@zeyue0329/xiaoma-cli 1.0.45 → 1.0.46

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -84,7 +84,7 @@ commands:
84
84
  - perform-market-research: 使用任务 create-doc 和 market-research-tmpl.yaml
85
85
  - research-prompt {topic}: 执行任务 create-deep-research-prompt.md
86
86
  - analyze-requirement {req_file}: 基于需求文档进行RAG增强的需求分析 (运行任务 requirement-analysis-with-rag.md)
87
- - generate-rag-questions {req_file}: 根据需求文档生成知识库查询问题清单 (使用模板 rag-questions-tmpl.yaml)
87
+ - generate-rag-questions {req_file}: 根据需求文档生成知识库查询问题清单,保存到docs/rag/_questions.md (运行任务 generate-rag-questions.md)
88
88
  - land-knowledge: 将知识库返回的内容结构化存储到docs/rag目录 (使用模板 rag-knowledge-tmpl.yaml)
89
89
  - create-prd-from-rag: 基于docs/rag知识和需求文档生成PRD (使用任务 create-doc 和 prd-tmpl.yaml)
90
90
  - yolo: 切换 Yolo 模式
@@ -99,6 +99,7 @@ dependencies:
99
99
  - create-doc.md
100
100
  - document-project.md
101
101
  - facilitate-brainstorming-session.md
102
+ - generate-rag-questions.md
102
103
  - requirement-analysis-with-rag.md
103
104
  templates:
104
105
  - brainstorming-output-tmpl.yaml
@@ -1111,6 +1112,321 @@ Generate structured document with these sections:
1111
1112
  - Respect their process and timing
1112
1113
  ==================== END: .xiaoma-core/tasks/facilitate-brainstorming-session.md ====================
1113
1114
 
1115
+ ==================== START: .xiaoma-core/tasks/generate-rag-questions.md ====================
1116
+ # 生成知识库查询问题清单任务
1117
+
1118
+ ## 任务概述
1119
+
1120
+ 根据需求文档(req.txt)生成结构化的知识库查询问题清单,并保存到项目的 `docs/rag/` 目录下。
1121
+
1122
+ ## 输入
1123
+
1124
+ - **req_file**: 需求文档路径(默认: req.txt)
1125
+
1126
+ ## 输出
1127
+
1128
+ - **输出目录**: `docs/rag/`
1129
+ - **主文件**: `docs/rag/_questions.md` - 完整的问题清单
1130
+ - **解析结果**: `docs/rag/_requirement-parsing.yaml` - 需求解析结果
1131
+
1132
+ ## 执行流程
1133
+
1134
+ ### 步骤 1: 环境准备
1135
+
1136
+ ```yaml
1137
+ 执行动作:
1138
+ - 检查需求文档是否存在
1139
+ - 如果 docs/rag/ 目录不存在,创建该目录
1140
+ - 如果目录已存在,询问用户是否覆盖现有文件
1141
+ ```
1142
+
1143
+ ### 步骤 2: 读取需求文档
1144
+
1145
+ ```yaml
1146
+ 执行动作:
1147
+ - 读取指定的需求文档 {req_file}
1148
+ - 如果文件不存在,提示用户并终止
1149
+ - 显示文档摘要信息(字数、段落数等)
1150
+ ```
1151
+
1152
+ ### 步骤 3: 需求文档深度解析
1153
+
1154
+ 按照 `rag-questions-tmpl.yaml` 模板的第一阶段进行解析,提取以下要素:
1155
+
1156
+ ```yaml
1157
+ 解析内容:
1158
+ 业务领域:
1159
+ - 主领域识别
1160
+ - 子领域/模块识别
1161
+
1162
+ 功能点:
1163
+ - 功能名称和描述
1164
+ - 输入/输出定义
1165
+ - 涉及的实体
1166
+
1167
+ 用户角色:
1168
+ - 角色名称
1169
+ - 操作列表
1170
+ - 权限级别
1171
+
1172
+ 数据实体:
1173
+ - 实体名称和属性
1174
+ - 实体间关系(一对一/一对多/多对一/多对多)
1175
+ - 关联字段
1176
+
1177
+ 业务流程:
1178
+ - 流程名称和触发条件
1179
+ - 步骤详情(序号、名称、执行者、前置步骤、触发条件、输入/输出数据)
1180
+ - 异常分支
1181
+
1182
+ 技术组件:
1183
+ - 组件名称
1184
+ - 用途描述
1185
+
1186
+ 模糊点:
1187
+ - 位置标记
1188
+ - 内容描述
1189
+ - 可能的理解方式
1190
+ ```
1191
+
1192
+ **交互点**: 展示解析结果,请用户确认或补充修正
1193
+
1194
+ ### 步骤 4: 生成问题清单
1195
+
1196
+ 基于解析结果,按照 `rag-questions-tmpl.yaml` 模板生成四类问题:
1197
+
1198
+ #### A. 业务知识问题
1199
+ - A1-业务规则详解(P0)
1200
+ - A2-业务流程详解(P0)- 重点:步骤间关联、节点详情
1201
+ - A3-数据关联关系详解(P0)- 重点:一对一/一对多/多对多
1202
+ - A4-边界情况与异常处理(P1)
1203
+
1204
+ #### B. 技术知识问题
1205
+ - B1-整体项目技术架构(P0)
1206
+ - B2-中间件使用规范(P0)- 要求提供代码Demo
1207
+ - B3-Java编码规范(P0)
1208
+ - B4-SQL规范(P0)
1209
+ - B5-数据模型(P0)
1210
+ - B6-接口规范(P1)
1211
+ - B7-代码实现模式(P1)
1212
+
1213
+ #### C. 历史追溯问题
1214
+ - C1-历史需求(P1)
1215
+ - C2-决策记录(P2)
1216
+ - C3-已知问题(P1)
1217
+
1218
+ #### D. 约束条件问题
1219
+ - D1-技术约束(P1)
1220
+ - D2-安全合规(P0)
1221
+ - D3-性能要求(P1)
1222
+ - D4-团队规范(P2)
1223
+
1224
+ **交互点**: 展示生成的问题清单,请用户确认或调整
1225
+
1226
+ ### 步骤 5: 问题优先级排序
1227
+
1228
+ ```yaml
1229
+ 优先级规则:
1230
+ P0_阻塞级:
1231
+ - 缺失会导致完全无法理解需求
1232
+ - 涉及核心业务规则
1233
+ - 影响架构决策
1234
+ - 涉及安全合规
1235
+
1236
+ P1_重要级:
1237
+ - 影响需求完整性
1238
+ - 涉及边界情况处理
1239
+ - 影响实现方案选择
1240
+ - 涉及性能要求
1241
+
1242
+ P2_补充级:
1243
+ - 有助于优化实现
1244
+ - 提供额外上下文
1245
+ - 历史参考信息
1246
+ ```
1247
+
1248
+ ### 步骤 6: 保存问题清单
1249
+
1250
+ 将生成的问题清单保存到 `docs/rag/_questions.md`,格式如下:
1251
+
1252
+ ```markdown
1253
+ # 知识库查询问题清单
1254
+
1255
+ ## 元信息
1256
+ - 源文档: {req_file}
1257
+ - 生成时间: {timestamp}
1258
+ - 总问题数: {total_count}
1259
+ - P0问题: {p0_count} | P1问题: {p1_count} | P2问题: {p2_count}
1260
+
1261
+ ---
1262
+
1263
+ ## P0 阻塞级问题(必须回答)
1264
+
1265
+ ### A. 业务知识
1266
+
1267
+ #### 1. [A1-001] {问题标题}
1268
+ - **关联需求**: "{相关需求描述}"
1269
+ - **预期答案类型**: {答案类型}
1270
+ - **子问题**:
1271
+ - {子问题1}
1272
+ - {子问题2}
1273
+ - ...
1274
+
1275
+ ### B. 技术知识
1276
+
1277
+ #### 1. [B1-001] {问题标题}
1278
+ - **关联需求**: "{相关需求描述}"
1279
+ - **预期答案类型**: {答案类型}
1280
+ - **子问题**:
1281
+ - {子问题1}
1282
+ - {子问题2}
1283
+ - ...
1284
+ - **注意**: 请提供相关代码示例
1285
+
1286
+ ---
1287
+
1288
+ ## P1 重要级问题(强烈建议回答)
1289
+
1290
+ ...
1291
+
1292
+ ---
1293
+
1294
+ ## P2 补充级问题(可选回答)
1295
+
1296
+ ...
1297
+
1298
+ ---
1299
+
1300
+ ## 下一步操作指引
1301
+
1302
+ 完成问题清单生成后,请按以下步骤继续:
1303
+
1304
+ 1. **查询知识库**: 将上述问题发送给知识库MCP获取答案
1305
+ 2. **知识落地**: 使用 `*land-knowledge` 命令将答案保存到 `docs/rag/` 对应子目录
1306
+ 3. **生成PRD**: 使用 `*create-prd-from-rag` 命令基于知识生成PRD文档
1307
+ ```
1308
+
1309
+ ### 步骤 7: 保存解析结果
1310
+
1311
+ 将需求解析结果保存到 `docs/rag/_requirement-parsing.yaml`:
1312
+
1313
+ ```yaml
1314
+ # 需求解析结果
1315
+ # 生成时间: {timestamp}
1316
+ # 源文档: {req_file}
1317
+
1318
+ requirement_parsing:
1319
+ business_domain: {domain}
1320
+ sub_domains: [{sub_domains}]
1321
+
1322
+ features:
1323
+ - name: {feature_name}
1324
+ description: {description}
1325
+ input: {input}
1326
+ output: {output}
1327
+ entities: [{entities}]
1328
+
1329
+ roles:
1330
+ - name: {role_name}
1331
+ actions: [{actions}]
1332
+ permission_level: {level}
1333
+
1334
+ entities:
1335
+ - name: {entity_name}
1336
+ attributes: [{attributes}]
1337
+ relationships:
1338
+ - target: {target_entity}
1339
+ type: {one-to-one|one-to-many|many-to-one|many-to-many}
1340
+ field: {field_name}
1341
+
1342
+ processes:
1343
+ - name: {process_name}
1344
+ trigger: {trigger_condition}
1345
+ steps:
1346
+ - index: {n}
1347
+ name: {step_name}
1348
+ actor: {actor}
1349
+ previous_step: {prev}
1350
+ trigger_from_previous: {condition}
1351
+ input_data: {input}
1352
+ output_data: {output}
1353
+ data_changes: {changes}
1354
+ exception_branches: [{branches}]
1355
+
1356
+ tech_components:
1357
+ - name: {component}
1358
+ purpose: {purpose}
1359
+
1360
+ ambiguities:
1361
+ - location: {loc}
1362
+ content: {content}
1363
+ interpretations: [{interpretations}]
1364
+ ```
1365
+
1366
+ ### 步骤 8: 生成目录结构
1367
+
1368
+ 创建后续知识落地所需的目录结构:
1369
+
1370
+ ```bash
1371
+ docs/rag/
1372
+ ├── _questions.md # 问题清单(本任务生成)
1373
+ ├── _requirement-parsing.yaml # 需求解析结果(本任务生成)
1374
+ ├── _index.md # 知识索引(后续生成)
1375
+ ├── business/ # 业务知识目录
1376
+ ├── technical/ # 技术知识目录
1377
+ │ ├── middleware/ # 中间件规范
1378
+ │ ├── coding-standards/ # 编码规范
1379
+ │ └── sql-standards/ # SQL规范
1380
+ ├── history/ # 历史信息目录
1381
+ └── constraints/ # 约束条件目录
1382
+ ```
1383
+
1384
+ ### 步骤 9: 完成提示
1385
+
1386
+ ```yaml
1387
+ 完成输出:
1388
+ - 显示生成的文件列表和路径
1389
+ - 显示问题统计信息(各类别数量)
1390
+ - 提供下一步操作建议
1391
+ ```
1392
+
1393
+ ---
1394
+
1395
+ ## 交互模式说明
1396
+
1397
+ 本任务支持两种模式:
1398
+
1399
+ ### 交互模式(默认)
1400
+ - 每个关键步骤后暂停,等待用户确认
1401
+ - 允许用户调整解析结果和问题清单
1402
+ - 适合首次使用或复杂需求
1403
+
1404
+ ### YOLO模式
1405
+ - 一次性完成所有步骤
1406
+ - 自动使用默认值
1407
+ - 适合熟悉流程后快速生成
1408
+
1409
+ 可通过 `*yolo` 命令切换模式。
1410
+
1411
+ ---
1412
+
1413
+ ## 依赖模板
1414
+
1415
+ - `rag-questions-tmpl.yaml` - 问题生成模板
1416
+
1417
+ ## 输出文件
1418
+
1419
+ | 文件 | 路径 | 说明 |
1420
+ |------|------|------|
1421
+ | 问题清单 | `docs/rag/_questions.md` | 完整的知识库查询问题 |
1422
+ | 解析结果 | `docs/rag/_requirement-parsing.yaml` | 需求文档解析的结构化结果 |
1423
+
1424
+ ## 后续命令
1425
+
1426
+ - `*land-knowledge` - 将知识库返回的内容结构化存储
1427
+ - `*create-prd-from-rag` - 基于RAG知识生成PRD
1428
+ ==================== END: .xiaoma-core/tasks/generate-rag-questions.md ====================
1429
+
1114
1430
  ==================== START: .xiaoma-core/tasks/requirement-analysis-with-rag.md ====================
1115
1431
  <!-- Powered by XiaoMa™ Core -->
1116
1432
 
@@ -232,7 +232,7 @@ commands:
232
232
  - perform-market-research: 使用任务 create-doc 和 market-research-tmpl.yaml
233
233
  - research-prompt {topic}: 执行任务 create-deep-research-prompt.md
234
234
  - analyze-requirement {req_file}: 基于需求文档进行RAG增强的需求分析 (运行任务 requirement-analysis-with-rag.md)
235
- - generate-rag-questions {req_file}: 根据需求文档生成知识库查询问题清单 (使用模板 rag-questions-tmpl.yaml)
235
+ - generate-rag-questions {req_file}: 根据需求文档生成知识库查询问题清单,保存到docs/rag/_questions.md (运行任务 generate-rag-questions.md)
236
236
  - land-knowledge: 将知识库返回的内容结构化存储到docs/rag目录 (使用模板 rag-knowledge-tmpl.yaml)
237
237
  - create-prd-from-rag: 基于docs/rag知识和需求文档生成PRD (使用任务 create-doc 和 prd-tmpl.yaml)
238
238
  - yolo: 切换 Yolo 模式
@@ -247,6 +247,7 @@ dependencies:
247
247
  - create-doc.md
248
248
  - document-project.md
249
249
  - facilitate-brainstorming-session.md
250
+ - generate-rag-questions.md
250
251
  - requirement-analysis-with-rag.md
251
252
  templates:
252
253
  - brainstorming-output-tmpl.yaml
@@ -4659,6 +4660,321 @@ Generate structured document with these sections:
4659
4660
  - Respect their process and timing
4660
4661
  ==================== END: .xiaoma-core/tasks/facilitate-brainstorming-session.md ====================
4661
4662
 
4663
+ ==================== START: .xiaoma-core/tasks/generate-rag-questions.md ====================
4664
+ # 生成知识库查询问题清单任务
4665
+
4666
+ ## 任务概述
4667
+
4668
+ 根据需求文档(req.txt)生成结构化的知识库查询问题清单,并保存到项目的 `docs/rag/` 目录下。
4669
+
4670
+ ## 输入
4671
+
4672
+ - **req_file**: 需求文档路径(默认: req.txt)
4673
+
4674
+ ## 输出
4675
+
4676
+ - **输出目录**: `docs/rag/`
4677
+ - **主文件**: `docs/rag/_questions.md` - 完整的问题清单
4678
+ - **解析结果**: `docs/rag/_requirement-parsing.yaml` - 需求解析结果
4679
+
4680
+ ## 执行流程
4681
+
4682
+ ### 步骤 1: 环境准备
4683
+
4684
+ ```yaml
4685
+ 执行动作:
4686
+ - 检查需求文档是否存在
4687
+ - 如果 docs/rag/ 目录不存在,创建该目录
4688
+ - 如果目录已存在,询问用户是否覆盖现有文件
4689
+ ```
4690
+
4691
+ ### 步骤 2: 读取需求文档
4692
+
4693
+ ```yaml
4694
+ 执行动作:
4695
+ - 读取指定的需求文档 {req_file}
4696
+ - 如果文件不存在,提示用户并终止
4697
+ - 显示文档摘要信息(字数、段落数等)
4698
+ ```
4699
+
4700
+ ### 步骤 3: 需求文档深度解析
4701
+
4702
+ 按照 `rag-questions-tmpl.yaml` 模板的第一阶段进行解析,提取以下要素:
4703
+
4704
+ ```yaml
4705
+ 解析内容:
4706
+ 业务领域:
4707
+ - 主领域识别
4708
+ - 子领域/模块识别
4709
+
4710
+ 功能点:
4711
+ - 功能名称和描述
4712
+ - 输入/输出定义
4713
+ - 涉及的实体
4714
+
4715
+ 用户角色:
4716
+ - 角色名称
4717
+ - 操作列表
4718
+ - 权限级别
4719
+
4720
+ 数据实体:
4721
+ - 实体名称和属性
4722
+ - 实体间关系(一对一/一对多/多对一/多对多)
4723
+ - 关联字段
4724
+
4725
+ 业务流程:
4726
+ - 流程名称和触发条件
4727
+ - 步骤详情(序号、名称、执行者、前置步骤、触发条件、输入/输出数据)
4728
+ - 异常分支
4729
+
4730
+ 技术组件:
4731
+ - 组件名称
4732
+ - 用途描述
4733
+
4734
+ 模糊点:
4735
+ - 位置标记
4736
+ - 内容描述
4737
+ - 可能的理解方式
4738
+ ```
4739
+
4740
+ **交互点**: 展示解析结果,请用户确认或补充修正
4741
+
4742
+ ### 步骤 4: 生成问题清单
4743
+
4744
+ 基于解析结果,按照 `rag-questions-tmpl.yaml` 模板生成四类问题:
4745
+
4746
+ #### A. 业务知识问题
4747
+ - A1-业务规则详解(P0)
4748
+ - A2-业务流程详解(P0)- 重点:步骤间关联、节点详情
4749
+ - A3-数据关联关系详解(P0)- 重点:一对一/一对多/多对多
4750
+ - A4-边界情况与异常处理(P1)
4751
+
4752
+ #### B. 技术知识问题
4753
+ - B1-整体项目技术架构(P0)
4754
+ - B2-中间件使用规范(P0)- 要求提供代码Demo
4755
+ - B3-Java编码规范(P0)
4756
+ - B4-SQL规范(P0)
4757
+ - B5-数据模型(P0)
4758
+ - B6-接口规范(P1)
4759
+ - B7-代码实现模式(P1)
4760
+
4761
+ #### C. 历史追溯问题
4762
+ - C1-历史需求(P1)
4763
+ - C2-决策记录(P2)
4764
+ - C3-已知问题(P1)
4765
+
4766
+ #### D. 约束条件问题
4767
+ - D1-技术约束(P1)
4768
+ - D2-安全合规(P0)
4769
+ - D3-性能要求(P1)
4770
+ - D4-团队规范(P2)
4771
+
4772
+ **交互点**: 展示生成的问题清单,请用户确认或调整
4773
+
4774
+ ### 步骤 5: 问题优先级排序
4775
+
4776
+ ```yaml
4777
+ 优先级规则:
4778
+ P0_阻塞级:
4779
+ - 缺失会导致完全无法理解需求
4780
+ - 涉及核心业务规则
4781
+ - 影响架构决策
4782
+ - 涉及安全合规
4783
+
4784
+ P1_重要级:
4785
+ - 影响需求完整性
4786
+ - 涉及边界情况处理
4787
+ - 影响实现方案选择
4788
+ - 涉及性能要求
4789
+
4790
+ P2_补充级:
4791
+ - 有助于优化实现
4792
+ - 提供额外上下文
4793
+ - 历史参考信息
4794
+ ```
4795
+
4796
+ ### 步骤 6: 保存问题清单
4797
+
4798
+ 将生成的问题清单保存到 `docs/rag/_questions.md`,格式如下:
4799
+
4800
+ ```markdown
4801
+ # 知识库查询问题清单
4802
+
4803
+ ## 元信息
4804
+ - 源文档: {req_file}
4805
+ - 生成时间: {timestamp}
4806
+ - 总问题数: {total_count}
4807
+ - P0问题: {p0_count} | P1问题: {p1_count} | P2问题: {p2_count}
4808
+
4809
+ ---
4810
+
4811
+ ## P0 阻塞级问题(必须回答)
4812
+
4813
+ ### A. 业务知识
4814
+
4815
+ #### 1. [A1-001] {问题标题}
4816
+ - **关联需求**: "{相关需求描述}"
4817
+ - **预期答案类型**: {答案类型}
4818
+ - **子问题**:
4819
+ - {子问题1}
4820
+ - {子问题2}
4821
+ - ...
4822
+
4823
+ ### B. 技术知识
4824
+
4825
+ #### 1. [B1-001] {问题标题}
4826
+ - **关联需求**: "{相关需求描述}"
4827
+ - **预期答案类型**: {答案类型}
4828
+ - **子问题**:
4829
+ - {子问题1}
4830
+ - {子问题2}
4831
+ - ...
4832
+ - **注意**: 请提供相关代码示例
4833
+
4834
+ ---
4835
+
4836
+ ## P1 重要级问题(强烈建议回答)
4837
+
4838
+ ...
4839
+
4840
+ ---
4841
+
4842
+ ## P2 补充级问题(可选回答)
4843
+
4844
+ ...
4845
+
4846
+ ---
4847
+
4848
+ ## 下一步操作指引
4849
+
4850
+ 完成问题清单生成后,请按以下步骤继续:
4851
+
4852
+ 1. **查询知识库**: 将上述问题发送给知识库MCP获取答案
4853
+ 2. **知识落地**: 使用 `*land-knowledge` 命令将答案保存到 `docs/rag/` 对应子目录
4854
+ 3. **生成PRD**: 使用 `*create-prd-from-rag` 命令基于知识生成PRD文档
4855
+ ```
4856
+
4857
+ ### 步骤 7: 保存解析结果
4858
+
4859
+ 将需求解析结果保存到 `docs/rag/_requirement-parsing.yaml`:
4860
+
4861
+ ```yaml
4862
+ # 需求解析结果
4863
+ # 生成时间: {timestamp}
4864
+ # 源文档: {req_file}
4865
+
4866
+ requirement_parsing:
4867
+ business_domain: {domain}
4868
+ sub_domains: [{sub_domains}]
4869
+
4870
+ features:
4871
+ - name: {feature_name}
4872
+ description: {description}
4873
+ input: {input}
4874
+ output: {output}
4875
+ entities: [{entities}]
4876
+
4877
+ roles:
4878
+ - name: {role_name}
4879
+ actions: [{actions}]
4880
+ permission_level: {level}
4881
+
4882
+ entities:
4883
+ - name: {entity_name}
4884
+ attributes: [{attributes}]
4885
+ relationships:
4886
+ - target: {target_entity}
4887
+ type: {one-to-one|one-to-many|many-to-one|many-to-many}
4888
+ field: {field_name}
4889
+
4890
+ processes:
4891
+ - name: {process_name}
4892
+ trigger: {trigger_condition}
4893
+ steps:
4894
+ - index: {n}
4895
+ name: {step_name}
4896
+ actor: {actor}
4897
+ previous_step: {prev}
4898
+ trigger_from_previous: {condition}
4899
+ input_data: {input}
4900
+ output_data: {output}
4901
+ data_changes: {changes}
4902
+ exception_branches: [{branches}]
4903
+
4904
+ tech_components:
4905
+ - name: {component}
4906
+ purpose: {purpose}
4907
+
4908
+ ambiguities:
4909
+ - location: {loc}
4910
+ content: {content}
4911
+ interpretations: [{interpretations}]
4912
+ ```
4913
+
4914
+ ### 步骤 8: 生成目录结构
4915
+
4916
+ 创建后续知识落地所需的目录结构:
4917
+
4918
+ ```bash
4919
+ docs/rag/
4920
+ ├── _questions.md # 问题清单(本任务生成)
4921
+ ├── _requirement-parsing.yaml # 需求解析结果(本任务生成)
4922
+ ├── _index.md # 知识索引(后续生成)
4923
+ ├── business/ # 业务知识目录
4924
+ ├── technical/ # 技术知识目录
4925
+ │ ├── middleware/ # 中间件规范
4926
+ │ ├── coding-standards/ # 编码规范
4927
+ │ └── sql-standards/ # SQL规范
4928
+ ├── history/ # 历史信息目录
4929
+ └── constraints/ # 约束条件目录
4930
+ ```
4931
+
4932
+ ### 步骤 9: 完成提示
4933
+
4934
+ ```yaml
4935
+ 完成输出:
4936
+ - 显示生成的文件列表和路径
4937
+ - 显示问题统计信息(各类别数量)
4938
+ - 提供下一步操作建议
4939
+ ```
4940
+
4941
+ ---
4942
+
4943
+ ## 交互模式说明
4944
+
4945
+ 本任务支持两种模式:
4946
+
4947
+ ### 交互模式(默认)
4948
+ - 每个关键步骤后暂停,等待用户确认
4949
+ - 允许用户调整解析结果和问题清单
4950
+ - 适合首次使用或复杂需求
4951
+
4952
+ ### YOLO模式
4953
+ - 一次性完成所有步骤
4954
+ - 自动使用默认值
4955
+ - 适合熟悉流程后快速生成
4956
+
4957
+ 可通过 `*yolo` 命令切换模式。
4958
+
4959
+ ---
4960
+
4961
+ ## 依赖模板
4962
+
4963
+ - `rag-questions-tmpl.yaml` - 问题生成模板
4964
+
4965
+ ## 输出文件
4966
+
4967
+ | 文件 | 路径 | 说明 |
4968
+ |------|------|------|
4969
+ | 问题清单 | `docs/rag/_questions.md` | 完整的知识库查询问题 |
4970
+ | 解析结果 | `docs/rag/_requirement-parsing.yaml` | 需求文档解析的结构化结果 |
4971
+
4972
+ ## 后续命令
4973
+
4974
+ - `*land-knowledge` - 将知识库返回的内容结构化存储
4975
+ - `*create-prd-from-rag` - 基于RAG知识生成PRD
4976
+ ==================== END: .xiaoma-core/tasks/generate-rag-questions.md ====================
4977
+
4662
4978
  ==================== START: .xiaoma-core/tasks/requirement-analysis-with-rag.md ====================
4663
4979
  <!-- Powered by XiaoMa™ Core -->
4664
4980