9FvoYygbG0PZ2BjKxsZQNg5WNiu04mOoFR9DrfgYamVbW/r7prlfteJjqBUfQ634GGrFx1Ardb9qpY6hVuoYaqWOoVa2LdzwvmnuV63UMdRKHUOt1DHUSh1DrbT9qpU2hlppY6iVNoZa2ba0yfumuV+10sZQK20MtdLGUCttDLUS+1UrMYZaiTHUSoyhVrYt/vO+ae5XrcQYaiXGUCsxhlqJMdRK369a6WOolT6GWuljqJWNa2O9bZr7VSt9DLXSx1ArfQy10kdQK2Wa9qpWZugjqJV5miOolXmaI6iVeZo2xjT3qlZm6COolXmaI6iVeZojqJV5mmOolbJftVLGUCtlDLVSxlArG9dSfNs096tWyhhqpYyhVsoYaqWMoVZkv2pFxlArMoZakTHUysY1Rt82zf2qFRlDrcgYakXGUCsyhlrR/aoVHUOt6BhqZYgaufM0bYxp7letDFH3dp7mGGpliLq38zTHUCvkurcrtDJELdt5mmOolSFq2c7TtDGmuV+1MkQt23maY6iVIWrZztMcQ63stpbtDH0MtTJELdt5mmOolSFq2c7T3K9aGaKW7TzNMdTKELVs52mOoVZ2W8t2hj6GWhmilu08zTHUyhC1bOdp7letDFHLdp7mGGpliFq28zTHUCu7rWU7Qx9DrQxRy3b+xzHUyhC1bOd/3K9aGaKW7fyPY6iVIWrZzv84hlrZbS3bGfoYamWIWrbzNMdQK0PUsp2nuV+1MkQt23maY6iVIWrZztMcQ63stpbtDJ2iVn7BoaiKX3C23f2t+ed94w4cY8FxFpzKgtNYcIIFp5PglI3re67CKSw4woKDYuUyoVi5TChWLhOKlcuEYuUyoVi5TCxWLixWLixWLixWLixWLixWLixWLixWLixWLixWLixWFhYrC4uVhcXKwmJlYbGysFhZWKwsLFYWFisLi5WVxcrKYmVlsbKyWFlZrKwsVlYWKyuLlZXFyspiZWOxsrFY2VisbCxWNhYrG4uVjcXKG9dbcbsmJPidF9dl47ooq3A6Cs7GdUZW4WzLyh71ct862R04woKjLDj2Njil3IHjLDiVBWdbVq5dL/dtkz/+sIpfsKs0+fzwBXrsF3rfLfSNazq8FHrZL3ThQp8BX6CrffnwPQzlOk0rzW+nqWNM08aYpo8xzTrGNMFK4ZXTBKuKV04TrEBeOM2Nazo0/Zym33k02rhOwyocYcFRFpxtd+n2aUMJqXfgOAtOZcFpLDjBgtNRcDb2rq/CKSw4woKjLDgsVg4WKweLlYPFysFi5WCxcmexcmexcmexcmexcmexcmexcmexcmexcmexckexskwoVpYJxcoyoVhZJhQry4RiZZlQrCwTipVlY99t2HSFc+f0Szb23a7C6Sg4G/tuV+EUFhxhwVEWHGPB2ZSVe4/Lbac7+Uiyre12FU1DoQkUmk5Cs63ldhVNQaERFBpFoTEUGhQXC4qLBcXFguJiQXGxorhYUVysKC5WFBcriosVxcWK4mJFcbGiuFhRXGwoLjYUFxuKiw3FxYbiYkNxsaG42FBcbCguNhQXO4qLHcXFjuJiR3Gxo7jYUVzsKC52FBc7iosdxcUVxcUVxcUVxcUVxcUVxcUVxcUVxcUVxcUVxcUVxcUNxcUNxcUNxcUNxcUNxcUNxcUNxcUNxcUNxcUNxcWB4uJAcXGguDhQXBwoLg4UFweKiwPFxYHi4kBxcUdxcUdxcUdxcUdxcUdxcUdxcUdxcUdxcUdxcSdxsU4kLtaJxMU6kbhYJxIX60TiYp1IXKwTiYt1InGxTiQu1gnFxQXFxQXFxQXFxQXFxQXFxSjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaJ8d4ry3SnKd6co352ifHeK8t0pynenKN+donx3ivLdKcp3pyjfnaF8d4by3RnKd2co351NJC42lO/OUL4727jvXS96uW/XegdOsOB0FJyN+951u/ZM7P3Ob2db751M11ZqMrV7cIQFR1lwjAXHWXAqC05jwQkWnI6Cs60Jbx0Oi5WFxcrCYmVhsbKwWFlYrCwsVhYWKwuLlZXFyspiZWWxsrJYWVmsrCxWVhYrK4uVlcXKymJlY7GysVjZWKxsLFa2jVk5Lp+V8uW+n3CcBaey4DQWnGDB6Sg4PrHgFBYcYcFRFhwWKzuLlZ3Fys5iZWexsrNYubJYubJYubJYubJYubJYubJYubJYubJYubJYubJYubFYubFYubFYubFYubFYubFYeVvznpTWLnBE7sFpLDjBgtNRcLY18K3DKSw4woKzLSuL6hWOyx0427Ky6pUGtbaVD4eWy4fD72SEbmv5+yH24p/YVz6scjn7V/kCwi7TrGNMs40xzRhjmh08zfbJK3GHE7c1Yb4Ye9kxdtkxdgVjj6skiR53sNuOsZM1wBp28sa+hp28W7fpE3u/gx28Bfd2sR3pdO+coIP31RXsPoH31VXs4H11FTt4X13FDt5XV7GD99VV7OB9dRU7eF9dxQ7eV1ex73df9WnH+2rZ8b5adryvlh3vq2XH++rGbu7XYt/xvlp2vK+WHe+rZcf7atnxvio73ldlx/uq7HhflR3vqxv78V+Lfcf7qux4X5Ud76uy431Vdryv6o73VeXuqzrZJ/bwxx8udgX89b52774P3/S7cnfrd0WEqwHeFRE7I7KICFevpEXELtU41eNORLgq6F0R4WqrvIjYw4hwFdu7IsLVgW9iVuOqy3dF5NSsy4icmnUZkQE16+Pdd+OKO3uIyIia9eHuayNq1scRGVCzrjDrgJp1JSKnZl1ExE/NuozIgJr18e7rA2rWlYiMqFkf7r4b1yPbQ0QG1KwrzDqgZl2JyKlZlxE5NesyIgNq1se7bx1Qs65EZETN+nD3rSNq1scROXMDlhGxMyKLiJyadRmRU7MuIzJibsDj3XfE3IDHERlRsz7cfduImvVxRM7cgGVEztyAZUROzbqMiJ0RWUTkzGddRuTMZ11G5MxnXUbkzGddRuTMDVhEJM7cgGVETs26jMipWZcROfNZlxGxMyKLiJz5rMuInPmsy4icuQHLiJy5AcuInJp1ERFwBfV3ReTMZ11G5MxnXUbkzGddRsTOiCwicuYGLCNy5gYsI3Jq1mVETs26jMiZz/r3Eang7gTvisiZz7qMyJnPuozImRuwjIidEVlE5NSsy4icmnUZkTOfdRmRM591GZEzn3UREXDnj3dF5MwNWEbkzA1YRuTUrMuI2BmRRUTOfNZlRM581mVEznzWZUTOfNZlRM7cgEVEwF113hWRU7MuI3Jq1mVEznzWZUTsjMgiImc+6zIiZz7rMiJnbsAyImduwDIip2ZdRATcsepdETnzWZcROfNZlxE581mXEbEzIouInLkBy4icuQHLiJyadRmRU7MuI3Lmsy4iMmIfrJWInPmsy4ic+azLiJy5AcuI2BmRRUROzbqMyKlZlxE581mXETnzWZcROfNZFxEZsQ/WSkTO3IBlRM7cgGVETs26jIidEVlE5MxnXUbkzGddRuTMZ11G5MxnXUbkzA1YRGTEPlgrETk16zIip2ZdRuTMZ11GxM6ILCJy5rMuI3Lmsy4jcuYGLCNy5gYsI3Jq1kVERuyDtRKRM591GZEzn3UZkTOfdRkROyOyiMiZG7CMyJkbsIzIqVmXETk16zIiZz7rIiIj9sFaiciZz7qMyJnPuozImRuwjIidEVlE5NSsy4icmnUZkTOfdRmRM591GZEzn3URkRH7YK1E5MwNWEbkzA1YRuTUrMuI2BmRRUTOfNZlRM581mVEznzWZUTOfNZlRM7cgL+PSBuxD9ZKRE7NuozIqVmXETnzWZcRsTMii4ic+azLiJz5rMuInLkBy4icuQHLiJyadRGREftgrUTkzGddRuTMZ11G5MxnXUbEzogsInLmBiwjcuYGLCNyatZlRE7NuozImc+6iMiIfbBWInLmsy4jcuazLiNy5gYsI2JnRBYROTXrMiKnZl1G5MxnXUbkzGddRuTMZ11EZMQ+WCsROXMDlhE5cwOWETk16zIidkZkEZEzn3UZkTOfdRmRM591GZEzn3UZkTM3YBGREftgrUTk1KzLiJyadRmRM591GRE7I7KIyJnPuozImc+6jMiZG7CMyJkbsIzIqVkXERmxD9ZKRM581mVEznzWZUTOfNZlROyMyCIiZ27AMiJnbsAyIqdmXUbk1KzLiJz5rIuIjNgHayUiZz7rMiJnPusyImduwDIidkZkEZFTsy4jcmrWZUTOfNZlRM581mVEznzWRURG7IO1EpEzN2AZkTM3YBmRU7MuI2JnRBYRAWvWcgWhJeTrh39hB6vLVexgHbiKHazYVrGDtdXfYW+32MmdlVaxg/XKKnawspB2lYnS7/zeyX2FVrGDd+tV7OB9dRU7eF8V/cTufgc7eF9dxX6+vVuo0xE71TyOyIidalYicp6ELCNynoQsI3KehCwjYueJ6iIip0tiGZHTJbGMyOnsXUbkdPYuI3K+vfv7iMTZqeYmIqdmXUbk1KzLiJyadRkROyOyiMiZcbaMyKlZlxE5NesyIqdmXUbk1KyLiIzYqWYlIqdLYhmRU7MuI3Jq1mVE7IzIIiKnZl1G5HRJLCNyOnuXETk16zIip2ZdRGTITjWPI3Jq1mVETmfvMiJnNZplROzcfRcROTXrMiKnZl1G5NSsy4ic+azLiJz5rIuInJ1qbiJyatZlRE7NuozIqVmXEbEzIouInPmsy4icmnUZkVOzLiNyatZlRE7NuojI2anmJiJnPusyIqdmXUbk1KzLiNgZkUVETs26jMiZz7qMyJnPuozIqVmXETk16yIiZ6eam4icmnUZkTOfdRmRM591GRE7d99FRE7NuozIqVmXETk16zIiZz7rMiJnPusiIiN2qnm8+47YqWYlIqdmXUbk1KzLiNgZkUVEznzWZUROzbqMyKlZlxE5NesyIqdmXUTk7FRzE5Ezn3UZkVOzLiNyatZlROyMyCIip2ZdRuTMZ11G5MxnXUbk1KzLiJyadRERcl+hN0Xk1KzLiJz5rMuInPmsy4jYufsuInJq1mVETs26jMipWZcROfNZlxE581kXERmxD9bj3XfEPlgrETk16zIip2ZdRsTOiCwicuazLiNyatZlRE7NuozIqVmXETk1699HpJ99sG4icuazLiNyatZlRE7NuoyInRFZROTUrMuInPmsy4ic+azLiJyadRmRU7MuIjJiH6yViJyadRmRM591GZEzn3UZETt330VETs26jMipWZcROTXrMiJnPusyImc+6yIiI/bBerz7jtgHayUip2ZdRuTUrMuI2BmRRUTOfNZlRE7NuozIqVmXETk16zIip2ZdROTsg3UTkTOfdRmRU7MuI3Jq1mVE7IzIIiKnZl1G5MxnXUbkzGddRuTUrMuInJp1EZER+2CtROTUrMuInPmsy4ic+azLiNi5+y4icmrWZUROzbqMyKlZlxE581mXETnzWRcRGbEP1uPdd8Q+WCsROTXrMiKnZl1GxM6ILCJy5rMuI3Jq1mVETs26jMipWZcROTXrIiJnH6ybiJz5rMuInJp1GZFTsy4jYmdEFhE5NesyImc+6zIiZz7rMiKnZl1G5NSsi4iM2AdrJSKnZl1G5MxnXUbkzGddRsTO3XcRkVOzLiNyatZlRE7NuozImc+6jMiZz7qIyIh9sB7vviP2wVqJyKlZlxE5NesyInZGZBGRM591GZFTsy4jcmrWZUROzbqMyKlZFxE5+2DdROTMZ11G5NSsy4icmnUZETsjsojIqVmXETnzWZcROfNZlxE5NesyIqdm/buIyDRiH6yViJyadRmRM591GZEzn3UZETt330VETs26jMipWZcROTXrMiJnPusyImc+6yIiI/bBerz7jtgHayUip2ZdRuTUrMuI2BmRRUTOfNZlRE7NuozIqVmXETk16zIip2ZdROTsg3UTkTOfdRmRU7MuI3Jq1mVE7IzIIiKnZl1G5MxnXUbkzGddRuTUrMuInJp1EZER+2CtROTUrMuInPmsy4ic+azLiNi5+y4icmrWZUROzbqMyKlZlxE581mXETnzWRcRGbEP1uPdd8Q+WCsROTXrMiKnZl1GxM6ILCJy5rMuI3Jq1mVETs26jMipWZcROTXrIiJnH6ybiJz5rMuInJp1GZFTsy4jYmdEFhE5NesyImc+6zIiZz7rMiKnZl1G5NSsi4iM2AdrJSKnZl1G5MxnXUbkzGddRsTO3XcRkVOzLiNyatZlRE7NuozImc+6jMiZz7qIyIh9sB7vviP2wVqJyKlZlxE5NesyInZGZBGRM591GZFTsy4jcmrWZUROzbqMyKlZFxE5+2DdROTMZ11G5NSsy4icmnUZETsjsojIqVmXETnzWZcROfNZlxE5NesyIqdmXURkxD5YKxE5NesyImc+6zIiZz7rMiJ27r6LiJyadRmRU7MuI3Jq1mVEznzWZUTOfNa/j0gZsQ/Ww923jNgHayUip2ZdRuTUrMuI2BmRRUTOfNZlRE7NuozIqVmXETk16zIip2ZdROTsg3UTkTOfdRmRU7MuI3Jq1mVE7IzIIiKnZl1G5MxnXUbkzGddRuTUrMuInJp1EZER+2CtROTUrMuInPmsy4ic+azLiNi5+y4icmrWZUROzbqMyKlZlxE581mXETnzWRcRGbEP1uPdd8Q+WCsROTXrMiKnZl1GxM6ILCJy5rMuI3Jq1mVETs26jMipWZcROTXrIiJnH6ybiJz5rMuIbKtZbdJLREzK1w//gqMsOMaC4yw42+oUk3qF434HTmPBCRacjoKzcb8ba3GFE/0OnMKCIyw4G7Nyv/KOl3u/HWPB8Xd9WffhVBacxoITLDgdBadOLDiFBYellStLK29cxX8VDksr1/dpZb2zo9fGgsPSypWllTeuWb4Kp7DgsLTyxqWyV+EYC46jpPvGFZpX4bC0cmNp5cbSysHSysHSyiEsOMqCw9LKwdLKG9cgXYXTWHACJd2jo+B0llbuLK28ccXFVTjKgsPSyt1ZcCoLTkNJ943ry63CQWllmVBaWSaUVpYJpZVlQmllmYwFB/W2TyaUVpYJpZVl4wpKq3A6Ck6ZSNJdSmHBQWllKSitLBvXi1mF4yw4KK0spbHgBAtOJ0l32bg6xiocllYWllYWllbeuCLCKhyWVhZUZpwI6m2fCEsrC0srb+z/XoVTWHAEJd1VWXBYWllZWllRLhJRlItElKWVtaPgGMpFIhvbC9ek+9bevjU4LK28tbdvDQ5LKxtLKxtLKxsqM06M9bbPWVrZWVrZUS4ScZSLRLb29q1Id3cWHJZWdpZWdpSLRBzlIpHK0soV5biWinKRSEU5rmVrb98aHJZWriytXFlaubK0cmVp5cbKjGust32NpZUbSytv7e1bg4NykUhDOa6loRzX0lhaubG0cqBcJBIoF4kESysHynEtW3v71uCgHNcSKMe1BEsrB0srB0srd5ZW7iyt3FmZcZ31tm9rb9+KOO0srdxZLpLOcpF0lONaOspxrRNKK+uE0so6oVwkOqFcJDqhtLJOKMe1TigXiU4ox7VOKMe1TiitrAWllbWgtLIWlFbWgtLKWowFB/W2TwtKK2tBaWUtKBeJFpSLRAXluFZBOa5VWFpZWFp5a2/fGhyUi0SFpZUF5bhWQblIVFCOa1WU41qVpZWVpZWVpZW39vatwWFpZUVlxqmi3vapsrSysrSyoVwkaigXiRrKca2Gclzr1t6+FXFqLK3M6tunrL59aiytbCjHtbL69qmjHNfqKMe1Oksrb+3tW4PD0sqsvn3K6tunrL59yurbp5WllStLK7P69imrb59u7e1bke4V5bjWytLKlaWVWX37lNW3TxtLKzeU41pZffu0oRzXurW3bw0OSys3llZm9e1TVt8+ZfXtU1bfPmX17dNgaeVgaWVW3z5l9e3TQDmuNVCOaw2WVg6WVmb17VNW3z7tLK3cUY5rZfXt045yXGtHOa61s7RyZ2llVt8+Y/XtM1bfPmP17TNW3z6bUFrZJpRWNlbfPmP17bMJ5bi2CeW4toLSylZQWtlYffuM1bfP3uftu6eVraAc18bq22cF5bi2gnJcW2FpZWFpZVbfPmP17TNW3z5j9e0zVt8+E5ZWFpZWZvXtM1bfPlOU49oU5bg2ZWllZWllVt8+Y/XtM2VpZUU5ro3Vt88U5bg2QzmuzVha2VhamdW3z1h9+4zVt89YffuM1bfPjKWVjaWVWX37jNW3zxzluDZHOa7tjX377olTZ2llVt8+Y/XtM2dpZUc5ro3Vt88qynFtFeW4tsrSylt7+9bgsLQyq2+fsfr2Gatvn7H69lljaeXG0sqsvn3G6ttnW3v7VqR7QzmurbG0cmNpZVbfPmP17bNgaeVAOa6N1bfPAuW4tq29fWtwWFo5WFqZ1bfPWH37jNW3z1h9+4zVt886Syt3llZm9e0zVt8+6yjHtXWU49o6Syt3lFZ2Vt8+Z/Xt8wmllX1COa59MhYclOPaJ5Tj2ieUVvYJpZWd1bfPWX37nNW3z1l9+5zVt8+39vY9FqdeUFrZWX37nNW3zwvKce0F5bh2YWllYWllVt8+Z/Xt8/d5++5qZUE5rp3Vt88F5bh2QTmuXVhaWVlamdW3z1l9+5zVt89Zffuc1bfPlaWVlaWVWX37nNW3zw3luHZDOa7dWFrZWFqZ1bfPWX373Fha2VCOa2f17XNDOa7dUY5rd5ZWdpZWZvXtc1bfPmf17XNW3z5n9e1zZ2llZ2llVt8+Z/Xt84pyXHtFOa79jX377onTytLKrL59zurb55WllSvKce2svn3eUI5rbyjHtTeWVt7a27cGh6WVWX37nNW3z1l9+5zVt8+DpZWDpZVZffuc1bfPt/b2rUj3QDmuPVhaOVhamdW3z1l9+7yztHJHOa6d1bfPO8px7Vt7+9bgsLRyZ2llVt8+Z/Xtc1bfvsrq21dZffvqhNLKdUJp5ToZCw7KRVInlOO6TijHdZ1QWrlOKK1cWX37KqtvXy0orVwLynFdWX37akE5rmtBOa5rQWnlWlBaubL69lVW377K6ttXWX37KqtvX93a27ciToWllVl9+yqrb18VlOO6CspxXZWllZWllVl9+yqrb199n7fvrlZWlOO6svr2VUU5rquiHNdVWVrZWFqZ1bevsvr2VVbfvsrq21dZffuqsbSysbQyq29fZfXtq45yXFdHOa6rs7Sys7Qyq29fZfXtq87Syo5yXFdW377qKMd1rSjHda0srVxZWpnVt6+y+vZVVt++yurbV1l9+2plaeXK0sqsvn2V1bevNpTjujaU47q+sW/fPXHaWFqZ1bevsvr21cbSyg3luK6svn01UI7rGijHdQ2WVt7a27cGh6WVWX37KqtvX2X17ausvn21s7RyZ2llVt++yurbV7f29q1I945yXNfO0sqdpZVZffsqq29fm1BauU0ox3Vj9e1rE8px3SZjwUFp5TahtHJj9e1rrL59jdW3r7H69jVW375WUFq5FZRWbqy+fY3Vt68VlOO6FZTjuhWUVm6FpZVZffsaq29fE5ZWFpTjurH69jVBOa6boBzXTVhaWVhamdW3r7H69jVW377G6tvXWH372tbevhVxqiytzOrb11h9+5qiHNdNUY7rZiytbCytzOrb11h9+9r7vH13tbKhHNeN1bevGcpx3QzluG7G0srO0sqsvn2N1bevsfr2NVbfvsbq29ecpZWdpZVZffsaq29fqyjHdasox3WrLK1cWVqZ1bevsfr2tcrSyhXluG6svn2tohzXraEc162xtHJjaWVW377G6tvXWH37GqtvX2P17WuNpZUbSyuz+vY1Vt++FijHdQuU47q9sW/fPXEaLK3M6tvXWH37WrC0cqAc143Vt691lOO6dZTjunWWVt7a27cGh6WVWX37GqtvX2P17Wusvn0xobRyTCitHKy+fcHq2xeTkaR7TCjHdUworRwTSisHq29fsPr2RUFp5Sgox3Ww+vZFQTmuY2tv3xoclFaOgtLKwerbF6y+fcHq2xesvn3B6tsXwtLKwtLKrL59werbF4JyXIegHNchLK0sLK3M6tsXrL59oSytrCjHdbD69oWiHNehKMd1KEsrK0srs/r2BatvX7D69gWrb1+w+vbF1t6+FXFqLK3M6tsXrL59YSjHdRjKcR3O0srO0sqsvn3B6tsX7/P23dXKjnJcB6tvXzjKcR2OclyHs7RyZWllVt++YPXtC1bfvmD17QtW376oLK1cWVqZ1bcvWH37oqEc19FQjutoLK3cWFqZ1bcvWH37orG0ckM5roPVty8aynEdgXJcR7C0crC0MqtvX7D69gWrb1+w+vYFq29fBEsrB0srs/r2BatvX3SU4zo6ynEdb+zbd0+cdpZWZvXtC1bfvugsrdxRjuvO6tvXJ5Tjuk8ox3WfUFq5Tyit3Fl9+zqrb19n9e3rrL59ndW3rxeUVu4FpZU7q29fZ/Xt61t7+x5L915QjuteUFq5F5RW7qy+fZ3Vt68LSysLynHdWX37uqAc131rb98aHJZWFpZWZvXt66y+fZ3Vt6+z+vZ1Vt++riytrCytzOrb11l9+7qiHNddUY7rriytrCytzOrb11l9+7qxtLKhHNed1bevG8px3Q3luO7G0srG0sqsvn2d1bevs/r2dVbfvs7q29e39vatiFNnaWVW377O6tvXHeW47o5yXPfK0sqVpZVZffs6q29ff5+3765WrijHdWf17esV5bjuFeW47pWllRtLK7P69nVW377O6tvXWX37OqtvX28srdxYWpnVt6+z+vb1QDmue6Ac1z1YWjlYWpnVt6+z+vb1YGnlQDmuO6tvXw+U47p3lOO6d5ZW7iytzOrb11l9+zqrb19n9e3rrL59vbO0cidpZZ1QfftmOCQXyQyH5Lie4ZAc1zMcklae4ZC08gyH5CKZ4ZBcJDMcklae4ZAc1zqh+vbNcEiO6xkOyXE9wyFp5RkOSSvPcEhaeYZD0sozHJJWnuGQMuNmOKS3fToJSysLSyuj+vbNcEgukhmOoaS7kBzXMxyWVhaWVkb17ZvhkFwkOilLKyvJcT3DIblIZjgkx/UMx1hwWFpZWVoZ1bdvhsPSyqi+fTqh+vbNcEhv+2Y4LK1sLK2M6ts3wyG5SGY4JMf1DIfkuJ7hsLSysbQyqm/fDIfkIpnhsLSykxzXMxxjwSE5rmc4JMf1DIellZ2llVF9+3RC9e2b4bC0Mqpv3wyH9bZva2/fijitLK2M6ts3wyG5SGY4JMf1DIfkuNapsbRyY2llVN++GQ7JRTLDYWnlRnJcz3BILpIZDslxPcMhOa5nOCytHCytjOrbN8NhaWVU374ZjrHgsN72BUsrB0sro/r2zXBYLpJOclzPcEiO6xkOSyt3llZG9e2b4bBcJJ2llTvJcT3DYblIOslxrWUiOa5nOCitXCaUVi6ovn0zHJRWLqi+fTMcVGZcQfXtm+GgtHKZUFq5oPr2zXBQLpJSUI7rUlCO6/LGvn13xGkpKK1cUH37ZjgoF0kpKK1cCspxXVB9+2Y4KMd1EZTjughLK2/t7VuDw9LKqL59MxyWVkb17ZvhoN72FWVpZWVpZVTfvhkOykVStvb2rUh3RTmui7K0srK0Mqpv3wwH5SIpxtLKhnJcF1TfvhkOynFdtvb2rcFhaWVjaWVU374ZDksro/r2aUH17ZvhsN72OUsrO0sro/r2zXBQLpLiKMd1cZTjujhLKztLK6P69s1wUC6SUllauaIc1wXVt2+Gg3Jcl4pyXJfK0sqVpZVRffu0oPr2zXBYWhnVt2+Gw3rbt7W3b0WcNpZWRvXtm+GgXCSloRzXpaEc1yVYWjlYWhnVt2+Gg3KRlPd5++5q5UA5rguqb98MB+W4LoFyXJdgaeXO0sqovn0zHJZWRvXtm+EYCw7rbV9naeXO0sqovn0zHJSLRCaU41omlONaJpRWlgmllWUyFhyUi0QmlFaWCeW4FlbfPplQjmspKMe1FJRWloLSysLq2yesvn3C6tsnrL59wurbJwWllaWwtDKrb5+w+vaJoBzXIijHtbyxb989cSosrczq2yesvn0iLK0sKMe1sPr2iaIc16Iox7UoSytv7e1bg8PSyqy+fcLq2yesvn3C6tsnxtLKxtLKrL59wurbJ1t7+1aku6Ec12IsrWwsrczq2yesvn3iLK3sKMe1sPr2iaMc17K1t28NDksrO0srs/r2Catvn7D69gmrb5+w+vZJZWnlytLKrL59wurbJxXluJaKclxLZWnlytLKrL59wurbJ42llRvKcS2svn3SUI5raSjHtTSWVm4srczq2yesvn3C6tsnrL59wurbJ1t7+1bEabC0Mqtvn7D69kmgHNcSKMe1dJZW7iytzOrbJ6y+ffI+b99drdxRjmth9e2TjnJcS0c5rqWjtLJOKK2srL59yurbp6y+fToZCw7qbZ9OKK2sE0orK6tvn7L69mlBOa61oBzXWlBaWQtKKyurb5+y+vZpQWllLSjHtbL69mlBOa5VUI5rFZZWFpZWZvXtU1bfPmX17VNW3z5l9e1TYWllYWllVt8+ZfXtU0U5rlVRjmt9Y9++e+JUWVqZ1bdPWX37VFlaWVGOa2X17VNDOa7VUI5rNZZW3trbtwaHpZVZffuU1bdPWX37lNW3T52llZ2llVl9+5TVt0+39vatSHdHOa7VWVrZWVqZ1bdPWX37tLK0ckU5rpXVt08rynGtW3v71uCwtHJlaWVW3z5l9e1TVt8+ZfXtU1bfPm0srdxYWpnVt09Zffu0oRzX2lCOa20srdxYWpnVt09Zffs0WFo5UI5rZfXt00A5rjVQjmsNllYOllZm9e1TVt8+ZfXtU1bfPmX17dOtvX0r4rSztDKrb5+y+vZpRzmutaMc1zahtLJNKK1srL59xurbZxNKK9uEclwbq2+fTSjHtU0ox7VNKK1sBaWVjdW3z1h9+4zVt89YffuM1bfPCkorW0FpZWP17TNW3z4TlOPaBOW4NmFpZWFpZVbfPmP17TNhaWVBOa6N1bfPBOW4NkU5rk1ZWllZWpnVt89YffuM1bfPWH37jNW3zzb29nltVzjd7sDpKDgbe/vqdIVTVe/AKSw4woKjLDi/z8ruVzhx50nuBXa9LyP0e3OoLxihX+cw3RmhpY8Q6d9Dz/4eXuBmW4nSCwxqayNI9vfwAhvZ2vdg6VHy9BFq+vfQ0r+HSI9Szx6hTtnfQy3Z30OV9Chp+gjp+3RN36dr+j5d0/fpmr5P1/R9uqXv0y19n27p+3RL36ebpUcpfZ9u6ft0S9+nW/o+3dL36UjfpyN9n470fTrS9+mw9O8hfZ+O9H060vfpSN+nI32f7un7dE/fp3v6Pt3T9+lu6VFK36d7+j7d0/fpnr5P9+x92qfsfdqn7H3aJ0mPkqaPYOnfg6d/DzU9Si19hEj/HrL3aS/Z+7SXkj5C9j7tRdO/B0uPkqePUNO/h5b+PUR6lNL3aUnfpyV9n5b0fVrS92mx9O8hfZ+W9H1a0vdpSd+nJX2f1vR9WtP3aU3fpzV9n1ZLj1L6Pq3p+7Sm79Oavk9r+j5t6fu0pe/Tlr5PW/o+nZ5H5ul5ZJ6eR+bpeWSenkfm6Xlknp5H5ul5ZJ6eR+bpeWSenkfm6Xlknp5H5ul5ZJ6eR+bpeWSenkfm6Xlknp5H5ul5ZJ6eR+bpeWSenkfm6Xlknp5H5ul5ZP5NHpn3y8xL/WLmuTtCnV8A/PpwnZ+erx+WeufDKuK/PqzyxcwgfufDEq38+vD8x/b1w7/Ql12jl12j112jNzL63i+LVqcvMD7R+67RVzB6nfQTvfWVqX7CkPl1w+MPl4iLq7/0Se/EpY0Zl+5+jUuLxx+2q4/Svmxn8/R+hTDOEP5uCPsZwt8MYZBFVV4IZZqum+4k9nshJCu7nYSQLC8TQ1jKteJI0X67zQZZuL4zLnbG5W5cyGI7MS5ilzuLxAqMonHhomLTHc0fY2r+FwdxzAeEnwXRVa+HY15/bwcd82niffEe89HjbfHugz6n/Cze7fpc6P33ngv7oA81b4v3gZ6APkO4uupXDxr7gZ6AfhKXFx7x9AM9LL0rhAd6rvpBCF95xNMP9FT1rhAe6JnqJyFcO/XoB3r2eWlcDvSM8sK41OlAzxI/icsrD3jqdKAHhPcFcUzV/65ThDqN+TTxvnjbGe9N4z3oc8qbTm3qNOhDzdvifZwnoCqXxGip7r+rI47zBPTauBznCehHcXnhllKO87D0thAe51HpbSE8zoPSz0L4ur2zHOfZ520hNHIIS5kuHy7ia3LvhW6AWtCPHXlxed0bplrQTxL7CCH64WAfIUQ/R6SF8IUv6WpBP3LsIoSCfuTIC+HaeytBP0e8MS7oh4M3xgWt+PPi8tJXdDKm5n9xEMd8QHjbeyAZ82niffEe89HjffEe9DnlXe/dZNCHmnfFWw/0BPRCN0DVAz0BvSeVveqBHpbeFcIDPVe9J5W96oGeqt4VwgM9U70yu1sP9Ozz0rgc6BnlpXE50LPE2xLZ9UAPCG8Loo2p+t92imBjPk28L95jPnq8L96DPqe869TGBn2oeVu8j/ME9NKsdzvOE9Br43KcJ6B35WHbcR6W3hbC4zwqvSuEfpwHpXelsvtxnn3eFsLvHmfiGsIvE51D+A/zX/7bv/3lr3/9y//8r3/913/6x//4y7/+y79/XDp9/Od+kwqt/QJC25dQtHIvblEu78806pdWEnFvdu0SY4svH20fs7vfcuJNWByEpYKwNBCWAGHpHCz3q+vnYalXLLWVJZYCwiIgLArCYiAsDsJSQVgaCEuAsHQOlg7i3Q7i3Q7i3Q7i3Q7i3Q7i3Q7i3Q7i3Q7i3Q7i3TKBiLdMG6+k1i43btFvwGz8kynFrkc55etbmV9wOgpOmVhwCguOsOAoC45tDud6widTvYGzMesU0WvSvLTb6FQWnMaCEyw4HQVHJhacwoIjLDjKgmMsOJuzclyUadGvyQi/4FQWnMaCEyw4HQVHJxacwoIjLDjKgmMsOCxWVhYrK4uVdWtWVrnm86nFDZyOgmMTC05hwREWnK1ZWYt/wrk5GzRjwXEWnMqC01hwggWno+D4xIJTWHCEBYfFyr41K5t/+hf8Zs9yZ8GpLDiNBSdYcDoKTp1YcAoLjrDgKAsOi5Uri5Uri5Uri5Uri5Uri5Ubi5Ubi5Ubi5Ubi5Ubi5W39hfMzwrXl49eb05Ot06lL326Jsz0Mt3AqSw4jQUnWHA6Cs7WmfVrcAoLjrDgKAuOseCwWLmzWLmzWLmzWLmjWFkmFCvLhGJlmVCsLBOKlWVCsbJMG/OOlOuHpejSQyJbGxNUruVK5z/aDZzCgiMsOMqCYyw4zoJTWXAaC06w4HQUHGGxsrBYWVisLCxWFhYrC4uVhcXKwmJlYbGysFhZN19Zer2zaNzA2fq3o/X6Yb2xqcrW6dNrcDoKztbp02twFPVTts1XVr0WYJR6C8dZcCoLTmPBCRacjoLjEwtOYcGRN8Jp7QbO1qysn3VoVf6u0sOdg8Sul2xi6f7lIPFeOVyf4tIIzKfev374bxO1USbqo0y0jjLRNspEY5SJ9kEmWqdRJlpGmaiMMtHN91H/nKjfvDWtrLOOyjrraKyzjlZYcIQFh7Wy2uY6sl2PfLXdPCC2xoITLDgdBScmFpzCgiMsOMqCYyw4/kY4ITdwKgtOY8EJFpyOgtM3Z+X41Du93sApLDjCgqMsOMaC4yw4lQWnseCwntE76hldJ9Qzuk6oZ3SdUM/oOikLjrHgOAtOZcFBZYnphGJlnVisXFisXFisXFisXFisXFisXFisvLXfRMr1mHv+41Kc6taeAdHPJtLz8/oNnMaCEyw4fWs4rVzhtGXdRt26Pv4anMKCIyw4yoJjLDjOglNZcBoLzuas3C8fFit+A6ej4NjEglNYcIQFR1lwjAXHWXAqC057J5wbVrZgwekoOD6x4BQWnM1ZOa7PWSbTDRxlwTEWHGfBqSw4jQUnWHA6Ck594wnGPTibs/LVBTj/MW7gCAuOsuAYC46z4FQWnMaCEyw4HQWnTSw4LFZuLFZuLFZuLFZuLFZuLFZuLFZuLFbe2pggJeICR6abF9fB+rK2znUXa3aV7l1u4HQUnK1z3dfgFBYcYcFRFhxjwXEWnMqC01hwWKzcUaxsE4qVbUKxsk0oVrYJxcq2dTb3YzVo23cPeAxna975LCMp4rdwOgrO1tnca3AKC46w4CgLjrHgOAvO1qwscn2PLmo3cBoLTrDgdBQcmVhwCguOsOAoC46x4DgLDouVhcXKwmJlYbGyslhZWaysLFZWFitvbdso3i8Fb0qd6g2cxoITLDgdBWdr28YanMKCIyw4yoJjLDhb93uualc46jdwKgtOY8HZmpWrtyscjxs4HQVna9vGGpyteafGdIUT/QbO1iurtSuc1m6j01hwtl5ZUS6vSErcNFi2rVPvV+BsnXq/BmdrvdP6tTl33Hj7bOvU+zU4yoJjLDjOglNZcBoLTrDgdBScrVPv1+CwWLmxWLmxWLmxWLmxWLmxWLmxWLmxWHnrjgkrz1lbd0xYg8N6Co3NeUfL9bHPbn87zoJTWXAaC06w4GyuBkv/hHNzkNsnFpzCgiMsOMqCYyw4zoJTWXDaG+H4DQ32zVm52Cec2+hszsrTAzg+TSw4hQVnc1Z+9BLAJ2XBMRYcZ8FBvc/yCfU+y6dAwdnaRdLa5cbt5hnUt/aQhFweI0JuwSgJjJHAOAlMJYFpJDBBAtNBYLb2jMRVa82vz2/AFBIYIYFREhgjgXESmEoC00hgggSmg8AoiYGVxMBKYmAlMbCSGFhJDKwkBlYMA89/KR8fLOX+E0tRvSYzqn8mMzb/mMh8VX3qqvbUVfHUVf2Zq+7L39WrylNXyVNX6VNX2VNXPfXbkKd+G/LUb0Oe+m3IU78Nfeq3oU/9NvSp34au/zaq3l5lT13lT11Vn7qqPXVVPHVVf+Yqm566qjx11Te/jVavV305P7xepU9ddT+G/pnq7nr7O7zvsVm76r73pDS9WsG+vli8XmXPXHU/G1+mcq2eP4ndXiVPXXV3pYhOF4Si5fZbvp9kvXpVe+qqeOqq/sxV9xOARfpnLdYvfQvmq25ljUS99lyI+Pyw1l9DlJcO0UVuh5DXDmF6O4TmD2EvGEL9OoTf+S48f4i6PkS7/R1+s1LadSybym/+DuOlQ9z9HfbXDnHnRxLTC4Z4/A3ez4Z97RCyPkTc/EjuJ6KKWv+8qq8A87juDh5yO4TlD+H5Q8TvD1Gn64Kt06086OUFQ9Tr1137rSro9QVDXJ/Ppcrt9tfbC4b4rBFS9fZH2+O1s7gdQqYXfxdNboeQ/CE0fwjLH8Lzh6j5Q7T8ISJ/iJ4+RJnyh8hf3SV/dZf81V3yV3d59erut0PU/CFesbo/G+3d2bulRP4QPX0ImfKHKPlDSP4Qmj+E5Q/h+UO8eHXfG6LlDxH5Q/T0IXTKH6LkD6H5Q1j+EJ4/RP7S0/yld//Vxqzgrk/r5e8P2H98UCb334M8PcSdgzK5/9Lk+SFuD8rk/huW1w5hLxji4UGZ3K+t99oh6uoQfnNyIve7gs9HdNcXPWF3rqpPXdWeuiqeuqo/c9X96lbzMefV0RD+e69R5P47sqeHuLcq779Qe36IO0vmfmWp1w5hLxji8ZKpnj9EXR+i3f4O76+UPl3GKl3Lb/4O46VD3P0d9tcOcedHcv+95w+HePwN3n/v+dohZH2I2+Pi9s0abP3zqt97ASHN8ofw/CHi94d4/BpForxgiMeKsU8vGOLhaxTpr5jFw9co0uW1s7g3hL/2u7hzfthr/hAtf4jIH6JnD6HTlD9EyR9C8ofQ/CEsfwjPH6LmD9Hyh4j8IV69um/ecWiZ8od4xep+eFysRfKH0PwhLH8Izx+i5g/R8oeI/CF6+hDy4tV9b4iSP4TkD6H5Q1j+EJ4/RMsfIvKH6OlDaP7S0/yl943LpsrVE1Hd/vN3Dsr0G0vOs0PcOSjTb/w7Tw9xe1Cm35h9XjpEvGCIhwdl+o2N6JVDfOM5+jpE/fvzn/kv8vHR75x9GnExjGqXL9eWPzJLvylnsHZVe+qqeOqq/sxV31ju+7VVjvavh3W/7cu1a90piy8fbb/QFBQaQaFRFBpDoXEUmopC07ZFU69oaiu3aAKFppPQ2IRCU1BoBIVGUWgMhcZRaCoKDYqLDcXFhuJiR3Gxo7jYUVzsKC52FBc7iosdxcWO4uK68Zp6VHH5u7odeWg+2P9yclNCb/FUGJ4GwxMwPJ2Fp00wPGVzPNeTUblpKv9dTZdEPKLX2kvS7sRHYXgMhsdheCoMT4PhCRiezsITEwxPgeHZnJ8/u0Lq5Ld4FIbHYHgchqfC8DQYnoDh6Sw8fYLhKTA8MH7uMH7uMH7uW/OzSrvisbjFU2F4GgxPwPB0FB6ZtuZnLf6Jp9/iKTA8AsOjMDwGw+MwPBWGp8HwBAxPZ+EpMH4uW/OzXe88//F2/yoCw6MwPAbD4zA8FYanwfAEDE9n4ZEJhgfGzwLjZ4Hxs8D4WWD8LDB+Fhg/C4yfBcbPCuNnhfHz1q6K4nZ9X+n15nxVtvYOzC8oPu2qZbrFIzA8CsNjMDwOw1NheBoMT8DwdBaerd0Eq3hg/OwwfnYYPzuMnx3Gzw7jZ4fxs8P42WH8XGH8XDde7/MLgcuH57Pvcotn49+zziguH54Pv2/xBAxPZ+HZ2u+wiqfA8AgMj8LwGAyPw/BUGB4YPzcYPzcYPweMnwPGzwHj54Dxc8D4OWD8HDB+7puvL73eWfT2fcHW+diq9fphvfXDSq+w+Gy+n9bpiqfewRMwPB2FR6cJhqfA8AgMj8LwGAyPvxFPa7d4tuZnLVc8M7aveO4cXvWvxWK/HF7VOx/26dqGyKfev374j5m2YWYaw8y0jzLTrfPM3zjTMsxMZZiZ6jAztWFm6sPMdPP91D9n6jfv7FQK6hlfRWB4FIbHYHgchoe2vjZXle16xqjt9plRJxieAsMjMDwKw2MwPA7DU2F4GgxPvBHPlztf8XQWHptgeAoMj8DwbM7P8al/er3FYzA8DsNTYXgaDE/A8HQWHp9geGDP7w57fnfY87sbDA/s+d0rDE+D4QkYns7CUycYHhg/Vxg/Vxg/Vxg/Vxg/Vxg/Vxg/Vxg/b+2pkXI9D5//eKtXt/ZEyPxG6YJnfpa/wbN1jv0qngLDI1vjaeWKp/VbPArDYzA8DsNTYXgaDE/A8HQWnj7B8GzOz/3yYbHit3gEhkdheAyGx2F4KgxPg+EJGJ6OwmPT9E48/RZPgeERGB6F4TEYns35Oa7PXybTLZ4Kw9NgeAKGp7PwlAmGp8DwCAzPG8837uLZnJ+vHsP5j3GLx2F4KgxPg+EJGJ7OwiMTDE+B4REYHoXhgfGzwPhZYPwsMH4WGD8LjJ8Vxs8K4+et/Q5SIi54ZLp5320G+762zp8Xa3bV811u8QgMj8LwGAyPw/BUGJ4GwxMwPJ2FZ+v8+VU8MH52GD87jJ8dxs8O42eH8fPW+eFr+nDr/PBVPFvzz2dNSxG/g0dgeBSGx2B4HIanwvA0GJ6A4dman0Wu799Fb2og29Y9KVbxFBgegeFRGB6D4XEYngrD02B4AoYHxs8B4+eA8XPA+Dlg/Bwwfg4YPweMn7f2gxTvl3o7pU43/kHb2g+yiqfA8AgMj8LwGAyPw/BUGJ4Gw7N1j9SqdsWjt/6Lrf0gK3h8az/IKp6t+ble7zz/MW7xCAyPwvBszT81piue6Ld4tl5frV3xtNv6mb51Pv8qnq3XV5TL+5QStz2Ifet8/lU8CsNjW/9++rWHddz6B33rfP5VPBWGp8HwBAxPZ+GRCYanwPAIDI/C8MD4WWD8LDB+Fhg/C4yfBcbPCuNnhfHz1v0d1p6/tu7vsIoH9nyqm/OPluvzoN35/QQMT2fhsQmGp8DwbK4PS//EU2/xKAyPwfA4DE+F4WkwPAHD01l4fHojHr/lQ9+cn4t94rkTn835eXqMR2F4DIZnc35+/L7AKwxPg+EJGB7Y+68Ke/9VCwzPxvzT2uXG7c7T6dbulJDLw0XIHTQVhaah0AQKTSeh2dqTsoKmoNAICs3GajCu4mt+7X6LxlBoHIWmotA0FJpAoekkNFv7T1bQFBQaQaFBcXGguDhQXBwoLg4UFweKiwPFxR3DxfNf9OODpdzPD7HpohpNP69s/rd5lPs5HCvXxBPX9J9fcz9fYeWau7uS1YuxwWK6vUaeuEafuMaeuMafuKY+cU174pp44pr+82vuvzdeueaJ34E98TuwJ34H9sTvwJ74HdgTvwN74ndgT/wO7InfgT/xO/Anfgf+xO/An/gd+BO/A3/id+BP/A78id+BP/E78Cd+B/WJ30F94ndQn/gd1Cd+B/dPbtwu1/iX2jXXa+5+px/8ejkhL1Fur2pPXdV/ju/+s+p81Hq5pt/G4f5T08o1d9dQFf91TTW5vcafuKY+cU174pp44pr+82vu69eVa8oT19xdQ7VdfnC132q4+77O5hfdN78GWl4j972FIZffzleBPV9zK7Al6rU5SXxZpFp/DaAvHKCL3A5grxzA9HYA/+0B1K8D+J0Q1ewBWvIA5We/oj+uufvD6PXyC+/db6+xJ67xJ66pT1zTnrjmLmvFtd1Yn/rjL2ZlC5L7VqcfDFCjXBZH/fr25I/HeblvXXrh/Uvy/SX5/pp8f0u+vyffv/72/a8SsUb4zf1b8v0j+f499/46Jd+/JN9fku+vyfe35Pt78v2T168mr19NXr+avH4tef1a8vq15PVryevXktevJa9fS16/lrx+LXn9WvL69eT168nr15PXryevX09ev568fj15/Xry+vXk9evJ67cmr9+avH5r8vqtyeu3Jq/fmrx+a/L6rcnrtyav35q8flvy+m3J67clr9+WvH5b8vptv71++3Q9v+rl9v41+f4t+f6RfP+ee/+Yku9fku//s/X7xzV6/2W026M3Afdf+K5e5U9dVZ+6qj11VTzxal7uv/pdu+r+y9/Vq8pTV8lTV+lTV/lTV9WnrmpPXfXUt9x//C3Pf7GPj5byTRE8v2ZRzn/8u0TVjxHLN6Xq1q7Sp66yp67yp66qT13VnroqnrqqP3PVN6W91q566rehT/029Knfhj7129Cnfhv61G9Dn/pt6FO/DX3qt2FP/Tbsqd/GNyVfXOx6lfjNVd8UHnG95se73blKnhrrm9+hy/Wqejuvb0pbrF3lT11Vn7qqPXXVN79Di8+r9Paq/sxV35QvWLuqPHWVPHWVPnWVPXWVP3VVfWalfGO3X7sqnrqqP3NVe4oBvrGDr10lT12lT11lT13lT1311G+jPfXbaE/9NtpTv4146rcRT/024qnfRvz4tzH/xf+mz+9vEbNaulayV795ILi/Q6xd1J65KJ65qD9x0f3dYe2i8sxF8sxF+sxF9sxFz/wi6jO/iPrML6I+84uoz/wi2jO/iPbML6I984to67+IeuOLaPbMRf7MRfWZi9ozF8UzF/UnLorpmYvKMxd984to9XpR3JxofnOguXLR/ej5ZysT15vf3jfHfo8v+uZMrem16dfXopCXi+znF8n9xlPz/748O8okdnORPHPR3aUhOl3giRa9uag+c1F75qJ45qL+xEX3eyPJfNR7vUj+zjXzUweM3O929PQItxaYb9wXz49w44H5xqvx0hHsBSM8Mql84wN56Qh1fYR28wP8Zn2060g2ld/7AcZLR7j3A+yvHeH253HfZ/LDER5+effP+186gqyPsDT1fWMgEbX+edHKK0jxuG4FHnIzgqWP4OkjxO+PUKfrMq3TUgR8Y2T44Qj1+k3XfrP5a33BCNfKKFLlZq/T9oIRPls/15syIt+k0z8/h9sR7MXfQ7v5LZmkj6DpI1j6CJ4+Qk0foaWPEOkj9OwRfEofIX1Ne/qa9vQ17elr2l+9pvvNCDV9hFes6ZAH+7RH+gg9e4Q6pY9Q0keQ9BE0fQRLH8HTR3jxmr4zQksfIdJH6NkjtCl9hPRnoKbpI1j6CJ4+QvqKa+kr7v4rifko8/oQXv7+fPzHx1733188PcKdY6/7LzueH+H22Ov+m5GXjmAvGOHhsdf9FPKXjlBXR7iptPZdznN8vqAJu72oPnNRe+aieOai/vOLdLr/cjCu0Svhv/UGRO+/1np6hNuVqPffgT0/ws060ftlzF46gr1ghEfrRCdPH6Guj9BufoD310efLiPNb2DL7/0A46Uj3PsB9teOcPvzuP+i8ocjPPzy7r+ofOkIsj7C8sRXyzcr71oKcb7ot94eaLH0ETx9hPj9ER6+AVEpLxjhkSZUnV4wwqM3IKqvmMOjNyCq8to53BnBX/s93JwDqtb0EVr6CJE+Qs8ewab0EUr6CJI+gqaPYOkjpK9pS1/Tlr6mLX1N26vX9PL9hPqUPsIr1vSjE191SR9B00ew9BE8fYSaPkJLHyHSR+jZI9QXr+k7I6Rr7yrpI2j6CJY+gqeP0NJHiPQRevYILX3FtfQV942lpV6L5pfq9p+/c+z1jf/l2RHuHHt9Y5Z5eoTbY69vnDWvHCFeMMLDY69vPDsvHOEbg8/XEepNoZP68dHv/NQR12oAXb5c+odz8xs79cpF7ZmL4pmL+hMXbd2x29rltM3iy0f/KAy1dcPux2CEBEZJYIwExklgKgnMxu1h6xVMbeUGTJDAdBCYrft0PwZTSGCEBEZJYIwExklgKgkMiYGDxMBBYuBOYuBOYuBOYuBOYuBOYuBOYuBOYuAOYuBvalbkgWntcuP2pZLIBczGv5mPJt6XY5lZTN3AqSw4jQUnWHA6Ck6ZWHDK5nCuB57zOrqBszHrfLTHu8Jpt9FRFhxjwXEWnMqC01hwggWno+DIxIJTWHA2Z+W4uhF08hs4yoJjLDjOglNZcBoLTrDgdBQcnVhwCgsOi5WVxcrKYmXdmpVV2hWOxQ2cyoLTWHCCBaej4NjWrKzFP+HcnA1aYcERFhxlwTEWHGfBqSw4jQUnWHA6Co6zWNm3ZmW73nn+482e5cKCoyw4xoLjLDiVBaex4AQLTkfBqRMLDouVK4uVK4uVK4uVK4uVK4uVK4uVK4uVK4uVG4uVG4uVtzYcFLfry0evNyenWyfWlz59GkjLdANHWXCMBcdZcCoLTmPBCRacjoKzdaL9GpzCgsNi5c5i5c5i5c5i5c5i5c5i5c5i5Y5i5W9KIb8PDoqVvylQnAdHymcdzKLlBs7GK0tnEJcPS7EbOMGC01FwtjYmrMEpLDjCgqMsOMaC4yw4lQWHxcqFxcqFxcrCYmVhsbKwWFlYrCwsVhYWKwuLlXXzlaXXO4vGDZytfztarx/WG5uqamVFZ/MttE5XOPUWTrDgdBQcm1hwCguOsOAoC46x4Pgb4bR2A2drVp4PKa6bhPxd8YA7Z1P9az3WL2dT9c6Hfbq27vGp968f/odvGycccaIxykT7IBPdOi/8fRMto0xURpmojjJRG2WiPspEN99H/XOifvMirhbU03wVFhxlwTEWHGfBga2szXVku54iart5QGwTC05hwREWHGXBMRYcZ8GpLDiNBSfeCOfLnS9wOgpOTCw4hQVHWHA2Z+X41Du93sAxFhxnwaksOI0FJ1hwOgpOn1hwWM/onfWM3lnP6N1YcFjP6L2y4DQWnGDB6SQ4Nk0sOChWtgnFyjahWNkmFCvbhGJlm1CsbBOKlW1CsbJtbX+Rcj3mnv9Yb+Bs/NsRlWtD6Pl5fQln66z4NTiFBUe2htPKFU7rN3CUBcdYcJwFp7LgNBacYMHpKDg6seBszsr98mGx4jdwhAVHWXCMBcdZcCoLTmPBCRacjoJj0zvh3LCyFRYcYcFRFhxjwdmcleP6nDU/c97AqSw4jQUnWHA6Co5PLDiFBUdYcN54gnEPzuasfHUBzn+MGzjOglNZcBoLTrDgdBScOrHgFBYcYcFRFhwWK1cWK1cWK1cWK1cWK1cWKzcWKzcWK29tTJAScYEj082L62B9WVvnuos1u0r3LjdwhAVHWXCMBcdZcCoLTmPBCRacjoKzda77GhwWK3cWK3cWK3cWK3cWK3cWK2+dzf1YDfrW2dxrcLbmnc8ykiJ+C0dYcJQFx1hwnAWnsuA0FpxgwdmalUWu79FFl7WGfetWD2twCguOsOAoC46x4DgLTmXBaSw4wYLDYmVhsbKwWFlYrCwsVhYWKwuLlYXFyrJ5g+V+KXhT6rT09vnWto01OIUFR1hwlAXHWHCcBaey4DQWnK0bnVa1Kxz1GzgdBWdr28YanK1ZuV7vPP8xbuAIC46y4GzNOzWmK5zoN3C2XlmtXeG0m1qVvnXq/RqcrVdWlMsrkhI3PXt969T7NTjKgmNb/3b6td9z3Hj7fOvU+zU4lQWnseAEC05HwakTC05hwREWHGXBYbFyZbFyZbFyZbFyZbFyZbFyY7FyY7Hy1h0TVp6ztu6YsAaH9RTaNucdLdfHPrv97QQLTkfBiYkFp7DgbK4GS/+Ec3OQG8qCYyw4zoJTWXAaC06w4HQUnD69EY7f0GDfnJWLfcK5jc7mrDw9hKMsOMaCszkrP3wJ0CsLTmPBCRYc1PusOqHeZ9WpsOBszDutXW7cbp5B69YekpDLY0TILZhKAtNIYIIEpoPAbO0ceQymkMAICczG2i+uWmt+fX4DxkhgnASmksA0EpgggekgMFu7RB6DKSQwQgJDYmAhMbCQGFhIDCwkBhYSAwuJgRXDwPNf2scHy/0UD5suEtH088LmH7Mo99MwHl8SP7+k//iS+ykHjy+5uw1ZvbgPLKabS+Tnl+jPL7GfX+I/v6T+/JL280vi55f0H19y/8Xv40t+/u3Hz7/9+Pm3Hz//9uPn3378/NuPn3/78fNvP37+7feff/v9599+//m333/+7feff/v9599+//m333/+7feff/v9x9++TD/+9uX+eZTb5RL/Uovlcsndr7IUvb5qnBnl5iJ75qL6c3B3vxuvF0/C/Ap2ecn9B8LHl9xdM7My/3VJNbm5RH5+if78Evv5Jf7zS+rPL2k/vyR+fsndNVPb5UdW+1L6yH2LafOLWppfjtxccneUkMsP5qsgnS+5FaQS9dotI76sSa1/u/995+KT9+8iN/cvr7y/6c395bfvr369v9/GR5Pvb8n3/9nv5+OS+5a7Xi8/7N795pLy80vk55fozy+xn19yl6Pi2uuqT/3xN7Ky0dz3Xf3g/jXKZUXUr68T2h+3b7m3j9zb99Tb3/ctve72Jff2knt7/e3bX9VfjfDl7S339p57+5p7+5Z7+8i9fU+9fZtyb19yby+5t89dtS131bbcVdtyV23LXbUtd9W23FUbuas2cldt5K7ayF21kbtqI3fVRu6qjdxVG7mrNnJXbc9dtT131fbcVdtzV23PXbU9d9X23FXbc1dtz121PXXV6jTl3r7k3l5yb6+5t7fc23vu7Wvu7Vvu7SP39rmrtuSu2pK7astvr9o+XU+jerm5vebe3nJv77m3r7m3b7m3j9zb/2zVflxy/7VsKW7fH+Tr/RezaxfJMxfpMxfZMxf5z1+d6/1XtGsXtWcuimcu6k9cpNMzF8kzF+kzF9kzFz3z5eqPv9z5L/Hx0fJNWTa/ZgfOf/y73Mt/+EhClGcu0mcusmcu8mcuqs9c1J65KJ65qD9x0TfFplYueuYX0Z75RbRnfhHtmV9Ee+YX0Z75RbRnfhHtmV9Ee+YXEc/8IuKZX8Q3dUhc7HqR+PKib+phuF6Tu91uL5JnRvrmt+dyvajezOmbkgsrF/kzF9VnLmrPXPTNb8/i8yK9uaj//KJvshHXLirPXCTPXKTPXGTPXOTPXFR/vjTkGxP4ykXxzEX9iYvK9MxF5ZmL5JmL9JmL7JmL/JmLnvlFlGd+EeWZX0R55hchz/wi5JlfhDzzi5Af/yLmv/S/Ce37JzGTX0ptxNS+dLmsf7vyY318d2mZyrWi3fS1vcS9h/HP0j2tyNePfpC55t7efv/2ejniataXt/cX3P6yP7YvtPvr9jX39u33bx+Xh7zW2/L2kXv7/tu3j2tfr7DlL+ebA5+f3f6SdxtfK1b9sgb8/u3b5auNm+CIvPD2fbGsPrihPOCGcj17m/8Y/3dLpphfr6n1/24dPL6mPXFNPHFN//k13x0mPrymPHGN/Pya+12lHm4V89/+33/8t7/843/76z//+3zNxz/+73/5p//4y7/+y6+//sf/978u//Lf/u0vf/3rX/7nf/1f//av//TP//1//9s//9e//us/ffzbn6Zf//l/3OqfvdaP2H78rbY/e/gHsvlvtfy5lX/4Y2+aPzj9ed7x/vZ7/Lj44wPzL07/XObDp/lDH7+aovMbimKTXS4q6u3P8/+Vj8vkMmbx3v88H0f1X6POh0zT/HeNX+N+3HG+rej1Nh/NsOb/xMdt9Hqb+X3TfHP5cpl9XPZl9HltzP9pH5fZ9bL5KfLPZZaJ18um/jGJfr2sRJ3/Ry8fl/l1rvYB4TJTmydudh1Je/uzTX+bZb2MU+cjueqXOdY6/bm2K1TXjwlfLq/zrvcx/f/85Un+2y3n341Wv14wT61+jjffW+fh//PX2d7H/5N58xG/zsr6R8QuF3w0VRQtnxrlj7D+WaYv4uNvH5xHnb6Qzt9Gm/6s8xf/n/Ov7/8H", file_map: { "6": { source: "use crate::meta::derive_via;\n\n#[derive_via(derive_eq)]\n// docs:start:eq-trait\npub trait Eq {\n fn eq(self, other: Self) -> bool;\n}\n// docs:end:eq-trait\n\n// docs:start:derive_eq\ncomptime fn derive_eq(s: StructDefinition) -> Quoted {\n let signature = quote { fn eq(_self: Self, _other: Self) -> bool };\n let for_each_field = |name| quote { (_self.$name == _other.$name) };\n let body = |fields| {\n if s.fields().len() == 0 {\n quote { true }\n } else {\n fields\n }\n };\n crate::meta::make_trait_impl(\n s,\n quote { Eq },\n signature,\n for_each_field,\n quote { & },\n body,\n )\n}\n// docs:end:derive_eq\n\nimpl Eq for Field {\n fn eq(self, other: Field) -> bool {\n self == other\n }\n}\n\nimpl Eq for u64 {\n fn eq(self, other: u64) -> bool {\n self == other\n }\n}\nimpl Eq for u32 {\n fn eq(self, other: u32) -> bool {\n self == other\n }\n}\nimpl Eq for u16 {\n fn eq(self, other: u16) -> bool {\n self == other\n }\n}\nimpl Eq for u8 {\n fn eq(self, other: u8) -> bool {\n self == other\n }\n}\nimpl Eq for u1 {\n fn eq(self, other: u1) -> bool {\n self == other\n }\n}\n\nimpl Eq for i8 {\n fn eq(self, other: i8) -> bool {\n self == other\n }\n}\nimpl Eq for i16 {\n fn eq(self, other: i16) -> bool {\n self == other\n }\n}\nimpl Eq for i32 {\n fn eq(self, other: i32) -> bool {\n self == other\n }\n}\nimpl Eq for i64 {\n fn eq(self, other: i64) -> bool {\n self == other\n }\n}\n\nimpl Eq for () {\n fn eq(_self: Self, _other: ()) -> bool {\n true\n }\n}\nimpl Eq for bool {\n fn eq(self, other: bool) -> bool {\n self == other\n }\n}\n\nimpl<T, let N: u32> Eq for [T; N]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T; N]) -> bool {\n let mut result = true;\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<T> Eq for [T]\nwhere\n T: Eq,\n{\n fn eq(self, other: [T]) -> bool {\n let mut result = self.len() == other.len();\n for i in 0..self.len() {\n result &= self[i].eq(other[i]);\n }\n result\n }\n}\n\nimpl<let N: u32> Eq for str<N> {\n fn eq(self, other: str<N>) -> bool {\n let self_bytes = self.as_bytes();\n let other_bytes = other.as_bytes();\n self_bytes == other_bytes\n }\n}\n\nimpl<A, B> Eq for (A, B)\nwhere\n A: Eq,\n B: Eq,\n{\n fn eq(self, other: (A, B)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1)\n }\n}\n\nimpl<A, B, C> Eq for (A, B, C)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n{\n fn eq(self, other: (A, B, C)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2)\n }\n}\n\nimpl<A, B, C, D> Eq for (A, B, C, D)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n{\n fn eq(self, other: (A, B, C, D)) -> bool {\n self.0.eq(other.0) & self.1.eq(other.1) & self.2.eq(other.2) & self.3.eq(other.3)\n }\n}\n\nimpl<A, B, C, D, E> Eq for (A, B, C, D, E)\nwhere\n A: Eq,\n B: Eq,\n C: Eq,\n D: Eq,\n E: Eq,\n{\n fn eq(self, other: (A, B, C, D, E)) -> bool {\n self.0.eq(other.0)\n & self.1.eq(other.1)\n & self.2.eq(other.2)\n & self.3.eq(other.3)\n & self.4.eq(other.4)\n }\n}\n\nimpl Eq for Ordering {\n fn eq(self, other: Ordering) -> bool {\n self.result == other.result\n }\n}\n\n// Noir doesn't have enums yet so we emulate (Lt | Eq | Gt) with a struct\n// that has 3 public functions for constructing the struct.\npub struct Ordering {\n result: Field,\n}\n\nimpl Ordering {\n // Implementation note: 0, 1, and 2 for Lt, Eq, and Gt are built\n // into the compiler, do not change these without also updating\n // the compiler itself!\n pub fn less() -> Ordering {\n Ordering { result: 0 }\n }\n\n pub fn equal() -> Ordering {\n Ordering { result: 1 }\n }\n\n pub fn greater() -> Ordering {\n Ordering { result: 2 }\n }\n}\n\n#[derive_via(derive_ord)]\n// docs:start:ord-trait\npub trait Ord {\n fn cmp(self, other: Self) -> Ordering;\n}\n// docs:end:ord-trait\n\n// docs:start:derive_ord\ncomptime fn derive_ord(s: StructDefinition) -> Quoted {\n let signature = quote { fn cmp(_self: Self, _other: Self) -> std::cmp::Ordering };\n let for_each_field = |name| quote {\n if result == std::cmp::Ordering::equal() {\n result = _self.$name.cmp(_other.$name);\n }\n };\n let body = |fields| quote {\n let mut result = std::cmp::Ordering::equal();\n $fields\n result\n };\n crate::meta::make_trait_impl(s, quote { Ord }, signature, for_each_field, quote {}, body)\n}\n// docs:end:derive_ord\n\n// Note: Field deliberately does not implement Ord\n\nimpl Ord for u64 {\n fn cmp(self, other: u64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u32 {\n fn cmp(self, other: u32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u16 {\n fn cmp(self, other: u16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for u8 {\n fn cmp(self, other: u8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i8 {\n fn cmp(self, other: i8) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i16 {\n fn cmp(self, other: i16) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i32 {\n fn cmp(self, other: i32) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for i64 {\n fn cmp(self, other: i64) -> Ordering {\n if self < other {\n Ordering::less()\n } else if self > other {\n Ordering::greater()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl Ord for () {\n fn cmp(_self: Self, _other: ()) -> Ordering {\n Ordering::equal()\n }\n}\n\nimpl Ord for bool {\n fn cmp(self, other: bool) -> Ordering {\n if self {\n if other {\n Ordering::equal()\n } else {\n Ordering::greater()\n }\n } else if other {\n Ordering::less()\n } else {\n Ordering::equal()\n }\n }\n}\n\nimpl<T, let N: u32> Ord for [T; N]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T; N]) -> Ordering {\n let mut result = Ordering::equal();\n for i in 0..self.len() {\n if result == Ordering::equal() {\n let result_i = self[i].cmp(other[i]);\n\n if result_i == Ordering::less() {\n result = result_i;\n } else if result_i == Ordering::greater() {\n result = result_i;\n }\n }\n }\n result\n }\n}\n\nimpl<T> Ord for [T]\nwhere\n T: Ord,\n{\n // The first non-equal element of both arrays determines\n // the ordering for the whole array.\n fn cmp(self, other: [T]) -> Ordering {\n let mut result = self.len().cmp(other.len());\n for i in 0..self.len() {\n if result == Ordering::equal() {\n let result_i = self[i].cmp(other[i]);\n\n if result_i == Ordering::less() {\n result = result_i;\n } else if result_i == Ordering::greater() {\n result = result_i;\n }\n }\n }\n result\n }\n}\n\nimpl<A, B> Ord for (A, B)\nwhere\n A: Ord,\n B: Ord,\n{\n fn cmp(self, other: (A, B)) -> Ordering {\n let result = self.0.cmp(other.0);\n\n if result != Ordering::equal() {\n result\n } else {\n self.1.cmp(other.1)\n }\n }\n}\n\nimpl<A, B, C> Ord for (A, B, C)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n{\n fn cmp(self, other: (A, B, C)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D> Ord for (A, B, C, D)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n{\n fn cmp(self, other: (A, B, C, D)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n result\n }\n}\n\nimpl<A, B, C, D, E> Ord for (A, B, C, D, E)\nwhere\n A: Ord,\n B: Ord,\n C: Ord,\n D: Ord,\n E: Ord,\n{\n fn cmp(self, other: (A, B, C, D, E)) -> Ordering {\n let mut result = self.0.cmp(other.0);\n\n if result == Ordering::equal() {\n result = self.1.cmp(other.1);\n }\n\n if result == Ordering::equal() {\n result = self.2.cmp(other.2);\n }\n\n if result == Ordering::equal() {\n result = self.3.cmp(other.3);\n }\n\n if result == Ordering::equal() {\n result = self.4.cmp(other.4);\n }\n\n result\n }\n}\n\n// Compares and returns the maximum of two values.\n//\n// Returns the second argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::max(1, 2), 2);\n// assert_eq(cmp::max(2, 2), 2);\n// ```\npub fn max<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v1\n } else {\n v2\n }\n}\n\n// Compares and returns the minimum of two values.\n//\n// Returns the first argument if the comparison determines them to be equal.\n//\n// # Examples\n//\n// ```\n// use std::cmp;\n//\n// assert_eq(cmp::min(1, 2), 1);\n// assert_eq(cmp::min(2, 2), 2);\n// ```\npub fn min<T>(v1: T, v2: T) -> T\nwhere\n T: Ord,\n{\n if v1 > v2 {\n v2\n } else {\n v1\n }\n}\n\nmod cmp_tests {\n use crate::cmp::{max, min};\n\n #[test]\n fn sanity_check_min() {\n assert_eq(min(0 as u64, 1 as u64), 0);\n assert_eq(min(0 as u64, 0 as u64), 0);\n assert_eq(min(1 as u64, 1 as u64), 1);\n assert_eq(min(255 as u8, 0 as u8), 0);\n }\n\n #[test]\n fn sanity_check_max() {\n assert_eq(max(0 as u64, 1 as u64), 1);\n assert_eq(max(0 as u64, 0 as u64), 0);\n assert_eq(max(1 as u64, 1 as u64), 1);\n assert_eq(max(255 as u8, 0 as u8), 255);\n }\n}\n", path: "std/cmp.nr" }, "7": { source: 'use crate::{cmp::Eq, convert::From};\n\n/// A `BoundedVec<T, MaxLen>` is a growable storage similar to a `Vec<T>` except that it\n/// is bounded with a maximum possible length. Unlike `Vec`, `BoundedVec` is not implemented\n/// via slices and thus is not subject to the same restrictions slices are (notably, nested\n/// slices - and thus nested vectors as well - are disallowed).\n///\n/// Since a BoundedVec is backed by a normal array under the hood, growing the BoundedVec by\n/// pushing an additional element is also more efficient - the length only needs to be increased\n/// by one.\n///\n/// For these reasons `BoundedVec<T, N>` should generally be preferred over `Vec<T>` when there\n/// is a reasonable maximum bound that can be placed on the vector.\n///\n/// Example:\n///\n/// ```noir\n/// let mut vector: BoundedVec<Field, 10> = BoundedVec::new();\n/// for i in 0..5 {\n/// vector.push(i);\n/// }\n/// assert(vector.len() == 5);\n/// assert(vector.max_len() == 10);\n/// ```\npub struct BoundedVec<T, let MaxLen: u32> {\n storage: [T; MaxLen],\n len: u32,\n}\n\nimpl<T, let MaxLen: u32> BoundedVec<T, MaxLen> {\n /// Creates a new, empty vector of length zero.\n ///\n /// Since this container is backed by an array internally, it still needs an initial value\n /// to give each element. To resolve this, each element is zeroed internally. This value\n /// is guaranteed to be inaccessible unless `get_unchecked` is used.\n ///\n /// Example:\n ///\n /// ```noir\n /// let empty_vector: BoundedVec<Field, 10> = BoundedVec::new();\n /// assert(empty_vector.len() == 0);\n /// ```\n ///\n /// Note that whenever calling `new` the maximum length of the vector should always be specified\n /// via a type signature:\n ///\n /// ```noir\n /// fn good() -> BoundedVec<Field, 10> {\n /// // Ok! MaxLen is specified with a type annotation\n /// let v1: BoundedVec<Field, 3> = BoundedVec::new();\n /// let v2 = BoundedVec::new();\n ///\n /// // Ok! MaxLen is known from the type of `good`\'s return value\n /// v2\n /// }\n ///\n /// fn bad() {\n /// // Error: Type annotation needed\n /// // The compiler can\'t infer `MaxLen` from the following code:\n /// let mut v3 = BoundedVec::new();\n /// v3.push(5);\n /// }\n /// ```\n ///\n /// This defaulting of `MaxLen` (and numeric generics in general) to zero may change in future noir versions\n /// but for now make sure to use type annotations when using bounded vectors. Otherwise, you will receive a\n /// constraint failure at runtime when the vec is pushed to.\n pub fn new() -> Self {\n let zeroed = crate::mem::zeroed();\n BoundedVec { storage: [zeroed; MaxLen], len: 0 }\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this\n /// will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// let last = v.get(v.len() - 1);\n /// assert(first != last);\n /// }\n /// ```\n pub fn get(self, index: u32) -> T {\n assert(index < self.len, "Attempted to read past end of BoundedVec");\n self.get_unchecked(index)\n }\n\n /// Retrieves an element from the vector at the given index, starting from zero, without\n /// performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element,\n /// it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn sum_of_first_three<let N: u32>(v: BoundedVec<u32, N>) -> u32 {\n /// // Always ensure the length is larger than the largest\n /// // index passed to get_unchecked\n /// assert(v.len() > 2);\n /// let first = v.get_unchecked(0);\n /// let second = v.get_unchecked(1);\n /// let third = v.get_unchecked(2);\n /// first + second + third\n /// }\n /// ```\n pub fn get_unchecked(self, index: u32) -> T {\n self.storage[index]\n }\n\n /// Writes an element to the vector at the given index, starting from zero.\n ///\n /// If the given index is equal to or greater than the length of the vector, this will issue a constraint failure.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn foo<let N: u32>(v: BoundedVec<u32, N>) {\n /// let first = v.get(0);\n /// assert(first != 42);\n /// v.set(0, 42);\n /// let new_first = v.get(0);\n /// assert(new_first == 42);\n /// }\n /// ```\n pub fn set(&mut self, index: u32, value: T) {\n assert(index < self.len, "Attempted to write past end of BoundedVec");\n self.set_unchecked(index, value)\n }\n\n /// Writes an element to the vector at the given index, starting from zero, without performing a bounds check.\n ///\n /// Since this function does not perform a bounds check on length before accessing the element, it is unsafe! Use at your own risk!\n ///\n /// Example:\n ///\n /// ```noir\n /// fn set_unchecked_example() {\n /// let mut vec: BoundedVec<u32, 5> = BoundedVec::new();\n /// vec.extend_from_array([1, 2]);\n ///\n /// // Here we\'re safely writing within the valid range of `vec`\n /// // `vec` now has the value [42, 2]\n /// vec.set_unchecked(0, 42);\n ///\n /// // We can then safely read this value back out of `vec`.\n /// // Notice that we use the checked version of `get` which would prevent reading unsafe values.\n /// assert_eq(vec.get(0), 42);\n ///\n /// // We\'ve now written past the end of `vec`.\n /// // As this index is still within the maximum potential length of `v`,\n /// // it won\'t cause a constraint failure.\n /// vec.set_unchecked(2, 42);\n /// println(vec);\n ///\n /// // This will write past the end of the maximum potential length of `vec`,\n /// // it will then trigger a constraint failure.\n /// vec.set_unchecked(5, 42);\n /// println(vec);\n /// }\n /// ```\n pub fn set_unchecked(&mut self, index: u32, value: T) {\n self.storage[index] = value;\n }\n\n /// Pushes an element to the end of the vector. This increases the length\n /// of the vector by one.\n ///\n /// Panics if the new length of the vector will be greater than the max length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n ///\n /// v.push(1);\n /// v.push(2);\n ///\n /// // Panics with failed assertion "push out of bounds"\n /// v.push(3);\n /// ```\n pub fn push(&mut self, elem: T) {\n assert(self.len < MaxLen, "push out of bounds");\n\n self.storage[self.len] = elem;\n self.len += 1;\n }\n\n /// Returns the current length of this vector\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 4> = BoundedVec::new();\n /// assert(v.len() == 0);\n ///\n /// v.push(100);\n /// assert(v.len() == 1);\n ///\n /// v.push(200);\n /// v.push(300);\n /// v.push(400);\n /// assert(v.len() == 4);\n ///\n /// let _ = v.pop();\n /// let _ = v.pop();\n /// assert(v.len() == 2);\n /// ```\n pub fn len(self) -> u32 {\n self.len\n }\n\n /// Returns the maximum length of this vector. This is always\n /// equal to the `MaxLen` parameter this vector was initialized with.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.max_len() == 5);\n /// v.push(10);\n /// assert(v.max_len() == 5);\n /// ```\n pub fn max_len(_self: BoundedVec<T, MaxLen>) -> u32 {\n MaxLen\n }\n\n /// Returns the internal array within this vector.\n ///\n /// Since arrays in Noir are immutable, mutating the returned storage array will not mutate\n /// the storage held internally by this vector.\n ///\n /// Note that uninitialized elements may be zeroed out!\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 5> = BoundedVec::new();\n ///\n /// assert(v.storage() == [0, 0, 0, 0, 0]);\n ///\n /// v.push(57);\n /// assert(v.storage() == [57, 0, 0, 0, 0]);\n /// ```\n pub fn storage(self) -> [T; MaxLen] {\n self.storage\n }\n\n /// Pushes each element from the given array to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_array([2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_array<let Len: u32>(&mut self, array: [T; Len]) {\n let new_len = self.len + array.len();\n assert(new_len <= MaxLen, "extend_from_array out of bounds");\n for i in 0..array.len() {\n self.storage[self.len + i] = array[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the given slice to this vector.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut vec: BoundedVec<Field, 3> = BoundedVec::new();\n /// vec.extend_from_slice(&[2, 4]);\n ///\n /// assert(vec.len == 2);\n /// assert(vec.get(0) == 2);\n /// assert(vec.get(1) == 4);\n /// ```\n pub fn extend_from_slice(&mut self, slice: [T]) {\n let new_len = self.len + slice.len();\n assert(new_len <= MaxLen, "extend_from_slice out of bounds");\n for i in 0..slice.len() {\n self.storage[self.len + i] = slice[i];\n }\n self.len = new_len;\n }\n\n /// Pushes each element from the other vector to this vector. The length of\n /// the other vector is left unchanged.\n ///\n /// Panics if pushing each element would cause the length of this vector\n /// to exceed the maximum length.\n ///\n /// ```noir\n /// let mut v1: BoundedVec<Field, 5> = BoundedVec::new();\n /// let mut v2: BoundedVec<Field, 7> = BoundedVec::new();\n ///\n /// v2.extend_from_array([1, 2, 3]);\n /// v1.extend_from_bounded_vec(v2);\n ///\n /// assert(v1.storage() == [1, 2, 3, 0, 0]);\n /// assert(v2.storage() == [1, 2, 3, 0, 0, 0, 0]);\n /// ```\n pub fn extend_from_bounded_vec<let Len: u32>(&mut self, vec: BoundedVec<T, Len>) {\n let append_len = vec.len();\n let new_len = self.len + append_len;\n assert(new_len <= MaxLen, "extend_from_bounded_vec out of bounds");\n\n let mut exceeded_len = false;\n for i in 0..Len {\n exceeded_len |= i == append_len;\n if !exceeded_len {\n self.storage[self.len + i] = vec.get_unchecked(i);\n }\n }\n self.len = new_len;\n }\n\n /// Creates a new vector, populating it with values derived from an array input.\n /// The maximum length of the vector is determined based on the type signature.\n ///\n /// Example:\n ///\n /// ```noir\n /// let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array([1, 2, 3])\n /// ```\n pub fn from_array<let Len: u32>(array: [T; Len]) -> Self {\n assert(Len <= MaxLen, "from array out of bounds");\n let mut vec: BoundedVec<T, MaxLen> = BoundedVec::new();\n vec.extend_from_array(array);\n vec\n }\n\n /// Pops the element at the end of the vector. This will decrease the length\n /// of the vector by one.\n ///\n /// Panics if the vector is empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<Field, 2> = BoundedVec::new();\n /// v.push(1);\n /// v.push(2);\n ///\n /// let two = v.pop();\n /// let one = v.pop();\n ///\n /// assert(two == 2);\n /// assert(one == 1);\n ///\n /// // error: cannot pop from an empty vector\n /// let _ = v.pop();\n /// ```\n pub fn pop(&mut self) -> T {\n assert(self.len > 0);\n self.len -= 1;\n\n let elem = self.storage[self.len];\n self.storage[self.len] = crate::mem::zeroed();\n elem\n }\n\n /// Returns true if the given predicate returns true for any element\n /// in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let mut v: BoundedVec<u32, 3> = BoundedVec::new();\n /// v.extend_from_array([2, 4, 6]);\n ///\n /// let all_even = !v.any(|elem: u32| elem % 2 != 0);\n /// assert(all_even);\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n let mut exceeded_len = false;\n for i in 0..MaxLen {\n exceeded_len |= i == self.len;\n if !exceeded_len {\n ret |= predicate(self.storage[i]);\n }\n }\n ret\n }\n\n /// Creates a new vector of equal size by calling a closure on each element in this vector.\n ///\n /// Example:\n ///\n /// ```noir\n /// let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n /// let result = vec.map(|value| value * 2);\n ///\n /// let expected = BoundedVec::from_array([2, 4, 6, 8]);\n /// assert_eq(result, expected);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> BoundedVec<U, MaxLen> {\n let mut ret = BoundedVec::new();\n ret.len = self.len();\n for i in 0..MaxLen {\n if i < self.len() {\n ret.storage[i] = f(self.get_unchecked(i));\n }\n }\n ret\n }\n}\n\nimpl<T, let MaxLen: u32> Eq for BoundedVec<T, MaxLen>\nwhere\n T: Eq,\n{\n fn eq(self, other: BoundedVec<T, MaxLen>) -> bool {\n // TODO: https://github.com/noir-lang/noir/issues/4837\n //\n // We make the assumption that the user has used the proper interface for working with `BoundedVec`s\n // rather than directly manipulating the internal fields as this can result in an inconsistent internal state.\n (self.len == other.len) & (self.storage == other.storage)\n }\n}\n\nimpl<T, let MaxLen: u32, let Len: u32> From<[T; Len]> for BoundedVec<T, MaxLen> {\n fn from(array: [T; Len]) -> BoundedVec<T, MaxLen> {\n BoundedVec::from_array(array)\n }\n}\n\nmod bounded_vec_tests {\n\n mod get {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test(should_fail_with = "Attempted to read past end of BoundedVec")]\n fn panics_when_reading_elements_past_end_of_vec() {\n let vec: BoundedVec<Field, 5> = BoundedVec::new();\n\n crate::println(vec.get(0));\n }\n }\n\n mod set {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn set_updates_values_properly() {\n let mut vec = BoundedVec::from_array([0, 0, 0, 0, 0]);\n\n vec.set(0, 42);\n assert_eq(vec.storage, [42, 0, 0, 0, 0]);\n\n vec.set(1, 43);\n assert_eq(vec.storage, [42, 43, 0, 0, 0]);\n\n vec.set(2, 44);\n assert_eq(vec.storage, [42, 43, 44, 0, 0]);\n\n vec.set(1, 10);\n assert_eq(vec.storage, [42, 10, 44, 0, 0]);\n\n vec.set(0, 0);\n assert_eq(vec.storage, [0, 10, 44, 0, 0]);\n }\n\n #[test(should_fail_with = "Attempted to write past end of BoundedVec")]\n fn panics_when_writing_elements_past_end_of_vec() {\n let mut vec: BoundedVec<Field, 5> = BoundedVec::new();\n vec.set(0, 42);\n\n // Need to use println to avoid DIE removing the write operation.\n crate::println(vec.get(0));\n }\n }\n\n mod map {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn applies_function_correctly() {\n // docs:start:bounded-vec-map-example\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| value * 2);\n // docs:end:bounded-vec-map-example\n let expected = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn applies_function_that_changes_return_type() {\n let vec: BoundedVec<u32, 4> = BoundedVec::from_array([1, 2, 3, 4]);\n let result = vec.map(|value| (value * 2) as Field);\n let expected: BoundedVec<Field, 4> = BoundedVec::from_array([2, 4, 6, 8]);\n\n assert_eq(result, expected);\n }\n\n #[test]\n fn does_not_apply_function_past_len() {\n let vec: BoundedVec<u32, 3> = BoundedVec::from_array([0, 1]);\n let result = vec.map(|value| if value == 0 { 5 } else { value });\n let expected = BoundedVec::from_array([5, 1]);\n\n assert_eq(result, expected);\n assert_eq(result.storage()[2], 0);\n }\n }\n\n mod from_array {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty() {\n let empty_array: [Field; 0] = [];\n let bounded_vec = BoundedVec::from_array([]);\n\n assert_eq(bounded_vec.max_len(), 0);\n assert_eq(bounded_vec.len(), 0);\n assert_eq(bounded_vec.storage(), empty_array);\n }\n\n #[test]\n fn equal_len() {\n let array = [1, 2, 3];\n let bounded_vec = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 3);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage(), array);\n }\n\n #[test]\n fn max_len_greater_then_array_len() {\n let array = [1, 2, 3];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from_array(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 3);\n assert_eq(bounded_vec.storage()[0], 1);\n assert_eq(bounded_vec.storage()[1], 2);\n assert_eq(bounded_vec.storage()[2], 3);\n }\n\n #[test(should_fail_with = "from array out of bounds")]\n fn max_len_lower_then_array_len() {\n let _: BoundedVec<Field, 2> = BoundedVec::from_array([0; 3]);\n }\n }\n\n mod trait_from {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn simple() {\n let array = [1, 2];\n let bounded_vec: BoundedVec<Field, 10> = BoundedVec::from(array);\n\n assert_eq(bounded_vec.max_len(), 10);\n assert_eq(bounded_vec.len(), 2);\n assert_eq(bounded_vec.storage()[0], 1);\n assert_eq(bounded_vec.storage()[1], 2);\n }\n }\n\n mod trait_eq {\n use crate::collections::bounded_vec::BoundedVec;\n\n #[test]\n fn empty_equality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n\n assert_eq(bounded_vec1, bounded_vec2);\n }\n\n #[test]\n fn inequality() {\n let mut bounded_vec1: BoundedVec<Field, 3> = BoundedVec::new();\n let mut bounded_vec2: BoundedVec<Field, 3> = BoundedVec::new();\n bounded_vec1.push(1);\n bounded_vec2.push(2);\n\n assert(bounded_vec1 != bounded_vec2);\n }\n }\n}\n', path: "std/collections/bounded_vec.nr" }, "25": { source: `use crate::field::field_less_than;
|
|
109
|
-
use crate::runtime::is_unconstrained;
|
|
110
|
-
|
|
111
|
-
// The low and high decomposition of the field modulus
|
|
112
|
-
global PLO: Field = 53438638232309528389504892708671455233;
|
|
113
|
-
global PHI: Field = 64323764613183177041862057485226039389;
|
|
114
|
-
|
|
115
|
-
pub(crate) global TWO_POW_128: Field = 0x100000000000000000000000000000000;
|
|
116
|
-
global TWO_POW_64: Field = 0x10000000000000000;
|
|
117
|
-
|
|
118
|
-
// Decomposes a single field into two 16 byte fields.
|
|
119
|
-
fn compute_decomposition(mut x: Field) -> (Field, Field) {
|
|
120
|
-
// Here's we're taking advantage of truncating 64 bit limbs from the input field
|
|
121
|
-
// and then subtracting them from the input such the field division is equivalent to integer division.
|
|
122
|
-
let low_lower_64 = (x as u64) as Field;
|
|
123
|
-
x = (x - low_lower_64) / TWO_POW_64;
|
|
124
|
-
let low_upper_64 = (x as u64) as Field;
|
|
125
|
-
|
|
126
|
-
let high = (x - low_upper_64) / TWO_POW_64;
|
|
127
|
-
let low = low_upper_64 * TWO_POW_64 + low_lower_64;
|
|
128
|
-
|
|
129
|
-
(low, high)
|
|
130
|
-
}
|
|
131
|
-
|
|
132
|
-
pub(crate) unconstrained fn decompose_hint(x: Field) -> (Field, Field) {
|
|
133
|
-
compute_decomposition(x)
|
|
134
|
-
}
|
|
135
|
-
|
|
136
|
-
unconstrained fn lte_hint(x: Field, y: Field) -> bool {
|
|
137
|
-
if x == y {
|
|
138
|
-
true
|
|
139
|
-
} else {
|
|
140
|
-
field_less_than(x, y)
|
|
141
|
-
}
|
|
142
|
-
}
|
|
143
|
-
|
|
144
|
-
// Assert that (alo > blo && ahi >= bhi) || (alo <= blo && ahi > bhi)
|
|
145
|
-
fn assert_gt_limbs(a: (Field, Field), b: (Field, Field)) {
|
|
146
|
-
let (alo, ahi) = a;
|
|
147
|
-
let (blo, bhi) = b;
|
|
148
|
-
unsafe {
|
|
149
|
-
let borrow = lte_hint(alo, blo);
|
|
150
|
-
|
|
151
|
-
let rlo = alo - blo - 1 + (borrow as Field) * TWO_POW_128;
|
|
152
|
-
let rhi = ahi - bhi - (borrow as Field);
|
|
153
|
-
|
|
154
|
-
rlo.assert_max_bit_size::<128>();
|
|
155
|
-
rhi.assert_max_bit_size::<128>();
|
|
156
|
-
}
|
|
157
|
-
}
|
|
158
|
-
|
|
159
|
-
/// Decompose a single field into two 16 byte fields.
|
|
160
|
-
pub fn decompose(x: Field) -> (Field, Field) {
|
|
161
|
-
if is_unconstrained() {
|
|
162
|
-
compute_decomposition(x)
|
|
163
|
-
} else {
|
|
164
|
-
unsafe {
|
|
165
|
-
// Take hints of the decomposition
|
|
166
|
-
let (xlo, xhi) = decompose_hint(x);
|
|
167
|
-
|
|
168
|
-
// Range check the limbs
|
|
169
|
-
xlo.assert_max_bit_size::<128>();
|
|
170
|
-
xhi.assert_max_bit_size::<128>();
|
|
171
|
-
|
|
172
|
-
// Check that the decomposition is correct
|
|
173
|
-
assert_eq(x, xlo + TWO_POW_128 * xhi);
|
|
174
|
-
|
|
175
|
-
// Assert that the decomposition of P is greater than the decomposition of x
|
|
176
|
-
assert_gt_limbs((PLO, PHI), (xlo, xhi));
|
|
177
|
-
(xlo, xhi)
|
|
178
|
-
}
|
|
179
|
-
}
|
|
180
|
-
}
|
|
181
|
-
|
|
182
|
-
pub fn assert_gt(a: Field, b: Field) {
|
|
183
|
-
if is_unconstrained() {
|
|
184
|
-
assert(unsafe { field_less_than(b, a) });
|
|
185
|
-
} else {
|
|
186
|
-
// Decompose a and b
|
|
187
|
-
let a_limbs = decompose(a);
|
|
188
|
-
let b_limbs = decompose(b);
|
|
189
|
-
|
|
190
|
-
// Assert that a_limbs is greater than b_limbs
|
|
191
|
-
assert_gt_limbs(a_limbs, b_limbs)
|
|
192
|
-
}
|
|
193
|
-
}
|
|
194
|
-
|
|
195
|
-
pub fn assert_lt(a: Field, b: Field) {
|
|
196
|
-
assert_gt(b, a);
|
|
197
|
-
}
|
|
198
|
-
|
|
199
|
-
pub fn gt(a: Field, b: Field) -> bool {
|
|
200
|
-
if is_unconstrained() {
|
|
201
|
-
unsafe {
|
|
202
|
-
field_less_than(b, a)
|
|
203
|
-
}
|
|
204
|
-
} else if a == b {
|
|
205
|
-
false
|
|
206
|
-
} else {
|
|
207
|
-
// Take a hint of the comparison and verify it
|
|
208
|
-
unsafe {
|
|
209
|
-
if field_less_than(a, b) {
|
|
210
|
-
assert_gt(b, a);
|
|
211
|
-
false
|
|
212
|
-
} else {
|
|
213
|
-
assert_gt(a, b);
|
|
214
|
-
true
|
|
215
|
-
}
|
|
216
|
-
}
|
|
217
|
-
}
|
|
218
|
-
}
|
|
219
|
-
|
|
220
|
-
pub fn lt(a: Field, b: Field) -> bool {
|
|
221
|
-
gt(b, a)
|
|
222
|
-
}
|
|
223
|
-
|
|
224
|
-
mod tests {
|
|
225
|
-
// TODO: Allow imports from "super"
|
|
226
|
-
use crate::field::bn254::{assert_gt, decompose, gt, lte_hint, PHI, PLO, TWO_POW_128};
|
|
227
|
-
|
|
228
|
-
#[test]
|
|
229
|
-
fn check_decompose() {
|
|
230
|
-
assert_eq(decompose(TWO_POW_128), (0, 1));
|
|
231
|
-
assert_eq(decompose(TWO_POW_128 + 0x1234567890), (0x1234567890, 1));
|
|
232
|
-
assert_eq(decompose(0x1234567890), (0x1234567890, 0));
|
|
233
|
-
}
|
|
234
|
-
|
|
235
|
-
#[test]
|
|
236
|
-
unconstrained fn check_decompose_unconstrained() {
|
|
237
|
-
assert_eq(decompose(TWO_POW_128), (0, 1));
|
|
238
|
-
assert_eq(decompose(TWO_POW_128 + 0x1234567890), (0x1234567890, 1));
|
|
239
|
-
assert_eq(decompose(0x1234567890), (0x1234567890, 0));
|
|
240
|
-
}
|
|
241
|
-
|
|
242
|
-
#[test]
|
|
243
|
-
unconstrained fn check_lte_hint() {
|
|
244
|
-
assert(lte_hint(0, 1));
|
|
245
|
-
assert(lte_hint(0, 0x100));
|
|
246
|
-
assert(lte_hint(0x100, TWO_POW_128 - 1));
|
|
247
|
-
assert(!lte_hint(0 - 1, 0));
|
|
248
|
-
|
|
249
|
-
assert(lte_hint(0, 0));
|
|
250
|
-
assert(lte_hint(0x100, 0x100));
|
|
251
|
-
assert(lte_hint(0 - 1, 0 - 1));
|
|
252
|
-
}
|
|
253
|
-
|
|
254
|
-
#[test]
|
|
255
|
-
fn check_assert_gt() {
|
|
256
|
-
assert_gt(1, 0);
|
|
257
|
-
assert_gt(0x100, 0);
|
|
258
|
-
assert_gt((0 - 1), (0 - 2));
|
|
259
|
-
assert_gt(TWO_POW_128, 0);
|
|
260
|
-
assert_gt(0 - 1, 0);
|
|
261
|
-
}
|
|
262
|
-
|
|
263
|
-
#[test]
|
|
264
|
-
unconstrained fn check_assert_gt_unconstrained() {
|
|
265
|
-
assert_gt(1, 0);
|
|
266
|
-
assert_gt(0x100, 0);
|
|
267
|
-
assert_gt((0 - 1), (0 - 2));
|
|
268
|
-
assert_gt(TWO_POW_128, 0);
|
|
269
|
-
assert_gt(0 - 1, 0);
|
|
270
|
-
}
|
|
271
|
-
|
|
272
|
-
#[test]
|
|
273
|
-
fn check_gt() {
|
|
274
|
-
assert(gt(1, 0));
|
|
275
|
-
assert(gt(0x100, 0));
|
|
276
|
-
assert(gt((0 - 1), (0 - 2)));
|
|
277
|
-
assert(gt(TWO_POW_128, 0));
|
|
278
|
-
assert(!gt(0, 0));
|
|
279
|
-
assert(!gt(0, 0x100));
|
|
280
|
-
assert(gt(0 - 1, 0 - 2));
|
|
281
|
-
assert(!gt(0 - 2, 0 - 1));
|
|
282
|
-
}
|
|
283
|
-
|
|
284
|
-
#[test]
|
|
285
|
-
unconstrained fn check_gt_unconstrained() {
|
|
286
|
-
assert(gt(1, 0));
|
|
287
|
-
assert(gt(0x100, 0));
|
|
288
|
-
assert(gt((0 - 1), (0 - 2)));
|
|
289
|
-
assert(gt(TWO_POW_128, 0));
|
|
290
|
-
assert(!gt(0, 0));
|
|
291
|
-
assert(!gt(0, 0x100));
|
|
292
|
-
assert(gt(0 - 1, 0 - 2));
|
|
293
|
-
assert(!gt(0 - 2, 0 - 1));
|
|
294
|
-
}
|
|
295
|
-
|
|
296
|
-
#[test]
|
|
297
|
-
fn check_plo_phi() {
|
|
298
|
-
assert_eq(PLO + PHI * TWO_POW_128, 0);
|
|
299
|
-
let p_bytes = crate::field::modulus_le_bytes();
|
|
300
|
-
let mut p_low: Field = 0;
|
|
301
|
-
let mut p_high: Field = 0;
|
|
302
|
-
|
|
303
|
-
let mut offset = 1;
|
|
304
|
-
for i in 0..16 {
|
|
305
|
-
p_low += (p_bytes[i] as Field) * offset;
|
|
306
|
-
p_high += (p_bytes[i + 16] as Field) * offset;
|
|
307
|
-
offset *= 256;
|
|
308
|
-
}
|
|
309
|
-
assert_eq(p_low, PLO);
|
|
310
|
-
assert_eq(p_high, PHI);
|
|
311
|
-
}
|
|
312
|
-
}
|
|
313
|
-
`, path: "std/field/bn254.nr" }, "26": { source: "pub mod bn254;\nuse crate::runtime::is_unconstrained;\nuse bn254::lt as bn254_lt;\n\nimpl Field {\n /// Asserts that `self` can be represented in `bit_size` bits.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^{bit_size}`.\n // docs:start:assert_max_bit_size\n pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {\n // docs:end:assert_max_bit_size\n assert(BIT_SIZE < modulus_num_bits() as u32);\n self.__assert_max_bit_size(BIT_SIZE);\n }\n\n #[builtin(apply_range_constraint)]\n fn __assert_max_bit_size(self, bit_size: u32) {}\n\n /// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n /// This slice will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n /// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n /// wrap around due to overflow when verifying the decomposition.\n #[builtin(to_le_bits)]\n // docs:start:to_le_bits\n pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {}\n // docs:end:to_le_bits\n\n /// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n /// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n /// wrap around due to overflow when verifying the decomposition.\n #[builtin(to_be_bits)]\n // docs:start:to_be_bits\n pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {}\n // docs:end:to_be_bits\n\n /// Decomposes `self` into its little endian byte decomposition as a `[u8;N]` array\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_le_bytes\n pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_le_bytes\n // Compute the byte decomposition\n let bytes = self.to_le_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[N - 1 - i] != p[N - 1 - i]) {\n assert(bytes[N - 1 - i] < p[N - 1 - i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n /// Decomposes `self` into its big endian byte decomposition as a `[u8;N]` array of length required to represent the field modulus\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_be_bytes\n pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_be_bytes\n // Compute the byte decomposition\n let bytes = self.to_be_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_be_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[i] != p[i]) {\n assert(bytes[i] < p[i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n // docs:start:to_le_radix\n pub fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n crate::assert_constant(radix);\n }\n self.__to_le_radix(radix)\n }\n // docs:end:to_le_radix\n\n // docs:start:to_be_radix\n pub fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n crate::assert_constant(radix);\n }\n self.__to_be_radix(radix)\n }\n // docs:end:to_be_radix\n\n // `_radix` must be less than 256\n #[builtin(to_le_radix)]\n fn __to_le_radix<let N: u32>(self, radix: u32) -> [u8; N] {}\n\n #[builtin(to_be_radix)]\n fn __to_be_radix<let N: u32>(self, radix: u32) -> [u8; N] {}\n\n // Returns self to the power of the given exponent value.\n // Caution: we assume the exponent fits into 32 bits\n // using a bigger bit size impacts negatively the performance and should be done only if the exponent does not fit in 32 bits\n pub fn pow_32(self, exponent: Field) -> Field {\n let mut r: Field = 1;\n let b: [u1; 32] = exponent.to_le_bits();\n\n for i in 1..33 {\n r *= r;\n r = (b[32 - i] as Field) * (r * self) + (1 - b[32 - i] as Field) * r;\n }\n r\n }\n\n // Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x `elem` {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.\n pub fn sgn0(self) -> u1 {\n self as u1\n }\n\n pub fn lt(self, another: Field) -> bool {\n if crate::compat::is_bn254() {\n bn254_lt(self, another)\n } else {\n lt_fallback(self, another)\n }\n }\n\n /// Convert a little endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_le_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[i] as Field) * v;\n v = v * 256;\n }\n result\n }\n\n /// Convert a big endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_be_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[N - 1 - i] as Field) * v;\n v = v * 256;\n }\n result\n }\n}\n\n#[builtin(modulus_num_bits)]\npub comptime fn modulus_num_bits() -> u64 {}\n\n#[builtin(modulus_be_bits)]\npub comptime fn modulus_be_bits() -> [u1] {}\n\n#[builtin(modulus_le_bits)]\npub comptime fn modulus_le_bits() -> [u1] {}\n\n#[builtin(modulus_be_bytes)]\npub comptime fn modulus_be_bytes() -> [u8] {}\n\n#[builtin(modulus_le_bytes)]\npub comptime fn modulus_le_bytes() -> [u8] {}\n\n/// An unconstrained only built in to efficiently compare fields.\n#[builtin(field_less_than)]\nunconstrained fn __field_less_than(x: Field, y: Field) -> bool {}\n\npub(crate) unconstrained fn field_less_than(x: Field, y: Field) -> bool {\n __field_less_than(x, y)\n}\n\n// Convert a 32 byte array to a field element by modding\npub fn bytes32_to_field(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..16 {\n high = high + (bytes32[15 - i] as Field) * v;\n low = low + (bytes32[16 + 15 - i] as Field) * v;\n v = v * 256;\n }\n // Abuse that a % p + b % p = (a + b) % p and that low < p\n low + high * v\n}\n\nfn lt_fallback(x: Field, y: Field) -> bool {\n if is_unconstrained() {\n unsafe {\n field_less_than(x, y)\n }\n } else {\n let x_bytes: [u8; 32] = x.to_le_bytes();\n let y_bytes: [u8; 32] = y.to_le_bytes();\n let mut x_is_lt = false;\n let mut done = false;\n for i in 0..32 {\n if (!done) {\n let x_byte = x_bytes[32 - 1 - i] as u8;\n let y_byte = y_bytes[32 - 1 - i] as u8;\n let bytes_match = x_byte == y_byte;\n if !bytes_match {\n x_is_lt = x_byte < y_byte;\n done = true;\n }\n }\n }\n x_is_lt\n }\n}\n\nmod tests {\n use super::field_less_than;\n\n #[test]\n // docs:start:to_be_bits_example\n fn test_to_be_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_be_bits();\n assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);\n }\n // docs:end:to_be_bits_example\n\n #[test]\n // docs:start:to_le_bits_example\n fn test_to_le_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_le_bits();\n assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);\n }\n // docs:end:to_le_bits_example\n\n #[test]\n // docs:start:to_be_bytes_example\n fn test_to_be_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_bytes();\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_bytes_example\n\n #[test]\n // docs:start:to_le_bytes_example\n fn test_to_le_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_bytes();\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_bytes_example\n\n #[test]\n // docs:start:to_be_radix_example\n fn test_to_be_radix() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_radix(256);\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_radix_example\n\n #[test]\n // docs:start:to_le_radix_example\n fn test_to_le_radix() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_radix(256);\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_radix_example\n\n #[test]\n unconstrained fn test_field_less_than() {\n assert(field_less_than(0, 1));\n assert(field_less_than(0, 0x100));\n assert(field_less_than(0x100, 0 - 1));\n assert(!field_less_than(0 - 1, 0));\n }\n}\n", path: "std/field/mod.nr" }, "27": { source: 'use crate::runtime::is_unconstrained;\n\nglobal BLOCK_SIZE_IN_BYTES: u32 = 136; //(1600 - BITS * 2) / WORD_SIZE;\nglobal WORD_SIZE: u32 = 8; // Limbs are made up of u64s so 8 bytes each.\nglobal LIMBS_PER_BLOCK: u32 = BLOCK_SIZE_IN_BYTES / WORD_SIZE;\nglobal NUM_KECCAK_LANES: u32 = 25;\n\n#[foreign(keccakf1600)]\nfn keccakf1600(input: [u64; 25]) -> [u64; 25] {}\n\n#[no_predicates]\npub(crate) fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32] {\n assert(N >= message_size);\n\n // Copy input to block bytes. For that we\'ll need at least input bytes (N)\n // but we want it to be padded to a multiple of BLOCK_SIZE_IN_BYTES.\n let mut block_bytes = [0; ((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES];\n if is_unconstrained() {\n for i in 0..message_size {\n block_bytes[i] = input[i];\n }\n } else {\n for i in 0..N {\n if i < message_size {\n block_bytes[i] = input[i];\n }\n }\n }\n\n //1. format_input_lanes\n let max_blocks = (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n //maximum number of bytes to hash\n let real_max_blocks = (message_size + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n let real_blocks_bytes = real_max_blocks * BLOCK_SIZE_IN_BYTES;\n\n block_bytes[message_size] = 1;\n block_bytes[real_blocks_bytes - 1] = 0x80;\n\n // populate a vector of 64-bit limbs from our byte array\n let mut sliced_buffer =\n [0; (((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES) / WORD_SIZE];\n for i in 0..sliced_buffer.len() {\n let limb_start = WORD_SIZE * i;\n\n let mut sliced = 0;\n let mut v = 1;\n for k in 0..WORD_SIZE {\n sliced += v * (block_bytes[limb_start + k] as Field);\n v *= 256;\n }\n\n sliced_buffer[i] = sliced as u64;\n }\n\n //2. sponge_absorb\n let mut state: [u64; NUM_KECCAK_LANES] = [0; NUM_KECCAK_LANES];\n // When in an unconstrained runtime we can take advantage of runtime loop bounds,\n // thus allowing us to simplify the loop body.\n if is_unconstrained() {\n for i in 0..real_max_blocks {\n if (i == 0) {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = sliced_buffer[j];\n }\n } else {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n }\n state = keccakf1600(state);\n }\n } else {\n // `real_max_blocks` is guaranteed to at least be `1`\n // We peel out the first block as to avoid a conditional inside of the loop.\n // Otherwise, a dynamic predicate can cause a blowup in a constrained runtime.\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = sliced_buffer[j];\n }\n state = keccakf1600(state);\n for i in 1..max_blocks {\n if i < real_max_blocks {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n state = keccakf1600(state);\n }\n }\n }\n\n //3. sponge_squeeze\n let mut result = [0; 32];\n for i in 0..4 {\n let lane = state[i] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n for j in 0..8 {\n result[8 * i + j] = lane_le[j];\n }\n }\n result\n}\n\nmod tests {\n use super::keccak256;\n\n #[test]\n fn smoke_test() {\n let input = [0xbd];\n let result = [\n 0x5a, 0x50, 0x2f, 0x9f, 0xca, 0x46, 0x7b, 0x26, 0x6d, 0x5b, 0x78, 0x33, 0x65, 0x19,\n 0x37, 0xe8, 0x05, 0x27, 0x0c, 0xa3, 0xf3, 0xaf, 0x1c, 0x0d, 0xd2, 0x46, 0x2d, 0xca,\n 0x4b, 0x3b, 0x1a, 0xbf,\n ];\n assert_eq(keccak256(input, input.len()), result);\n }\n\n #[test]\n fn hash_hello_world() {\n let input = "Hello world!".as_bytes();\n let result = [\n 0xec, 0xd0, 0xe1, 0x8, 0xa9, 0x8e, 0x19, 0x2a, 0xf1, 0xd2, 0xc2, 0x50, 0x55, 0xf4, 0xe3,\n 0xbe, 0xd7, 0x84, 0xb5, 0xc8, 0x77, 0x20, 0x4e, 0x73, 0x21, 0x9a, 0x52, 0x3, 0x25, 0x1f,\n 0xea, 0xab,\n ];\n assert_eq(keccak256(input, input.len()), result);\n }\n\n #[test]\n fn var_size_hash() {\n let input = [\n 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,\n 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222,\n 223,\n ];\n let result = [\n 226, 37, 115, 94, 94, 196, 72, 116, 194, 105, 79, 233, 65, 12, 30, 94, 181, 131, 170,\n 219, 171, 166, 236, 88, 143, 67, 255, 160, 248, 214, 39, 129,\n ];\n assert_eq(keccak256(input, 13), result);\n }\n\n #[test]\n fn hash_longer_than_136_bytes() {\n let input = "123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789"\n .as_bytes();\n assert(input.len() > 136);\n\n let result = [\n 0x1d, 0xca, 0xeb, 0xdf, 0xd9, 0xd6, 0x24, 0x67, 0x1c, 0x18, 0x16, 0xda, 0xd, 0x8a, 0xeb,\n 0xa8, 0x75, 0x71, 0x2c, 0xc, 0x89, 0xe0, 0x25, 0x2, 0xe8, 0xb6, 0x5e, 0x16, 0x5, 0x55,\n 0xe4, 0x40,\n ];\n assert_eq(keccak256(input, input.len()), result);\n }\n}\n', path: "std/hash/keccak.nr" }, "28": { source: 'pub mod poseidon;\npub mod poseidon2;\npub mod keccak;\npub mod sha256;\npub mod sha512;\n\nuse crate::default::Default;\nuse crate::embedded_curve_ops::{\n EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul, multi_scalar_mul_array_return,\n};\nuse crate::meta::derive_via;\nuse crate::uint128::U128;\n\n// Kept for backwards compatibility\npub use sha256::{digest, sha256, sha256_compression, sha256_var};\n\n#[foreign(blake2s)]\n// docs:start:blake2s\npub fn blake2s<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake2s\n{}\n\n#[foreign(blake3)]\n// docs:start:blake3\npub fn blake3<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake3\n{}\n\n// docs:start:pedersen_commitment\npub fn pedersen_commitment<let N: u32>(input: [Field; N]) -> EmbeddedCurvePoint {\n // docs:end:pedersen_commitment\n pedersen_commitment_with_separator(input, 0)\n}\n\n#[inline_always]\npub fn pedersen_commitment_with_separator<let N: u32>(\n input: [Field; N],\n separator: u32,\n) -> EmbeddedCurvePoint {\n let mut points = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N];\n for i in 0..N {\n // we use the unsafe version because the multi_scalar_mul will constrain the scalars.\n points[i] = from_field_unsafe(input[i]);\n }\n let generators = derive_generators("DEFAULT_DOMAIN_SEPARATOR".as_bytes(), separator);\n multi_scalar_mul(generators, points)\n}\n\n// docs:start:pedersen_hash\npub fn pedersen_hash<let N: u32>(input: [Field; N]) -> Field\n// docs:end:pedersen_hash\n{\n pedersen_hash_with_separator(input, 0)\n}\n\n#[no_predicates]\npub fn pedersen_hash_with_separator<let N: u32>(input: [Field; N], separator: u32) -> Field {\n let mut scalars: [EmbeddedCurveScalar; N + 1] = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N + 1];\n let mut generators: [EmbeddedCurvePoint; N + 1] =\n [EmbeddedCurvePoint::point_at_infinity(); N + 1];\n let domain_generators: [EmbeddedCurvePoint; N] =\n derive_generators("DEFAULT_DOMAIN_SEPARATOR".as_bytes(), separator);\n\n for i in 0..N {\n scalars[i] = from_field_unsafe(input[i]);\n generators[i] = domain_generators[i];\n }\n scalars[N] = EmbeddedCurveScalar { lo: N as Field, hi: 0 as Field };\n\n let length_generator: [EmbeddedCurvePoint; 1] =\n derive_generators("pedersen_hash_length".as_bytes(), 0);\n generators[N] = length_generator[0];\n multi_scalar_mul_array_return(generators, scalars)[0]\n}\n\n#[field(bn254)]\n#[inline_always]\npub fn derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {\n crate::assert_constant(domain_separator_bytes);\n // TODO(https://github.com/noir-lang/noir/issues/5672): Add back assert_constant on starting_index\n __derive_generators(domain_separator_bytes, starting_index)\n}\n\n#[builtin(derive_pedersen_generators)]\n#[field(bn254)]\nfn __derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {}\n\n#[field(bn254)]\n// Same as from_field but:\n// does not assert the limbs are 128 bits\n// does not assert the decomposition does not overflow the EmbeddedCurveScalar\nfn from_field_unsafe(scalar: Field) -> EmbeddedCurveScalar {\n let (xlo, xhi) = unsafe { crate::field::bn254::decompose_hint(scalar) };\n // Check that the decomposition is correct\n assert_eq(scalar, xlo + crate::field::bn254::TWO_POW_128 * xhi);\n EmbeddedCurveScalar { lo: xlo, hi: xhi }\n}\n\npub fn hash_to_field(inputs: [Field]) -> Field {\n let mut sum = 0;\n\n for input in inputs {\n let input_bytes: [u8; 32] = input.to_le_bytes();\n sum += crate::field::bytes32_to_field(blake2s(input_bytes));\n }\n\n sum\n}\n\n// docs:start:keccak256\npub fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32]\n// docs:end:keccak256\n{\n crate::hash::keccak::keccak256(input, message_size)\n}\n\n#[foreign(poseidon2_permutation)]\npub fn poseidon2_permutation<let N: u32>(_input: [Field; N], _state_length: u32) -> [Field; N] {}\n\n// Generic hashing support.\n// Partially ported and impacted by rust.\n\n// Hash trait shall be implemented per type.\n#[derive_via(derive_hash)]\npub trait Hash {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher;\n}\n\n// docs:start:derive_hash\ncomptime fn derive_hash(s: StructDefinition) -> Quoted {\n let name = quote { Hash };\n let signature = quote { fn hash<H>(_self: Self, _state: &mut H) where H: std::hash::Hasher };\n let for_each_field = |name| quote { _self.$name.hash(_state); };\n crate::meta::make_trait_impl(\n s,\n name,\n signature,\n for_each_field,\n quote {},\n |fields| fields,\n )\n}\n// docs:end:derive_hash\n\n// Hasher trait shall be implemented by algorithms to provide hash-agnostic means.\n// TODO: consider making the types generic here ([u8], [Field], etc.)\npub trait Hasher {\n fn finish(self) -> Field;\n\n fn write(&mut self, input: Field);\n}\n\n// BuildHasher is a factory trait, responsible for production of specific Hasher.\npub trait BuildHasher<H>\nwhere\n H: Hasher,\n{\n fn build_hasher(self) -> H;\n}\n\npub struct BuildHasherDefault<H>;\n\nimpl<H> BuildHasher<H> for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn build_hasher(_self: Self) -> H {\n H::default()\n }\n}\n\nimpl<H> Default for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn default() -> Self {\n BuildHasherDefault {}\n }\n}\n\nimpl Hash for Field {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self);\n }\n}\n\nimpl Hash for u1 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for bool {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for () {\n fn hash<H>(_self: Self, _state: &mut H)\n where\n H: Hasher,\n {}\n}\n\nimpl Hash for U128 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self.lo as Field);\n H::write(state, self.hi as Field);\n }\n}\n\nimpl<T, let N: u32> Hash for [T; N]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<T> Hash for [T]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.len().hash(state);\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<A, B> Hash for (A, B)\nwhere\n A: Hash,\n B: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n }\n}\n\nimpl<A, B, C> Hash for (A, B, C)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n }\n}\n\nimpl<A, B, C, D> Hash for (A, B, C, D)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n }\n}\n\nimpl<A, B, C, D, E> Hash for (A, B, C, D, E)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n E: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n self.4.hash(state);\n }\n}\n\n// Some test vectors for Pedersen hash and Pedersen Commitment.\n// They have been generated using the same functions so the tests are for now useless\n// but they will be useful when we switch to Noir implementation.\n#[test]\nfn assert_pedersen() {\n assert_eq(\n pedersen_hash_with_separator([1], 1),\n 0x1b3f4b1a83092a13d8d1a59f7acb62aba15e7002f4440f2275edb99ebbc2305f,\n );\n assert_eq(\n pedersen_commitment_with_separator([1], 1),\n EmbeddedCurvePoint {\n x: 0x054aa86a73cb8a34525e5bbed6e43ba1198e860f5f3950268f71df4591bde402,\n y: 0x209dcfbf2cfb57f9f6046f44d71ac6faf87254afc7407c04eb621a6287cac126,\n is_infinite: false,\n },\n );\n\n assert_eq(\n pedersen_hash_with_separator([1, 2], 2),\n 0x26691c129448e9ace0c66d11f0a16d9014a9e8498ee78f4d69f0083168188255,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2], 2),\n EmbeddedCurvePoint {\n x: 0x2e2b3b191e49541fe468ec6877721d445dcaffe41728df0a0eafeb15e87b0753,\n y: 0x2ff4482400ad3a6228be17a2af33e2bcdf41be04795f9782bd96efe7e24f8778,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3], 3),\n 0x0bc694b7a1f8d10d2d8987d07433f26bd616a2d351bc79a3c540d85b6206dbe4,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3], 3),\n EmbeddedCurvePoint {\n x: 0x1fee4e8cf8d2f527caa2684236b07c4b1bad7342c01b0f75e9a877a71827dc85,\n y: 0x2f9fedb9a090697ab69bf04c8bc15f7385b3e4b68c849c1536e5ae15ff138fd1,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4], 4),\n 0xdae10fb32a8408521803905981a2b300d6a35e40e798743e9322b223a5eddc,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4], 4),\n EmbeddedCurvePoint {\n x: 0x07ae3e202811e1fca39c2d81eabe6f79183978e6f12be0d3b8eda095b79bdbc9,\n y: 0x0afc6f892593db6fbba60f2da558517e279e0ae04f95758587760ba193145014,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5], 5),\n 0xfc375b062c4f4f0150f7100dfb8d9b72a6d28582dd9512390b0497cdad9c22,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5], 5),\n EmbeddedCurvePoint {\n x: 0x1754b12bd475a6984a1094b5109eeca9838f4f81ac89c5f0a41dbce53189bb29,\n y: 0x2da030e3cfcdc7ddad80eaf2599df6692cae0717d4e9f7bfbee8d073d5d278f7,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6], 6),\n 0x1696ed13dc2730062a98ac9d8f9de0661bb98829c7582f699d0273b18c86a572,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6], 6),\n EmbeddedCurvePoint {\n x: 0x190f6c0e97ad83e1e28da22a98aae156da083c5a4100e929b77e750d3106a697,\n y: 0x1f4b60f34ef91221a0b49756fa0705da93311a61af73d37a0c458877706616fb,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n 0x128c0ff144fc66b6cb60eeac8a38e23da52992fc427b92397a7dffd71c45ede3,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n EmbeddedCurvePoint {\n x: 0x015441e9d29491b06563fac16fc76abf7a9534c715421d0de85d20dbe2965939,\n y: 0x1d2575b0276f4e9087e6e07c2cb75aa1baafad127af4be5918ef8a2ef2fea8fc,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n 0x2f960e117482044dfc99d12fece2ef6862fba9242be4846c7c9a3e854325a55c,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n EmbeddedCurvePoint {\n x: 0x1657737676968887fceb6dd516382ea13b3a2c557f509811cd86d5d1199bc443,\n y: 0x1f39f0cb569040105fa1e2f156521e8b8e08261e635a2b210bdc94e8d6d65f77,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n 0x0c96db0790602dcb166cc4699e2d306c479a76926b81c2cb2aaa92d249ec7be7,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n EmbeddedCurvePoint {\n x: 0x0a3ceae42d14914a432aa60ec7fded4af7dad7dd4acdbf2908452675ec67e06d,\n y: 0xfc19761eaaf621ad4aec9a8b2e84a4eceffdba78f60f8b9391b0bd9345a2f2,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n 0x2cd37505871bc460a62ea1e63c7fe51149df5d0801302cf1cbc48beb8dff7e94,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n EmbeddedCurvePoint {\n x: 0x2fb3f8b3d41ddde007c8c3c62550f9a9380ee546fcc639ffbb3fd30c8d8de30c,\n y: 0x300783be23c446b11a4c0fabf6c91af148937cea15fcf5fb054abf7f752ee245,\n is_infinite: false,\n },\n );\n}\n', path: "std/hash/mod.nr" }, "36": { source: "pub mod hash;\npub mod aes128;\npub mod array;\npub mod slice;\npub mod merkle;\npub mod schnorr;\npub mod ecdsa_secp256k1;\npub mod ecdsa_secp256r1;\npub mod eddsa;\npub mod embedded_curve_ops;\npub mod sha256;\npub mod sha512;\npub mod field;\npub mod ec;\npub mod collections;\npub mod compat;\npub mod convert;\npub mod option;\npub mod string;\npub mod test;\npub mod cmp;\npub mod ops;\npub mod default;\npub mod prelude;\npub mod uint128;\npub mod bigint;\npub mod runtime;\npub mod meta;\npub mod append;\npub mod mem;\npub mod panic;\n\n// Oracle calls are required to be wrapped in an unconstrained function\n// Thus, the only argument to the `println` oracle is expected to always be an ident\n#[oracle(print)]\nunconstrained fn print_oracle<T>(with_newline: bool, input: T) {}\n\nunconstrained fn print_unconstrained<T>(with_newline: bool, input: T) {\n print_oracle(with_newline, input);\n}\n\npub fn println<T>(input: T) {\n unsafe {\n print_unconstrained(true, input);\n }\n}\n\npub fn print<T>(input: T) {\n unsafe {\n print_unconstrained(false, input);\n }\n}\n\npub fn verify_proof<let N: u32, let M: u32, let K: u32>(\n verification_key: [Field; N],\n proof: [Field; M],\n public_inputs: [Field; K],\n key_hash: Field,\n) {\n verify_proof_internal(verification_key, proof, public_inputs, key_hash, 0);\n}\n\npub fn verify_proof_with_type<let N: u32, let M: u32, let K: u32>(\n verification_key: [Field; N],\n proof: [Field; M],\n public_inputs: [Field; K],\n key_hash: Field,\n proof_type: u32,\n) {\n if !crate::runtime::is_unconstrained() {\n crate::assert_constant(proof_type);\n }\n verify_proof_internal(verification_key, proof, public_inputs, key_hash, proof_type);\n}\n\n#[foreign(recursive_aggregation)]\nfn verify_proof_internal<let N: u32, let M: u32, let K: u32>(\n verification_key: [Field; N],\n proof: [Field; M],\n public_inputs: [Field; K],\n key_hash: Field,\n proof_type: u32,\n) {}\n\n// Asserts that the given value is known at compile-time.\n// Useful for debugging for-loop bounds.\n#[builtin(assert_constant)]\npub fn assert_constant<T>(x: T) {}\n\n// Asserts that the given value is both true and known at compile-time\n#[builtin(static_assert)]\npub fn static_assert<let N: u32>(predicate: bool, message: str<N>) {}\n\n// from_field and as_field are private since they are not valid for every type.\n// `as` should be the default for users to cast between primitive types, and in the future\n// traits can be used to work with generic types.\n#[builtin(from_field)]\nfn from_field<T>(x: Field) -> T {}\n\n#[builtin(as_field)]\nfn as_field<T>(x: T) -> Field {}\n\npub fn wrapping_add<T>(x: T, y: T) -> T {\n crate::from_field(crate::as_field(x) + crate::as_field(y))\n}\n\npub fn wrapping_sub<T>(x: T, y: T) -> T {\n //340282366920938463463374607431768211456 is 2^128, it is used to avoid underflow\n crate::from_field(\n crate::as_field(x) + 340282366920938463463374607431768211456 - crate::as_field(y),\n )\n}\n\npub fn wrapping_mul<T>(x: T, y: T) -> T {\n crate::from_field(crate::as_field(x) * crate::as_field(y))\n}\n\n#[builtin(as_witness)]\npub fn as_witness(x: Field) {}\n\n", path: "std/lib.nr" }, "69": { source: 'use dep::lib::{ecrecover, proof};\n\n/// Proves ownership of an ERC20 token balance without revealing the wallet address.\n///\n/// This circuit verifies:\n/// 1. The signer owns a wallet (via ECDSA signature verification)\n/// 2. That wallet has at least `verified_balance` tokens at the given block\n///\n/// Used specifically for $ANON token on Base chain.\nfn main(\n // Address Data (proves wallet ownership)\n signature: [u8; 64],\n message_hash: [u8; 32],\n pub_key_x: [u8; 32],\n pub_key_y: [u8; 32],\n // Storage Proof (proves balance)\n // Array sizes tuned for ~108k holders (max depth 6, max node 1066 bytes)\n // Will need to increase if holder count exceeds ~1M\n storage_hash: [u8; 32],\n storage_nodes: [[u8; 1080]; 5],\n storage_leaf: [u8; 120],\n storage_depth: u32,\n storage_value: Field,\n // Verification Data\n chain_id: Field,\n block_number: Field,\n token_address: Field,\n balance_slot: Field,\n // Balance Data\n verified_balance: Field,\n) -> pub (Field, Field, Field, Field, Field, [u8; 32]) {\n let balance_slot_bytes: [u8; 32] = balance_slot.to_be_bytes();\n let address: [u8; 32] =\n ecrecover::ecrecover(pub_key_x, pub_key_y, signature, message_hash).to_be_bytes();\n\n let key = proof::get_storage_key([address, balance_slot_bytes]);\n let value = proof::get_storage_value(storage_value);\n\n proof::verify(\n key,\n value,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n );\n\n // Ensure verified_balance <= actual balance (prevents over-claiming)\n assert(!storage_value.lt(verified_balance), "Attempt to verify too high balance");\n\n (verified_balance, chain_id, block_number, token_address, balance_slot, storage_hash)\n}\n', path: "/Users/kartik/anon/anon/packages/credentials/src/circuit/src/main.nr" }, "71": { source: 'use crate::bytes::{byte_to_nibbles, bytes_as_nibbles};\nuse crate::rlp::{\n decode_rlp_header, decode_rlp_list_fragments, encode_rlp_string, RLP_DATA_TYPE_LIST,\n RlpFragment,\n};\nuse dep::std::hash::keccak256;\n\npub fn verify<let NODES_LEN: u32, let LEAF_LEN: u32, let NODE_SIZE: u32>(\n key: [u8; 32],\n value: [u8; 32],\n storage_hash: [u8; 32],\n nodes: [[u8; NODE_SIZE]; NODES_LEN],\n leaf: [u8; LEAF_LEN],\n depth: u32,\n) {\n let leaf_value = extract_value(key, storage_hash, nodes, leaf, depth);\n for i in 0..32 {\n assert(leaf[leaf_value.offset + i] == value[i], "Value mismatch");\n }\n}\n\npub fn extract_value<let NODES_LEN: u32, let LEAF_LEN: u32, let NODE_SIZE: u32>(\n key: [u8; 32],\n storage_hash: [u8; 32],\n nodes: [[u8; NODE_SIZE]; NODES_LEN],\n leaf: [u8; LEAF_LEN],\n depth: u32,\n) -> RlpFragment {\n let nibbles = bytes_as_nibbles(key);\n let mut key_index = 0;\n let mut curr_hash = storage_hash;\n for i in 0..NODES_LEN {\n if i < depth - 1 {\n let node = nodes[i];\n\n // Decode RLP header\n let rlp_header = decode_rlp_header(node);\n assert(rlp_header.data_type == RLP_DATA_TYPE_LIST, "Invalid data type");\n\n // Validate node hash\n let node_hash: [u8; 32] = get_node_hash(rlp_header, node);\n assert(node_hash == curr_hash, "Invalid hash");\n\n // Create next hash\n let rlp_list: BoundedVec<RlpFragment, 17> = decode_rlp_list_fragments(rlp_header, node);\n let index = if rlp_list.len() == 17 {\n nibbles[key_index] as u32\n } else {\n 1\n };\n let rlp_item = rlp_list.get(index);\n assert(rlp_item.length == 32, "Invalid length");\n curr_hash = copy(node, rlp_item.offset);\n key_index += 1;\n }\n }\n\n // Verify leaf\n let rlp_header = decode_rlp_header(leaf);\n assert(rlp_header.data_type == RLP_DATA_TYPE_LIST, "Invalid data type");\n\n let resolved_hash = get_node_hash(rlp_header, leaf);\n assert(resolved_hash == curr_hash, "Invalid hash");\n\n let rlp_list: BoundedVec<RlpFragment, 2> = decode_rlp_list_fragments(rlp_header, leaf);\n assert(rlp_list.len() == 2, "Invalid length");\n\n let leaf_key_item = rlp_list.get(0);\n let leaf_key = get_leaf_key(leaf, leaf_key_item);\n\n for i in 0..59 {\n if (i < leaf_key.len()) & (key_index + i < nibbles.len()) {\n assert(leaf_key[i] == nibbles[key_index + i], "Key mismatch in the leaf");\n }\n }\n\n key_index += leaf_key.len();\n assert(key_index >= nibbles.len(), "Expected to consume all key nibbles");\n\n rlp_list.get(1)\n}\n\nfn get_leaf_key<let LEAF_LEN: u32>(leaf: [u8; LEAF_LEN], rlp_fragment: RlpFragment) -> [u8] {\n let (prefix, _) = byte_to_nibbles(leaf[rlp_fragment.offset]);\n assert((prefix == 2) | (prefix == 3), "Leaf parity prefix must be 2 or 3");\n\n let prefixed_key_bytes: [u8; 32] = copy(leaf, rlp_fragment.offset);\n let prefixed_key_nibbles: [u8] = bytes_as_nibbles(prefixed_key_bytes).as_slice();\n let (prefix, key_nibbles) = prefixed_key_nibbles.pop_front();\n if (prefix % 2 == 0) {\n let (parity_prefix, key_nibbles) = key_nibbles.pop_front();\n assert(parity_prefix == 0, "Parity prefix must be 0");\n key_nibbles\n } else {\n key_nibbles\n }\n}\n\nunconstrained fn copy<let N: u32, let M: u32>(arr: [u8; N], offset: u32) -> [u8; M] {\n let mut result: [u8; M] = [0; M];\n for i in 0..M {\n result[i] = arr[offset + i];\n }\n result\n}\n\npub unconstrained fn get_key_hash<let N: u32>(key: [u8; N], message_size: u32) -> [u8; 32] {\n let key_hash = keccak256(key, message_size);\n key_hash\n}\n\nunconstrained fn get_node_hash<let NODE_LEN: u32>(\n rlp_header: RlpFragment,\n node: [u8; NODE_LEN],\n) -> [u8; 32] {\n let node_len = rlp_header.length + rlp_header.offset;\n let resolved_hash: [u8; 32] = keccak256(node, node_len);\n resolved_hash\n}\n\npub fn get_storage_key<let N: u32>(values: [[u8; 32]; N]) -> [u8; 32] {\n let mut input: [u8; N * 32] = [0; N * 32];\n for i in 0..N {\n for j in 0..32 {\n input[i * 32 + j] = values[i][j];\n }\n }\n let key = keccak256(input, input.len());\n get_key_hash(key, key.len())\n}\n\npub fn get_storage_value(field: Field) -> [u8; 32] {\n let value_bytes: [u8; 32] = field.to_be_bytes();\n let value_rlp = encode_rlp_string(value_bytes);\n value_rlp\n}\n\n#[test]\nfn test_extension_node() {\n let key = [\n 0x5a, 0x2c, 0x22, 0x15, 0x9a, 0x93, 0x50, 0x4b, 0xef, 0x3f, 0x17, 0x41, 0x08, 0xe0, 0x22,\n 0xfc, 0x5e, 0x36, 0xef, 0xba, 0xf4, 0x1d, 0xb9, 0xf4, 0x7c, 0x9e, 0x91, 0x1c, 0x5a, 0x84,\n 0x33, 0x6a,\n ];\n let storage_value = 0x10f0cf064dd59200000;\n let storage_hash = [\n 0x34, 0xde, 0x45, 0x97, 0x59, 0x37, 0x39, 0xe9, 0xc8, 0xa3, 0x4e, 0x06, 0x86, 0xe2, 0xf5,\n 0x97, 0xd9, 0x07, 0xad, 0x36, 0x90, 0xaa, 0x76, 0xa4, 0x33, 0xe8, 0xc0, 0x9c, 0x8a, 0x7f,\n 0x06, 0x93,\n ];\n let storage_nodes = [\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x28, 0xa7, 0x1c, 0xcb, 0x5a, 0xaa, 0x3c, 0x97, 0xb4, 0x88,\n 0x94, 0xb6, 0x02, 0xbd, 0x09, 0x03, 0x9e, 0x4c, 0x29, 0x56, 0x89, 0xc4, 0xe5, 0xa9,\n 0xff, 0xbd, 0x70, 0xa9, 0xea, 0x63, 0x25, 0x67, 0xa0, 0x32, 0x24, 0xfd, 0x1a, 0x2c,\n 0x31, 0x0b, 0xfa, 0x08, 0x94, 0xa6, 0xea, 0x97, 0x22, 0xea, 0x6b, 0x8c, 0x7b, 0xe8,\n 0xf6, 0xdc, 0xd8, 0xf3, 0x9b, 0xcf, 0xa9, 0x9f, 0x99, 0xe4, 0xeb, 0x83, 0xff, 0xa0,\n 0x88, 0xc4, 0xc8, 0xea, 0xd8, 0x65, 0x4f, 0xa4, 0xbc, 0xb4, 0xce, 0xcf, 0x6b, 0xf0,\n 0x81, 0x17, 0x86, 0x10, 0x95, 0x5a, 0xfd, 0xf8, 0x1a, 0xb0, 0x6e, 0x6a, 0xb0, 0x1d,\n 0xb0, 0x8b, 0x3e, 0xa1, 0xa0, 0x44, 0x55, 0x33, 0x69, 0xd1, 0xbb, 0x02, 0x51, 0x2d,\n 0xab, 0x9f, 0x79, 0x3d, 0xdb, 0x0b, 0x2e, 0x8f, 0x8f, 0x1e, 0x83, 0x73, 0x86, 0x45,\n 0xe4, 0x72, 0x52, 0x5b, 0x0b, 0x14, 0xb1, 0x2a, 0xff, 0xa0, 0xf6, 0xc0, 0xea, 0xb0,\n 0x56, 0x14, 0xc9, 0x6f, 0x8d, 0x66, 0x44, 0x5a, 0xb5, 0x38, 0xba, 0x0f, 0x9d, 0x09,\n 0xa5, 0x9e, 0xd8, 0x1e, 0x00, 0x6d, 0xa5, 0xd9, 0x75, 0x0e, 0xb8, 0xcf, 0x12, 0x22,\n 0xa0, 0xe6, 0xfd, 0x1f, 0x02, 0x97, 0xcc, 0xda, 0x50, 0xa1, 0xa0, 0x2c, 0xa8, 0x03,\n 0x78, 0x9d, 0x29, 0xb7, 0xa7, 0xa5, 0x55, 0x33, 0x6b, 0x8f, 0xa5, 0x80, 0x9e, 0xa6,\n 0xf8, 0x1f, 0x97, 0x48, 0xed, 0xa0, 0xd2, 0x88, 0x65, 0x35, 0x91, 0x97, 0x3c, 0xb5,\n 0x76, 0x01, 0x73, 0x30, 0x46, 0xd2, 0x56, 0x8d, 0x49, 0xaa, 0x29, 0x36, 0xbf, 0x86,\n 0x6c, 0x37, 0x5e, 0x0b, 0x27, 0x0c, 0x98, 0x91, 0xcd, 0x12, 0xa0, 0xcc, 0x5a, 0x91,\n 0x26, 0xf5, 0x10, 0x1a, 0x7e, 0xb7, 0xd7, 0xd4, 0x32, 0x19, 0x39, 0x80, 0xaa, 0xa2,\n 0x42, 0xd0, 0x17, 0x64, 0x4c, 0xd3, 0xe5, 0x2c, 0x56, 0x2d, 0xdb, 0x9d, 0x57, 0x0b,\n 0x68, 0xa0, 0x6c, 0x0a, 0xc4, 0x76, 0x9b, 0xc7, 0xfa, 0xd2, 0x23, 0xf5, 0x9f, 0xb4,\n 0x85, 0x8c, 0x45, 0x85, 0xa9, 0xfe, 0x35, 0x5d, 0x65, 0xb8, 0xa0, 0x80, 0xe1, 0x7b,\n 0xaa, 0x29, 0x11, 0x5d, 0x8f, 0x20, 0xa0, 0x9d, 0x4c, 0x6e, 0x37, 0x00, 0xd0, 0x21,\n 0x66, 0xb4, 0x84, 0xb6, 0x90, 0x08, 0x4a, 0xca, 0x04, 0xde, 0x16, 0x88, 0xa6, 0xb5,\n 0x2a, 0x3f, 0xc7, 0xc7, 0xd9, 0xf6, 0x13, 0x75, 0x47, 0xcd, 0xdb, 0xa0, 0x51, 0xc1,\n 0x79, 0x4b, 0x97, 0xf1, 0x49, 0x0a, 0xfe, 0x3e, 0x04, 0xff, 0xc9, 0x47, 0x2c, 0x49,\n 0x6f, 0xb7, 0x98, 0x4f, 0xf3, 0xe3, 0x56, 0xc6, 0xff, 0x3b, 0xf9, 0x95, 0x3c, 0xbf,\n 0x4a, 0x39, 0xa0, 0xdd, 0xf1, 0x09, 0x06, 0xfb, 0x66, 0x45, 0x78, 0xe5, 0x8b, 0xdc,\n 0x86, 0xa3, 0x1f, 0x84, 0xd2, 0xda, 0xac, 0xd7, 0x12, 0xab, 0x7d, 0xbe, 0x4a, 0x93,\n 0xaf, 0x57, 0x33, 0xfc, 0xe2, 0x58, 0x8c, 0xa0, 0xe8, 0xdd, 0xe7, 0x0e, 0xf4, 0x76,\n 0x34, 0x88, 0x80, 0xb3, 0x71, 0xda, 0xaa, 0xae, 0xa6, 0xcc, 0x14, 0xa0, 0x72, 0xb3,\n 0x54, 0xc7, 0x8c, 0x14, 0xdd, 0x22, 0x3a, 0x94, 0x47, 0xe2, 0xfe, 0x9a, 0xa0, 0x51,\n 0xd0, 0xa8, 0xd0, 0x7e, 0x98, 0x8d, 0xa3, 0xd7, 0x5f, 0x99, 0x3d, 0xeb, 0x12, 0xa1,\n 0x0d, 0x7f, 0x16, 0x11, 0x51, 0x00, 0x29, 0x11, 0xb2, 0x52, 0x2e, 0x70, 0xd4, 0xab,\n 0xae, 0x40, 0x05, 0xa0, 0xb6, 0x2f, 0xd4, 0x3d, 0x5c, 0xd4, 0x42, 0x29, 0xc1, 0x02,\n 0xba, 0x61, 0x68, 0x8a, 0x73, 0x50, 0x79, 0xdd, 0xbe, 0xae, 0x36, 0x19, 0xc7, 0x3b,\n 0x85, 0x2e, 0x4d, 0xe0, 0x6a, 0x17, 0xc6, 0x45, 0xa0, 0x34, 0xb7, 0x65, 0xe4, 0x01,\n 0x0e, 0x6c, 0xa4, 0x50, 0x75, 0xbc, 0x17, 0x62, 0x9d, 0x1a, 0x97, 0xb8, 0xf4, 0x82,\n 0x8f, 0xa9, 0x20, 0x54, 0x64, 0x2d, 0x3d, 0x5e, 0x03, 0x5c, 0x28, 0x06, 0x57, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x56, 0xaa, 0xc2, 0x80, 0x10, 0x2f, 0xa7, 0xc4, 0x9f, 0xa6,\n 0xba, 0xa3, 0x31, 0xa2, 0x47, 0x45, 0x90, 0x1d, 0x33, 0x24, 0xbb, 0x75, 0x98, 0x1b,\n 0x33, 0xf0, 0xb8, 0x53, 0xb6, 0x62, 0xb7, 0x35, 0xa0, 0x77, 0x55, 0xbe, 0xe7, 0x1d,\n 0x77, 0x54, 0xca, 0x81, 0x21, 0xc1, 0x5c, 0xff, 0xef, 0x3d, 0xeb, 0xb8, 0xd2, 0x3d,\n 0x22, 0xdb, 0x53, 0x14, 0x15, 0xb0, 0xd2, 0x67, 0x09, 0xad, 0x22, 0x2b, 0xcc, 0xa0,\n 0xea, 0x48, 0x65, 0x3b, 0x32, 0x09, 0xcc, 0x7b, 0x75, 0x66, 0x7a, 0x15, 0xec, 0xb7,\n 0xbd, 0x08, 0xee, 0x55, 0x25, 0x60, 0x01, 0xa6, 0xfa, 0xa6, 0x2d, 0x4b, 0xeb, 0x23,\n 0x54, 0x7a, 0xdf, 0x56, 0xa0, 0xe8, 0xaf, 0x8c, 0xbe, 0x69, 0x16, 0x05, 0xd9, 0x50,\n 0x9b, 0xce, 0x5f, 0x95, 0xe9, 0x9f, 0x1a, 0x98, 0xef, 0xd3, 0xe7, 0x14, 0x41, 0xa0,\n 0x95, 0xd2, 0x83, 0xbd, 0x85, 0x5c, 0xb8, 0x3e, 0x04, 0xa0, 0x6d, 0x22, 0x70, 0x5c,\n 0xa5, 0x7c, 0x20, 0xb0, 0x72, 0x18, 0xd9, 0x3b, 0xcb, 0xfc, 0xcb, 0xc7, 0x13, 0xd5,\n 0x93, 0x82, 0xb0, 0xf6, 0x0b, 0xb2, 0x9b, 0x3b, 0xd4, 0x57, 0x2f, 0x9b, 0x1c, 0x2e,\n 0xa0, 0xc1, 0xfa, 0x7f, 0x64, 0xa7, 0x0c, 0x00, 0x9a, 0x5b, 0x4f, 0x05, 0xfd, 0x72,\n 0x18, 0xe5, 0xc3, 0x89, 0x8d, 0x9c, 0x54, 0xb5, 0x3d, 0x3e, 0xbb, 0xfa, 0x96, 0x59,\n 0xe1, 0x0e, 0x6b, 0x10, 0x5f, 0xa0, 0xef, 0x50, 0xe1, 0xbf, 0x33, 0xc0, 0xaa, 0x29,\n 0x7a, 0x52, 0x9d, 0xe8, 0xd2, 0x0c, 0xb0, 0xee, 0x00, 0x12, 0x1e, 0x9a, 0x74, 0xdd,\n 0x94, 0x46, 0xfe, 0xe5, 0xd8, 0xe9, 0xb5, 0xb8, 0x1e, 0x46, 0xa0, 0x57, 0xa6, 0x13,\n 0xff, 0x1d, 0x2d, 0xaf, 0x80, 0x34, 0x36, 0x01, 0xa8, 0xb4, 0x26, 0x5d, 0x4a, 0x69,\n 0x4c, 0x8c, 0x78, 0x7e, 0x91, 0x71, 0x73, 0xa4, 0x9c, 0x5a, 0x11, 0xc5, 0x8b, 0xda,\n 0x8e, 0xa0, 0xb1, 0xc0, 0x8e, 0xb9, 0x55, 0x73, 0xab, 0x5e, 0x5f, 0xa8, 0xdd, 0xb5,\n 0xf7, 0xf3, 0x7d, 0x7d, 0x8a, 0xab, 0xcc, 0x0c, 0x74, 0x80, 0x15, 0x84, 0x64, 0xe0,\n 0x34, 0xcf, 0x86, 0x9d, 0xf5, 0xb8, 0xa0, 0x3e, 0xed, 0x8a, 0xd1, 0x04, 0xde, 0x9b,\n 0xca, 0x13, 0x28, 0xc9, 0x22, 0xdd, 0x8b, 0x3a, 0x94, 0x82, 0x56, 0xe1, 0x7a, 0xc9,\n 0x40, 0x8c, 0x90, 0x65, 0xc5, 0xb1, 0xb2, 0xc2, 0x1c, 0x88, 0xdb, 0xa0, 0xd3, 0x69,\n 0x3d, 0xe8, 0x7b, 0xbe, 0x22, 0x58, 0xc1, 0x52, 0xb4, 0x93, 0x53, 0x71, 0x12, 0xf9,\n 0xf8, 0x2d, 0xac, 0x64, 0x50, 0x36, 0xfe, 0xe3, 0x17, 0x8c, 0x67, 0x66, 0xc7, 0xf9,\n 0x37, 0xf3, 0xa0, 0x40, 0xeb, 0x93, 0xf5, 0x01, 0x70, 0x4a, 0xb5, 0xce, 0x0c, 0x7c,\n 0x51, 0x84, 0x6e, 0xee, 0x54, 0xf9, 0x28, 0xfd, 0x8b, 0xe1, 0x90, 0x3e, 0x65, 0xa0,\n 0x95, 0x64, 0x10, 0x76, 0xc8, 0xa4, 0x47, 0xa0, 0x50, 0x73, 0xa4, 0xe9, 0x3d, 0x9a,\n 0x55, 0xe4, 0x7f, 0xb2, 0x02, 0x63, 0x79, 0x99, 0x54, 0x22, 0xcd, 0xcb, 0xc7, 0x35,\n 0x8a, 0xa4, 0xf9, 0x6f, 0xce, 0x90, 0x5d, 0x3c, 0x48, 0xda, 0x50, 0xfe, 0xa0, 0x2f,\n 0x3e, 0x7e, 0x72, 0xc8, 0x10, 0x8a, 0x29, 0xf3, 0x83, 0x65, 0x51, 0x66, 0xfb, 0x42,\n 0x3a, 0xd8, 0x2e, 0xf3, 0x35, 0x21, 0x87, 0x6d, 0x18, 0xbd, 0x3d, 0x96, 0x35, 0x27,\n 0x00, 0xd4, 0x70, 0xa0, 0x10, 0x6d, 0x69, 0xfe, 0xa8, 0xfa, 0x71, 0x69, 0x0d, 0xaf,\n 0xea, 0xd4, 0x34, 0xac, 0x06, 0xad, 0xe2, 0xcd, 0xd5, 0xd8, 0x69, 0x87, 0x62, 0x55,\n 0x0d, 0x3c, 0x4f, 0x7b, 0x90, 0x63, 0xd5, 0x9b, 0xa0, 0x28, 0xb7, 0xcd, 0x5c, 0x70,\n 0xa5, 0xda, 0x11, 0xce, 0x79, 0xda, 0x74, 0x2e, 0x79, 0xb9, 0xf0, 0xf1, 0x02, 0xa2,\n 0x1d, 0x7a, 0xdf, 0x31, 0xb2, 0xb2, 0x9b, 0x9c, 0xf1, 0x46, 0xfd, 0x42, 0x92, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x80, 0xf6, 0x43, 0xcf, 0xf4, 0x69, 0xbd, 0x2b, 0x75, 0xd7,\n 0x46, 0xad, 0xa3, 0xf5, 0xcf, 0x1b, 0xac, 0xcf, 0xb8, 0xee, 0x12, 0x23, 0x09, 0x49,\n 0x07, 0xbb, 0x0e, 0x60, 0x92, 0x78, 0x8e, 0x4d, 0xa0, 0xdf, 0x6e, 0x72, 0xce, 0x27,\n 0x0e, 0x9e, 0x54, 0x65, 0x27, 0x85, 0x66, 0x62, 0xb5, 0x45, 0xab, 0x70, 0x6f, 0xfd,\n 0x42, 0xda, 0x99, 0xd2, 0xb3, 0x66, 0x76, 0xd7, 0xe3, 0x5f, 0xc0, 0x6f, 0xcf, 0xa0,\n 0x47, 0x17, 0xa5, 0xde, 0xff, 0xfb, 0xc5, 0x9a, 0xbd, 0x1e, 0x38, 0x38, 0x3c, 0xf8,\n 0x65, 0x59, 0x06, 0xe2, 0xae, 0x68, 0xb7, 0x70, 0x5d, 0xe8, 0x11, 0xe3, 0x2e, 0x2d,\n 0x98, 0x53, 0xd3, 0x65, 0xa0, 0xa2, 0x48, 0x0f, 0x7c, 0xdd, 0xe0, 0x4a, 0x37, 0x2a,\n 0xcb, 0xe2, 0x34, 0x36, 0xac, 0xaf, 0x82, 0x99, 0xcf, 0x1d, 0xbc, 0xbe, 0xf8, 0xba,\n 0x5b, 0x42, 0xf8, 0x7a, 0xc1, 0x27, 0xe6, 0x55, 0x5c, 0xa0, 0x29, 0x0e, 0xda, 0x5f,\n 0xc1, 0x9f, 0xca, 0x90, 0xd3, 0x06, 0x3b, 0xa9, 0x6b, 0x5e, 0x13, 0xb2, 0x3f, 0x28,\n 0x6d, 0x57, 0xed, 0x91, 0xd0, 0x80, 0xb9, 0xca, 0xe1, 0xc8, 0xe4, 0x5c, 0xaf, 0xd6,\n 0xa0, 0x02, 0x34, 0x35, 0x35, 0xf7, 0x0f, 0x41, 0x5e, 0x3d, 0x9c, 0x16, 0xfd, 0xff,\n 0xa1, 0x36, 0x3b, 0xd0, 0x79, 0xf0, 0x2b, 0x51, 0xb3, 0x88, 0x18, 0x54, 0xff, 0x17,\n 0xdb, 0xfe, 0x55, 0x23, 0xf9, 0xa0, 0x8f, 0x9a, 0x23, 0xbb, 0x74, 0xd0, 0xb7, 0x65,\n 0x35, 0xdb, 0x37, 0x24, 0x30, 0x6d, 0x29, 0xbc, 0xf5, 0xbb, 0x07, 0x05, 0x97, 0x70,\n 0x22, 0x32, 0x26, 0x18, 0x93, 0x39, 0x7b, 0x4f, 0x7a, 0x1e, 0xa0, 0xa7, 0xa4, 0x24,\n 0x74, 0x9f, 0x95, 0xe8, 0x1c, 0x6b, 0x71, 0xe7, 0x7b, 0x6c, 0xb3, 0xe6, 0x18, 0x3e,\n 0x40, 0x6d, 0x9c, 0x9b, 0x0f, 0xef, 0x45, 0xce, 0x57, 0x46, 0xaa, 0xce, 0x10, 0xf3,\n 0x1f, 0xa0, 0xd1, 0xcd, 0x19, 0x02, 0x5c, 0xb7, 0x8a, 0xba, 0x94, 0x67, 0x07, 0xea,\n 0x7a, 0x3d, 0x36, 0x3c, 0xc2, 0xd6, 0xf9, 0x1a, 0x72, 0xe6, 0xf3, 0xa0, 0x5b, 0x42,\n 0x53, 0x4d, 0x6f, 0x4d, 0x11, 0x2f, 0xa0, 0xdf, 0x25, 0x21, 0x36, 0x74, 0x9f, 0x9e,\n 0xa9, 0x0e, 0xef, 0x15, 0x51, 0x88, 0x28, 0x40, 0xf5, 0xd1, 0x2e, 0xf4, 0xa8, 0x3c,\n 0x5c, 0xfe, 0x81, 0x70, 0x17, 0x91, 0xef, 0xdf, 0xe6, 0xec, 0xcb, 0xa0, 0x19, 0xc0,\n 0xb8, 0x68, 0x06, 0xb1, 0x03, 0xaa, 0x9d, 0xed, 0xb0, 0xa4, 0x70, 0xdd, 0xac, 0xc9,\n 0xd1, 0x11, 0x90, 0x75, 0x58, 0xed, 0x79, 0x6c, 0x58, 0x05, 0x21, 0x14, 0x03, 0x47,\n 0xc8, 0x99, 0xa0, 0x7b, 0x21, 0x30, 0x45, 0x04, 0x78, 0xfd, 0x6b, 0xf8, 0x25, 0x42,\n 0x44, 0x3f, 0x64, 0xf1, 0x57, 0xde, 0xa6, 0x43, 0x69, 0xd8, 0xd9, 0xc1, 0xfc, 0x3c,\n 0xe6, 0x80, 0xd9, 0x27, 0xd7, 0x1b, 0x14, 0xa0, 0xa7, 0x88, 0xdf, 0xcc, 0x27, 0x7b,\n 0xc6, 0xbf, 0x15, 0x5f, 0xeb, 0xff, 0xa7, 0x18, 0xda, 0x71, 0x95, 0xd0, 0x64, 0x2e,\n 0xb8, 0x4e, 0x38, 0x34, 0xc5, 0xfb, 0x33, 0x99, 0x47, 0xb5, 0x3b, 0xb2, 0xa0, 0x19,\n 0x38, 0xd2, 0xff, 0x88, 0xfa, 0xb0, 0x07, 0x8c, 0xd1, 0xff, 0x34, 0x53, 0xbe, 0xae,\n 0x3f, 0x4d, 0x31, 0xc3, 0x45, 0x36, 0xc4, 0xff, 0xc3, 0xba, 0x26, 0xcf, 0x57, 0xd4,\n 0x19, 0xdf, 0xfc, 0xa0, 0xb7, 0xe7, 0x38, 0x57, 0x54, 0x28, 0x34, 0x0c, 0x8a, 0xc7,\n 0xe0, 0x65, 0x9c, 0xca, 0x51, 0x85, 0x57, 0x98, 0x17, 0xa0, 0x45, 0xdf, 0x0d, 0x9d,\n 0x31, 0x24, 0x2d, 0xba, 0x7a, 0xac, 0x08, 0x17, 0xa0, 0x82, 0x20, 0x4e, 0xa9, 0x74,\n 0x64, 0x16, 0xe4, 0xa3, 0x56, 0x4f, 0xde, 0x12, 0x3d, 0x60, 0x9c, 0x17, 0x43, 0x48,\n 0x19, 0xfc, 0x7f, 0x47, 0x29, 0xde, 0x45, 0x9f, 0xd4, 0x5f, 0xe5, 0x87, 0x83, 0x80,\n ],\n [\n 0xf9, 0x01, 0xb1, 0x80, 0xa0, 0x8e, 0x38, 0xfd, 0x86, 0xe5, 0x4b, 0x8a, 0x12, 0x43,\n 0x58, 0x9a, 0x22, 0x9d, 0xb7, 0xcf, 0x04, 0x9c, 0x18, 0xa4, 0xb8, 0xff, 0xb8, 0x27,\n 0xf6, 0x80, 0x36, 0xfa, 0xef, 0x88, 0xae, 0xcd, 0x9a, 0xa0, 0xa5, 0x55, 0x23, 0xc6,\n 0xfc, 0x4b, 0xc1, 0xf7, 0x46, 0xd9, 0xec, 0x50, 0x7f, 0xf4, 0xdf, 0x46, 0x0f, 0xb3,\n 0x58, 0xf9, 0x7f, 0x66, 0xbd, 0x06, 0x11, 0xf0, 0xf2, 0xa6, 0xff, 0x28, 0x23, 0xa9,\n 0x80, 0xa0, 0xb5, 0xc8, 0xe0, 0x56, 0x7f, 0xe1, 0x4c, 0x0d, 0x96, 0x0a, 0x32, 0x31,\n 0xb8, 0x9f, 0x5a, 0xb9, 0x79, 0x73, 0xc9, 0xdc, 0x83, 0xc7, 0x12, 0x6b, 0x2a, 0x39,\n 0xfb, 0xf1, 0xac, 0xa8, 0xb2, 0xb2, 0x80, 0xa0, 0x55, 0x09, 0x98, 0x12, 0xe4, 0x20,\n 0xce, 0x25, 0x48, 0x3f, 0xc4, 0x75, 0x50, 0x3b, 0x0f, 0xcb, 0x6d, 0x7f, 0x8c, 0x78,\n 0x5e, 0xb0, 0x02, 0x9e, 0xeb, 0x78, 0xc1, 0x4c, 0x1c, 0x71, 0x51, 0xcc, 0xa0, 0x68,\n 0x2a, 0x76, 0x86, 0xa1, 0xcf, 0x94, 0xe8, 0xef, 0x0c, 0xc0, 0x13, 0xef, 0x43, 0x93,\n 0xf7, 0x42, 0xa9, 0x0a, 0x10, 0xa8, 0xcc, 0xad, 0xcc, 0x96, 0xc5, 0x4f, 0xfd, 0x10,\n 0x05, 0x05, 0x7b, 0xa0, 0x98, 0xa9, 0x2b, 0xe0, 0x12, 0xe2, 0x1f, 0x6c, 0x29, 0xf5,\n 0xc9, 0x51, 0xc8, 0x48, 0x42, 0x4b, 0x99, 0xf8, 0xca, 0x97, 0x86, 0xca, 0xef, 0x4c,\n 0xc2, 0x19, 0x2e, 0x51, 0x47, 0x23, 0x5d, 0x60, 0xa0, 0x39, 0xc3, 0x38, 0x6e, 0xf5,\n 0xed, 0xb0, 0x5b, 0x00, 0x8e, 0xb2, 0x57, 0xde, 0xd4, 0x67, 0x7f, 0x5e, 0x0a, 0x39,\n 0xc9, 0xea, 0x99, 0x2b, 0x64, 0x7e, 0x43, 0x4e, 0x67, 0x1c, 0xa2, 0x33, 0x63, 0xa0,\n 0xbb, 0x9f, 0x27, 0xc7, 0xe7, 0x7a, 0x3b, 0xed, 0x91, 0x7d, 0x82, 0x6e, 0x14, 0xcb,\n 0x9e, 0x7f, 0x48, 0x18, 0x1e, 0xe0, 0x14, 0x39, 0x02, 0xb9, 0x4c, 0x92, 0xd8, 0x64,\n 0xcc, 0x5c, 0xfc, 0xf1, 0xa0, 0x2c, 0x46, 0xa9, 0xd4, 0x7e, 0x7e, 0x8c, 0x6a, 0x37,\n 0x4c, 0x01, 0x5a, 0x1a, 0x5f, 0x50, 0x21, 0x10, 0x52, 0x77, 0xeb, 0x52, 0xec, 0x74,\n 0x2a, 0xa4, 0x64, 0x87, 0x50, 0xb4, 0x07, 0x7d, 0xd5, 0xa0, 0x55, 0x8b, 0x7a, 0xe0,\n 0xa4, 0x3f, 0x3f, 0xdd, 0x17, 0xbb, 0x30, 0xa5, 0xfa, 0x1b, 0x7d, 0x70, 0x11, 0x15,\n 0xeb, 0x8b, 0x0b, 0x7f, 0xc7, 0xd4, 0x78, 0xad, 0x98, 0xe7, 0x51, 0xf7, 0xe7, 0x01,\n 0xa0, 0x06, 0xb4, 0x34, 0x68, 0x33, 0x9a, 0xdc, 0xfe, 0xb6, 0xc1, 0x2d, 0xbd, 0x6e,\n 0xa3, 0x3b, 0xa9, 0xc4, 0xd7, 0xad, 0x97, 0x68, 0x3c, 0x6a, 0x53, 0x39, 0x4b, 0x3f,\n 0x40, 0x6d, 0x06, 0xb6, 0x48, 0xa0, 0xa9, 0x51, 0x44, 0xcc, 0x87, 0x7d, 0xc0, 0x04,\n 0xd3, 0x6b, 0x36, 0x48, 0x9a, 0x91, 0xa6, 0x21, 0xf0, 0xeb, 0xe6, 0x3b, 0x36, 0x33,\n 0x1c, 0xd5, 0x36, 0xfb, 0x7a, 0x40, 0x86, 0x96, 0xb3, 0xd1, 0xa0, 0x59, 0x9d, 0xaa,\n 0xca, 0x7c, 0x1a, 0x10, 0xbd, 0x9f, 0x12, 0xe0, 0x5a, 0x57, 0xff, 0x66, 0x16, 0xbb,\n 0x5a, 0xc4, 0x00, 0x89, 0x9c, 0x4c, 0xa4, 0x69, 0xa8, 0xd2, 0x07, 0x44, 0x79, 0xa3,\n 0x2e, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0xe2, 0x12, 0xa0, 0xcd, 0xb7, 0x93, 0xcf, 0xa4, 0x0f, 0x9d, 0x96, 0x3c, 0x88, 0xd9,\n 0xf9, 0x67, 0x50, 0x30, 0x13, 0xdf, 0xe9, 0xad, 0x93, 0x33, 0x38, 0xd6, 0xe6, 0x64,\n 0x89, 0x17, 0xc4, 0xc7, 0x8f, 0x16, 0x4a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0xf8, 0x71, 0x80, 0x80, 0x80, 0xa0, 0xdc, 0xc7, 0x71, 0xae, 0x6a, 0x42, 0x35, 0xd3,\n 0x33, 0x9b, 0xbb, 0xf2, 0x04, 0xf6, 0x2e, 0x34, 0x09, 0x72, 0x08, 0xb4, 0x0d, 0x4b,\n 0x02, 0xdc, 0xfb, 0x91, 0x08, 0x00, 0x16, 0x47, 0xdd, 0x60, 0x80, 0x80, 0x80, 0xa0,\n 0xbc, 0x90, 0x80, 0x25, 0x16, 0xd2, 0x72, 0xd0, 0xb6, 0x1a, 0xf7, 0x2f, 0xb9, 0xb2,\n 0x02, 0xf1, 0x19, 0xbd, 0xdd, 0x1b, 0x52, 0x4b, 0x3d, 0x3f, 0xa1, 0xbf, 0x4a, 0x13,\n 0x82, 0xaf, 0xcb, 0x53, 0x80, 0x80, 0x80, 0x80, 0x80, 0xa0, 0xfd, 0x92, 0x65, 0xd7,\n 0x1e, 0x60, 0x5a, 0x77, 0x8d, 0x0d, 0x80, 0x23, 0x4e, 0x4b, 0xaa, 0xf4, 0x17, 0x01,\n 0x60, 0xf1, 0x4c, 0xd1, 0x19, 0xd2, 0x2d, 0x53, 0xd3, 0x34, 0xed, 0xb9, 0x88, 0xaf,\n 0x80, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n ];\n let storage_leaf = [\n 0xeb, 0x9e, 0x20, 0x2d, 0x80, 0x77, 0x15, 0x55, 0x8b, 0x0e, 0x74, 0x16, 0x55, 0x33, 0x9a,\n 0x57, 0x47, 0xd4, 0xc8, 0x73, 0xa2, 0x36, 0xe6, 0x52, 0xb0, 0x2c, 0xf1, 0x7d, 0xfa, 0x2a,\n 0xe4, 0xc2, 0x8b, 0x8a, 0x01, 0x0f, 0x0c, 0xf0, 0x64, 0xdd, 0x59, 0x20, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ];\n let storage_depth = 7;\n\n let value = get_storage_value(storage_value);\n\n verify(\n key,\n value,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n );\n}\n\n#[test]\nfn test_leaf() {\n let key = [\n 0xd2, 0xfd, 0xbe, 0x6a, 0xe5, 0x06, 0x6a, 0x91, 0x19, 0x14, 0xd5, 0xf5, 0x45, 0x84, 0xaf,\n 0xbb, 0xf8, 0xbe, 0x02, 0x1c, 0x12, 0x4f, 0x4c, 0xe7, 0x0d, 0xf1, 0xae, 0x5a, 0xf2, 0x2d,\n 0x0a, 0xf5,\n ];\n let storage_value = 0x21e19e0c9bab2400000;\n let storage_hash = [\n 0x58, 0x64, 0xda, 0x37, 0xf3, 0xad, 0xb7, 0x02, 0x97, 0x46, 0x48, 0x59, 0x12, 0xd3, 0x83,\n 0x8a, 0x09, 0x9b, 0x77, 0x85, 0x24, 0x5f, 0x5d, 0x1c, 0xba, 0xd2, 0x48, 0x3c, 0x77, 0xe5,\n 0xb9, 0xb8,\n ];\n let storage_nodes = [\n [\n 0xf9, 0x02, 0x11, 0xa0, 0xf1, 0x5a, 0xd0, 0x08, 0x86, 0xfb, 0x23, 0x2f, 0x6b, 0x11,\n 0xf6, 0xb5, 0xc8, 0xa5, 0x24, 0xcc, 0xf6, 0x0d, 0xb1, 0xf2, 0xb9, 0xb6, 0x24, 0x23,\n 0x8c, 0x69, 0x9d, 0xba, 0x5b, 0xff, 0x32, 0xcc, 0xa0, 0x63, 0xd9, 0xe6, 0xfd, 0xca,\n 0x9a, 0x48, 0xca, 0xed, 0x0e, 0xd1, 0x33, 0x79, 0x86, 0x4b, 0x0b, 0xe3, 0xa1, 0xdc,\n 0xc4, 0xf2, 0xfe, 0x70, 0x16, 0x53, 0x7e, 0xc7, 0xfa, 0x04, 0x9f, 0x63, 0x39, 0xa0,\n 0xef, 0xba, 0x20, 0xf2, 0x22, 0x10, 0x0b, 0xe4, 0x0c, 0xcd, 0x76, 0x78, 0x95, 0x09,\n 0x1f, 0x45, 0x74, 0x71, 0xa8, 0xa5, 0x3c, 0x8d, 0x11, 0x8d, 0xb3, 0x1c, 0x2b, 0xf8,\n 0xec, 0x90, 0x61, 0x44, 0xa0, 0xe3, 0xb7, 0xc4, 0x1e, 0xd7, 0xc4, 0xe1, 0x68, 0x0f,\n 0x0e, 0xb3, 0xf5, 0x59, 0xec, 0x92, 0xec, 0x46, 0x93, 0x50, 0xda, 0x10, 0x8e, 0x52,\n 0x59, 0xc6, 0xcc, 0x96, 0x1b, 0x8c, 0x61, 0x3c, 0x0b, 0xa0, 0x67, 0xa5, 0x6b, 0xed,\n 0xe6, 0x90, 0x17, 0xc7, 0x79, 0xdd, 0x2e, 0xb2, 0xdd, 0xa8, 0x50, 0xeb, 0x94, 0xf1,\n 0x59, 0x3b, 0xdb, 0x6f, 0xf8, 0xad, 0xa0, 0x8a, 0x1c, 0x71, 0x30, 0xea, 0x22, 0x42,\n 0xa0, 0xa4, 0xff, 0x62, 0xc8, 0xdf, 0x54, 0x1a, 0xd6, 0x7a, 0xb8, 0x1c, 0x75, 0x92,\n 0x1c, 0x9f, 0x66, 0x09, 0xba, 0xe3, 0xcf, 0x37, 0xe0, 0x8e, 0x74, 0x6f, 0x88, 0x7a,\n 0xb3, 0xee, 0xa9, 0x9d, 0xee, 0xa0, 0x83, 0xd6, 0xaa, 0x68, 0xf3, 0xac, 0xf1, 0x61,\n 0xd6, 0x0e, 0x88, 0xb2, 0x3a, 0xbd, 0x71, 0xf2, 0xcd, 0xd8, 0x9c, 0xfe, 0x3f, 0x3c,\n 0xfa, 0x56, 0x89, 0x1a, 0xec, 0xac, 0x46, 0xbb, 0xb2, 0x60, 0xa0, 0xde, 0xd9, 0x98,\n 0xb3, 0x81, 0x6f, 0x64, 0x82, 0x92, 0x9a, 0x7c, 0xc5, 0x04, 0x3e, 0xd5, 0x2e, 0x74,\n 0x66, 0x74, 0x2a, 0x40, 0x51, 0x33, 0xe8, 0xfd, 0x79, 0x73, 0x8e, 0x58, 0x5a, 0x2b,\n 0x41, 0xa0, 0x63, 0x13, 0x0b, 0x03, 0x90, 0x69, 0x73, 0xfe, 0x54, 0x90, 0x75, 0xe7,\n 0x6a, 0x82, 0xc2, 0x42, 0x3c, 0xb5, 0x74, 0x6c, 0x45, 0x32, 0x73, 0x21, 0x89, 0xfb,\n 0x28, 0xd4, 0x95, 0x46, 0xee, 0x3f, 0xa0, 0xe7, 0xe6, 0x52, 0x90, 0x39, 0x1d, 0x0f,\n 0x30, 0xe9, 0x26, 0xdb, 0x82, 0xe3, 0x45, 0xde, 0x5d, 0x3b, 0x6f, 0x29, 0x31, 0xc3,\n 0xf4, 0xa2, 0x39, 0xf7, 0xf8, 0x1f, 0x7f, 0xd2, 0x0e, 0xc6, 0xea, 0xa0, 0xfd, 0x16,\n 0xa9, 0xf5, 0x98, 0xdd, 0xaa, 0x32, 0x9b, 0x54, 0x4d, 0xcd, 0xac, 0xc1, 0xd8, 0x2e,\n 0x6e, 0x20, 0x72, 0xb5, 0x7f, 0x2a, 0x98, 0x4b, 0x6d, 0x7f, 0xb9, 0x95, 0x23, 0xff,\n 0x04, 0xc1, 0xa0, 0x4a, 0x5d, 0x73, 0x80, 0x6d, 0x25, 0x33, 0x4e, 0xfe, 0x03, 0x4a,\n 0x2a, 0xd7, 0x2b, 0xf2, 0x5e, 0xcb, 0xe1, 0x09, 0x78, 0x2c, 0xdb, 0x7d, 0xe9, 0xd0,\n 0x63, 0x2a, 0x74, 0x3e, 0xfd, 0xa4, 0x95, 0xa0, 0x13, 0xdd, 0x76, 0x35, 0xba, 0xde,\n 0x3b, 0xa5, 0x44, 0x85, 0x03, 0x6e, 0xc9, 0x71, 0xa5, 0x57, 0x95, 0xb3, 0xb4, 0x41,\n 0x1a, 0x27, 0x21, 0xab, 0x45, 0x70, 0x45, 0xb5, 0x83, 0x3b, 0x51, 0xf9, 0xa0, 0x93,\n 0x36, 0x91, 0xaa, 0x79, 0xa7, 0x11, 0x09, 0x04, 0xb7, 0x0c, 0x58, 0x77, 0xa7, 0x85,\n 0x60, 0x8e, 0x8c, 0x67, 0x10, 0x96, 0x43, 0x50, 0x68, 0x76, 0xe0, 0x0a, 0xdd, 0x49,\n 0xc1, 0x40, 0x4e, 0xa0, 0x98, 0xe5, 0x9b, 0xae, 0x17, 0xea, 0xa4, 0x8b, 0x0e, 0xcb,\n 0xc5, 0xb0, 0xb5, 0x61, 0x5e, 0x87, 0xb2, 0x8a, 0x8b, 0x20, 0x31, 0x03, 0x01, 0xb6,\n 0xf6, 0x58, 0x8a, 0xfb, 0xcc, 0x88, 0x65, 0x20, 0xa0, 0xb5, 0x20, 0xca, 0xf5, 0x70,\n 0x91, 0xaa, 0x1a, 0xf0, 0x88, 0xb8, 0xea, 0xa1, 0xa9, 0x22, 0x1f, 0x50, 0x2d, 0x6e,\n 0xe7, 0x21, 0x9e, 0x16, 0xf2, 0xe6, 0xed, 0x27, 0x67, 0x16, 0x8b, 0x73, 0x04, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0xb9, 0xb6, 0x8f, 0xef, 0x90, 0x9e, 0xaa, 0x5d, 0x59, 0xc3,\n 0xcb, 0x3c, 0xab, 0x0e, 0xdc, 0x57, 0xc5, 0x09, 0x5c, 0x9e, 0x3e, 0xa5, 0xea, 0x0a,\n 0x94, 0xbb, 0x15, 0x08, 0x31, 0x25, 0xf6, 0xf0, 0xa0, 0x2c, 0x33, 0xf1, 0x64, 0xbd,\n 0x72, 0xa7, 0x7b, 0xf5, 0x33, 0x6d, 0xac, 0x20, 0xb3, 0x97, 0x55, 0xd9, 0xb8, 0xfa,\n 0x28, 0xa8, 0x9e, 0x17, 0x54, 0xe4, 0x03, 0x08, 0xbc, 0x11, 0xdf, 0x85, 0x2b, 0xa0,\n 0x9f, 0x66, 0xbe, 0x57, 0x14, 0x9b, 0xe3, 0xdf, 0x58, 0x8c, 0x4d, 0x17, 0x4a, 0xdd,\n 0x3b, 0x3a, 0x57, 0xc7, 0x73, 0x47, 0x47, 0xd4, 0x3d, 0x6d, 0x4d, 0xb9, 0xef, 0xc4,\n 0x73, 0x43, 0x0b, 0x79, 0xa0, 0xb6, 0x58, 0xb9, 0x08, 0xcf, 0xc5, 0x45, 0x50, 0xa7,\n 0xe6, 0x67, 0x43, 0x47, 0x2e, 0x6d, 0xfa, 0xa1, 0xc9, 0x76, 0x40, 0xb0, 0xff, 0x03,\n 0xc1, 0xed, 0x89, 0xce, 0x0e, 0xdd, 0xe1, 0x03, 0x12, 0xa0, 0x6b, 0x57, 0xb7, 0xcb,\n 0x38, 0x72, 0xc3, 0xe9, 0x57, 0x00, 0xce, 0x78, 0x6e, 0xe4, 0xa4, 0xff, 0x04, 0xf4,\n 0x26, 0xc3, 0x4b, 0xa6, 0x1f, 0x6b, 0x89, 0xec, 0xa8, 0x0d, 0x86, 0xed, 0xd0, 0x79,\n 0xa0, 0x0f, 0xe0, 0x3e, 0xff, 0x73, 0x27, 0x00, 0xb8, 0xe9, 0xd7, 0x36, 0xcc, 0x39,\n 0x11, 0xf1, 0xd4, 0xb2, 0x38, 0xd9, 0x1e, 0x9b, 0xde, 0xf9, 0xda, 0x40, 0x0d, 0x7f,\n 0xb7, 0x89, 0x22, 0x22, 0xa7, 0xa0, 0x11, 0xb1, 0x06, 0xe0, 0x5e, 0x31, 0xe1, 0xe0,\n 0x76, 0x72, 0xb5, 0x77, 0x99, 0xd1, 0x09, 0x77, 0x36, 0x6b, 0x12, 0x2b, 0xb5, 0x0e,\n 0xdf, 0x67, 0xf0, 0x8b, 0x80, 0x31, 0x1e, 0xc3, 0x29, 0x10, 0xa0, 0xa9, 0x7c, 0x62,\n 0x6e, 0x36, 0x00, 0x1e, 0xc4, 0x22, 0x34, 0xa5, 0x6e, 0x19, 0xec, 0xc7, 0xd3, 0x37,\n 0xa9, 0xae, 0x4c, 0x00, 0x8b, 0x98, 0x33, 0x53, 0x11, 0xc5, 0x5b, 0x39, 0x5a, 0x2a,\n 0xe5, 0xa0, 0x7e, 0x8a, 0x86, 0xa9, 0x0e, 0xc1, 0x07, 0x6a, 0x57, 0x19, 0x3d, 0x7c,\n 0x9a, 0xa0, 0xbf, 0x80, 0xc1, 0xe2, 0x05, 0x17, 0x50, 0xc8, 0x48, 0xea, 0x50, 0x66,\n 0x0d, 0x79, 0x34, 0x2c, 0x67, 0xe4, 0xa0, 0xf1, 0x21, 0x79, 0x33, 0xd5, 0x6b, 0x14,\n 0x38, 0x48, 0xde, 0x26, 0x18, 0xdd, 0x68, 0xef, 0x11, 0x23, 0xd2, 0x62, 0xe5, 0x74,\n 0x2c, 0x5d, 0xcb, 0x68, 0x16, 0x92, 0x07, 0x43, 0xd6, 0x5b, 0xf6, 0xa0, 0xe9, 0x96,\n 0x52, 0xb6, 0x9e, 0x6b, 0xec, 0x28, 0x1a, 0x07, 0x98, 0xc2, 0x0d, 0xa1, 0xff, 0x96,\n 0x5d, 0x4f, 0x01, 0xca, 0xee, 0x4c, 0x36, 0xe8, 0x60, 0x07, 0xb9, 0xe4, 0x70, 0x75,\n 0x23, 0x0e, 0xa0, 0xa3, 0xde, 0x3f, 0x3f, 0xf2, 0x9f, 0x66, 0xa7, 0x53, 0x9a, 0x83,\n 0x67, 0x03, 0xf5, 0x9e, 0x7b, 0xce, 0x95, 0x6d, 0xb6, 0xd5, 0xeb, 0x39, 0xab, 0x81,\n 0x3b, 0x29, 0x36, 0x17, 0x8b, 0x7f, 0xec, 0xa0, 0x31, 0x29, 0x7a, 0x2d, 0x0e, 0xd1,\n 0x01, 0xa2, 0x93, 0x0e, 0xaf, 0x42, 0xcb, 0x52, 0x08, 0xc5, 0x5b, 0xc3, 0x73, 0x85,\n 0x59, 0x3d, 0x5a, 0x61, 0x93, 0xa0, 0x6f, 0x4f, 0xc4, 0x24, 0x9b, 0x84, 0xa0, 0x5a,\n 0xbc, 0xae, 0x9d, 0x6b, 0x73, 0xe0, 0xef, 0xce, 0x56, 0x28, 0xae, 0x7f, 0x5b, 0xae,\n 0x4b, 0x8c, 0xcb, 0x19, 0x0d, 0x5c, 0x53, 0xaf, 0x27, 0x1b, 0x57, 0xb1, 0xf2, 0x24,\n 0x71, 0x90, 0x91, 0xa0, 0xfb, 0xdd, 0xb3, 0x36, 0xc8, 0x44, 0x27, 0x69, 0x94, 0xe8,\n 0xe6, 0xaf, 0x33, 0x1c, 0x03, 0x3a, 0xbe, 0x34, 0xab, 0x01, 0x91, 0x21, 0x32, 0x00,\n 0x52, 0x21, 0xd1, 0x28, 0x17, 0x01, 0x15, 0x29, 0xa0, 0xa0, 0x0b, 0x4a, 0xea, 0x6d,\n 0xeb, 0x95, 0x8d, 0x37, 0xf1, 0x65, 0xfa, 0xac, 0x08, 0x02, 0xc5, 0x77, 0x93, 0x9d,\n 0x0a, 0x8c, 0xa8, 0x9c, 0x82, 0xfc, 0x81, 0x53, 0x3c, 0x91, 0x34, 0xce, 0xd5, 0x80,\n ],\n [\n 0xf9, 0x02, 0x11, 0xa0, 0x76, 0xdd, 0x54, 0xee, 0xe6, 0x47, 0x07, 0x44, 0x83, 0xdb,\n 0xf1, 0x5b, 0x4d, 0xb5, 0xd4, 0xdf, 0xab, 0xd4, 0x7f, 0x43, 0xc9, 0x1a, 0xa0, 0x5d,\n 0xcd, 0x52, 0x8e, 0x4c, 0x98, 0xee, 0xbb, 0xd8, 0xa0, 0x16, 0xf1, 0xc0, 0x38, 0x60,\n 0xc2, 0xdd, 0xb0, 0x21, 0xe6, 0x28, 0x22, 0x29, 0x56, 0x14, 0xd0, 0x51, 0xc1, 0x80,\n 0x30, 0x7c, 0x6a, 0x3d, 0x1f, 0xc9, 0x84, 0xcd, 0xa9, 0x2e, 0x3a, 0xf8, 0xee, 0xa0,\n 0x79, 0x86, 0xc6, 0xf4, 0x41, 0xe6, 0x6b, 0x41, 0x7f, 0x24, 0x2e, 0xae, 0xfc, 0x3d,\n 0xae, 0x48, 0x28, 0xc7, 0x9a, 0x9c, 0x0e, 0xb4, 0x5f, 0x71, 0xf4, 0x2c, 0x2b, 0x1f,\n 0xc6, 0xc2, 0xb5, 0x6b, 0xa0, 0x32, 0xdd, 0x1d, 0xbf, 0x95, 0x5c, 0xd0, 0x0a, 0xfa,\n 0xdf, 0x48, 0x03, 0x67, 0x5d, 0x19, 0x5d, 0x51, 0xa6, 0xf4, 0x6d, 0x2f, 0x44, 0xdc,\n 0x6e, 0x9f, 0x20, 0x27, 0x09, 0xce, 0x49, 0xa1, 0x46, 0xa0, 0x81, 0x40, 0x18, 0x77,\n 0xdd, 0x0d, 0x38, 0x8d, 0x0b, 0xe7, 0xea, 0x14, 0xb4, 0xa0, 0xb7, 0xda, 0x25, 0xce,\n 0x60, 0x62, 0xaa, 0x0d, 0xcf, 0x34, 0x4e, 0xf3, 0xc2, 0xc0, 0x36, 0xb3, 0x90, 0xc7,\n 0xa0, 0x40, 0xbe, 0xf8, 0xc4, 0xd8, 0x2b, 0xd6, 0x55, 0x69, 0xeb, 0xb3, 0x1d, 0xe2,\n 0x8b, 0xda, 0x9c, 0x4f, 0x3b, 0x04, 0xe4, 0xdb, 0x5b, 0xb7, 0x5f, 0x6e, 0x4c, 0x45,\n 0x51, 0x9e, 0x82, 0x08, 0xda, 0xa0, 0x53, 0x16, 0x37, 0x04, 0xba, 0x1f, 0x4b, 0x91,\n 0x7d, 0x22, 0xf8, 0x95, 0xf0, 0xbe, 0x61, 0x7e, 0x09, 0xed, 0xe7, 0xb3, 0x87, 0xa1,\n 0xfb, 0x38, 0x2d, 0x8f, 0xe5, 0x45, 0x03, 0x1f, 0x76, 0x44, 0xa0, 0x4f, 0x0c, 0x25,\n 0xfc, 0x0e, 0xfb, 0x33, 0x22, 0xb0, 0xbb, 0x17, 0xa5, 0xe4, 0x31, 0x90, 0xd3, 0x64,\n 0x94, 0x51, 0x73, 0x76, 0x4c, 0x91, 0x99, 0x80, 0xb9, 0xbc, 0xcb, 0xe5, 0x14, 0x50,\n 0x3f, 0xa0, 0xfd, 0x5a, 0x44, 0x07, 0xf9, 0x74, 0x16, 0x7a, 0xf1, 0x03, 0xc9, 0x4e,\n 0x48, 0x2b, 0x96, 0x23, 0xbb, 0x43, 0xcf, 0xc3, 0xa7, 0xc7, 0x98, 0x9e, 0x00, 0x21,\n 0xe0, 0x4d, 0x47, 0x31, 0x58, 0x41, 0xa0, 0x35, 0x54, 0x86, 0x0e, 0x3c, 0x56, 0x9c,\n 0x88, 0xb2, 0xa9, 0xb7, 0x3f, 0x72, 0x69, 0x09, 0x48, 0x42, 0xbb, 0x5c, 0x6b, 0x95,\n 0x1e, 0x00, 0xba, 0xae, 0x67, 0xee, 0xfd, 0x6b, 0x67, 0x7e, 0x70, 0xa0, 0x36, 0xb8,\n 0xaf, 0xbf, 0x20, 0x69, 0x30, 0x6b, 0x67, 0x97, 0x30, 0x1f, 0x49, 0xa4, 0xa1, 0x0e,\n 0xe9, 0x8c, 0xa2, 0x5c, 0x6c, 0xc7, 0x6f, 0x10, 0x79, 0xc3, 0xf1, 0x79, 0xf8, 0x90,\n 0x56, 0xdc, 0xa0, 0x46, 0x3d, 0xe5, 0x4b, 0xeb, 0xde, 0xcd, 0x0b, 0x81, 0x24, 0x6f,\n 0xa8, 0xe3, 0xce, 0xbc, 0x08, 0x15, 0xe0, 0xc9, 0x57, 0xce, 0xe9, 0xf2, 0x3e, 0xf3,\n 0xac, 0x7f, 0xda, 0x5a, 0x9a, 0x84, 0x77, 0xa0, 0xda, 0x55, 0x99, 0xe1, 0xf3, 0xd5,\n 0x8e, 0xd6, 0xe4, 0x76, 0x14, 0x5d, 0xbb, 0x68, 0x86, 0xbb, 0x75, 0x06, 0x0e, 0xe4,\n 0x72, 0xdf, 0x78, 0x5f, 0x56, 0xf1, 0x1c, 0x27, 0x4e, 0xfd, 0x06, 0x83, 0xa0, 0x00,\n 0xd4, 0xb1, 0xb2, 0x8d, 0x31, 0x18, 0xc9, 0xe0, 0xc5, 0x6c, 0x8a, 0x23, 0xf5, 0xa2,\n 0x33, 0x4f, 0xec, 0x69, 0x02, 0x9c, 0xfd, 0x31, 0x3f, 0x61, 0xf5, 0x9c, 0x77, 0xe5,\n 0x81, 0x11, 0x6d, 0xa0, 0xe4, 0xad, 0x64, 0x57, 0x5b, 0x73, 0x3d, 0x9e, 0xa9, 0xcd,\n 0xac, 0x97, 0xa4, 0x39, 0xbb, 0xdb, 0xc0, 0x68, 0x47, 0x4f, 0x0e, 0x32, 0xc0, 0xb0,\n 0x44, 0xdf, 0x2e, 0xec, 0xde, 0x07, 0xd4, 0x8a, 0xa0, 0x5c, 0xbe, 0x69, 0xbc, 0x35,\n 0xf0, 0xec, 0x5e, 0xef, 0x19, 0x00, 0xc2, 0x81, 0x71, 0xeb, 0x6b, 0x87, 0xba, 0x0c,\n 0xe2, 0x88, 0x33, 0x8c, 0x74, 0x12, 0x6b, 0xc4, 0x8c, 0x24, 0x06, 0x1a, 0x4b, 0x80,\n ],\n [\n 0xf9, 0x01, 0xd1, 0xa0, 0x7d, 0x57, 0xef, 0xba, 0x2b, 0x0d, 0x32, 0xca, 0x17, 0xe6,\n 0x0f, 0x80, 0x42, 0x21, 0x7e, 0xd2, 0x7f, 0x77, 0xad, 0x82, 0x47, 0xd2, 0xe0, 0xe3,\n 0xdb, 0x85, 0xf2, 0xd8, 0x4b, 0xc8, 0xca, 0xcd, 0xa0, 0x22, 0xf3, 0x44, 0xfe, 0xd7,\n 0xc9, 0x8d, 0x17, 0x90, 0x14, 0xdf, 0x35, 0x31, 0x72, 0x3a, 0x24, 0x8e, 0x1a, 0xbb,\n 0xaf, 0x4f, 0xfb, 0x95, 0x4e, 0xa8, 0xb5, 0xa8, 0xfc, 0x93, 0x3b, 0x3f, 0x3a, 0xa0,\n 0x30, 0x96, 0xfa, 0x0f, 0xa1, 0xee, 0x14, 0x6c, 0x8a, 0xa5, 0x86, 0x8f, 0x80, 0x9e,\n 0xe5, 0x77, 0xf3, 0xf5, 0xba, 0xa3, 0x9f, 0x76, 0x86, 0x50, 0x2d, 0x78, 0x4d, 0x8e,\n 0xdc, 0x68, 0xa4, 0xc5, 0xa0, 0x9e, 0xd4, 0xf4, 0x80, 0xf1, 0x4b, 0x8c, 0x09, 0xa8,\n 0x9d, 0x53, 0x0f, 0xc8, 0x75, 0xd1, 0x88, 0x32, 0x02, 0x67, 0x5b, 0x03, 0x6c, 0xd5,\n 0x53, 0xba, 0xa6, 0xb0, 0xee, 0xfc, 0xdf, 0x69, 0xcc, 0xa0, 0xd5, 0x0b, 0x5d, 0xf3,\n 0x05, 0x43, 0xf6, 0x04, 0x71, 0xc6, 0x20, 0x01, 0x37, 0xe9, 0x5a, 0x35, 0x31, 0xa4,\n 0x29, 0xe3, 0x2b, 0x9f, 0xe4, 0x37, 0x24, 0x5c, 0x93, 0x02, 0x28, 0x5c, 0x65, 0x54,\n 0xa0, 0x6a, 0x82, 0x6f, 0x60, 0x96, 0x3d, 0xd4, 0x5f, 0x9d, 0xae, 0x25, 0xdf, 0x46,\n 0xa4, 0x2e, 0x49, 0xe0, 0xb3, 0x42, 0x30, 0xb8, 0xf3, 0xb3, 0xd7, 0xd3, 0xf4, 0x97,\n 0xc4, 0xd1, 0xd0, 0xfb, 0xbc, 0xa0, 0x80, 0xfb, 0x79, 0x1a, 0x67, 0xee, 0x2a, 0xb0,\n 0x2c, 0xcd, 0xba, 0x4e, 0x7c, 0x4c, 0xc6, 0x5d, 0xcf, 0x68, 0x5f, 0xe2, 0xcc, 0xdc,\n 0x69, 0xe9, 0x95, 0xba, 0x3e, 0xb4, 0x54, 0x4c, 0x13, 0x74, 0x80, 0xa0, 0x32, 0x64,\n 0x81, 0x6a, 0xf1, 0x40, 0x08, 0x93, 0x6c, 0xf4, 0x9d, 0x22, 0x15, 0x27, 0x3b, 0x87,\n 0x62, 0x48, 0x9e, 0x74, 0x3f, 0x5b, 0xbb, 0x27, 0x9a, 0x7a, 0xce, 0xe5, 0x1c, 0x0d,\n 0xae, 0xf6, 0xa0, 0x7a, 0x95, 0x0a, 0x56, 0x88, 0x3a, 0xb7, 0x73, 0xc8, 0xd8, 0xba,\n 0x53, 0xe1, 0x6e, 0x7f, 0x97, 0x97, 0xd9, 0x87, 0x58, 0xae, 0xbd, 0x07, 0x8c, 0x55,\n 0xd9, 0x3e, 0x05, 0x30, 0xe1, 0xe0, 0xef, 0xa0, 0x1c, 0x82, 0xa6, 0x9d, 0xa7, 0x6a,\n 0x57, 0xda, 0x45, 0x2a, 0xae, 0x1b, 0x8b, 0x14, 0xa6, 0x2f, 0x63, 0x9a, 0xfc, 0x60,\n 0x78, 0xce, 0x11, 0xb7, 0xbe, 0x60, 0xce, 0xe1, 0x9b, 0x0e, 0x37, 0xda, 0xa0, 0x50,\n 0x86, 0xfe, 0x71, 0x1d, 0x54, 0x09, 0x0c, 0x01, 0x0c, 0x8f, 0x6a, 0x2f, 0xeb, 0xbc,\n 0x34, 0x68, 0xaa, 0xd3, 0x4b, 0xd0, 0x54, 0xfc, 0x62, 0xda, 0x3f, 0x2f, 0x5e, 0x73,\n 0xe4, 0x1b, 0x5c, 0xa0, 0x44, 0x4d, 0xd0, 0x93, 0x34, 0xc9, 0x13, 0x76, 0xad, 0x8e,\n 0xb0, 0xba, 0x83, 0x0d, 0x33, 0x92, 0x09, 0x09, 0xd2, 0xf5, 0x6d, 0xb6, 0x26, 0x57,\n 0x16, 0xc7, 0x25, 0x59, 0x1e, 0xb2, 0x4f, 0x54, 0x80, 0xa0, 0x58, 0xc6, 0xc6, 0xc5,\n 0x8c, 0x2d, 0xe9, 0x50, 0x07, 0xa9, 0xf9, 0x22, 0xc1, 0xb3, 0xbd, 0x03, 0x2f, 0xed,\n 0x1b, 0xc1, 0xa6, 0x82, 0x9c, 0x2e, 0x95, 0x30, 0xcd, 0x16, 0x47, 0x97, 0x6c, 0x52,\n 0xa0, 0x2e, 0x99, 0x02, 0xa0, 0x4b, 0x27, 0xa6, 0x11, 0x11, 0x92, 0x35, 0x31, 0x8c,\n 0x8f, 0x12, 0x63, 0x0d, 0x58, 0xee, 0x77, 0x5a, 0x31, 0xad, 0xe3, 0x57, 0x6b, 0xe9,\n 0x53, 0x42, 0x6e, 0xc2, 0xf6, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n [\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ],\n ];\n let storage_leaf = [\n 0xec, 0x9f, 0x20, 0xef, 0xe9, 0x1b, 0x84, 0xa3, 0xf0, 0x73, 0x56, 0x24, 0xd9, 0xb5, 0xa4,\n 0x1f, 0x2f, 0x1f, 0x4a, 0xa0, 0x92, 0xea, 0xac, 0x1f, 0x9d, 0x6a, 0xf0, 0x1f, 0x15, 0x9f,\n 0x3c, 0x08, 0x9e, 0x8b, 0x8a, 0x02, 0x1e, 0x19, 0xe0, 0xc9, 0xba, 0xb2, 0x40, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\n ];\n let storage_depth = 5;\n\n let value = get_storage_value(storage_value);\n\n verify(\n key,\n value,\n storage_hash,\n storage_nodes,\n storage_leaf,\n storage_depth,\n );\n}\n', path: "/Users/kartik/anon/anon/packages/credentials/src/noir-lib/src/proof/mod.nr" }, "72": { source: "mod secp256k1;\n\npub fn ecrecover(\n pub_key_x: [u8; 32],\n pub_key_y: [u8; 32],\n signature: [u8; 64], // clip v value\n hashed_message: [u8; 32],\n) -> Field {\n let key = secp256k1::PubKey::from_xy(pub_key_x, pub_key_y);\n\n assert(key.verify_sig(signature, hashed_message));\n let addr = key.to_eth_address();\n\n addr\n}\n\n#[test]\nfn test_ecrecover() {\n let pub_key_x = [\n 131, 24, 83, 91, 84, 16, 93, 74, 122, 174, 96, 192, 143, 196, 95, 150, 135, 24, 27, 79, 223,\n 198, 37, 189, 26, 117, 63, 167, 57, 127, 237, 117,\n ];\n let pub_key_y = [\n 53, 71, 241, 28, 168, 105, 102, 70, 242, 243, 172, 176, 142, 49, 1, 106, 250, 194, 62, 99,\n 12, 93, 17, 245, 159, 97, 254, 245, 123, 13, 42, 165,\n ];\n let signature = [\n 57, 17, 112, 239, 241, 30, 64, 157, 170, 50, 85, 145, 156, 69, 226, 85, 147, 164, 10, 82,\n 71, 93, 42, 132, 200, 220, 161, 255, 95, 241, 211, 141, 81, 7, 150, 25, 25, 27, 162, 213,\n 80, 61, 12, 170, 50, 4, 154, 203, 252, 229, 119, 29, 202, 153, 50, 25, 126, 145, 245, 23,\n 136, 75, 29, 177,\n ];\n let hashed_message = [\n 13, 82, 120, 60, 76, 186, 215, 235, 175, 126, 185, 67, 252, 100, 143, 82, 130, 165, 32, 112,\n 68, 47, 193, 141, 141, 209, 109, 219, 47, 203, 175, 102,\n ];\n\n let addr = ecrecover(pub_key_x, pub_key_y, signature, hashed_message);\n assert(addr == 0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266);\n}\n", path: "/Users/kartik/anon/anon/packages/credentials/src/noir-lib/src/ecrecover/mod.nr" }, "73": { source: "use dep::std;\n\nuse dep::array_helpers;\n\nstruct PubKey {\n pub_x: [u8; 32],\n pub_y: [u8; 32],\n}\n\nfn split_uncompressed_pub_key(pub_key: [u8; 65]) -> ([u8; 32], [u8; 32]) {\n let mut pub_key_x: [u8; 32] = [0; 32];\n let mut pub_key_y: [u8; 32] = [0; 32];\n\n for i in 0..32 {\n pub_key_x[i] = pub_key[i + 1];\n pub_key_y[i] = pub_key[i + 32 + 1];\n }\n\n (pub_key_x, pub_key_y)\n}\n\nimpl PubKey {\n fn from_xy(pub_x: [u8; 32], pub_y: [u8; 32]) -> PubKey {\n PubKey { pub_x, pub_y }\n }\n\n fn from_unified(pub_key: [u8; 64]) -> PubKey {\n let (key_x, key_y) = array_helpers::split_u8_64(pub_key);\n\n PubKey { pub_x: key_x, pub_y: key_y }\n }\n\n fn from_uncompressed(pub_key: [u8; 65]) -> PubKey {\n assert(pub_key[0] == 0x04);\n let (key_x, key_y) = split_uncompressed_pub_key(pub_key);\n\n PubKey { pub_x: key_x, pub_y: key_y }\n }\n\n fn verify_sig(self, signature: [u8; 64], hashed_message: [u8; 32]) -> bool {\n std::ecdsa_secp256k1::verify_signature(self.pub_x, self.pub_y, signature, hashed_message)\n }\n\n fn to_eth_address(self) -> Field {\n let pub_key = array_helpers::u8_32_to_u8_64(self.pub_x, self.pub_y);\n let hashed_pub_key = std::hash::keccak256(pub_key, 64);\n\n let mut addr: Field = 0;\n for i in 0..20 {\n // shift left by 8 and add the new value\n addr = (addr * 256) + hashed_pub_key[i + 12] as Field;\n }\n\n addr\n }\n\n fn ecrecover(self, signature: [u8; 64], hashed_message: [u8; 32]) -> Field {\n assert(self.verify_sig(signature, hashed_message));\n\n self.to_eth_address()\n }\n}\n\n#[test]\nfn test_ecrecover_via_key() {\n let pub_key_x = [\n 131, 24, 83, 91, 84, 16, 93, 74, 122, 174, 96, 192, 143, 196, 95, 150, 135, 24, 27, 79, 223,\n 198, 37, 189, 26, 117, 63, 167, 57, 127, 237, 117,\n ];\n let pub_key_y = [\n 53, 71, 241, 28, 168, 105, 102, 70, 242, 243, 172, 176, 142, 49, 1, 106, 250, 194, 62, 99,\n 12, 93, 17, 245, 159, 97, 254, 245, 123, 13, 42, 165,\n ];\n let signature = [\n 57, 17, 112, 239, 241, 30, 64, 157, 170, 50, 85, 145, 156, 69, 226, 85, 147, 164, 10, 82,\n 71, 93, 42, 132, 200, 220, 161, 255, 95, 241, 211, 141, 81, 7, 150, 25, 25, 27, 162, 213,\n 80, 61, 12, 170, 50, 4, 154, 203, 252, 229, 119, 29, 202, 153, 50, 25, 126, 145, 245, 23,\n 136, 75, 29, 177,\n ];\n let hashed_message = [\n 13, 82, 120, 60, 76, 186, 215, 235, 175, 126, 185, 67, 252, 100, 143, 82, 130, 165, 32, 112,\n 68, 47, 193, 141, 141, 209, 109, 219, 47, 203, 175, 102,\n ];\n\n let key = PubKey::from_xy(pub_key_x, pub_key_y);\n assert(key.ecrecover(signature, hashed_message) == 0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266);\n}\n", path: "/Users/kartik/anon/anon/packages/credentials/src/noir-lib/src/ecrecover/secp256k1.nr" }, "74": { source: "pub fn bytes_as_nibbles<let N: u32>(bytes: [u8; N]) -> [u8; N * 2] {\n let mut nibbles = [0; N * 2];\n for i in 0..N {\n let nibs = byte_to_nibbles(bytes[i]);\n nibbles[i * 2] = nibs.0;\n nibbles[i * 2 + 1] = nibs.1;\n }\n nibbles\n}\n\npub fn byte_to_nibbles(b: u8) -> (u8, u8) {\n let upper = b >> 4;\n let lower = b - 16 * upper;\n\n (upper, lower)\n}\n", path: "/Users/kartik/anon/anon/packages/credentials/src/noir-lib/src/bytes/mod.nr" }, "75": { source: "use dep::std::wrapping_sub;\n\npub global RLP_DATA_TYPE_STRING = 0;\npub global RLP_DATA_TYPE_LIST = 1;\n\npub struct RlpFragment {\n pub offset: u32,\n pub length: u32,\n pub data_type: u32,\n}\n\npub unconstrained fn decode_rlp_list_fragments<let NODE_LEN: u32, let MAX_FIELDS: u32>(\n rlp_header: RlpFragment,\n node: [u8; NODE_LEN],\n) -> BoundedVec<RlpFragment, MAX_FIELDS> {\n let node_len = rlp_header.length + rlp_header.offset;\n let mut rlp_list = BoundedVec::new();\n let mut curr_offset = rlp_header.offset;\n for _ in 0..MAX_FIELDS {\n if (curr_offset < node_len) {\n let field_prefix = node[curr_offset];\n\n let field_offset = if field_prefix < 0x80 { 0 } else { 1 };\n let field_length = if field_prefix < 0x80 {\n 1\n } else {\n wrapping_sub(field_prefix as u32, 0x80)\n };\n\n rlp_list.push(\n RlpFragment {\n offset: curr_offset + field_offset,\n length: field_length,\n data_type: RLP_DATA_TYPE_STRING,\n },\n );\n\n curr_offset += field_length + field_offset;\n }\n }\n\n rlp_list\n}\n\npub unconstrained fn decode_rlp_header<let NODE_LEN: u32>(node: [u8; NODE_LEN]) -> RlpFragment {\n let (prefix, data) = node.as_slice().pop_front();\n\n if (prefix < 0x80) {\n // 1 byte\n RlpFragment { offset: 0 as u32, length: 1 as u32, data_type: RLP_DATA_TYPE_STRING }\n } else if (prefix < 0xb8) {\n // 0-55 byte string\n RlpFragment {\n offset: 1,\n length: wrapping_sub(prefix, 0x80) as u32,\n data_type: RLP_DATA_TYPE_STRING,\n }\n } else if (prefix < 0xc0) {\n // > 55 byte string\n RlpFragment {\n offset: wrapping_sub(1 + prefix, 0xb7) as u32,\n length: extract_payload_len(data, wrapping_sub(prefix, 0xb7) as u32),\n data_type: RLP_DATA_TYPE_STRING,\n }\n } else if (prefix < 0xf8) {\n // 0-55 byte array\n RlpFragment {\n offset: 1,\n length: wrapping_sub(prefix, 0xc0) as u32,\n data_type: RLP_DATA_TYPE_LIST,\n }\n } else {\n // > 55 byte array\n RlpFragment {\n offset: wrapping_sub(1 + prefix, 0xf7) as u32,\n length: extract_payload_len(data, wrapping_sub(prefix, 0xf7) as u32),\n data_type: RLP_DATA_TYPE_LIST,\n }\n }\n}\n\nfn extract_payload_len(data: [u8], len: u32) -> u32 {\n let data_len = data.len();\n let mut node_len = 0;\n for i in 0..2 {\n if (i < len & i < data_len) {\n node_len = data[i] as u32 + node_len * 256;\n }\n }\n\n node_len\n}\n\npub fn encode_rlp_string<let N: u32>(data: [u8; N]) -> [u8; N] {\n let length = data.len();\n let mut result = [0; N];\n\n // Find first non-zero byte using for loop\n let mut start_idx = 0;\n for i in 0..N {\n if (start_idx == 0) & (data[i] != 0) {\n start_idx = i;\n }\n }\n\n // If all zeros, return single zero byte\n if (start_idx == 0) & (data[0] == 0) {\n result[0] = 0x80;\n result\n }\n\n let actual_length = length - start_idx;\n\n if (actual_length == 1) & (data[start_idx] < 0x80) {\n // Single byte < 0x80\n result[0] = data[start_idx];\n } else {\n // 0-55 bytes string\n result[0] = (0x80 + actual_length) as u8;\n for i in 0..N {\n if i < actual_length {\n result[i + 1] = data[start_idx + i];\n }\n }\n }\n\n result\n}\n", path: "/Users/kartik/anon/anon/packages/credentials/src/noir-lib/src/rlp/mod.nr" } }, names: ["main"], brillig_names: ["get_key_hash", "decode_rlp_header", "get_node_hash", "decode_rlp_list_fragments", "copy", "decode_rlp_header", "get_node_hash", "decode_rlp_list_fragments", "copy", "field_less_than", "decompose_hint", "lte_hint", "directive_invert", "directive_integer_quotient"] };
|
|
314
|
-
|
|
315
|
-
// src/circuit/target/vkey.json
|
|
316
|
-
var vkey_default = [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, 1, 0, 107, 78, 58, 88, 0, 0, 0, 1, 6, 162, 5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 91, 22, 20, 233, 27, 155, 247, 74, 216, 200, 29, 215, 80, 240, 213, 33, 132, 47, 79, 92, 83, 53, 82, 243, 72, 136, 165, 48, 210, 62, 187, 34, 13, 146, 64, 67, 140, 92, 152, 234, 106, 180, 97, 244, 82, 95, 139, 165, 150, 116, 145, 254, 5, 153, 225, 209, 250, 240, 130, 10, 137, 49, 185, 41, 26, 196, 235, 7, 148, 120, 239, 237, 216, 66, 119, 221, 114, 191, 9, 50, 101, 42, 122, 110, 204, 67, 65, 179, 7, 241, 174, 175, 43, 46, 61, 3, 38, 227, 84, 44, 113, 222, 190, 87, 126, 255, 101, 122, 81, 59, 102, 120, 214, 94, 120, 37, 194, 83, 78, 66, 165, 235, 146, 116, 186, 16, 187, 32, 195, 162, 29, 104, 146, 63, 81, 150, 201, 241, 43, 102, 56, 82, 135, 120, 115, 46, 231, 254, 228, 175, 109, 30, 15, 2, 210, 144, 49, 20, 6, 32, 59, 71, 239, 200, 100, 224, 153, 113, 189, 64, 148, 76, 98, 200, 55, 51, 20, 20, 108, 156, 169, 121, 165, 49, 118, 147, 205, 156, 90, 250, 104, 15, 52, 14, 139, 144, 3, 131, 54, 181, 203, 87, 98, 201, 143, 242, 31, 186, 178, 210, 151, 227, 10, 234, 75, 122, 245, 214, 83, 228, 94, 56, 43, 39, 148, 58, 46, 72, 15, 45, 194, 168, 17, 136, 9, 123, 236, 109, 96, 252, 65, 157, 200, 218, 48, 13, 215, 0, 113, 202, 150, 170, 203, 63, 140, 40, 172, 70, 87, 221, 44, 157, 250, 202, 121, 238, 209, 143, 151, 173, 47, 204, 95, 216, 138, 81, 180, 128, 138, 157, 133, 108, 97, 0, 98, 99, 254, 28, 46, 244, 220, 94, 233, 155, 75, 87, 59, 143, 154, 229, 195, 210, 183, 157, 158, 45, 224, 202, 236, 50, 174, 114, 250, 111, 207, 105, 195, 30, 194, 1, 250, 143, 173, 94, 234, 164, 145, 202, 253, 181, 110, 187, 190, 178, 106, 165, 12, 105, 249, 87, 173, 23, 60, 215, 164, 91, 87, 198, 236, 185, 108, 6, 76, 120, 245, 132, 45, 115, 22, 32, 113, 147, 230, 226, 113, 131, 234, 216, 82, 188, 187, 56, 104, 23, 46, 24, 0, 235, 127, 154, 183, 67, 165, 17, 211, 237, 252, 50, 83, 127, 95, 141, 30, 217, 79, 175, 149, 187, 79, 7, 250, 134, 34, 255, 118, 100, 179, 50, 2, 164, 73, 87, 154, 234, 59, 3, 210, 179, 115, 24, 49, 71, 9, 174, 151, 55, 42, 240, 122, 138, 110, 233, 25, 9, 253, 247, 109, 189, 132, 59, 2, 9, 22, 99, 223, 99, 223, 6, 87, 32, 136, 121, 131, 165, 43, 87, 21, 91, 178, 247, 172, 154, 19, 15, 204, 91, 243, 160, 169, 140, 162, 254, 170, 167, 38, 201, 111, 241, 183, 43, 119, 100, 117, 215, 40, 124, 146, 70, 109, 113, 200, 82, 47, 218, 253, 214, 177, 248, 244, 141, 11, 133, 217, 141, 135, 29, 29, 120, 101, 81, 129, 21, 132, 170, 207, 196, 74, 79, 193, 77, 86, 151, 65, 157, 43, 55, 246, 161, 121, 169, 254, 231, 98, 6, 137, 151, 162, 225, 224, 156, 62, 173, 250, 4, 151, 119, 176, 56, 171, 183, 231, 208, 120, 202, 159, 48, 25, 51, 56, 105, 220, 195, 75, 56, 144, 95, 71, 138, 48, 126, 162, 69, 28, 217, 49, 35, 45, 233, 145, 166, 5, 53, 160, 250, 19, 226, 20, 129, 237, 216, 203, 131, 15, 114, 31, 42, 205, 148, 60, 125, 177, 208, 77, 188, 163, 115, 236, 33, 67, 133, 16, 57, 222, 41, 207, 13, 233, 104, 99, 136, 250, 220, 203, 207, 85, 103, 206, 198, 244, 77, 18, 136, 62, 142, 247, 110, 59, 255, 249, 41, 113, 145, 162, 120, 21, 176, 251, 159, 191, 231, 117, 242, 112, 154, 68, 191, 200, 4, 61, 124, 102, 252, 52, 165, 223, 251, 93, 78, 104, 170, 122, 47, 229, 56, 203, 188, 117, 14, 211, 47, 48, 90, 23, 47, 159, 34, 238, 217, 246, 99, 96, 159, 191, 218, 106, 18, 2, 52, 138, 176, 15, 181, 73, 24, 200, 194, 2, 16, 190, 59, 91, 91, 142, 159, 229, 22, 70, 144, 58, 141, 255, 228, 71, 77, 109, 19, 17, 56, 52, 71, 196, 205, 155, 52, 40, 15, 173, 165, 8, 164, 167, 210, 74, 113, 11, 182, 10, 232, 214, 56, 76, 71, 247, 112, 13, 28, 42, 12, 106, 61, 149, 72, 183, 242, 252, 110, 53, 2, 197, 221, 74, 113, 147, 24, 36, 159, 94, 80, 23, 101, 28, 79, 229, 111, 22, 226, 65, 222, 94, 196, 39, 206, 87, 46, 73, 211, 80, 125, 115, 26, 155, 233, 239, 168, 94, 9, 37, 221, 35, 235, 228, 166, 34, 194, 152, 166, 184, 253, 167, 137, 198, 36, 33, 161, 239, 250, 18, 129, 63, 54, 252, 33, 128, 42, 128, 170, 129, 173, 132, 207, 219, 64, 140, 124, 108, 132, 233, 241, 195, 122, 33, 30, 235, 225, 78, 229, 244, 13, 101, 45, 254, 10, 170, 44, 18, 232, 152, 93, 198, 175, 191, 119, 213, 208, 120, 29, 126, 182, 225, 81, 82, 12, 99, 125, 125, 251, 191, 161, 113, 14, 61, 21, 174, 90, 128, 39, 151, 35, 228, 245, 196, 89, 121, 109, 184, 130, 173, 63, 126, 10, 63, 226, 72, 242, 35, 156, 44, 109, 5, 70, 200, 103, 219, 208, 167, 237, 208, 12, 174, 133, 23, 17, 75, 204, 36, 60, 220, 116, 15, 16, 162, 121, 188, 59, 186, 46, 25, 175, 165, 18, 81, 191, 6, 220, 110, 236, 177, 95, 52, 16, 245, 179, 190, 154, 144, 108, 9, 15, 79, 152, 225, 80, 76, 183, 21, 189, 228, 69, 16, 204, 115, 183, 110, 63, 157, 94, 66, 77, 149, 76, 53, 27, 214, 255, 169, 56, 229, 228, 205, 192, 218, 99, 71, 165, 248, 188, 161, 9, 120, 16, 203, 15, 123, 51, 149, 96, 139, 235, 25, 200, 71, 131, 116, 4, 49, 207, 11, 211, 136, 41, 13, 194, 4, 55, 41, 255, 212, 198, 92, 200, 84, 201, 233, 81, 216, 237, 201, 164, 149, 151, 36, 61, 67, 44, 190, 11, 95, 66, 107, 125, 118, 10, 242, 237, 207, 42, 234, 90, 133, 167, 32, 214, 116, 48, 210, 145, 250, 72, 209, 86, 230, 187, 79, 178, 185, 83, 97, 34, 98, 178, 119, 217, 129, 5, 222, 69, 123, 133, 7, 141, 116, 235, 196, 47, 174, 116, 207, 172, 224, 31, 89, 58, 116, 214, 92, 146, 57, 234, 138, 28, 203, 160, 234, 173, 191, 229, 135, 166, 25, 25, 119, 131, 192, 248, 158, 63, 253, 246, 64, 137, 144, 71, 95, 49, 135, 60, 244, 26, 136, 249, 71, 2, 109, 248, 204, 94, 169, 67, 248, 210, 115, 34, 6, 158, 209, 171, 252, 130, 92, 15, 97, 160, 141, 82, 173, 122, 118, 30, 96, 10, 246, 113, 146, 16, 135, 19, 6, 222, 25, 192, 167, 127, 225, 35, 86, 110, 179, 158, 220, 138, 3, 230, 120, 123, 64, 179, 85, 211, 225, 247, 67, 109, 137, 41, 48, 35, 19, 198, 159, 139, 78, 199, 229, 115, 162, 194, 8, 81, 239, 203, 122, 254, 152, 40, 111, 243, 204, 68, 219, 179, 53, 157, 125, 150, 211, 135, 193, 35, 200, 134, 81, 120, 126, 183, 190, 101, 252, 208, 165, 180, 196, 169, 5, 71, 240, 247, 235, 146, 165, 0, 138, 41, 173, 182, 148, 208, 47, 238, 98, 5, 225, 27, 32, 42, 177, 156, 132, 212, 97, 43, 104, 50, 219, 254, 207, 96, 61, 237, 87, 196, 22, 107, 138, 194, 243, 184, 161, 4, 179, 159, 21, 23, 44, 105, 119, 55, 45, 60, 188, 251, 226, 8, 78, 168, 244, 34, 91, 208, 162, 0, 91, 97, 230, 153, 245, 40, 184, 131, 56, 227, 53, 32, 39, 43, 64, 170, 9, 93, 43, 20, 183, 210, 111, 162, 77, 251, 6, 126, 28, 196, 179, 227, 147, 36, 202, 55, 206, 2, 44, 252, 176, 115, 35, 151, 59, 6, 115, 31, 208, 251, 198, 218, 67, 183, 185, 74, 82, 13, 246, 20, 153, 142, 82, 244, 217, 237, 178, 197, 154, 255, 10, 242, 117, 8, 230, 229, 204, 8, 171, 31, 74, 202, 18, 31, 211, 95, 203, 55, 206, 88, 102, 188, 255, 130, 255, 191, 228, 162, 195, 40, 84, 177, 186, 119, 206, 201, 18, 181, 83, 42, 120, 221, 81, 208, 195, 175, 254, 246, 201, 13, 69, 225, 106, 188, 166, 218, 200, 221, 180, 66, 21, 51, 103, 219, 112, 36, 112, 35, 21, 136, 86, 39, 101, 144, 0, 158, 53, 14, 45, 223, 37, 87, 137, 15, 50, 178, 16, 128, 228, 168, 44, 90, 111, 53, 236, 65, 12, 246, 153, 106, 95, 228, 64, 34, 86, 175, 64, 95, 124, 189, 241, 184, 154, 163, 135, 167, 193, 204, 3, 198, 177, 50, 43, 179, 128, 106, 252, 16, 190, 104, 249, 143, 144, 87, 89, 6, 170, 34, 95, 197, 165, 27, 214, 58, 143, 26, 172, 157, 228, 32, 222, 84, 107, 197, 73, 111, 88, 139, 4, 227, 204, 53, 70, 43, 191, 218, 79, 21, 147, 50, 154, 254, 216, 79, 141, 231, 124, 109, 38, 215, 91, 7, 48, 191, 57, 96, 132, 149, 177, 243, 161, 68, 137, 128, 11, 150, 78, 98, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 11, 145, 219, 103, 10, 242, 73, 234, 67, 191, 53, 161, 146, 241, 57, 247, 215, 80, 111, 188, 55, 251, 235, 25, 218, 249, 23, 90, 82, 189, 55, 209, 36, 157, 176, 168, 102, 204, 41, 194, 73, 8, 129, 210, 238, 177, 172, 106, 227, 10, 89, 2, 188, 39, 47, 2, 105, 89, 83, 153, 123, 109, 46, 46];
|
|
317
|
-
|
|
318
|
-
// src/verifier.ts
|
|
319
|
-
var BASE_RPC_URL = process.env.BASE_RPC_URL || "https://mainnet.base.org";
|
|
320
|
-
var ZKCLAW_TOKEN = {
|
|
321
|
-
address: "0x8849386BCd0fA6B8fF484A4aAd9c374B2F7c4B07",
|
|
322
|
-
chainId: 8453,
|
|
323
|
-
balanceSlot: 0,
|
|
324
|
-
// Standard ERC20 balance slot
|
|
325
|
-
decimals: 18
|
|
326
|
-
};
|
|
327
|
-
var ANON_TOKEN = ZKCLAW_TOKEN;
|
|
328
|
-
var BALANCE_THRESHOLDS = {
|
|
329
|
-
POST: BigInt("50000") * BigInt(10 ** 18),
|
|
330
|
-
// 50K tokens
|
|
331
|
-
PROMOTE: BigInt("20000000") * BigInt(10 ** 18)
|
|
332
|
-
// 20M tokens
|
|
333
|
-
};
|
|
334
|
-
var AnonBalanceVerifier = class extends Circuit {
|
|
335
|
-
client;
|
|
336
|
-
constructor() {
|
|
337
|
-
super(anon_balance_default, vkey_default);
|
|
338
|
-
this.client = createPublicClient({
|
|
339
|
-
chain: base,
|
|
340
|
-
transport: http(BASE_RPC_URL)
|
|
341
|
-
});
|
|
342
|
-
}
|
|
343
|
-
/**
|
|
344
|
-
* Build the input data needed for proof generation.
|
|
345
|
-
* This fetches the current storage proof from the blockchain.
|
|
346
|
-
*
|
|
347
|
-
* @param address - The wallet address to prove balance for
|
|
348
|
-
* @param verifiedBalance - The balance threshold to prove (e.g., 5000 tokens)
|
|
349
|
-
*/
|
|
350
|
-
async buildInput(address, verifiedBalance) {
|
|
351
|
-
const balanceSlotHex = pad(toHex(ZKCLAW_TOKEN.balanceSlot));
|
|
352
|
-
const storageKey = keccak256(concat([pad(address), balanceSlotHex]));
|
|
353
|
-
const block = await this.client.getBlock();
|
|
354
|
-
const ethProof = await this.client.getProof({
|
|
355
|
-
address: ZKCLAW_TOKEN.address,
|
|
356
|
-
storageKeys: [storageKey],
|
|
357
|
-
blockNumber: block.number
|
|
358
|
-
});
|
|
359
|
-
const input = {
|
|
360
|
-
storageHash: ethProof.storageHash,
|
|
361
|
-
storageProof: ethProof.storageProof,
|
|
362
|
-
chainId: `0x${ZKCLAW_TOKEN.chainId.toString(16)}`,
|
|
363
|
-
blockNumber: `0x${block.number.toString(16)}`,
|
|
364
|
-
tokenAddress: ZKCLAW_TOKEN.address,
|
|
365
|
-
balanceSlot: balanceSlotHex,
|
|
366
|
-
verifiedBalance: `0x${verifiedBalance.toString(16)}`
|
|
367
|
-
};
|
|
368
|
-
const message = JSON.stringify({ ...input, storageProof: void 0 });
|
|
369
|
-
return { input, message };
|
|
370
|
-
}
|
|
371
|
-
/**
|
|
372
|
-
* Generate a ZK proof of token balance.
|
|
373
|
-
*
|
|
374
|
-
* @param args - Input data including signature and storage proof
|
|
375
|
-
*/
|
|
376
|
-
async generateProof(args) {
|
|
377
|
-
const { pubKeyX, pubKeyY } = await getPublicKey(
|
|
378
|
-
args.signature,
|
|
379
|
-
args.messageHash
|
|
380
|
-
);
|
|
381
|
-
const storageProof = args.storageProof[0];
|
|
382
|
-
const nodes = storageProof.proof.slice(0, storageProof.proof.length - 1);
|
|
383
|
-
const leaf = storageProof.proof[storageProof.proof.length - 1];
|
|
384
|
-
const input = {
|
|
385
|
-
signature: formatHexArray(args.signature, { length: 64 }),
|
|
386
|
-
message_hash: formatHexArray(args.messageHash),
|
|
387
|
-
pub_key_x: formatHexArray(pubKeyX),
|
|
388
|
-
pub_key_y: formatHexArray(pubKeyY),
|
|
389
|
-
storage_hash: formatHexArray(args.storageHash),
|
|
390
|
-
storage_nodes: formatArray(
|
|
391
|
-
nodes,
|
|
392
|
-
(node) => formatHexArray(node, { length: 1080, pad: "right" }),
|
|
393
|
-
{ length: 5 }
|
|
394
|
-
),
|
|
395
|
-
storage_leaf: formatHexArray(leaf, { length: 120, pad: "right" }),
|
|
396
|
-
storage_depth: storageProof.proof.length,
|
|
397
|
-
storage_value: `0x${storageProof.value.toString(16)}`,
|
|
398
|
-
chain_id: args.chainId,
|
|
399
|
-
block_number: args.blockNumber,
|
|
400
|
-
token_address: args.tokenAddress,
|
|
401
|
-
balance_slot: args.balanceSlot,
|
|
402
|
-
verified_balance: args.verifiedBalance
|
|
403
|
-
};
|
|
404
|
-
const proof = await super.generate(input);
|
|
405
|
-
return {
|
|
406
|
-
proof: Array.from(proof.proof),
|
|
407
|
-
publicInputs: proof.publicInputs
|
|
408
|
-
};
|
|
409
|
-
}
|
|
410
|
-
/**
|
|
411
|
-
* Verify a ZK proof.
|
|
412
|
-
*/
|
|
413
|
-
async verifyProof(proof) {
|
|
414
|
-
return super.verify({
|
|
415
|
-
proof: new Uint8Array(proof.proof),
|
|
416
|
-
publicInputs: proof.publicInputs
|
|
417
|
-
});
|
|
418
|
-
}
|
|
419
|
-
/**
|
|
420
|
-
* Parse the public inputs from a proof into readable data.
|
|
421
|
-
*/
|
|
422
|
-
parseData(publicInputs) {
|
|
423
|
-
const balance = BigInt(publicInputs[0]).toString();
|
|
424
|
-
const chainId = Number(BigInt(publicInputs[1]).toString());
|
|
425
|
-
const blockNumber = BigInt(publicInputs[2]).toString();
|
|
426
|
-
const tokenAddress = `0x${publicInputs[3].slice(-40)}`;
|
|
427
|
-
const balanceSlot = BigInt(publicInputs[4]).toString();
|
|
428
|
-
const storageHash = `0x${publicInputs.slice(5, 5 + 32).map((b) => BigInt(b).toString(16).padStart(2, "0")).join("")}`;
|
|
429
|
-
return {
|
|
430
|
-
balance,
|
|
431
|
-
chainId,
|
|
432
|
-
blockNumber,
|
|
433
|
-
tokenAddress,
|
|
434
|
-
balanceSlot,
|
|
435
|
-
storageHash
|
|
436
|
-
};
|
|
437
|
-
}
|
|
438
|
-
/**
|
|
439
|
-
* Check if the proven balance meets the POST threshold.
|
|
440
|
-
*/
|
|
441
|
-
canPost(balance) {
|
|
442
|
-
return balance >= BALANCE_THRESHOLDS.POST;
|
|
443
|
-
}
|
|
444
|
-
/**
|
|
445
|
-
* Check if the proven balance meets the PROMOTE threshold.
|
|
446
|
-
*/
|
|
447
|
-
canPromote(balance) {
|
|
448
|
-
return balance >= BALANCE_THRESHOLDS.PROMOTE;
|
|
449
|
-
}
|
|
450
|
-
/**
|
|
451
|
-
* Get balance tier from proof data.
|
|
452
|
-
*/
|
|
453
|
-
getBalanceTier(proofData) {
|
|
454
|
-
const data = this.parseData(proofData.publicInputs);
|
|
455
|
-
const balance = BigInt(data.balance);
|
|
456
|
-
if (this.canPromote(balance)) return "promote";
|
|
457
|
-
if (this.canPost(balance)) return "post";
|
|
458
|
-
return "none";
|
|
459
|
-
}
|
|
460
|
-
};
|
|
461
|
-
var verifierInstance = null;
|
|
462
|
-
function getVerifier() {
|
|
463
|
-
if (!verifierInstance) {
|
|
464
|
-
verifierInstance = new AnonBalanceVerifier();
|
|
465
|
-
}
|
|
466
|
-
return verifierInstance;
|
|
467
|
-
}
|
|
468
|
-
|
|
469
|
-
// src/index.ts
|
|
470
|
-
if (typeof process !== "undefined" && process.env && process.env.VERCEL) {
|
|
471
|
-
process.env.HOME = "/tmp";
|
|
472
|
-
}
|
|
473
|
-
export {
|
|
474
|
-
ANON_TOKEN,
|
|
475
|
-
AnonBalanceVerifier,
|
|
476
|
-
BALANCE_THRESHOLDS,
|
|
477
|
-
ZKCLAW_TOKEN,
|
|
478
|
-
getVerifier
|
|
479
|
-
};
|