@yeongjaeyou/claude-code-config 0.21.0 → 0.21.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,57 @@
1
+ # ML Guidelines
2
+
3
+ Best practices for Machine Learning and Computer Vision tasks.
4
+
5
+ ## Batch Inference Efficiency
6
+
7
+ Maximize GPU utilization with batch processing during validation/evaluation.
8
+
9
+ ### Do's
10
+ - DataLoader + batch processing required for large-scale inference
11
+ - batch_size based on GPU memory (24GB -> 64, 12GB -> 32)
12
+ - Optimize memory with torch.no_grad() + autocast combination
13
+
14
+ ### Don'ts
15
+ - Calling predict_file() repeatedly in file-by-file loop (GPU utilization < 10%)
16
+ - Using single-file API for large-scale inference
17
+
18
+ ### Pattern
19
+
20
+ ```python
21
+ # Good: Batch inference (GPU utilization 90%+)
22
+ loader = DataLoader(dataset, batch_size=64, num_workers=8)
23
+ with torch.no_grad():
24
+ for batch in loader:
25
+ outputs = model(batch["image"].cuda())
26
+
27
+ # Bad: File-by-file (only for demo/interactive use)
28
+ for f in files:
29
+ predictor.predict_file(f) # Excessive GPU idle time
30
+ ```
31
+
32
+ ## BGR vs RGB Color Format
33
+
34
+ OpenCV uses BGR, matplotlib uses RGB. Keep BGR during annotation, convert to RGB only before display.
35
+
36
+ ```python
37
+ # Correct pattern
38
+ img = cv2.imread(path) # BGR
39
+ img = annotator.annotate(img, detections) # Keep BGR
40
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert just before display
41
+ plt.imshow(img)
42
+
43
+ # Wrong pattern (causes color inversion)
44
+ img = cv2.imread(path)
45
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Too early
46
+ img = annotator.annotate(img, detections) # BGR colors on RGB image -> inverted
47
+ plt.imshow(img)
48
+ ```
49
+
50
+ ## Ultralytics WandB Integration
51
+
52
+ Ultralytics YOLO has WandB disabled by default.
53
+
54
+ ```bash
55
+ yolo settings wandb=True # Enable
56
+ yolo settings wandb=False # Disable
57
+ ```
@@ -279,5 +279,5 @@ When translating into Korean:
279
279
  ## Related Guidelines
280
280
 
281
281
  - [ID Reference](./id-reference.md) - GitHub/TaskMaster ID conventions
282
- - [CV Guidelines](./cv-guidelines.md) - Computer vision specific guidelines
282
+ - [ML Guidelines](./ml-guidelines.md) - ML/CV batch inference, color formats, Ultralytics
283
283
  - [PRD Guide](./prd-guide.md) - PRD template for TaskMaster
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@yeongjaeyou/claude-code-config",
3
- "version": "0.21.0",
3
+ "version": "0.21.1",
4
4
  "description": "Claude Code CLI custom commands, agents, and skills",
5
5
  "bin": {
6
6
  "claude-code-config": "./bin/cli.js"
@@ -1,30 +0,0 @@
1
- # CV Guidelines
2
-
3
- Best practices for Computer Vision tasks.
4
-
5
- ## BGR vs RGB Color Format
6
-
7
- **Key Point**: OpenCV uses BGR, matplotlib uses RGB. When annotating with OpenCV-based libraries like supervision, keep the image in BGR format and convert to RGB only right before displaying with matplotlib.
8
-
9
- ```python
10
- # Correct pattern
11
- img = cv2.imread(path) # BGR
12
- img = annotator.annotate(img, detections) # Keep BGR
13
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert just before display
14
- plt.imshow(img)
15
-
16
- # Wrong pattern (causes color inversion)
17
- img = cv2.imread(path)
18
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Too early
19
- img = annotator.annotate(img, detections) # BGR colors on RGB image -> inverted
20
- plt.imshow(img)
21
- ```
22
-
23
- ## Ultralytics WandB Integration
24
-
25
- Ultralytics YOLO has WandB disabled by default.
26
-
27
- ```bash
28
- yolo settings wandb=True # Enable
29
- yolo settings wandb=False # Disable
30
- ```