@workglow/ai-provider 0.0.78 → 0.0.80

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,7 +4,7 @@
4
4
  * SPDX-License-Identifier: Apache-2.0
5
5
  */
6
6
  import type { AiProviderRunFn, BackgroundRemovalTaskExecuteInput, BackgroundRemovalTaskExecuteOutput, DownloadModelTaskExecuteInput, DownloadModelTaskExecuteOutput, ImageClassificationTaskExecuteInput, ImageClassificationTaskExecuteOutput, ImageEmbeddingTaskExecuteInput, ImageEmbeddingTaskExecuteOutput, ImageSegmentationTaskExecuteInput, ImageSegmentationTaskExecuteOutput, ImageToTextTaskExecuteInput, ImageToTextTaskExecuteOutput, ObjectDetectionTaskExecuteInput, ObjectDetectionTaskExecuteOutput, TextClassificationTaskExecuteInput, TextClassificationTaskExecuteOutput, TextEmbeddingTaskExecuteInput, TextEmbeddingTaskExecuteOutput, TextFillMaskTaskExecuteInput, TextFillMaskTaskExecuteOutput, TextGenerationTaskExecuteInput, TextGenerationTaskExecuteOutput, TextLanguageDetectionTaskExecuteInput, TextLanguageDetectionTaskExecuteOutput, TextNamedEntityRecognitionTaskExecuteInput, TextNamedEntityRecognitionTaskExecuteOutput, TextQuestionAnswerTaskExecuteInput, TextQuestionAnswerTaskExecuteOutput, TextRewriterTaskExecuteInput, TextRewriterTaskExecuteOutput, TextSummaryTaskExecuteInput, TextSummaryTaskExecuteOutput, TextTranslationTaskExecuteInput, TextTranslationTaskExecuteOutput, UnloadModelTaskExecuteInput, UnloadModelTaskExecuteOutput } from "@workglow/ai";
7
- import { HfTransformersOnnxModelRecord } from "./HFT_ModelSchema";
7
+ import { HfTransformersOnnxModelConfig } from "./HFT_ModelSchema";
8
8
  /**
9
9
  * Clear all cached pipelines
10
10
  */
@@ -13,70 +13,70 @@ export declare function clearPipelineCache(): void;
13
13
  * Core implementation for downloading and caching a Hugging Face Transformers model.
14
14
  * This is shared between inline and worker implementations.
15
15
  */
16
- export declare const HFT_Download: AiProviderRunFn<DownloadModelTaskExecuteInput, DownloadModelTaskExecuteOutput, HfTransformersOnnxModelRecord>;
16
+ export declare const HFT_Download: AiProviderRunFn<DownloadModelTaskExecuteInput, DownloadModelTaskExecuteOutput, HfTransformersOnnxModelConfig>;
17
17
  /**
18
18
  * Core implementation for unloading a Hugging Face Transformers model.
19
19
  * This is shared between inline and worker implementations.
20
20
  */
21
- export declare const HFT_Unload: AiProviderRunFn<UnloadModelTaskExecuteInput, UnloadModelTaskExecuteOutput, HfTransformersOnnxModelRecord>;
21
+ export declare const HFT_Unload: AiProviderRunFn<UnloadModelTaskExecuteInput, UnloadModelTaskExecuteOutput, HfTransformersOnnxModelConfig>;
22
22
  /**
23
23
  * Core implementation for text embedding using Hugging Face Transformers.
24
24
  * This is shared between inline and worker implementations.
25
25
  */
26
- export declare const HFT_TextEmbedding: AiProviderRunFn<TextEmbeddingTaskExecuteInput, TextEmbeddingTaskExecuteOutput, HfTransformersOnnxModelRecord>;
27
- export declare const HFT_TextClassification: AiProviderRunFn<TextClassificationTaskExecuteInput, TextClassificationTaskExecuteOutput, HfTransformersOnnxModelRecord>;
28
- export declare const HFT_TextLanguageDetection: AiProviderRunFn<TextLanguageDetectionTaskExecuteInput, TextLanguageDetectionTaskExecuteOutput, HfTransformersOnnxModelRecord>;
29
- export declare const HFT_TextNamedEntityRecognition: AiProviderRunFn<TextNamedEntityRecognitionTaskExecuteInput, TextNamedEntityRecognitionTaskExecuteOutput, HfTransformersOnnxModelRecord>;
30
- export declare const HFT_TextFillMask: AiProviderRunFn<TextFillMaskTaskExecuteInput, TextFillMaskTaskExecuteOutput, HfTransformersOnnxModelRecord>;
26
+ export declare const HFT_TextEmbedding: AiProviderRunFn<TextEmbeddingTaskExecuteInput, TextEmbeddingTaskExecuteOutput, HfTransformersOnnxModelConfig>;
27
+ export declare const HFT_TextClassification: AiProviderRunFn<TextClassificationTaskExecuteInput, TextClassificationTaskExecuteOutput, HfTransformersOnnxModelConfig>;
28
+ export declare const HFT_TextLanguageDetection: AiProviderRunFn<TextLanguageDetectionTaskExecuteInput, TextLanguageDetectionTaskExecuteOutput, HfTransformersOnnxModelConfig>;
29
+ export declare const HFT_TextNamedEntityRecognition: AiProviderRunFn<TextNamedEntityRecognitionTaskExecuteInput, TextNamedEntityRecognitionTaskExecuteOutput, HfTransformersOnnxModelConfig>;
30
+ export declare const HFT_TextFillMask: AiProviderRunFn<TextFillMaskTaskExecuteInput, TextFillMaskTaskExecuteOutput, HfTransformersOnnxModelConfig>;
31
31
  /**
32
32
  * Core implementation for text generation using Hugging Face Transformers.
33
33
  * This is shared between inline and worker implementations.
34
34
  */
35
- export declare const HFT_TextGeneration: AiProviderRunFn<TextGenerationTaskExecuteInput, TextGenerationTaskExecuteOutput, HfTransformersOnnxModelRecord>;
35
+ export declare const HFT_TextGeneration: AiProviderRunFn<TextGenerationTaskExecuteInput, TextGenerationTaskExecuteOutput, HfTransformersOnnxModelConfig>;
36
36
  /**
37
37
  * Core implementation for text translation using Hugging Face Transformers.
38
38
  * This is shared between inline and worker implementations.
39
39
  */
40
- export declare const HFT_TextTranslation: AiProviderRunFn<TextTranslationTaskExecuteInput, TextTranslationTaskExecuteOutput, HfTransformersOnnxModelRecord>;
40
+ export declare const HFT_TextTranslation: AiProviderRunFn<TextTranslationTaskExecuteInput, TextTranslationTaskExecuteOutput, HfTransformersOnnxModelConfig>;
41
41
  /**
42
42
  * Core implementation for text rewriting using Hugging Face Transformers.
43
43
  * This is shared between inline and worker implementations.
44
44
  */
45
- export declare const HFT_TextRewriter: AiProviderRunFn<TextRewriterTaskExecuteInput, TextRewriterTaskExecuteOutput, HfTransformersOnnxModelRecord>;
45
+ export declare const HFT_TextRewriter: AiProviderRunFn<TextRewriterTaskExecuteInput, TextRewriterTaskExecuteOutput, HfTransformersOnnxModelConfig>;
46
46
  /**
47
47
  * Core implementation for text summarization using Hugging Face Transformers.
48
48
  * This is shared between inline and worker implementations.
49
49
  */
50
- export declare const HFT_TextSummary: AiProviderRunFn<TextSummaryTaskExecuteInput, TextSummaryTaskExecuteOutput, HfTransformersOnnxModelRecord>;
50
+ export declare const HFT_TextSummary: AiProviderRunFn<TextSummaryTaskExecuteInput, TextSummaryTaskExecuteOutput, HfTransformersOnnxModelConfig>;
51
51
  /**
52
52
  * Core implementation for question answering using Hugging Face Transformers.
53
53
  * This is shared between inline and worker implementations.
54
54
  */
55
- export declare const HFT_TextQuestionAnswer: AiProviderRunFn<TextQuestionAnswerTaskExecuteInput, TextQuestionAnswerTaskExecuteOutput, HfTransformersOnnxModelRecord>;
55
+ export declare const HFT_TextQuestionAnswer: AiProviderRunFn<TextQuestionAnswerTaskExecuteInput, TextQuestionAnswerTaskExecuteOutput, HfTransformersOnnxModelConfig>;
56
56
  /**
57
57
  * Core implementation for image segmentation using Hugging Face Transformers.
58
58
  */
59
- export declare const HFT_ImageSegmentation: AiProviderRunFn<ImageSegmentationTaskExecuteInput, ImageSegmentationTaskExecuteOutput, HfTransformersOnnxModelRecord>;
59
+ export declare const HFT_ImageSegmentation: AiProviderRunFn<ImageSegmentationTaskExecuteInput, ImageSegmentationTaskExecuteOutput, HfTransformersOnnxModelConfig>;
60
60
  /**
61
61
  * Core implementation for image to text using Hugging Face Transformers.
62
62
  */
63
- export declare const HFT_ImageToText: AiProviderRunFn<ImageToTextTaskExecuteInput, ImageToTextTaskExecuteOutput, HfTransformersOnnxModelRecord>;
63
+ export declare const HFT_ImageToText: AiProviderRunFn<ImageToTextTaskExecuteInput, ImageToTextTaskExecuteOutput, HfTransformersOnnxModelConfig>;
64
64
  /**
65
65
  * Core implementation for background removal using Hugging Face Transformers.
66
66
  */
67
- export declare const HFT_BackgroundRemoval: AiProviderRunFn<BackgroundRemovalTaskExecuteInput, BackgroundRemovalTaskExecuteOutput, HfTransformersOnnxModelRecord>;
67
+ export declare const HFT_BackgroundRemoval: AiProviderRunFn<BackgroundRemovalTaskExecuteInput, BackgroundRemovalTaskExecuteOutput, HfTransformersOnnxModelConfig>;
68
68
  /**
69
69
  * Core implementation for image embedding using Hugging Face Transformers.
70
70
  */
71
- export declare const HFT_ImageEmbedding: AiProviderRunFn<ImageEmbeddingTaskExecuteInput, ImageEmbeddingTaskExecuteOutput, HfTransformersOnnxModelRecord>;
71
+ export declare const HFT_ImageEmbedding: AiProviderRunFn<ImageEmbeddingTaskExecuteInput, ImageEmbeddingTaskExecuteOutput, HfTransformersOnnxModelConfig>;
72
72
  /**
73
73
  * Core implementation for image classification using Hugging Face Transformers.
74
74
  * Auto-selects between regular and zero-shot classification.
75
75
  */
76
- export declare const HFT_ImageClassification: AiProviderRunFn<ImageClassificationTaskExecuteInput, ImageClassificationTaskExecuteOutput, HfTransformersOnnxModelRecord>;
76
+ export declare const HFT_ImageClassification: AiProviderRunFn<ImageClassificationTaskExecuteInput, ImageClassificationTaskExecuteOutput, HfTransformersOnnxModelConfig>;
77
77
  /**
78
78
  * Core implementation for object detection using Hugging Face Transformers.
79
79
  * Auto-selects between regular and zero-shot detection.
80
80
  */
81
- export declare const HFT_ObjectDetection: AiProviderRunFn<ObjectDetectionTaskExecuteInput, ObjectDetectionTaskExecuteOutput, HfTransformersOnnxModelRecord>;
81
+ export declare const HFT_ObjectDetection: AiProviderRunFn<ObjectDetectionTaskExecuteInput, ObjectDetectionTaskExecuteOutput, HfTransformersOnnxModelConfig>;
82
82
  //# sourceMappingURL=HFT_JobRunFns.d.ts.map
@@ -1 +1 @@
1
- {"version":3,"file":"HFT_JobRunFns.d.ts","sourceRoot":"","sources":["../../../src/hf-transformers/common/HFT_JobRunFns.ts"],"names":[],"mappings":"AAAA;;;;GAIG;AAiCH,OAAO,KAAK,EACV,eAAe,EACf,iCAAiC,EACjC,kCAAkC,EAClC,6BAA6B,EAC7B,8BAA8B,EAC9B,mCAAmC,EACnC,oCAAoC,EACpC,8BAA8B,EAC9B,+BAA+B,EAC/B,iCAAiC,EACjC,kCAAkC,EAClC,2BAA2B,EAC3B,4BAA4B,EAC5B,+BAA+B,EAC/B,gCAAgC,EAChC,kCAAkC,EAClC,mCAAmC,EACnC,6BAA6B,EAC7B,8BAA8B,EAC9B,4BAA4B,EAC5B,6BAA6B,EAC7B,8BAA8B,EAC9B,+BAA+B,EAC/B,qCAAqC,EACrC,sCAAsC,EACtC,0CAA0C,EAC1C,2CAA2C,EAC3C,kCAAkC,EAClC,mCAAmC,EACnC,4BAA4B,EAC5B,6BAA6B,EAC7B,2BAA2B,EAC3B,4BAA4B,EAC5B,+BAA+B,EAC/B,gCAAgC,EAEhC,2BAA2B,EAC3B,4BAA4B,EAC7B,MAAM,cAAc,CAAC;AAGtB,OAAO,EAAE,6BAA6B,EAAE,MAAM,mBAAmB,CAAC;AAIlE;;GAEG;AACH,wBAAgB,kBAAkB,IAAI,IAAI,CAEzC;AAoVD;;;GAGG;AACH,eAAO,MAAM,YAAY,EAAE,eAAe,CACxC,6BAA6B,EAC7B,8BAA8B,EAC9B,6BAA6B,CAS9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,UAAU,EAAE,eAAe,CACtC,2BAA2B,EAC3B,4BAA4B,EAC5B,6BAA6B,CAgB9B,CAAC;AAwCF;;;GAGG;AAEH,eAAO,MAAM,iBAAiB,EAAE,eAAe,CAC7C,6BAA6B,EAC7B,8BAA8B,EAC9B,6BAA6B,CA0B9B,CAAC;AAEF,eAAO,MAAM,sBAAsB,EAAE,eAAe,CAClD,kCAAkC,EAClC,mCAAmC,EACnC,6BAA6B,CAmD9B,CAAC;AAEF,eAAO,MAAM,yBAAyB,EAAE,eAAe,CACrD,qCAAqC,EACrC,sCAAsC,EACtC,6BAA6B,CAyB9B,CAAC;AAEF,eAAO,MAAM,8BAA8B,EAAE,eAAe,CAC1D,0CAA0C,EAC1C,2CAA2C,EAC3C,6BAA6B,CA0B9B,CAAC;AAEF,eAAO,MAAM,gBAAgB,EAAE,eAAe,CAC5C,4BAA4B,EAC5B,6BAA6B,EAC7B,6BAA6B,CAmB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,kBAAkB,EAAE,eAAe,CAC9C,8BAA8B,EAC9B,+BAA+B,EAC/B,6BAA6B,CAwB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,mBAAmB,EAAE,eAAe,CAC/C,+BAA+B,EAC/B,gCAAgC,EAChC,6BAA6B,CAyB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,gBAAgB,EAAE,eAAe,CAC5C,4BAA4B,EAC5B,6BAA6B,EAC7B,6BAA6B,CA+B9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,eAAe,EAAE,eAAe,CAC3C,2BAA2B,EAC3B,4BAA4B,EAC5B,6BAA6B,CAsB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,sBAAsB,EAAE,eAAe,CAClD,kCAAkC,EAClC,mCAAmC,EACnC,6BAA6B,CAuB9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,eAAe,CACjD,iCAAiC,EACjC,kCAAkC,EAClC,6BAA6B,CAyB9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,eAAe,EAAE,eAAe,CAC3C,2BAA2B,EAC3B,4BAA4B,EAC5B,6BAA6B,CAgB9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,eAAe,CACjD,iCAAiC,EACjC,kCAAkC,EAClC,6BAA6B,CAe9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,kBAAkB,EAAE,eAAe,CAC9C,8BAA8B,EAC9B,+BAA+B,EAC/B,6BAA6B,CAW9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,uBAAuB,EAAE,eAAe,CACnD,mCAAmC,EACnC,oCAAoC,EACpC,6BAA6B,CA8C9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,mBAAmB,EAAE,eAAe,CAC/C,+BAA+B,EAC/B,gCAAgC,EAChC,6BAA6B,CA6C9B,CAAC"}
1
+ {"version":3,"file":"HFT_JobRunFns.d.ts","sourceRoot":"","sources":["../../../src/hf-transformers/common/HFT_JobRunFns.ts"],"names":[],"mappings":"AAAA;;;;GAIG;AAiCH,OAAO,KAAK,EACV,eAAe,EACf,iCAAiC,EACjC,kCAAkC,EAClC,6BAA6B,EAC7B,8BAA8B,EAC9B,mCAAmC,EACnC,oCAAoC,EACpC,8BAA8B,EAC9B,+BAA+B,EAC/B,iCAAiC,EACjC,kCAAkC,EAClC,2BAA2B,EAC3B,4BAA4B,EAC5B,+BAA+B,EAC/B,gCAAgC,EAChC,kCAAkC,EAClC,mCAAmC,EACnC,6BAA6B,EAC7B,8BAA8B,EAC9B,4BAA4B,EAC5B,6BAA6B,EAC7B,8BAA8B,EAC9B,+BAA+B,EAC/B,qCAAqC,EACrC,sCAAsC,EACtC,0CAA0C,EAC1C,2CAA2C,EAC3C,kCAAkC,EAClC,mCAAmC,EACnC,4BAA4B,EAC5B,6BAA6B,EAC7B,2BAA2B,EAC3B,4BAA4B,EAC5B,+BAA+B,EAC/B,gCAAgC,EAEhC,2BAA2B,EAC3B,4BAA4B,EAC7B,MAAM,cAAc,CAAC;AAGtB,OAAO,EAAE,6BAA6B,EAAE,MAAM,mBAAmB,CAAC;AAIlE;;GAEG;AACH,wBAAgB,kBAAkB,IAAI,IAAI,CAEzC;AA8VD;;;GAGG;AACH,eAAO,MAAM,YAAY,EAAE,eAAe,CACxC,6BAA6B,EAC7B,8BAA8B,EAC9B,6BAA6B,CAS9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,UAAU,EAAE,eAAe,CACtC,2BAA2B,EAC3B,4BAA4B,EAC5B,6BAA6B,CAiB9B,CAAC;AAwCF;;;GAGG;AAEH,eAAO,MAAM,iBAAiB,EAAE,eAAe,CAC7C,6BAA6B,EAC7B,8BAA8B,EAC9B,6BAA6B,CA0B9B,CAAC;AAEF,eAAO,MAAM,sBAAsB,EAAE,eAAe,CAClD,kCAAkC,EAClC,mCAAmC,EACnC,6BAA6B,CAmD9B,CAAC;AAEF,eAAO,MAAM,yBAAyB,EAAE,eAAe,CACrD,qCAAqC,EACrC,sCAAsC,EACtC,6BAA6B,CAyB9B,CAAC;AAEF,eAAO,MAAM,8BAA8B,EAAE,eAAe,CAC1D,0CAA0C,EAC1C,2CAA2C,EAC3C,6BAA6B,CA0B9B,CAAC;AAEF,eAAO,MAAM,gBAAgB,EAAE,eAAe,CAC5C,4BAA4B,EAC5B,6BAA6B,EAC7B,6BAA6B,CAmB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,kBAAkB,EAAE,eAAe,CAC9C,8BAA8B,EAC9B,+BAA+B,EAC/B,6BAA6B,CAwB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,mBAAmB,EAAE,eAAe,CAC/C,+BAA+B,EAC/B,gCAAgC,EAChC,6BAA6B,CAyB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,gBAAgB,EAAE,eAAe,CAC5C,4BAA4B,EAC5B,6BAA6B,EAC7B,6BAA6B,CA+B9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,eAAe,EAAE,eAAe,CAC3C,2BAA2B,EAC3B,4BAA4B,EAC5B,6BAA6B,CAsB9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,sBAAsB,EAAE,eAAe,CAClD,kCAAkC,EAClC,mCAAmC,EACnC,6BAA6B,CAuB9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,eAAe,CACjD,iCAAiC,EACjC,kCAAkC,EAClC,6BAA6B,CAyB9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,eAAe,EAAE,eAAe,CAC3C,2BAA2B,EAC3B,4BAA4B,EAC5B,6BAA6B,CAgB9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,qBAAqB,EAAE,eAAe,CACjD,iCAAiC,EACjC,kCAAkC,EAClC,6BAA6B,CAe9B,CAAC;AAEF;;GAEG;AACH,eAAO,MAAM,kBAAkB,EAAE,eAAe,CAC9C,8BAA8B,EAC9B,+BAA+B,EAC/B,6BAA6B,CAW9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,uBAAuB,EAAE,eAAe,CACnD,mCAAmC,EACnC,oCAAoC,EACpC,6BAA6B,CA8C9B,CAAC;AAEF;;;GAGG;AACH,eAAO,MAAM,mBAAmB,EAAE,eAAe,CAC/C,+BAA+B,EAC/B,gCAAgC,EAChC,6BAA6B,CA6C9B,CAAC"}
@@ -86,7 +86,7 @@ export declare const HfTransformersOnnxModelSchema: {
86
86
  readonly required: readonly ["provider", "providerConfig"];
87
87
  readonly additionalProperties: true;
88
88
  };
89
- declare const ExtendedModelSchema: {
89
+ declare const ExtendedModelRecordSchema: {
90
90
  readonly type: "object";
91
91
  readonly properties: {
92
92
  readonly provider: {
@@ -187,6 +187,108 @@ declare const ExtendedModelSchema: {
187
187
  readonly required: readonly ["model_id", "tasks", "provider", "title", "description", "providerConfig", "metadata", "provider", "providerConfig"];
188
188
  readonly additionalProperties: false;
189
189
  };
190
- export type HfTransformersOnnxModelRecord = FromSchema<typeof ExtendedModelSchema>;
190
+ export type HfTransformersOnnxModelRecord = FromSchema<typeof ExtendedModelRecordSchema>;
191
+ declare const ExtendedModelConfigSchema: {
192
+ readonly type: "object";
193
+ readonly properties: {
194
+ readonly provider: {
195
+ readonly const: "HF_TRANSFORMERS_ONNX";
196
+ readonly description: "Discriminator: ONNX runtime backend.";
197
+ };
198
+ readonly providerConfig: {
199
+ readonly type: "object";
200
+ readonly description: "ONNX runtime-specific options.";
201
+ readonly properties: {
202
+ readonly pipeline: {
203
+ readonly type: "string";
204
+ readonly enum: ("fill-mask" | "token-classification" | "text-generation" | "text2text-generation" | "text-classification" | "summarization" | "translation" | "feature-extraction" | "zero-shot-classification" | "question-answering" | "background-removal" | "image-segmentation" | "depth-estimation" | "image-classification" | "image-to-image" | "object-detection" | "image-feature-extraction" | "audio-classification" | "automatic-speech-recognition" | "text-to-speech" | "document-question-answering" | "image-to-text" | "zero-shot-audio-classification" | "zero-shot-image-classification" | "zero-shot-object-detection")[];
205
+ readonly description: "Pipeline type for the ONNX model.";
206
+ readonly default: "text-generation";
207
+ };
208
+ readonly modelPath: {
209
+ readonly type: "string";
210
+ readonly description: "Filesystem path or URI for the ONNX model.";
211
+ };
212
+ readonly dType: {
213
+ readonly type: "string";
214
+ readonly enum: ("auto" | "fp32" | "fp16" | "q8" | "int8" | "uint8" | "q4" | "bnb4" | "q4f16")[];
215
+ readonly description: "Data type for the ONNX model.";
216
+ readonly default: "float32";
217
+ };
218
+ readonly device: {
219
+ readonly type: "string";
220
+ readonly enum: readonly ["cpu", "gpu", "webgpu", "wasm", "metal"];
221
+ readonly description: "High-level device selection.";
222
+ readonly default: "webgpu";
223
+ };
224
+ readonly executionProviders: {
225
+ readonly type: "array";
226
+ readonly items: {
227
+ readonly type: "string";
228
+ };
229
+ readonly description: "Raw ONNX Runtime execution provider identifiers.";
230
+ };
231
+ readonly intraOpNumThreads: {
232
+ readonly type: "integer";
233
+ readonly minimum: 1;
234
+ };
235
+ readonly interOpNumThreads: {
236
+ readonly type: "integer";
237
+ readonly minimum: 1;
238
+ };
239
+ readonly useExternalDataFormat: {
240
+ readonly type: "boolean";
241
+ readonly description: "Whether the model uses external data format.";
242
+ };
243
+ readonly nativeDimensions: {
244
+ readonly type: "integer";
245
+ readonly description: "The native dimensions of the model.";
246
+ };
247
+ readonly normalize: {
248
+ readonly type: "boolean";
249
+ readonly description: "Whether the model uses normalization.";
250
+ };
251
+ readonly languageStyle: {
252
+ readonly type: "string";
253
+ readonly description: "The language style of the model.";
254
+ };
255
+ };
256
+ readonly required: readonly ["modelPath", "pipeline"];
257
+ readonly additionalProperties: false;
258
+ readonly if: {
259
+ readonly properties: {
260
+ readonly pipeline: {
261
+ readonly const: "feature-extraction";
262
+ };
263
+ };
264
+ };
265
+ readonly then: {
266
+ readonly required: readonly ["nativeDimensions"];
267
+ };
268
+ };
269
+ readonly model_id: {
270
+ readonly type: "string";
271
+ };
272
+ readonly tasks: {
273
+ readonly type: "array";
274
+ readonly items: {
275
+ readonly type: "string";
276
+ };
277
+ };
278
+ readonly title: {
279
+ readonly type: "string";
280
+ };
281
+ readonly description: {
282
+ readonly type: "string";
283
+ };
284
+ readonly metadata: {
285
+ readonly type: "object";
286
+ readonly default: {};
287
+ };
288
+ };
289
+ readonly required: readonly ["provider", "providerConfig", "provider", "providerConfig"];
290
+ readonly additionalProperties: false;
291
+ };
292
+ export type HfTransformersOnnxModelConfig = FromSchema<typeof ExtendedModelConfigSchema>;
191
293
  export {};
192
294
  //# sourceMappingURL=HFT_ModelSchema.d.ts.map
@@ -1 +1 @@
1
- {"version":3,"file":"HFT_ModelSchema.d.ts","sourceRoot":"","sources":["../../../src/hf-transformers/common/HFT_ModelSchema.ts"],"names":[],"mappings":"AAAA;;;;GAIG;AAGH,OAAO,EAAwB,UAAU,EAAE,MAAM,gBAAgB,CAAC;AAGlE,eAAO,MAAM,6BAA6B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CA+ED,CAAC;AAE1C,QAAA,MAAM,mBAAmB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAQgB,CAAC;AAE1C,MAAM,MAAM,6BAA6B,GAAG,UAAU,CAAC,OAAO,mBAAmB,CAAC,CAAC"}
1
+ {"version":3,"file":"HFT_ModelSchema.d.ts","sourceRoot":"","sources":["../../../src/hf-transformers/common/HFT_ModelSchema.ts"],"names":[],"mappings":"AAAA;;;;GAIG;AAGH,OAAO,EAAwB,UAAU,EAAE,MAAM,gBAAgB,CAAC;AAGlE,eAAO,MAAM,6BAA6B;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CA+ED,CAAC;AAE1C,QAAA,MAAM,yBAAyB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAQU,CAAC;AAE1C,MAAM,MAAM,6BAA6B,GAAG,UAAU,CAAC,OAAO,yBAAyB,CAAC,CAAC;AAEzF,QAAA,MAAM,yBAAyB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAQU,CAAC;AAE1C,MAAM,MAAM,6BAA6B,GAAG,UAAU,CAAC,OAAO,yBAAyB,CAAC,CAAC"}
package/dist/index.js CHANGED
@@ -60,8 +60,13 @@ var pipelines = new Map;
60
60
  function clearPipelineCache() {
61
61
  pipelines.clear();
62
62
  }
63
+ function getPipelineCacheKey(model) {
64
+ const dType = model.providerConfig.dType || "q8";
65
+ const device = model.providerConfig.device || "";
66
+ return `${model.providerConfig.modelPath}:${model.providerConfig.pipeline}:${dType}:${device}`;
67
+ }
63
68
  var getPipeline = async (model, onProgress, options = {}, progressScaleMax = 10) => {
64
- const cacheKey = `${model.model_id}:${model.providerConfig.pipeline}`;
69
+ const cacheKey = getPipelineCacheKey(model);
65
70
  if (pipelines.has(cacheKey)) {
66
71
  return pipelines.get(cacheKey);
67
72
  }
@@ -279,8 +284,9 @@ var HFT_Download = async (input, model, onProgress, signal) => {
279
284
  };
280
285
  };
281
286
  var HFT_Unload = async (input, model, onProgress, signal) => {
282
- if (pipelines.has(model.model_id)) {
283
- pipelines.delete(model.model_id);
287
+ const cacheKey = getPipelineCacheKey(model);
288
+ if (pipelines.has(cacheKey)) {
289
+ pipelines.delete(cacheKey);
284
290
  onProgress(50, "Pipeline removed from memory");
285
291
  }
286
292
  const modelPath = model.providerConfig.modelPath;
@@ -680,7 +686,7 @@ function createTextStreamer(tokenizer, updateProgress, signal) {
680
686
  });
681
687
  }
682
688
  // src/hf-transformers/common/HFT_ModelSchema.ts
683
- import { ModelSchema } from "@workglow/ai";
689
+ import { ModelConfigSchema, ModelRecordSchema } from "@workglow/ai";
684
690
  var HfTransformersOnnxModelSchema = {
685
691
  type: "object",
686
692
  properties: {
@@ -761,13 +767,22 @@ var HfTransformersOnnxModelSchema = {
761
767
  required: ["provider", "providerConfig"],
762
768
  additionalProperties: true
763
769
  };
764
- var ExtendedModelSchema = {
770
+ var ExtendedModelRecordSchema = {
771
+ type: "object",
772
+ properties: {
773
+ ...ModelRecordSchema.properties,
774
+ ...HfTransformersOnnxModelSchema.properties
775
+ },
776
+ required: [...ModelRecordSchema.required, ...HfTransformersOnnxModelSchema.required],
777
+ additionalProperties: false
778
+ };
779
+ var ExtendedModelConfigSchema = {
765
780
  type: "object",
766
781
  properties: {
767
- ...ModelSchema.properties,
782
+ ...ModelConfigSchema.properties,
768
783
  ...HfTransformersOnnxModelSchema.properties
769
784
  },
770
- required: [...ModelSchema.required, ...HfTransformersOnnxModelSchema.required],
785
+ required: [...ModelConfigSchema.required, ...HfTransformersOnnxModelSchema.required],
771
786
  additionalProperties: false
772
787
  };
773
788
  // src/hf-transformers/registry/HFT_Client_RegisterJobFns.ts
@@ -1347,7 +1362,7 @@ var TFMP_PoseLandmarker = async (input, model, onProgress, signal) => {
1347
1362
  };
1348
1363
  };
1349
1364
  // src/tf-mediapipe/common/TFMP_ModelSchema.ts
1350
- import { ModelSchema as ModelSchema2 } from "@workglow/ai";
1365
+ import { ModelConfigSchema as ModelConfigSchema2, ModelRecordSchema as ModelRecordSchema2 } from "@workglow/ai";
1351
1366
  var TFMPModelSchema = {
1352
1367
  type: "object",
1353
1368
  properties: {
@@ -1381,13 +1396,22 @@ var TFMPModelSchema = {
1381
1396
  required: ["provider", "providerConfig"],
1382
1397
  additionalProperties: true
1383
1398
  };
1384
- var ExtendedModelSchema2 = {
1399
+ var ExtendedModelRecordSchema2 = {
1400
+ type: "object",
1401
+ properties: {
1402
+ ...ModelRecordSchema2.properties,
1403
+ ...TFMPModelSchema.properties
1404
+ },
1405
+ required: [...ModelRecordSchema2.required, ...TFMPModelSchema.required],
1406
+ additionalProperties: false
1407
+ };
1408
+ var ExtendedModelConfigSchema2 = {
1385
1409
  type: "object",
1386
1410
  properties: {
1387
- ...ModelSchema2.properties,
1411
+ ...ModelConfigSchema2.properties,
1388
1412
  ...TFMPModelSchema.properties
1389
1413
  },
1390
- required: [...ModelSchema2.required, ...TFMPModelSchema.required],
1414
+ required: [...ModelConfigSchema2.required, ...TFMPModelSchema.required],
1391
1415
  additionalProperties: false
1392
1416
  };
1393
1417
  // src/tf-mediapipe/registry/TFMP_Client_RegisterJobFns.ts
@@ -1548,4 +1572,4 @@ export {
1548
1572
  AudioPipelineUseCase
1549
1573
  };
1550
1574
 
1551
- //# debugId=505DFD36058D439364756E2164756E21
1575
+ //# debugId=CE5E7FE3C44E626A64756E2164756E21
package/dist/index.js.map CHANGED
@@ -3,19 +3,19 @@
3
3
  "sources": ["../src/hf-transformers/common/HFT_Constants.ts", "../src/hf-transformers/common/HFT_JobRunFns.ts", "../src/hf-transformers/common/HFT_ModelSchema.ts", "../src/hf-transformers/registry/HFT_Client_RegisterJobFns.ts", "../src/hf-transformers/registry/HFT_Inline_RegisterJobFns.ts", "../src/hf-transformers/registry/HFT_Worker_RegisterJobFns.ts", "../src/tf-mediapipe/common/TFMP_Constants.ts", "../src/tf-mediapipe/common/TFMP_JobRunFns.ts", "../src/tf-mediapipe/common/TFMP_ModelSchema.ts", "../src/tf-mediapipe/registry/TFMP_Client_RegisterJobFns.ts", "../src/tf-mediapipe/registry/TFMP_Inline_RegisterJobFns.ts", "../src/tf-mediapipe/registry/TFMP_Worker_RegisterJobFns.ts"],
4
4
  "sourcesContent": [
5
5
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nexport const HF_TRANSFORMERS_ONNX = \"HF_TRANSFORMERS_ONNX\";\nexport const HTF_CACHE_NAME = \"transformers-cache\";\n\nexport type QuantizationDataType =\n | \"auto\" // Auto-detect based on environment\n | \"fp32\"\n | \"fp16\"\n | \"q8\"\n | \"int8\"\n | \"uint8\"\n | \"q4\"\n | \"bnb4\"\n | \"q4f16\"; // fp16 model with int4 block weight quantization\n\nexport const QuantizationDataType = {\n auto: \"auto\",\n fp32: \"fp32\",\n fp16: \"fp16\",\n q8: \"q8\",\n int8: \"int8\",\n uint8: \"uint8\",\n q4: \"q4\",\n bnb4: \"bnb4\",\n q4f16: \"q4f16\",\n} as const satisfies Record<QuantizationDataType, QuantizationDataType>;\n\nexport type TextPipelineUseCase =\n | \"fill-mask\" // https://huggingface.co/tasks/fill-mask\n | \"token-classification\" // https://huggingface.co/tasks/token-classification\n | \"text-generation\" // https://huggingface.co/tasks/text-generation#completion-generation-models\n | \"text2text-generation\" // https://huggingface.co/tasks/text-generation#text-to-text-generation-models\n | \"text-classification\" // https://huggingface.co/tasks/text-classification\n | \"summarization\" // https://huggingface.co/tasks/sentence-similarity\n | \"translation\" // https://huggingface.co/tasks/translation\n | \"feature-extraction\" // https://huggingface.co/tasks/feature-extraction\n | \"zero-shot-classification\" // https://huggingface.co/tasks/zero-shot-classification\n | \"question-answering\"; // https://huggingface.co/tasks/question-answering\n\nexport const TextPipelineUseCase = {\n \"fill-mask\": \"fill-mask\",\n \"token-classification\": \"token-classification\",\n \"text-generation\": \"text-generation\",\n \"text2text-generation\": \"text2text-generation\",\n \"text-classification\": \"text-classification\",\n summarization: \"summarization\",\n translation: \"translation\",\n \"feature-extraction\": \"feature-extraction\",\n \"zero-shot-classification\": \"zero-shot-classification\",\n \"question-answering\": \"question-answering\",\n} as const satisfies Record<TextPipelineUseCase, TextPipelineUseCase>;\n\nexport type VisionPipelineUseCase =\n | \"background-removal\" // https://huggingface.co/tasks/image-segmentation#background-removal\n | \"image-segmentation\" // https://huggingface.co/tasks/image-segmentation\n | \"depth-estimation\" // https://huggingface.co/tasks/depth-estimation\n | \"image-classification\" // https://huggingface.co/tasks/image-classification\n | \"image-to-image\" // https://huggingface.co/tasks/image-to-image\n | \"object-detection\" // https://huggingface.co/tasks/object-detection\n | \"image-feature-extraction\"; // https://huggingface.co/tasks/image-feature-extraction\n\nexport const VisionPipelineUseCase = {\n \"background-removal\": \"background-removal\",\n \"image-segmentation\": \"image-segmentation\",\n \"depth-estimation\": \"depth-estimation\",\n \"image-classification\": \"image-classification\",\n \"image-to-image\": \"image-to-image\",\n \"object-detection\": \"object-detection\",\n \"image-feature-extraction\": \"image-feature-extraction\",\n} as const satisfies Record<VisionPipelineUseCase, VisionPipelineUseCase>;\n\nexport type AudioPipelineUseCase =\n | \"audio-classification\" // https://huggingface.co/tasks/audio-classification\n | \"automatic-speech-recognition\" // https://huggingface.co/tasks/automatic-speech-recognition\n | \"text-to-speech\"; // https://huggingface.co/tasks/text-to-speech\n\nexport const AudioPipelineUseCase = {\n \"audio-classification\": \"audio-classification\",\n \"automatic-speech-recognition\": \"automatic-speech-recognition\",\n \"text-to-speech\": \"text-to-speech\",\n} as const satisfies Record<AudioPipelineUseCase, AudioPipelineUseCase>;\n\nexport type MultimodalPipelineUseCase =\n | \"document-question-answering\" // https://huggingface.co/tasks/document-question-answering\n | \"image-to-text\" // https://huggingface.co/tasks/image-to-text\n | \"zero-shot-audio-classification\" // https://huggingface.co/tasks/zero-shot-audio-classification\n | \"zero-shot-image-classification\" // https://huggingface.co/tasks/zero-shot-image-classification\n | \"zero-shot-object-detection\"; // https://huggingface.co/tasks/zero-shot-object-detection\n\nexport const MultimodalPipelineUseCase = {\n \"document-question-answering\": \"document-question-answering\",\n \"image-to-text\": \"image-to-text\",\n \"zero-shot-audio-classification\": \"zero-shot-audio-classification\",\n \"zero-shot-image-classification\": \"zero-shot-image-classification\",\n \"zero-shot-object-detection\": \"zero-shot-object-detection\",\n} as const satisfies Record<MultimodalPipelineUseCase, MultimodalPipelineUseCase>;\n\nexport type PipelineUseCase =\n | TextPipelineUseCase\n | VisionPipelineUseCase\n | AudioPipelineUseCase\n | MultimodalPipelineUseCase;\n\nexport const PipelineUseCase = {\n ...TextPipelineUseCase,\n ...VisionPipelineUseCase,\n ...AudioPipelineUseCase,\n ...MultimodalPipelineUseCase,\n} as const satisfies Record<PipelineUseCase, PipelineUseCase>;\n",
6
- "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport {\n type BackgroundRemovalPipeline,\n DocumentQuestionAnsweringSingle,\n type FeatureExtractionPipeline,\n FillMaskPipeline,\n FillMaskSingle,\n type ImageClassificationPipeline,\n type ImageFeatureExtractionPipeline,\n type ImageSegmentationPipeline,\n type ImageToTextPipeline,\n type ObjectDetectionPipeline,\n pipeline,\n // @ts-ignore temporary \"fix\"\n type PretrainedModelOptions,\n QuestionAnsweringPipeline,\n RawImage,\n SummarizationPipeline,\n SummarizationSingle,\n TextClassificationOutput,\n TextClassificationPipeline,\n type TextGenerationPipeline,\n TextGenerationSingle,\n TextStreamer,\n TokenClassificationPipeline,\n TokenClassificationSingle,\n TranslationPipeline,\n TranslationSingle,\n type ZeroShotClassificationPipeline,\n type ZeroShotImageClassificationPipeline,\n type ZeroShotObjectDetectionPipeline,\n} from \"@sroussey/transformers\";\nimport type {\n AiProviderRunFn,\n BackgroundRemovalTaskExecuteInput,\n BackgroundRemovalTaskExecuteOutput,\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n ImageToTextTaskExecuteInput,\n ImageToTextTaskExecuteOutput,\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n TextFillMaskTaskExecuteInput,\n TextFillMaskTaskExecuteOutput,\n TextGenerationTaskExecuteInput,\n TextGenerationTaskExecuteOutput,\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n TextNamedEntityRecognitionTaskExecuteInput,\n TextNamedEntityRecognitionTaskExecuteOutput,\n TextQuestionAnswerTaskExecuteInput,\n TextQuestionAnswerTaskExecuteOutput,\n TextRewriterTaskExecuteInput,\n TextRewriterTaskExecuteOutput,\n TextSummaryTaskExecuteInput,\n TextSummaryTaskExecuteOutput,\n TextTranslationTaskExecuteInput,\n TextTranslationTaskExecuteOutput,\n TypedArray,\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n} from \"@workglow/ai\";\nimport { CallbackStatus } from \"./HFT_CallbackStatus\";\nimport { HTF_CACHE_NAME } from \"./HFT_Constants\";\nimport { HfTransformersOnnxModelRecord } from \"./HFT_ModelSchema\";\n\nconst pipelines = new Map<string, any>();\n\n/**\n * Clear all cached pipelines\n */\nexport function clearPipelineCache(): void {\n pipelines.clear();\n}\n\n/**\n * Helper function to get a pipeline for a model\n * @param progressScaleMax - Maximum progress value for download phase (100 for download-only, 10 for download+run)\n */\nconst getPipeline = async (\n model: HfTransformersOnnxModelRecord,\n onProgress: (progress: number, message?: string, details?: any) => void,\n options: PretrainedModelOptions = {},\n progressScaleMax: number = 10\n) => {\n const cacheKey = `${model.model_id}:${model.providerConfig.pipeline}`;\n if (pipelines.has(cacheKey)) {\n return pipelines.get(cacheKey);\n }\n\n // Track file sizes and progress for weighted calculation\n const fileSizes = new Map<string, number>();\n const fileProgress = new Map<string, number>();\n const fileCompleted = new Set<string>();\n const fileFirstSent = new Set<string>();\n const fileLastSent = new Set<string>();\n const fileLastEventTime = new Map<string, number>();\n const pendingProgressByFile = new Map<\n string,\n { progress: number; file: string; fileProgress: number }\n >();\n let throttleTimer: ReturnType<typeof setTimeout> | null = null;\n const THROTTLE_MS = 160;\n\n // Pre-estimate total download size based on typical model structure:\n // 3 tiny files (~1KB each) + 1 medium file (~20MB) + 0-2 large files (~1GB each if present)\n const estimatedTinyFiles = 3;\n const estimatedMediumFiles = 1;\n const estimatedTinySize = 1024; // 1KB\n const estimatedMediumSize = 20 * 1024 * 1024; // 20MB\n const estimatedLargeSize = 1024 * 1024 * 1024; // 1GB\n\n // Start with minimum estimate (4 files), add large files dynamically as we discover them\n const baseEstimate =\n estimatedTinyFiles * estimatedTinySize + estimatedMediumFiles * estimatedMediumSize;\n\n /**\n * Sends a progress event, respecting throttling but always sending first/last per file\n */\n const sendProgress = (\n overallProgress: number,\n file: string,\n fileProgressValue: number,\n isFirst: boolean,\n isLast: boolean\n ): void => {\n const now = Date.now();\n const lastTime = fileLastEventTime.get(file) || 0;\n const timeSinceLastEvent = now - lastTime;\n const shouldThrottle = !isFirst && !isLast && timeSinceLastEvent < THROTTLE_MS;\n\n if (shouldThrottle) {\n // Store pending progress for this file\n pendingProgressByFile.set(file, {\n progress: overallProgress,\n file,\n fileProgress: fileProgressValue,\n });\n // Schedule sending if not already scheduled\n if (!throttleTimer) {\n const timeRemaining = Math.max(1, THROTTLE_MS - timeSinceLastEvent);\n throttleTimer = setTimeout(() => {\n // Send all pending progress events\n for (const [pendingFile, pending] of pendingProgressByFile.entries()) {\n onProgress(Math.round(pending.progress), \"Downloading model\", {\n file: pendingFile,\n progress: pending.fileProgress,\n });\n fileLastEventTime.set(pendingFile, Date.now());\n }\n pendingProgressByFile.clear();\n throttleTimer = null;\n }, timeRemaining);\n }\n return;\n }\n\n // Send immediately\n onProgress(Math.round(overallProgress), \"Downloading model\", {\n file,\n progress: fileProgressValue,\n });\n fileLastEventTime.set(file, now);\n // Clear any pending progress for this file since we're sending it now\n pendingProgressByFile.delete(file);\n if (throttleTimer && pendingProgressByFile.size === 0) {\n clearTimeout(throttleTimer);\n throttleTimer = null;\n }\n };\n\n // Track whether we've seen a substantial file (to avoid premature progress reports for tiny config files)\n let hasSeenSubstantialFile = false;\n const substantialFileThreshold = 1024 * 1024; // 1MB - files larger than this are substantial\n\n // Get the abort signal from options if provided\n const abortSignal = options.abort_signal;\n\n // Create a callback status object for progress tracking\n const progressCallback = (status: CallbackStatus) => {\n // Check if operation has been aborted before processing progress\n if (abortSignal?.aborted) {\n return; // Don't process progress for aborted operations\n }\n\n if (status.status === \"progress\") {\n const file = status.file;\n const fileTotal = status.total;\n const fileProgressValue = status.progress;\n\n // Track file size on first progress event\n if (!fileSizes.has(file)) {\n fileSizes.set(file, fileTotal);\n fileProgress.set(file, 0);\n\n // Check if this is a substantial file\n if (fileTotal >= substantialFileThreshold) {\n hasSeenSubstantialFile = true;\n }\n }\n\n // Update file progress\n fileProgress.set(file, fileProgressValue);\n\n // Check if file is complete\n const isComplete = fileProgressValue >= 100;\n if (isComplete && !fileCompleted.has(file)) {\n fileCompleted.add(file);\n fileProgress.set(file, 100);\n }\n\n // Calculate actual loaded bytes and adjust estimated total\n let actualLoadedSize = 0;\n let actualTotalSize = 0;\n\n // Categorize seen files and track their actual sizes\n const tinyThreshold = 100 * 1024; // 100KB - files smaller are config/vocab\n const mediumThreshold = 100 * 1024 * 1024; // 100MB - tokenizer and small models\n let seenTinyCount = 0;\n let seenMediumCount = 0;\n let seenLargeCount = 0;\n\n for (const [trackedFile, size] of fileSizes.entries()) {\n actualTotalSize += size;\n const progress = fileProgress.get(trackedFile) || 0;\n actualLoadedSize += (size * progress) / 100;\n\n // Categorize file\n if (size < tinyThreshold) {\n seenTinyCount++;\n } else if (size < mediumThreshold) {\n seenMediumCount++;\n } else {\n seenLargeCount++;\n }\n }\n\n // Adjust estimated total size:\n // - Start with actual sizes of seen files\n // - Add estimates for unseen tiny/medium files\n // - For large files: conservatively assume 1 until we've seen all expected files\n const unseenTinyFiles = Math.max(0, estimatedTinyFiles - seenTinyCount);\n const unseenMediumFiles = Math.max(0, estimatedMediumFiles - seenMediumCount);\n\n // Dynamically estimate large files:\n // - If we've seen a large file, assume up to 2 total\n // - Otherwise, conservatively assume 1 large file might exist to prevent premature 100% progress\n // - This prevents the progress from jumping when a large file appears unexpectedly\n let estimatedLargeFiles: number;\n if (seenLargeCount > 0) {\n estimatedLargeFiles = 2; // We've seen at least one, expect up to 2\n } else {\n estimatedLargeFiles = 1; // Haven't seen any large files yet, but assume 1 might exist\n }\n const unseenLargeFiles = Math.max(0, estimatedLargeFiles - seenLargeCount);\n\n const adjustedTotalSize =\n actualTotalSize +\n unseenTinyFiles * estimatedTinySize +\n unseenMediumFiles * estimatedMediumSize +\n unseenLargeFiles * estimatedLargeSize;\n\n // Scale progress to the configured range (0-100 for download-only, 0-10 for download+run)\n const rawProgress = adjustedTotalSize > 0 ? (actualLoadedSize / adjustedTotalSize) * 100 : 0;\n const overallProgress = (rawProgress * progressScaleMax) / 100;\n\n // Determine if this is first or last event for this file\n const isFirst = !fileFirstSent.has(file);\n const isLast = isComplete && !fileLastSent.has(file);\n\n if (isFirst) {\n fileFirstSent.add(file);\n }\n if (isLast) {\n fileLastSent.add(file);\n }\n\n // Only report progress if we've seen a substantial file (to avoid premature 100% for tiny config files)\n if (hasSeenSubstantialFile) {\n sendProgress(overallProgress, file, fileProgressValue, isFirst, isLast);\n }\n } else if (status.status === \"done\" || status.status === \"download\") {\n // Handle file completion from bookend events\n const file = status.file;\n\n // Check if this file should mark the start of substantial downloads\n const fileSize = fileSizes.get(file) || 0;\n if (fileSize >= substantialFileThreshold) {\n hasSeenSubstantialFile = true;\n }\n\n if (!fileCompleted.has(file)) {\n fileCompleted.add(file);\n fileProgress.set(file, 100);\n\n // Recalculate overall progress using same logic as progress handler\n let actualLoadedSize = 0;\n let actualTotalSize = 0;\n\n const tinyThreshold = 100 * 1024; // 100KB - files smaller are config/vocab\n const mediumThreshold = 100 * 1024 * 1024; // 100MB - tokenizer and small models\n let seenTinyCount = 0;\n let seenMediumCount = 0;\n let seenLargeCount = 0;\n\n for (const [trackedFile, size] of fileSizes.entries()) {\n actualTotalSize += size;\n const progress = fileProgress.get(trackedFile) || 0;\n actualLoadedSize += (size * progress) / 100;\n\n // Categorize file\n if (size < tinyThreshold) {\n seenTinyCount++;\n } else if (size < mediumThreshold) {\n seenMediumCount++;\n } else {\n seenLargeCount++;\n }\n }\n\n // Adjust estimated total size (same logic as progress handler)\n const unseenTinyFiles = Math.max(0, estimatedTinyFiles - seenTinyCount);\n const unseenMediumFiles = Math.max(0, estimatedMediumFiles - seenMediumCount);\n\n // Dynamically estimate large files (same logic as progress handler)\n let estimatedLargeFiles: number;\n if (seenLargeCount > 0) {\n estimatedLargeFiles = 2;\n } else {\n estimatedLargeFiles = 1;\n }\n const unseenLargeFiles = Math.max(0, estimatedLargeFiles - seenLargeCount);\n\n const adjustedTotalSize =\n actualTotalSize +\n unseenTinyFiles * estimatedTinySize +\n unseenMediumFiles * estimatedMediumSize +\n unseenLargeFiles * estimatedLargeSize;\n\n // Scale progress to the configured range (0-100 for download-only, 0-10 for download+run)\n const rawProgress =\n adjustedTotalSize > 0 ? (actualLoadedSize / adjustedTotalSize) * 100 : 0;\n const overallProgress = (rawProgress * progressScaleMax) / 100;\n const isLast = !fileLastSent.has(file);\n if (isLast) {\n fileLastSent.add(file);\n // Only report if we've seen a substantial file\n if (hasSeenSubstantialFile) {\n sendProgress(overallProgress, file, 100, false, true);\n }\n }\n }\n }\n };\n\n const pipelineOptions: PretrainedModelOptions = {\n dtype: model.providerConfig.dType || \"q8\",\n ...(model.providerConfig.useExternalDataFormat\n ? { use_external_data_format: model.providerConfig.useExternalDataFormat }\n : {}),\n ...(model.providerConfig.device ? { device: model.providerConfig.device as any } : {}),\n ...options,\n progress_callback: progressCallback,\n };\n\n // Check if already aborted before starting\n if (abortSignal?.aborted) {\n throw new Error(\"Operation aborted before pipeline creation\");\n }\n\n const pipelineType = model.providerConfig.pipeline;\n\n // Wrap the pipeline call with abort handling\n // Create a promise that rejects when aborted\n const abortPromise = new Promise<never>((_, reject) => {\n if (abortSignal) {\n const handleAbort = () => {\n reject(new Error(\"Pipeline download aborted\"));\n };\n\n if (abortSignal.aborted) {\n handleAbort();\n } else {\n abortSignal.addEventListener(\"abort\", handleAbort, { once: true });\n }\n }\n });\n\n // Race between pipeline creation and abort\n const pipelinePromise = pipeline(pipelineType, model.providerConfig.modelPath, pipelineOptions);\n\n try {\n const result = await (abortSignal\n ? Promise.race([pipelinePromise, abortPromise])\n : pipelinePromise);\n\n // Check if aborted after pipeline creation\n if (abortSignal?.aborted) {\n throw new Error(\"Operation aborted after pipeline creation\");\n }\n\n pipelines.set(cacheKey, result);\n return result;\n } catch (error: any) {\n // If aborted, throw a clean abort error rather than internal stream errors\n if (abortSignal?.aborted) {\n throw new Error(\"Pipeline download aborted\");\n }\n // Otherwise, re-throw the original error\n throw error;\n }\n};\n\n/**\n * Core implementation for downloading and caching a Hugging Face Transformers model.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_Download: AiProviderRunFn<\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n // Download the model by creating a pipeline\n // Use 100 as progressScaleMax since this is download-only (0-100%)\n await getPipeline(model!, onProgress, { abort_signal: signal }, 100);\n\n return {\n model: input.model!,\n };\n};\n\n/**\n * Core implementation for unloading a Hugging Face Transformers model.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_Unload: AiProviderRunFn<\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n // Delete the pipeline from the in-memory map\n if (pipelines.has(model!.model_id)) {\n pipelines.delete(model!.model_id);\n onProgress(50, \"Pipeline removed from memory\");\n }\n\n // Delete model cache entries\n const modelPath = model!.providerConfig.modelPath;\n await deleteModelCache(modelPath);\n onProgress(100, \"Model cache deleted\");\n\n return {\n model: input.model!,\n };\n};\n\n/**\n * Deletes all cache entries for a given model path\n * @param modelPath - The model path to delete from cache\n */\nconst deleteModelCache = async (modelPath: string): Promise<void> => {\n const cache = await caches.open(HTF_CACHE_NAME);\n const keys = await cache.keys();\n const prefix = `/${modelPath}/`;\n\n // Collect all matching requests first\n const requestsToDelete: Request[] = [];\n for (const request of keys) {\n const url = new URL(request.url);\n if (url.pathname.startsWith(prefix)) {\n requestsToDelete.push(request);\n }\n }\n\n // Delete all matching requests\n let deletedCount = 0;\n for (const request of requestsToDelete) {\n try {\n const deleted = await cache.delete(request);\n if (deleted) {\n deletedCount++;\n } else {\n // If delete returns false, try with URL string as fallback\n const deletedByUrl = await cache.delete(request.url);\n if (deletedByUrl) {\n deletedCount++;\n }\n }\n } catch (error) {\n console.error(`Failed to delete cache entry: ${request.url}`, error);\n }\n }\n};\n\n/**\n * Core implementation for text embedding using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\n\nexport const HFT_TextEmbedding: AiProviderRunFn<\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const generateEmbedding: FeatureExtractionPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n // Generate the embedding\n const hfVector = await generateEmbedding(input.text, {\n pooling: \"mean\",\n normalize: model?.providerConfig.normalize,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n // Validate the embedding dimensions\n if (hfVector.size !== model?.providerConfig.nativeDimensions) {\n console.warn(\n `HuggingFace Embedding vector length does not match model dimensions v${hfVector.size} != m${model?.providerConfig.nativeDimensions}`,\n input,\n hfVector\n );\n throw new Error(\n `HuggingFace Embedding vector length does not match model dimensions v${hfVector.size} != m${model?.providerConfig.nativeDimensions}`\n );\n }\n\n return { vector: hfVector.data as TypedArray };\n};\n\nexport const HFT_TextClassification: AiProviderRunFn<\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n if (model?.providerConfig?.pipeline === \"zero-shot-classification\") {\n if (\n !input.candidateLabels ||\n !Array.isArray(input.candidateLabels) ||\n input.candidateLabels.length === 0\n ) {\n throw new Error(\"Zero-shot text classification requires candidate labels\");\n }\n\n const zeroShotClassifier: ZeroShotClassificationPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n const result: any = await zeroShotClassifier(input.text, input.candidateLabels as string[], {});\n\n return {\n categories: result.labels.map((label: string, idx: number) => ({\n label,\n score: result.scores[idx],\n })),\n };\n }\n\n const TextClassification: TextClassificationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result = await TextClassification(input.text, {\n top_k: input.maxCategories || undefined,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (Array.isArray(result[0])) {\n return {\n categories: result[0].map((category) => ({\n label: category.label,\n score: category.score,\n })),\n };\n }\n\n return {\n categories: (result as TextClassificationOutput).map((category) => ({\n label: category.label,\n score: category.score,\n })),\n };\n};\n\nexport const HFT_TextLanguageDetection: AiProviderRunFn<\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const TextClassification: TextClassificationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result = await TextClassification(input.text, {\n top_k: input.maxLanguages || undefined,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (Array.isArray(result[0])) {\n return {\n languages: result[0].map((category) => ({\n language: category.label,\n score: category.score,\n })),\n };\n }\n\n return {\n languages: (result as TextClassificationOutput).map((category) => ({\n language: category.label,\n score: category.score,\n })),\n };\n};\n\nexport const HFT_TextNamedEntityRecognition: AiProviderRunFn<\n TextNamedEntityRecognitionTaskExecuteInput,\n TextNamedEntityRecognitionTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const textNamedEntityRecognition: TokenClassificationPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n let results = await textNamedEntityRecognition(input.text, {\n ignore_labels: input.blockList as string[] | undefined,\n ...(signal ? { abort_signal: signal } : {}),\n });\n let entities: TokenClassificationSingle[] = [];\n if (!Array.isArray(results)) {\n entities = [results];\n } else {\n entities = results as TokenClassificationSingle[];\n }\n return {\n entities: entities.map((entity) => ({\n entity: entity.entity,\n score: entity.score,\n word: entity.word,\n })),\n };\n};\n\nexport const HFT_TextFillMask: AiProviderRunFn<\n TextFillMaskTaskExecuteInput,\n TextFillMaskTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const unmasker: FillMaskPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n let results = await unmasker(input.text);\n let predictions: FillMaskSingle[] = [];\n if (!Array.isArray(results)) {\n predictions = [results];\n } else {\n predictions = results as FillMaskSingle[];\n }\n return {\n predictions: predictions.map((prediction) => ({\n entity: prediction.token_str,\n score: prediction.score,\n sequence: prediction.sequence,\n })),\n };\n};\n\n/**\n * Core implementation for text generation using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextGeneration: AiProviderRunFn<\n TextGenerationTaskExecuteInput,\n TextGenerationTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const generateText: TextGenerationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const streamer = createTextStreamer(generateText.tokenizer, onProgress, signal);\n\n let results = await generateText(input.prompt, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (!Array.isArray(results)) {\n results = [results];\n }\n let text = (results[0] as TextGenerationSingle)?.generated_text;\n\n if (Array.isArray(text)) {\n text = text[text.length - 1]?.content;\n }\n return {\n text,\n };\n};\n\n/**\n * Core implementation for text translation using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextTranslation: AiProviderRunFn<\n TextTranslationTaskExecuteInput,\n TextTranslationTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const translate: TranslationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(translate.tokenizer, onProgress);\n\n const result = await translate(input.text, {\n src_lang: input.source_lang,\n tgt_lang: input.target_lang,\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n } as any);\n\n let translatedText: string | string[] = \"\";\n if (Array.isArray(result)) {\n translatedText = result.map((r) => (r as TranslationSingle)?.translation_text || \"\");\n } else {\n translatedText = (result as TranslationSingle)?.translation_text || \"\";\n }\n\n return {\n text: translatedText,\n target_lang: input.target_lang,\n };\n};\n\n/**\n * Core implementation for text rewriting using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextRewriter: AiProviderRunFn<\n TextRewriterTaskExecuteInput,\n TextRewriterTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const generateText: TextGenerationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(generateText.tokenizer, onProgress);\n\n // This lib doesn't support this kind of rewriting with a separate prompt vs text\n const promptedText = (input.prompt ? input.prompt + \"\\n\" : \"\") + input.text;\n\n let results = await generateText(promptedText, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (!Array.isArray(results)) {\n results = [results];\n }\n\n let text = (results[0] as TextGenerationSingle)?.generated_text;\n if (Array.isArray(text)) {\n text = text[text.length - 1]?.content;\n }\n\n if (text === promptedText) {\n throw new Error(\"Rewriter failed to generate new text\");\n }\n\n return {\n text,\n };\n};\n\n/**\n * Core implementation for text summarization using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextSummary: AiProviderRunFn<\n TextSummaryTaskExecuteInput,\n TextSummaryTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const generateSummary: SummarizationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(generateSummary.tokenizer, onProgress);\n\n let result = await generateSummary(input.text, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n } as any);\n\n let summaryText = \"\";\n if (Array.isArray(result)) {\n summaryText = (result[0] as SummarizationSingle)?.summary_text || \"\";\n } else {\n summaryText = (result as SummarizationSingle)?.summary_text || \"\";\n }\n\n return {\n text: summaryText,\n };\n};\n\n/**\n * Core implementation for question answering using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextQuestionAnswer: AiProviderRunFn<\n TextQuestionAnswerTaskExecuteInput,\n TextQuestionAnswerTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n // Get the question answering pipeline\n const generateAnswer: QuestionAnsweringPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(generateAnswer.tokenizer, onProgress);\n\n const result = await generateAnswer(input.question, input.context, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n } as any);\n\n let answerText = \"\";\n if (Array.isArray(result)) {\n answerText = (result[0] as DocumentQuestionAnsweringSingle)?.answer || \"\";\n } else {\n answerText = (result as DocumentQuestionAnsweringSingle)?.answer || \"\";\n }\n\n return {\n text: answerText,\n };\n};\n\n/**\n * Core implementation for image segmentation using Hugging Face Transformers.\n */\nexport const HFT_ImageSegmentation: AiProviderRunFn<\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const segmenter: ImageSegmentationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result = await segmenter(input.image as any, {\n threshold: input.threshold,\n mask_threshold: input.maskThreshold,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const masks = Array.isArray(result) ? result : [result];\n\n const processedMasks = await Promise.all(\n masks.map(async (mask) => ({\n label: mask.label || \"\",\n score: mask.score || 0,\n mask: {} as { [x: string]: unknown },\n }))\n );\n\n return {\n masks: processedMasks,\n };\n};\n\n/**\n * Core implementation for image to text using Hugging Face Transformers.\n */\nexport const HFT_ImageToText: AiProviderRunFn<\n ImageToTextTaskExecuteInput,\n ImageToTextTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const captioner: ImageToTextPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result: any = await captioner(input.image as string, {\n max_new_tokens: input.maxTokens,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const text = Array.isArray(result) ? result[0]?.generated_text : result?.generated_text;\n\n return {\n text: text || \"\",\n };\n};\n\n/**\n * Core implementation for background removal using Hugging Face Transformers.\n */\nexport const HFT_BackgroundRemoval: AiProviderRunFn<\n BackgroundRemovalTaskExecuteInput,\n BackgroundRemovalTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const remover: BackgroundRemovalPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result = await remover(input.image as string, {\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const resultImage = Array.isArray(result) ? result[0] : result;\n\n return {\n image: imageToBase64(resultImage),\n };\n};\n\n/**\n * Core implementation for image embedding using Hugging Face Transformers.\n */\nexport const HFT_ImageEmbedding: AiProviderRunFn<\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n const embedder: ImageFeatureExtractionPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result: any = await embedder(input.image as string);\n\n return {\n vector: result.data as TypedArray,\n };\n};\n\n/**\n * Core implementation for image classification using Hugging Face Transformers.\n * Auto-selects between regular and zero-shot classification.\n */\nexport const HFT_ImageClassification: AiProviderRunFn<\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n if (model?.providerConfig?.pipeline === \"zero-shot-image-classification\") {\n if (!input.categories || !Array.isArray(input.categories) || input.categories.length === 0) {\n console.warn(\"Zero-shot image classification requires categories\", input);\n throw new Error(\"Zero-shot image classification requires categories\");\n }\n const zeroShotClassifier: ZeroShotImageClassificationPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n const result: any = await zeroShotClassifier(\n input.image as string,\n input.categories! as string[],\n {}\n );\n\n const results = Array.isArray(result) ? result : [result];\n\n return {\n categories: results.map((r: any) => ({\n label: r.label,\n score: r.score,\n })),\n };\n }\n\n const classifier: ImageClassificationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result: any = await classifier(input.image as string, {\n top_k: (input as any).maxCategories,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const results = Array.isArray(result) ? result : [result];\n\n return {\n categories: results.map((r: any) => ({\n label: r.label,\n score: r.score,\n })),\n };\n};\n\n/**\n * Core implementation for object detection using Hugging Face Transformers.\n * Auto-selects between regular and zero-shot detection.\n */\nexport const HFT_ObjectDetection: AiProviderRunFn<\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n HfTransformersOnnxModelRecord\n> = async (input, model, onProgress, signal) => {\n if (model?.providerConfig?.pipeline === \"zero-shot-object-detection\") {\n if (!input.labels || !Array.isArray(input.labels) || input.labels.length === 0) {\n throw new Error(\"Zero-shot object detection requires labels\");\n }\n const zeroShotDetector: ZeroShotObjectDetectionPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n const result: any = await zeroShotDetector(input.image as string, Array.from(input.labels!), {\n threshold: (input as any).threshold,\n });\n\n const detections = Array.isArray(result) ? result : [result];\n\n return {\n detections: detections.map((d: any) => ({\n label: d.label,\n score: d.score,\n box: d.box,\n })),\n };\n }\n\n const detector: ObjectDetectionPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result: any = await detector(input.image as string, {\n threshold: (input as any).threshold,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const detections = Array.isArray(result) ? result : [result];\n\n return {\n detections: detections.map((d: any) => ({\n label: d.label,\n score: d.score,\n box: d.box,\n })),\n };\n};\n/**\n * Helper function to convert RawImage to base64 PNG\n */\nfunction imageToBase64(image: RawImage): string {\n // Convert RawImage to base64 PNG\n // This is a simplified version - actual implementation would use canvas or similar\n return (image as any).toBase64?.() || \"\";\n}\n\n\n/**\n * Create a text streamer for a given tokenizer and update progress function\n * @param tokenizer - The tokenizer to use for the streamer\n * @param updateProgress - The function to call to update the progress\n * @param signal - The signal to use for the streamer for aborting\n * @returns The text streamer\n */\nfunction createTextStreamer(\n tokenizer: any,\n updateProgress: (progress: number, message?: string, details?: any) => void,\n signal?: AbortSignal\n) {\n let count = 0;\n return new TextStreamer(tokenizer, {\n skip_prompt: true,\n decode_kwargs: { skip_special_tokens: true },\n callback_function: (text: string) => {\n count++;\n const result = 100 * (1 - Math.exp(-0.05 * count));\n const progress = Math.round(Math.min(result, 100));\n updateProgress(progress, \"Generating\", { text, progress });\n },\n ...(signal ? { abort_signal: signal } : {}),\n });\n}\n",
7
- "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { ModelSchema } from \"@workglow/ai\";\nimport { DataPortSchemaObject, FromSchema } from \"@workglow/util\";\nimport { HF_TRANSFORMERS_ONNX, PipelineUseCase, QuantizationDataType } from \"./HFT_Constants\";\n\nexport const HfTransformersOnnxModelSchema = {\n type: \"object\",\n properties: {\n provider: {\n const: HF_TRANSFORMERS_ONNX,\n description: \"Discriminator: ONNX runtime backend.\",\n },\n providerConfig: {\n type: \"object\",\n description: \"ONNX runtime-specific options.\",\n properties: {\n pipeline: {\n type: \"string\",\n enum: Object.values(PipelineUseCase),\n description: \"Pipeline type for the ONNX model.\",\n default: \"text-generation\",\n },\n modelPath: {\n type: \"string\",\n description: \"Filesystem path or URI for the ONNX model.\",\n },\n dType: {\n type: \"string\",\n enum: Object.values(QuantizationDataType),\n description: \"Data type for the ONNX model.\",\n default: \"float32\",\n },\n device: {\n type: \"string\",\n enum: [\"cpu\", \"gpu\", \"webgpu\", \"wasm\", \"metal\"],\n description: \"High-level device selection.\",\n default: \"webgpu\",\n },\n executionProviders: {\n type: \"array\",\n items: { type: \"string\" },\n description: \"Raw ONNX Runtime execution provider identifiers.\",\n },\n intraOpNumThreads: {\n type: \"integer\",\n minimum: 1,\n },\n interOpNumThreads: {\n type: \"integer\",\n minimum: 1,\n },\n useExternalDataFormat: {\n type: \"boolean\",\n description: \"Whether the model uses external data format.\",\n },\n nativeDimensions: {\n type: \"integer\",\n description: \"The native dimensions of the model.\",\n },\n normalize: {\n type: \"boolean\",\n description: \"Whether the model uses normalization.\",\n },\n languageStyle: {\n type: \"string\",\n description: \"The language style of the model.\",\n },\n },\n required: [\"modelPath\", \"pipeline\"],\n additionalProperties: false,\n if: {\n properties: {\n pipeline: {\n const: \"feature-extraction\",\n },\n },\n },\n then: {\n required: [\"nativeDimensions\"],\n },\n },\n },\n required: [\"provider\", \"providerConfig\"],\n additionalProperties: true,\n} as const satisfies DataPortSchemaObject;\n\nconst ExtendedModelSchema = {\n type: \"object\",\n properties: {\n ...ModelSchema.properties,\n ...HfTransformersOnnxModelSchema.properties,\n },\n required: [...ModelSchema.required, ...HfTransformersOnnxModelSchema.required],\n additionalProperties: false,\n} as const satisfies DataPortSchemaObject;\n\nexport type HfTransformersOnnxModelRecord = FromSchema<typeof ExtendedModelSchema>;\n",
6
+ "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport {\n type BackgroundRemovalPipeline,\n DocumentQuestionAnsweringSingle,\n type FeatureExtractionPipeline,\n FillMaskPipeline,\n FillMaskSingle,\n type ImageClassificationPipeline,\n type ImageFeatureExtractionPipeline,\n type ImageSegmentationPipeline,\n type ImageToTextPipeline,\n type ObjectDetectionPipeline,\n pipeline,\n // @ts-ignore temporary \"fix\"\n type PretrainedModelOptions,\n QuestionAnsweringPipeline,\n RawImage,\n SummarizationPipeline,\n SummarizationSingle,\n TextClassificationOutput,\n TextClassificationPipeline,\n type TextGenerationPipeline,\n TextGenerationSingle,\n TextStreamer,\n TokenClassificationPipeline,\n TokenClassificationSingle,\n TranslationPipeline,\n TranslationSingle,\n type ZeroShotClassificationPipeline,\n type ZeroShotImageClassificationPipeline,\n type ZeroShotObjectDetectionPipeline,\n} from \"@sroussey/transformers\";\nimport type {\n AiProviderRunFn,\n BackgroundRemovalTaskExecuteInput,\n BackgroundRemovalTaskExecuteOutput,\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n ImageToTextTaskExecuteInput,\n ImageToTextTaskExecuteOutput,\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n TextFillMaskTaskExecuteInput,\n TextFillMaskTaskExecuteOutput,\n TextGenerationTaskExecuteInput,\n TextGenerationTaskExecuteOutput,\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n TextNamedEntityRecognitionTaskExecuteInput,\n TextNamedEntityRecognitionTaskExecuteOutput,\n TextQuestionAnswerTaskExecuteInput,\n TextQuestionAnswerTaskExecuteOutput,\n TextRewriterTaskExecuteInput,\n TextRewriterTaskExecuteOutput,\n TextSummaryTaskExecuteInput,\n TextSummaryTaskExecuteOutput,\n TextTranslationTaskExecuteInput,\n TextTranslationTaskExecuteOutput,\n TypedArray,\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n} from \"@workglow/ai\";\nimport { CallbackStatus } from \"./HFT_CallbackStatus\";\nimport { HTF_CACHE_NAME } from \"./HFT_Constants\";\nimport { HfTransformersOnnxModelConfig } from \"./HFT_ModelSchema\";\n\nconst pipelines = new Map<string, any>();\n\n/**\n * Clear all cached pipelines\n */\nexport function clearPipelineCache(): void {\n pipelines.clear();\n}\n\n/**\n * Generate a cache key for a pipeline that includes all configuration options\n * that affect pipeline creation (modelPath, pipeline, dType, device)\n */\nfunction getPipelineCacheKey(model: HfTransformersOnnxModelConfig): string {\n const dType = model.providerConfig.dType || \"q8\";\n const device = model.providerConfig.device || \"\";\n return `${model.providerConfig.modelPath}:${model.providerConfig.pipeline}:${dType}:${device}`;\n}\n\n/**\n * Helper function to get a pipeline for a model\n * @param progressScaleMax - Maximum progress value for download phase (100 for download-only, 10 for download+run)\n */\nconst getPipeline = async (\n model: HfTransformersOnnxModelConfig,\n onProgress: (progress: number, message?: string, details?: any) => void,\n options: PretrainedModelOptions = {},\n progressScaleMax: number = 10\n) => {\n const cacheKey = getPipelineCacheKey(model);\n if (pipelines.has(cacheKey)) {\n return pipelines.get(cacheKey);\n }\n\n // Track file sizes and progress for weighted calculation\n const fileSizes = new Map<string, number>();\n const fileProgress = new Map<string, number>();\n const fileCompleted = new Set<string>();\n const fileFirstSent = new Set<string>();\n const fileLastSent = new Set<string>();\n const fileLastEventTime = new Map<string, number>();\n const pendingProgressByFile = new Map<\n string,\n { progress: number; file: string; fileProgress: number }\n >();\n let throttleTimer: ReturnType<typeof setTimeout> | null = null;\n const THROTTLE_MS = 160;\n\n // Pre-estimate total download size based on typical model structure:\n // 3 tiny files (~1KB each) + 1 medium file (~20MB) + 0-2 large files (~1GB each if present)\n const estimatedTinyFiles = 3;\n const estimatedMediumFiles = 1;\n const estimatedTinySize = 1024; // 1KB\n const estimatedMediumSize = 20 * 1024 * 1024; // 20MB\n const estimatedLargeSize = 1024 * 1024 * 1024; // 1GB\n\n // Start with minimum estimate (4 files), add large files dynamically as we discover them\n const baseEstimate =\n estimatedTinyFiles * estimatedTinySize + estimatedMediumFiles * estimatedMediumSize;\n\n /**\n * Sends a progress event, respecting throttling but always sending first/last per file\n */\n const sendProgress = (\n overallProgress: number,\n file: string,\n fileProgressValue: number,\n isFirst: boolean,\n isLast: boolean\n ): void => {\n const now = Date.now();\n const lastTime = fileLastEventTime.get(file) || 0;\n const timeSinceLastEvent = now - lastTime;\n const shouldThrottle = !isFirst && !isLast && timeSinceLastEvent < THROTTLE_MS;\n\n if (shouldThrottle) {\n // Store pending progress for this file\n pendingProgressByFile.set(file, {\n progress: overallProgress,\n file,\n fileProgress: fileProgressValue,\n });\n // Schedule sending if not already scheduled\n if (!throttleTimer) {\n const timeRemaining = Math.max(1, THROTTLE_MS - timeSinceLastEvent);\n throttleTimer = setTimeout(() => {\n // Send all pending progress events\n for (const [pendingFile, pending] of pendingProgressByFile.entries()) {\n onProgress(Math.round(pending.progress), \"Downloading model\", {\n file: pendingFile,\n progress: pending.fileProgress,\n });\n fileLastEventTime.set(pendingFile, Date.now());\n }\n pendingProgressByFile.clear();\n throttleTimer = null;\n }, timeRemaining);\n }\n return;\n }\n\n // Send immediately\n onProgress(Math.round(overallProgress), \"Downloading model\", {\n file,\n progress: fileProgressValue,\n });\n fileLastEventTime.set(file, now);\n // Clear any pending progress for this file since we're sending it now\n pendingProgressByFile.delete(file);\n if (throttleTimer && pendingProgressByFile.size === 0) {\n clearTimeout(throttleTimer);\n throttleTimer = null;\n }\n };\n\n // Track whether we've seen a substantial file (to avoid premature progress reports for tiny config files)\n let hasSeenSubstantialFile = false;\n const substantialFileThreshold = 1024 * 1024; // 1MB - files larger than this are substantial\n\n // Get the abort signal from options if provided\n const abortSignal = options.abort_signal;\n\n // Create a callback status object for progress tracking\n const progressCallback = (status: CallbackStatus) => {\n // Check if operation has been aborted before processing progress\n if (abortSignal?.aborted) {\n return; // Don't process progress for aborted operations\n }\n\n if (status.status === \"progress\") {\n const file = status.file;\n const fileTotal = status.total;\n const fileProgressValue = status.progress;\n\n // Track file size on first progress event\n if (!fileSizes.has(file)) {\n fileSizes.set(file, fileTotal);\n fileProgress.set(file, 0);\n\n // Check if this is a substantial file\n if (fileTotal >= substantialFileThreshold) {\n hasSeenSubstantialFile = true;\n }\n }\n\n // Update file progress\n fileProgress.set(file, fileProgressValue);\n\n // Check if file is complete\n const isComplete = fileProgressValue >= 100;\n if (isComplete && !fileCompleted.has(file)) {\n fileCompleted.add(file);\n fileProgress.set(file, 100);\n }\n\n // Calculate actual loaded bytes and adjust estimated total\n let actualLoadedSize = 0;\n let actualTotalSize = 0;\n\n // Categorize seen files and track their actual sizes\n const tinyThreshold = 100 * 1024; // 100KB - files smaller are config/vocab\n const mediumThreshold = 100 * 1024 * 1024; // 100MB - tokenizer and small models\n let seenTinyCount = 0;\n let seenMediumCount = 0;\n let seenLargeCount = 0;\n\n for (const [trackedFile, size] of fileSizes.entries()) {\n actualTotalSize += size;\n const progress = fileProgress.get(trackedFile) || 0;\n actualLoadedSize += (size * progress) / 100;\n\n // Categorize file\n if (size < tinyThreshold) {\n seenTinyCount++;\n } else if (size < mediumThreshold) {\n seenMediumCount++;\n } else {\n seenLargeCount++;\n }\n }\n\n // Adjust estimated total size:\n // - Start with actual sizes of seen files\n // - Add estimates for unseen tiny/medium files\n // - For large files: conservatively assume 1 until we've seen all expected files\n const unseenTinyFiles = Math.max(0, estimatedTinyFiles - seenTinyCount);\n const unseenMediumFiles = Math.max(0, estimatedMediumFiles - seenMediumCount);\n\n // Dynamically estimate large files:\n // - If we've seen a large file, assume up to 2 total\n // - Otherwise, conservatively assume 1 large file might exist to prevent premature 100% progress\n // - This prevents the progress from jumping when a large file appears unexpectedly\n let estimatedLargeFiles: number;\n if (seenLargeCount > 0) {\n estimatedLargeFiles = 2; // We've seen at least one, expect up to 2\n } else {\n estimatedLargeFiles = 1; // Haven't seen any large files yet, but assume 1 might exist\n }\n const unseenLargeFiles = Math.max(0, estimatedLargeFiles - seenLargeCount);\n\n const adjustedTotalSize =\n actualTotalSize +\n unseenTinyFiles * estimatedTinySize +\n unseenMediumFiles * estimatedMediumSize +\n unseenLargeFiles * estimatedLargeSize;\n\n // Scale progress to the configured range (0-100 for download-only, 0-10 for download+run)\n const rawProgress = adjustedTotalSize > 0 ? (actualLoadedSize / adjustedTotalSize) * 100 : 0;\n const overallProgress = (rawProgress * progressScaleMax) / 100;\n\n // Determine if this is first or last event for this file\n const isFirst = !fileFirstSent.has(file);\n const isLast = isComplete && !fileLastSent.has(file);\n\n if (isFirst) {\n fileFirstSent.add(file);\n }\n if (isLast) {\n fileLastSent.add(file);\n }\n\n // Only report progress if we've seen a substantial file (to avoid premature 100% for tiny config files)\n if (hasSeenSubstantialFile) {\n sendProgress(overallProgress, file, fileProgressValue, isFirst, isLast);\n }\n } else if (status.status === \"done\" || status.status === \"download\") {\n // Handle file completion from bookend events\n const file = status.file;\n\n // Check if this file should mark the start of substantial downloads\n const fileSize = fileSizes.get(file) || 0;\n if (fileSize >= substantialFileThreshold) {\n hasSeenSubstantialFile = true;\n }\n\n if (!fileCompleted.has(file)) {\n fileCompleted.add(file);\n fileProgress.set(file, 100);\n\n // Recalculate overall progress using same logic as progress handler\n let actualLoadedSize = 0;\n let actualTotalSize = 0;\n\n const tinyThreshold = 100 * 1024; // 100KB - files smaller are config/vocab\n const mediumThreshold = 100 * 1024 * 1024; // 100MB - tokenizer and small models\n let seenTinyCount = 0;\n let seenMediumCount = 0;\n let seenLargeCount = 0;\n\n for (const [trackedFile, size] of fileSizes.entries()) {\n actualTotalSize += size;\n const progress = fileProgress.get(trackedFile) || 0;\n actualLoadedSize += (size * progress) / 100;\n\n // Categorize file\n if (size < tinyThreshold) {\n seenTinyCount++;\n } else if (size < mediumThreshold) {\n seenMediumCount++;\n } else {\n seenLargeCount++;\n }\n }\n\n // Adjust estimated total size (same logic as progress handler)\n const unseenTinyFiles = Math.max(0, estimatedTinyFiles - seenTinyCount);\n const unseenMediumFiles = Math.max(0, estimatedMediumFiles - seenMediumCount);\n\n // Dynamically estimate large files (same logic as progress handler)\n let estimatedLargeFiles: number;\n if (seenLargeCount > 0) {\n estimatedLargeFiles = 2;\n } else {\n estimatedLargeFiles = 1;\n }\n const unseenLargeFiles = Math.max(0, estimatedLargeFiles - seenLargeCount);\n\n const adjustedTotalSize =\n actualTotalSize +\n unseenTinyFiles * estimatedTinySize +\n unseenMediumFiles * estimatedMediumSize +\n unseenLargeFiles * estimatedLargeSize;\n\n // Scale progress to the configured range (0-100 for download-only, 0-10 for download+run)\n const rawProgress =\n adjustedTotalSize > 0 ? (actualLoadedSize / adjustedTotalSize) * 100 : 0;\n const overallProgress = (rawProgress * progressScaleMax) / 100;\n const isLast = !fileLastSent.has(file);\n if (isLast) {\n fileLastSent.add(file);\n // Only report if we've seen a substantial file\n if (hasSeenSubstantialFile) {\n sendProgress(overallProgress, file, 100, false, true);\n }\n }\n }\n }\n };\n\n const pipelineOptions: PretrainedModelOptions = {\n dtype: model.providerConfig.dType || \"q8\",\n ...(model.providerConfig.useExternalDataFormat\n ? { use_external_data_format: model.providerConfig.useExternalDataFormat }\n : {}),\n ...(model.providerConfig.device ? { device: model.providerConfig.device as any } : {}),\n ...options,\n progress_callback: progressCallback,\n };\n\n // Check if already aborted before starting\n if (abortSignal?.aborted) {\n throw new Error(\"Operation aborted before pipeline creation\");\n }\n\n const pipelineType = model.providerConfig.pipeline;\n\n // Wrap the pipeline call with abort handling\n // Create a promise that rejects when aborted\n const abortPromise = new Promise<never>((_, reject) => {\n if (abortSignal) {\n const handleAbort = () => {\n reject(new Error(\"Pipeline download aborted\"));\n };\n\n if (abortSignal.aborted) {\n handleAbort();\n } else {\n abortSignal.addEventListener(\"abort\", handleAbort, { once: true });\n }\n }\n });\n\n // Race between pipeline creation and abort\n const pipelinePromise = pipeline(pipelineType, model.providerConfig.modelPath, pipelineOptions);\n\n try {\n const result = await (abortSignal\n ? Promise.race([pipelinePromise, abortPromise])\n : pipelinePromise);\n\n // Check if aborted after pipeline creation\n if (abortSignal?.aborted) {\n throw new Error(\"Operation aborted after pipeline creation\");\n }\n\n pipelines.set(cacheKey, result);\n return result;\n } catch (error: any) {\n // If aborted, throw a clean abort error rather than internal stream errors\n if (abortSignal?.aborted) {\n throw new Error(\"Pipeline download aborted\");\n }\n // Otherwise, re-throw the original error\n throw error;\n }\n};\n\n/**\n * Core implementation for downloading and caching a Hugging Face Transformers model.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_Download: AiProviderRunFn<\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n // Download the model by creating a pipeline\n // Use 100 as progressScaleMax since this is download-only (0-100%)\n await getPipeline(model!, onProgress, { abort_signal: signal }, 100);\n\n return {\n model: input.model!,\n };\n};\n\n/**\n * Core implementation for unloading a Hugging Face Transformers model.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_Unload: AiProviderRunFn<\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n // Delete the pipeline from the in-memory map\n const cacheKey = getPipelineCacheKey(model!);\n if (pipelines.has(cacheKey)) {\n pipelines.delete(cacheKey);\n onProgress(50, \"Pipeline removed from memory\");\n }\n\n // Delete model cache entries\n const modelPath = model!.providerConfig.modelPath;\n await deleteModelCache(modelPath);\n onProgress(100, \"Model cache deleted\");\n\n return {\n model: input.model!,\n };\n};\n\n/**\n * Deletes all cache entries for a given model path\n * @param modelPath - The model path to delete from cache\n */\nconst deleteModelCache = async (modelPath: string): Promise<void> => {\n const cache = await caches.open(HTF_CACHE_NAME);\n const keys = await cache.keys();\n const prefix = `/${modelPath}/`;\n\n // Collect all matching requests first\n const requestsToDelete: Request[] = [];\n for (const request of keys) {\n const url = new URL(request.url);\n if (url.pathname.startsWith(prefix)) {\n requestsToDelete.push(request);\n }\n }\n\n // Delete all matching requests\n let deletedCount = 0;\n for (const request of requestsToDelete) {\n try {\n const deleted = await cache.delete(request);\n if (deleted) {\n deletedCount++;\n } else {\n // If delete returns false, try with URL string as fallback\n const deletedByUrl = await cache.delete(request.url);\n if (deletedByUrl) {\n deletedCount++;\n }\n }\n } catch (error) {\n console.error(`Failed to delete cache entry: ${request.url}`, error);\n }\n }\n};\n\n/**\n * Core implementation for text embedding using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\n\nexport const HFT_TextEmbedding: AiProviderRunFn<\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const generateEmbedding: FeatureExtractionPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n // Generate the embedding\n const hfVector = await generateEmbedding(input.text, {\n pooling: \"mean\",\n normalize: model?.providerConfig.normalize,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n // Validate the embedding dimensions\n if (hfVector.size !== model?.providerConfig.nativeDimensions) {\n console.warn(\n `HuggingFace Embedding vector length does not match model dimensions v${hfVector.size} != m${model?.providerConfig.nativeDimensions}`,\n input,\n hfVector\n );\n throw new Error(\n `HuggingFace Embedding vector length does not match model dimensions v${hfVector.size} != m${model?.providerConfig.nativeDimensions}`\n );\n }\n\n return { vector: hfVector.data as TypedArray };\n};\n\nexport const HFT_TextClassification: AiProviderRunFn<\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n if (model?.providerConfig?.pipeline === \"zero-shot-classification\") {\n if (\n !input.candidateLabels ||\n !Array.isArray(input.candidateLabels) ||\n input.candidateLabels.length === 0\n ) {\n throw new Error(\"Zero-shot text classification requires candidate labels\");\n }\n\n const zeroShotClassifier: ZeroShotClassificationPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n const result: any = await zeroShotClassifier(input.text, input.candidateLabels as string[], {});\n\n return {\n categories: result.labels.map((label: string, idx: number) => ({\n label,\n score: result.scores[idx],\n })),\n };\n }\n\n const TextClassification: TextClassificationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result = await TextClassification(input.text, {\n top_k: input.maxCategories || undefined,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (Array.isArray(result[0])) {\n return {\n categories: result[0].map((category) => ({\n label: category.label,\n score: category.score,\n })),\n };\n }\n\n return {\n categories: (result as TextClassificationOutput).map((category) => ({\n label: category.label,\n score: category.score,\n })),\n };\n};\n\nexport const HFT_TextLanguageDetection: AiProviderRunFn<\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const TextClassification: TextClassificationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result = await TextClassification(input.text, {\n top_k: input.maxLanguages || undefined,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (Array.isArray(result[0])) {\n return {\n languages: result[0].map((category) => ({\n language: category.label,\n score: category.score,\n })),\n };\n }\n\n return {\n languages: (result as TextClassificationOutput).map((category) => ({\n language: category.label,\n score: category.score,\n })),\n };\n};\n\nexport const HFT_TextNamedEntityRecognition: AiProviderRunFn<\n TextNamedEntityRecognitionTaskExecuteInput,\n TextNamedEntityRecognitionTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const textNamedEntityRecognition: TokenClassificationPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n let results = await textNamedEntityRecognition(input.text, {\n ignore_labels: input.blockList as string[] | undefined,\n ...(signal ? { abort_signal: signal } : {}),\n });\n let entities: TokenClassificationSingle[] = [];\n if (!Array.isArray(results)) {\n entities = [results];\n } else {\n entities = results as TokenClassificationSingle[];\n }\n return {\n entities: entities.map((entity) => ({\n entity: entity.entity,\n score: entity.score,\n word: entity.word,\n })),\n };\n};\n\nexport const HFT_TextFillMask: AiProviderRunFn<\n TextFillMaskTaskExecuteInput,\n TextFillMaskTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const unmasker: FillMaskPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n let results = await unmasker(input.text);\n let predictions: FillMaskSingle[] = [];\n if (!Array.isArray(results)) {\n predictions = [results];\n } else {\n predictions = results as FillMaskSingle[];\n }\n return {\n predictions: predictions.map((prediction) => ({\n entity: prediction.token_str,\n score: prediction.score,\n sequence: prediction.sequence,\n })),\n };\n};\n\n/**\n * Core implementation for text generation using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextGeneration: AiProviderRunFn<\n TextGenerationTaskExecuteInput,\n TextGenerationTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const generateText: TextGenerationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const streamer = createTextStreamer(generateText.tokenizer, onProgress, signal);\n\n let results = await generateText(input.prompt, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (!Array.isArray(results)) {\n results = [results];\n }\n let text = (results[0] as TextGenerationSingle)?.generated_text;\n\n if (Array.isArray(text)) {\n text = text[text.length - 1]?.content;\n }\n return {\n text,\n };\n};\n\n/**\n * Core implementation for text translation using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextTranslation: AiProviderRunFn<\n TextTranslationTaskExecuteInput,\n TextTranslationTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const translate: TranslationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(translate.tokenizer, onProgress);\n\n const result = await translate(input.text, {\n src_lang: input.source_lang,\n tgt_lang: input.target_lang,\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n } as any);\n\n let translatedText: string | string[] = \"\";\n if (Array.isArray(result)) {\n translatedText = result.map((r) => (r as TranslationSingle)?.translation_text || \"\");\n } else {\n translatedText = (result as TranslationSingle)?.translation_text || \"\";\n }\n\n return {\n text: translatedText,\n target_lang: input.target_lang,\n };\n};\n\n/**\n * Core implementation for text rewriting using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextRewriter: AiProviderRunFn<\n TextRewriterTaskExecuteInput,\n TextRewriterTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const generateText: TextGenerationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(generateText.tokenizer, onProgress);\n\n // This lib doesn't support this kind of rewriting with a separate prompt vs text\n const promptedText = (input.prompt ? input.prompt + \"\\n\" : \"\") + input.text;\n\n let results = await generateText(promptedText, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n if (!Array.isArray(results)) {\n results = [results];\n }\n\n let text = (results[0] as TextGenerationSingle)?.generated_text;\n if (Array.isArray(text)) {\n text = text[text.length - 1]?.content;\n }\n\n if (text === promptedText) {\n throw new Error(\"Rewriter failed to generate new text\");\n }\n\n return {\n text,\n };\n};\n\n/**\n * Core implementation for text summarization using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextSummary: AiProviderRunFn<\n TextSummaryTaskExecuteInput,\n TextSummaryTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const generateSummary: SummarizationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(generateSummary.tokenizer, onProgress);\n\n let result = await generateSummary(input.text, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n } as any);\n\n let summaryText = \"\";\n if (Array.isArray(result)) {\n summaryText = (result[0] as SummarizationSingle)?.summary_text || \"\";\n } else {\n summaryText = (result as SummarizationSingle)?.summary_text || \"\";\n }\n\n return {\n text: summaryText,\n };\n};\n\n/**\n * Core implementation for question answering using Hugging Face Transformers.\n * This is shared between inline and worker implementations.\n */\nexport const HFT_TextQuestionAnswer: AiProviderRunFn<\n TextQuestionAnswerTaskExecuteInput,\n TextQuestionAnswerTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n // Get the question answering pipeline\n const generateAnswer: QuestionAnsweringPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const streamer = createTextStreamer(generateAnswer.tokenizer, onProgress);\n\n const result = await generateAnswer(input.question, input.context, {\n streamer,\n ...(signal ? { abort_signal: signal } : {}),\n } as any);\n\n let answerText = \"\";\n if (Array.isArray(result)) {\n answerText = (result[0] as DocumentQuestionAnsweringSingle)?.answer || \"\";\n } else {\n answerText = (result as DocumentQuestionAnsweringSingle)?.answer || \"\";\n }\n\n return {\n text: answerText,\n };\n};\n\n/**\n * Core implementation for image segmentation using Hugging Face Transformers.\n */\nexport const HFT_ImageSegmentation: AiProviderRunFn<\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const segmenter: ImageSegmentationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result = await segmenter(input.image as any, {\n threshold: input.threshold,\n mask_threshold: input.maskThreshold,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const masks = Array.isArray(result) ? result : [result];\n\n const processedMasks = await Promise.all(\n masks.map(async (mask) => ({\n label: mask.label || \"\",\n score: mask.score || 0,\n mask: {} as { [x: string]: unknown },\n }))\n );\n\n return {\n masks: processedMasks,\n };\n};\n\n/**\n * Core implementation for image to text using Hugging Face Transformers.\n */\nexport const HFT_ImageToText: AiProviderRunFn<\n ImageToTextTaskExecuteInput,\n ImageToTextTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const captioner: ImageToTextPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result: any = await captioner(input.image as string, {\n max_new_tokens: input.maxTokens,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const text = Array.isArray(result) ? result[0]?.generated_text : result?.generated_text;\n\n return {\n text: text || \"\",\n };\n};\n\n/**\n * Core implementation for background removal using Hugging Face Transformers.\n */\nexport const HFT_BackgroundRemoval: AiProviderRunFn<\n BackgroundRemovalTaskExecuteInput,\n BackgroundRemovalTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const remover: BackgroundRemovalPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result = await remover(input.image as string, {\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const resultImage = Array.isArray(result) ? result[0] : result;\n\n return {\n image: imageToBase64(resultImage),\n };\n};\n\n/**\n * Core implementation for image embedding using Hugging Face Transformers.\n */\nexport const HFT_ImageEmbedding: AiProviderRunFn<\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n const embedder: ImageFeatureExtractionPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n\n const result: any = await embedder(input.image as string);\n\n return {\n vector: result.data as TypedArray,\n };\n};\n\n/**\n * Core implementation for image classification using Hugging Face Transformers.\n * Auto-selects between regular and zero-shot classification.\n */\nexport const HFT_ImageClassification: AiProviderRunFn<\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n if (model?.providerConfig?.pipeline === \"zero-shot-image-classification\") {\n if (!input.categories || !Array.isArray(input.categories) || input.categories.length === 0) {\n console.warn(\"Zero-shot image classification requires categories\", input);\n throw new Error(\"Zero-shot image classification requires categories\");\n }\n const zeroShotClassifier: ZeroShotImageClassificationPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n const result: any = await zeroShotClassifier(\n input.image as string,\n input.categories! as string[],\n {}\n );\n\n const results = Array.isArray(result) ? result : [result];\n\n return {\n categories: results.map((r: any) => ({\n label: r.label,\n score: r.score,\n })),\n };\n }\n\n const classifier: ImageClassificationPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result: any = await classifier(input.image as string, {\n top_k: (input as any).maxCategories,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const results = Array.isArray(result) ? result : [result];\n\n return {\n categories: results.map((r: any) => ({\n label: r.label,\n score: r.score,\n })),\n };\n};\n\n/**\n * Core implementation for object detection using Hugging Face Transformers.\n * Auto-selects between regular and zero-shot detection.\n */\nexport const HFT_ObjectDetection: AiProviderRunFn<\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n HfTransformersOnnxModelConfig\n> = async (input, model, onProgress, signal) => {\n if (model?.providerConfig?.pipeline === \"zero-shot-object-detection\") {\n if (!input.labels || !Array.isArray(input.labels) || input.labels.length === 0) {\n throw new Error(\"Zero-shot object detection requires labels\");\n }\n const zeroShotDetector: ZeroShotObjectDetectionPipeline = await getPipeline(\n model!,\n onProgress,\n {\n abort_signal: signal,\n }\n );\n const result: any = await zeroShotDetector(input.image as string, Array.from(input.labels!), {\n threshold: (input as any).threshold,\n });\n\n const detections = Array.isArray(result) ? result : [result];\n\n return {\n detections: detections.map((d: any) => ({\n label: d.label,\n score: d.score,\n box: d.box,\n })),\n };\n }\n\n const detector: ObjectDetectionPipeline = await getPipeline(model!, onProgress, {\n abort_signal: signal,\n });\n const result: any = await detector(input.image as string, {\n threshold: (input as any).threshold,\n ...(signal ? { abort_signal: signal } : {}),\n });\n\n const detections = Array.isArray(result) ? result : [result];\n\n return {\n detections: detections.map((d: any) => ({\n label: d.label,\n score: d.score,\n box: d.box,\n })),\n };\n};\n/**\n * Helper function to convert RawImage to base64 PNG\n */\nfunction imageToBase64(image: RawImage): string {\n // Convert RawImage to base64 PNG\n // This is a simplified version - actual implementation would use canvas or similar\n return (image as any).toBase64?.() || \"\";\n}\n\n/**\n * Create a text streamer for a given tokenizer and update progress function\n * @param tokenizer - The tokenizer to use for the streamer\n * @param updateProgress - The function to call to update the progress\n * @param signal - The signal to use for the streamer for aborting\n * @returns The text streamer\n */\nfunction createTextStreamer(\n tokenizer: any,\n updateProgress: (progress: number, message?: string, details?: any) => void,\n signal?: AbortSignal\n) {\n let count = 0;\n return new TextStreamer(tokenizer, {\n skip_prompt: true,\n decode_kwargs: { skip_special_tokens: true },\n callback_function: (text: string) => {\n count++;\n const result = 100 * (1 - Math.exp(-0.05 * count));\n const progress = Math.round(Math.min(result, 100));\n updateProgress(progress, \"Generating\", { text, progress });\n },\n ...(signal ? { abort_signal: signal } : {}),\n });\n}\n",
7
+ "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { ModelConfigSchema, ModelRecordSchema } from \"@workglow/ai\";\nimport { DataPortSchemaObject, FromSchema } from \"@workglow/util\";\nimport { HF_TRANSFORMERS_ONNX, PipelineUseCase, QuantizationDataType } from \"./HFT_Constants\";\n\nexport const HfTransformersOnnxModelSchema = {\n type: \"object\",\n properties: {\n provider: {\n const: HF_TRANSFORMERS_ONNX,\n description: \"Discriminator: ONNX runtime backend.\",\n },\n providerConfig: {\n type: \"object\",\n description: \"ONNX runtime-specific options.\",\n properties: {\n pipeline: {\n type: \"string\",\n enum: Object.values(PipelineUseCase),\n description: \"Pipeline type for the ONNX model.\",\n default: \"text-generation\",\n },\n modelPath: {\n type: \"string\",\n description: \"Filesystem path or URI for the ONNX model.\",\n },\n dType: {\n type: \"string\",\n enum: Object.values(QuantizationDataType),\n description: \"Data type for the ONNX model.\",\n default: \"float32\",\n },\n device: {\n type: \"string\",\n enum: [\"cpu\", \"gpu\", \"webgpu\", \"wasm\", \"metal\"],\n description: \"High-level device selection.\",\n default: \"webgpu\",\n },\n executionProviders: {\n type: \"array\",\n items: { type: \"string\" },\n description: \"Raw ONNX Runtime execution provider identifiers.\",\n },\n intraOpNumThreads: {\n type: \"integer\",\n minimum: 1,\n },\n interOpNumThreads: {\n type: \"integer\",\n minimum: 1,\n },\n useExternalDataFormat: {\n type: \"boolean\",\n description: \"Whether the model uses external data format.\",\n },\n nativeDimensions: {\n type: \"integer\",\n description: \"The native dimensions of the model.\",\n },\n normalize: {\n type: \"boolean\",\n description: \"Whether the model uses normalization.\",\n },\n languageStyle: {\n type: \"string\",\n description: \"The language style of the model.\",\n },\n },\n required: [\"modelPath\", \"pipeline\"],\n additionalProperties: false,\n if: {\n properties: {\n pipeline: {\n const: \"feature-extraction\",\n },\n },\n },\n then: {\n required: [\"nativeDimensions\"],\n },\n },\n },\n required: [\"provider\", \"providerConfig\"],\n additionalProperties: true,\n} as const satisfies DataPortSchemaObject;\n\nconst ExtendedModelRecordSchema = {\n type: \"object\",\n properties: {\n ...ModelRecordSchema.properties,\n ...HfTransformersOnnxModelSchema.properties,\n },\n required: [...ModelRecordSchema.required, ...HfTransformersOnnxModelSchema.required],\n additionalProperties: false,\n} as const satisfies DataPortSchemaObject;\n\nexport type HfTransformersOnnxModelRecord = FromSchema<typeof ExtendedModelRecordSchema>;\n\nconst ExtendedModelConfigSchema = {\n type: \"object\",\n properties: {\n ...ModelConfigSchema.properties,\n ...HfTransformersOnnxModelSchema.properties,\n },\n required: [...ModelConfigSchema.required, ...HfTransformersOnnxModelSchema.required],\n additionalProperties: false,\n} as const satisfies DataPortSchemaObject;\n\nexport type HfTransformersOnnxModelConfig = FromSchema<typeof ExtendedModelConfigSchema>;\n",
8
8
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { AiJob, AiJobInput, getAiProviderRegistry } from \"@workglow/ai\";\nimport { ConcurrencyLimiter, JobQueueClient, JobQueueServer } from \"@workglow/job-queue\";\nimport { InMemoryQueueStorage } from \"@workglow/storage\";\nimport { getTaskQueueRegistry, TaskInput, TaskOutput } from \"@workglow/task-graph\";\nimport { globalServiceRegistry, WORKER_MANAGER } from \"@workglow/util\";\nimport { HF_TRANSFORMERS_ONNX } from \"../common/HFT_Constants\";\n\n/**\n * Registers the HuggingFace Transformers client job functions with a web worker.\n * If no client is provided, creates a default in-memory queue and registers it.\n *\n * @param worker - The web worker to use for job execution\n * @param client - Optional existing JobQueueClient. If not provided, creates a default in-memory queue.\n */\nexport async function register_HFT_ClientJobFns(\n worker: Worker,\n client?: JobQueueClient<AiJobInput<TaskInput>, TaskOutput>\n): Promise<void> {\n const workerManager = globalServiceRegistry.get(WORKER_MANAGER);\n\n workerManager.registerWorker(HF_TRANSFORMERS_ONNX, worker);\n\n const ProviderRegistry = getAiProviderRegistry();\n const names = [\n \"DownloadModelTask\",\n \"UnloadModelTask\",\n \"TextEmbeddingTask\",\n \"TextLanguageDetectionTask\",\n \"TextClassificationTask\",\n \"TextFillMaskTask\",\n \"TextNamedEntityRecognitionTask\",\n \"TextGenerationTask\",\n \"TextTranslationTask\",\n \"TextRewriterTask\",\n \"TextSummaryTask\",\n \"TextQuestionAnswerTask\",\n \"ImageSegmentationTask\",\n \"ImageToTextTask\",\n \"BackgroundRemovalTask\",\n \"ImageEmbeddingTask\",\n \"ImageClassificationTask\",\n \"ObjectDetectionTask\",\n ];\n for (const name of names) {\n ProviderRegistry.registerAsWorkerRunFn(HF_TRANSFORMERS_ONNX, name);\n }\n // If no client provided, create a default in-memory queue\n if (!client) {\n const storage = new InMemoryQueueStorage<AiJobInput<TaskInput>, TaskOutput>(\n HF_TRANSFORMERS_ONNX\n );\n\n const server = new JobQueueServer<AiJobInput<TaskInput>, TaskOutput>(AiJob, {\n storage,\n queueName: HF_TRANSFORMERS_ONNX,\n limiter: new ConcurrencyLimiter(1, 100),\n });\n\n client = new JobQueueClient<AiJobInput<TaskInput>, TaskOutput>({\n storage,\n queueName: HF_TRANSFORMERS_ONNX,\n });\n\n client.attach(server);\n\n getTaskQueueRegistry().registerQueue({ server, client, storage });\n // await server.start();\n }\n}\n",
9
9
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { env } from \"@sroussey/transformers\";\nimport { AiJob, AiJobInput, AiProviderRunFn, getAiProviderRegistry } from \"@workglow/ai\";\nimport { ConcurrencyLimiter, JobQueueClient, JobQueueServer } from \"@workglow/job-queue\";\nimport { InMemoryQueueStorage } from \"@workglow/storage\";\nimport { getTaskQueueRegistry, TaskInput, TaskOutput } from \"@workglow/task-graph\";\nimport { HF_TRANSFORMERS_ONNX } from \"../common/HFT_Constants\";\nimport {\n HFT_BackgroundRemoval,\n HFT_Download,\n HFT_ImageClassification,\n HFT_ImageEmbedding,\n HFT_ImageSegmentation,\n HFT_ImageToText,\n HFT_ObjectDetection,\n HFT_TextClassification,\n HFT_TextEmbedding,\n HFT_TextFillMask,\n HFT_TextGeneration,\n HFT_TextLanguageDetection,\n HFT_TextNamedEntityRecognition,\n HFT_TextQuestionAnswer,\n HFT_TextRewriter,\n HFT_TextSummary,\n HFT_TextTranslation,\n HFT_Unload,\n} from \"../common/HFT_JobRunFns\";\n\n/**\n * Registers the HuggingFace Transformers inline job functions for same-thread execution.\n * If no client is provided, creates a default in-memory queue and registers it.\n *\n * @param client - Optional existing JobQueueClient. If not provided, creates a default in-memory queue.\n */\nexport async function register_HFT_InlineJobFns(\n client?: JobQueueClient<AiJobInput<TaskInput>, TaskOutput>\n): Promise<void> {\n // @ts-ignore\n env.backends.onnx.wasm.proxy = true;\n const ProviderRegistry = getAiProviderRegistry();\n const fns: Record<string, AiProviderRunFn<any, any, any>> = {\n [\"DownloadModelTask\"]: HFT_Download,\n [\"UnloadModelTask\"]: HFT_Unload,\n [\"TextEmbeddingTask\"]: HFT_TextEmbedding,\n [\"TextGenerationTask\"]: HFT_TextGeneration,\n [\"TextQuestionAnswerTask\"]: HFT_TextQuestionAnswer,\n [\"TextLanguageDetectionTask\"]: HFT_TextLanguageDetection,\n [\"TextClassificationTask\"]: HFT_TextClassification,\n [\"TextFillMaskTask\"]: HFT_TextFillMask,\n [\"TextNamedEntityRecognitionTask\"]: HFT_TextNamedEntityRecognition,\n [\"TextRewriterTask\"]: HFT_TextRewriter,\n [\"TextSummaryTask\"]: HFT_TextSummary,\n [\"TextTranslationTask\"]: HFT_TextTranslation,\n [\"ImageSegmentationTask\"]: HFT_ImageSegmentation,\n [\"ImageToTextTask\"]: HFT_ImageToText,\n [\"BackgroundRemovalTask\"]: HFT_BackgroundRemoval,\n [\"ImageEmbeddingTask\"]: HFT_ImageEmbedding,\n [\"ImageClassificationTask\"]: HFT_ImageClassification,\n [\"ObjectDetectionTask\"]: HFT_ObjectDetection,\n };\n for (const [jobName, fn] of Object.entries(fns)) {\n ProviderRegistry.registerRunFn<any, any>(HF_TRANSFORMERS_ONNX, jobName, fn);\n }\n\n // If no client provided, create a default in-memory queue\n if (!client) {\n const storage = new InMemoryQueueStorage<AiJobInput<TaskInput>, TaskOutput>(\n HF_TRANSFORMERS_ONNX\n );\n await storage.setupDatabase();\n\n const server = new JobQueueServer<AiJobInput<TaskInput>, TaskOutput>(AiJob, {\n storage,\n queueName: HF_TRANSFORMERS_ONNX,\n limiter: new ConcurrencyLimiter(1, 100),\n });\n\n client = new JobQueueClient<AiJobInput<TaskInput>, TaskOutput>({\n storage,\n queueName: HF_TRANSFORMERS_ONNX,\n });\n\n client.attach(server);\n\n getTaskQueueRegistry().registerQueue({ server, client, storage });\n await server.start();\n }\n}\n",
10
10
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport {\n createServiceToken,\n globalServiceRegistry,\n parentPort,\n WORKER_SERVER,\n} from \"@workglow/util\";\nimport {\n HFT_BackgroundRemoval,\n HFT_Download,\n HFT_ImageClassification,\n HFT_ImageEmbedding,\n HFT_ImageSegmentation,\n HFT_ImageToText,\n HFT_ObjectDetection,\n HFT_TextClassification,\n HFT_TextEmbedding,\n HFT_TextFillMask,\n HFT_TextGeneration,\n HFT_TextLanguageDetection,\n HFT_TextNamedEntityRecognition,\n HFT_TextQuestionAnswer,\n HFT_TextRewriter,\n HFT_TextSummary,\n HFT_TextTranslation,\n HFT_Unload,\n} from \"../common/HFT_JobRunFns\";\n\nexport const HFT_WORKER_JOBRUN = createServiceToken(\"worker.ai-provider.hft\");\n\nexport const HFT_WORKER_JOBRUN_REGISTER = globalServiceRegistry.register(\n HFT_WORKER_JOBRUN,\n () => {\n const workerServer = globalServiceRegistry.get(WORKER_SERVER);\n workerServer.registerFunction(\"DownloadModelTask\", HFT_Download);\n workerServer.registerFunction(\"UnloadModelTask\", HFT_Unload);\n workerServer.registerFunction(\"TextEmbeddingTask\", HFT_TextEmbedding);\n workerServer.registerFunction(\"TextGenerationTask\", HFT_TextGeneration);\n workerServer.registerFunction(\"TextLanguageDetectionTask\", HFT_TextLanguageDetection);\n workerServer.registerFunction(\"TextClassificationTask\", HFT_TextClassification);\n workerServer.registerFunction(\"TextFillMaskTask\", HFT_TextFillMask);\n workerServer.registerFunction(\"TextNamedEntityRecognitionTask\", HFT_TextNamedEntityRecognition);\n workerServer.registerFunction(\"TextTranslationTask\", HFT_TextTranslation);\n workerServer.registerFunction(\"TextRewriterTask\", HFT_TextRewriter);\n workerServer.registerFunction(\"TextSummaryTask\", HFT_TextSummary);\n workerServer.registerFunction(\"TextQuestionAnswerTask\", HFT_TextQuestionAnswer);\n workerServer.registerFunction(\"ImageSegmentationTask\", HFT_ImageSegmentation);\n workerServer.registerFunction(\"ImageToTextTask\", HFT_ImageToText);\n workerServer.registerFunction(\"BackgroundRemovalTask\", HFT_BackgroundRemoval);\n workerServer.registerFunction(\"ImageEmbeddingTask\", HFT_ImageEmbedding);\n workerServer.registerFunction(\"ImageClassificationTask\", HFT_ImageClassification);\n workerServer.registerFunction(\"ObjectDetectionTask\", HFT_ObjectDetection);\n parentPort.postMessage({ type: \"ready\" });\n console.log(\"HFT_WORKER_JOBRUN registered\");\n return workerServer;\n },\n true\n);\n",
11
11
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nexport const TENSORFLOW_MEDIAPIPE = \"TENSORFLOW_MEDIAPIPE\";\n\nexport type TextPipelineTask =\n | \"text-embedder\"\n | \"text-classifier\"\n | \"text-language-detector\"\n | \"genai-text\"\n | \"audio-classifier\"\n | \"audio-embedder\"\n | \"vision-face-detector\"\n | \"vision-face-landmarker\"\n | \"vision-face-stylizer\"\n | \"vision-gesture-recognizer\"\n | \"vision-hand-landmarker\"\n | \"vision-holistic-landmarker\"\n | \"vision-image-classifier\"\n | \"vision-image-embedder\"\n | \"vision-image-segmenter\"\n | \"vision-image-interactive-segmenter\"\n | \"vision-object-detector\"\n | \"vision-pose-landmarker\";\n\nexport const TextPipelineTask = {\n \"text-embedder\": \"text-embedder\",\n \"text-classifier\": \"text-classifier\",\n \"text-language-detector\": \"text-language-detector\",\n \"genai-text\": \"genai-text\",\n \"audio-classifier\": \"audio-classifier\",\n \"audio-embedder\": \"audio-embedder\",\n \"vision-face-detector\": \"vision-face-detector\",\n \"vision-face-landmarker\": \"vision-face-landmarker\",\n \"vision-face-stylizer\": \"vision-face-stylizer\",\n \"vision-gesture-recognizer\": \"vision-gesture-recognizer\",\n \"vision-hand-landmarker\": \"vision-hand-landmarker\",\n \"vision-holistic-landmarker\": \"vision-holistic-landmarker\",\n \"vision-image-classifier\": \"vision-image-classifier\",\n \"vision-image-embedder\": \"vision-image-embedder\",\n \"vision-image-segmenter\": \"vision-image-segmenter\",\n \"vision-image-interactive-segmenter\": \"vision-image-interactive-segmenter\",\n \"vision-object-detector\": \"vision-object-detector\",\n \"vision-pose-landmarker\": \"vision-pose-landmarker\",\n} as const satisfies Record<TextPipelineTask, TextPipelineTask>;\n",
12
- "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport {\n FilesetResolver,\n LanguageDetector,\n TextClassifier,\n TextEmbedder,\n} from \"@mediapipe/tasks-text\";\nimport {\n FaceDetector,\n FaceLandmarker,\n GestureRecognizer,\n HandLandmarker,\n ImageClassifier,\n ImageEmbedder,\n ImageSegmenter,\n ObjectDetector,\n PoseLandmarker,\n} from \"@mediapipe/tasks-vision\";\nimport type {\n AiProviderRunFn,\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n FaceDetectorTaskExecuteInput,\n FaceDetectorTaskExecuteOutput,\n FaceLandmarkerTaskExecuteInput,\n FaceLandmarkerTaskExecuteOutput,\n GestureRecognizerTaskExecuteInput,\n GestureRecognizerTaskExecuteOutput,\n HandLandmarkerTaskExecuteInput,\n HandLandmarkerTaskExecuteOutput,\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n PoseLandmarkerTaskExecuteInput,\n PoseLandmarkerTaskExecuteOutput,\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n} from \"@workglow/ai\";\nimport { PermanentJobError } from \"@workglow/job-queue\";\nimport { TFMPModelRecord } from \"./TFMP_ModelSchema\";\n\ninterface TFMPWasmFileset {\n /** The path to the Wasm loader script. */\n wasmLoaderPath: string;\n /** The path to the Wasm binary. */\n wasmBinaryPath: string;\n /** The optional path to the asset loader script. */\n assetLoaderPath?: string;\n /** The optional path to the assets binary. */\n assetBinaryPath?: string;\n}\n\n/**\n * Cache for WASM filesets by task engine (text, audio, vision, genai).\n * Multiple models may share the same WASM fileset.\n */\nconst wasm_tasks = new Map<string, TFMPWasmFileset>();\n\n/**\n * Reference counts tracking how many models are using each WASM fileset.\n * When count reaches 0, the WASM fileset can be safely unloaded.\n */\nconst wasm_reference_counts = new Map<string, number>();\n\n/**\n * Helper function to get a WASM task for a model\n */\nconst getWasmTask = async (\n model: TFMPModelRecord,\n onProgress: (progress: number, message?: string, details?: any) => void,\n signal: AbortSignal\n): Promise<TFMPWasmFileset> => {\n const taskEngine = model.providerConfig.taskEngine;\n\n if (wasm_tasks.has(taskEngine)) {\n return wasm_tasks.get(taskEngine)!;\n }\n\n if (signal.aborted) {\n throw new PermanentJobError(\"Aborted job\");\n }\n\n onProgress(0.1, \"Loading WASM task\");\n\n let wasmFileset: TFMPWasmFileset;\n\n switch (taskEngine) {\n case \"text\":\n wasmFileset = await FilesetResolver.forTextTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-text@latest/wasm\"\n );\n break;\n case \"audio\":\n wasmFileset = await FilesetResolver.forAudioTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-audio@latest/wasm\"\n );\n break;\n case \"vision\":\n wasmFileset = await FilesetResolver.forVisionTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm\"\n );\n break;\n case \"genai\":\n wasmFileset = await FilesetResolver.forGenAiTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-genai@latest/wasm\"\n );\n break;\n default:\n throw new PermanentJobError(\"Invalid task engine\");\n }\n\n wasm_tasks.set(taskEngine, wasmFileset);\n return wasmFileset;\n};\n\ntype TaskType =\n | typeof TextEmbedder\n | typeof TextClassifier\n | typeof LanguageDetector\n | typeof ImageClassifier\n | typeof ImageEmbedder\n | typeof ImageSegmenter\n | typeof ObjectDetector\n | typeof GestureRecognizer\n | typeof HandLandmarker\n | typeof FaceDetector\n | typeof FaceLandmarker\n | typeof PoseLandmarker;\n\ntype TaskInstance =\n | TextEmbedder\n | TextClassifier\n | LanguageDetector\n | ImageClassifier\n | ImageEmbedder\n | ImageSegmenter\n | ObjectDetector\n | GestureRecognizer\n | HandLandmarker\n | FaceDetector\n | FaceLandmarker\n | PoseLandmarker;\n\ninterface CachedModelTask {\n readonly task: TaskInstance;\n readonly options: Record<string, unknown>;\n readonly taskEngine: string;\n}\n\nconst modelTaskCache = new Map<string, CachedModelTask[]>();\n\ntype InferTaskInstance<T> = T extends typeof TextEmbedder\n ? TextEmbedder\n : T extends typeof TextClassifier\n ? TextClassifier\n : T extends typeof LanguageDetector\n ? LanguageDetector\n : T extends typeof ImageClassifier\n ? ImageClassifier\n : T extends typeof ImageEmbedder\n ? ImageEmbedder\n : T extends typeof ImageSegmenter\n ? ImageSegmenter\n : T extends typeof ObjectDetector\n ? ObjectDetector\n : T extends typeof GestureRecognizer\n ? GestureRecognizer\n : T extends typeof HandLandmarker\n ? HandLandmarker\n : T extends typeof FaceDetector\n ? FaceDetector\n : T extends typeof FaceLandmarker\n ? FaceLandmarker\n : T extends typeof PoseLandmarker\n ? PoseLandmarker\n : never;\n\n/**\n * Checks if two option objects are deeply equal.\n */\nconst optionsMatch = (opts1: Record<string, unknown>, opts2: Record<string, unknown>): boolean => {\n const keys1 = Object.keys(opts1).sort();\n const keys2 = Object.keys(opts2).sort();\n\n if (keys1.length !== keys2.length) return false;\n\n return keys1.every((key) => {\n const val1 = opts1[key];\n const val2 = opts2[key];\n\n if (Array.isArray(val1) && Array.isArray(val2)) {\n return JSON.stringify(val1) === JSON.stringify(val2);\n }\n\n return val1 === val2;\n });\n};\n\nconst getModelTask = async <T extends TaskType>(\n model: TFMPModelRecord,\n options: Record<string, unknown>,\n onProgress: (progress: number, message?: string, details?: any) => void,\n signal: AbortSignal,\n TaskType: T\n): Promise<InferTaskInstance<T>> => {\n const modelPath = model.providerConfig.modelPath;\n const taskEngine = model.providerConfig.taskEngine;\n\n // Check if we have a cached instance with matching options\n const cachedTasks = modelTaskCache.get(modelPath);\n if (cachedTasks) {\n const matchedTask = cachedTasks.find((cached) => optionsMatch(cached.options, options));\n if (matchedTask) {\n return matchedTask.task as InferTaskInstance<T>;\n }\n }\n\n // Load WASM if needed\n const wasmFileset = await getWasmTask(model, onProgress, signal);\n\n onProgress(0.2, \"Creating model task\");\n\n // Create new model instance\n const task = await TaskType.createFromOptions(wasmFileset, {\n baseOptions: {\n modelAssetPath: modelPath,\n },\n ...options,\n });\n\n // Cache the task with its options and task engine\n const cachedTask: CachedModelTask = { task, options, taskEngine };\n if (!modelTaskCache.has(modelPath)) {\n modelTaskCache.set(modelPath, []);\n }\n modelTaskCache.get(modelPath)!.push(cachedTask);\n\n // Increment WASM reference count for this cached task\n wasm_reference_counts.set(taskEngine, (wasm_reference_counts.get(taskEngine) || 0) + 1);\n\n return task as any;\n};\n\n/**\n * Core implementation for downloading and caching a MediaPipe TFJS model.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_Download: AiProviderRunFn<\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n let task: TextEmbedder | TextClassifier | LanguageDetector;\n switch (model?.providerConfig.pipeline) {\n case \"text-embedder\":\n task = await getModelTask(model, {}, onProgress, signal, TextEmbedder);\n break;\n case \"text-classifier\":\n task = await getModelTask(model, {}, onProgress, signal, TextClassifier);\n break;\n case \"text-language-detector\":\n task = await getModelTask(model, {}, onProgress, signal, LanguageDetector);\n break;\n default:\n throw new PermanentJobError(\"Invalid pipeline\");\n }\n onProgress(0.9, \"Pipeline loaded\");\n task.close(); // Close the task to release the resources, but it is still in the browser cache\n // Decrease reference count for WASM fileset for this cached task since this is a fake model cache entry\n const taskEngine = model?.providerConfig.taskEngine;\n wasm_reference_counts.set(taskEngine, wasm_reference_counts.get(taskEngine)! - 1);\n\n return {\n model: input.model,\n };\n};\n\n/**\n * Core implementation for text embedding using MediaPipe TFJS.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_TextEmbedding: AiProviderRunFn<\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const textEmbedder = await getModelTask(model!, {}, onProgress, signal, TextEmbedder);\n const result = textEmbedder.embed(input.text);\n\n if (!result.embeddings?.[0]?.floatEmbedding) {\n throw new PermanentJobError(\"Failed to generate embedding: Empty result\");\n }\n\n const embedding = Float32Array.from(result.embeddings[0].floatEmbedding);\n\n return {\n vector: embedding,\n };\n};\n\n/**\n * Core implementation for text classification using MediaPipe TFJS.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_TextClassification: AiProviderRunFn<\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const TextClassification = await getModelTask(\n model!,\n {\n maxCategories: input.maxCategories,\n // scoreThreshold: input.scoreThreshold,\n // allowList: input.allowList,\n // blockList: input.blockList,\n },\n onProgress,\n signal,\n TextClassifier\n );\n const result = TextClassification.classify(input.text);\n\n if (!result.classifications?.[0]?.categories) {\n throw new PermanentJobError(\"Failed to classify text: Empty result\");\n }\n\n const categories = result.classifications[0].categories.map((category) => ({\n label: category.categoryName,\n score: category.score,\n }));\n\n return {\n categories,\n };\n};\n\n/**\n * Core implementation for language detection using MediaPipe TFJS.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_TextLanguageDetection: AiProviderRunFn<\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const maxLanguages = input.maxLanguages === 0 ? -1 : input.maxLanguages;\n\n const textLanguageDetector = await getModelTask(\n model!,\n {\n maxLanguages,\n // scoreThreshold: input.scoreThreshold,\n // allowList: input.allowList,\n // blockList: input.blockList,\n },\n onProgress,\n signal,\n LanguageDetector\n );\n const result = textLanguageDetector.detect(input.text);\n\n if (!result.languages?.[0]?.languageCode) {\n throw new PermanentJobError(\"Failed to detect language: Empty result\");\n }\n\n const languages = result.languages.map((language) => ({\n language: language.languageCode,\n score: language.probability,\n }));\n\n return {\n languages,\n };\n};\n\n/**\n * Core implementation for unloading a MediaPipe TFJS model.\n * This is shared between inline and worker implementations.\n *\n * When a model is unloaded, this function:\n * 1. Disposes of all cached model instances for the given model path\n * 2. Decrements the reference count for the associated WASM fileset for each instance\n * 3. If no other models are using the WASM fileset (count reaches 0), unloads the WASM\n */\nexport const TFMP_Unload: AiProviderRunFn<\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const modelPath = model!.providerConfig.modelPath;\n onProgress(10, \"Unloading model\");\n // Dispose of all cached model tasks if they exist\n if (modelTaskCache.has(modelPath)) {\n const cachedTasks = modelTaskCache.get(modelPath)!;\n\n for (const cachedTask of cachedTasks) {\n const task = cachedTask.task;\n if (\"close\" in task && typeof task.close === \"function\") task.close();\n\n // Decrease reference count for WASM fileset for this cached task\n const taskEngine = cachedTask.taskEngine;\n const currentCount = wasm_reference_counts.get(taskEngine) || 0;\n const newCount = currentCount - 1;\n\n if (newCount <= 0) {\n // No more models using this WASM fileset, unload it\n wasm_tasks.delete(taskEngine);\n wasm_reference_counts.delete(taskEngine);\n } else {\n wasm_reference_counts.set(taskEngine, newCount);\n }\n }\n\n modelTaskCache.delete(modelPath);\n }\n\n return {\n model: input.model,\n };\n};\n\n/**\n * Core implementation for image segmentation using MediaPipe.\n */\nexport const TFMP_ImageSegmentation: AiProviderRunFn<\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const imageSegmenter = await getModelTask(model!, {}, onProgress, signal, ImageSegmenter);\n const result = imageSegmenter.segment(input.image as any);\n\n if (!result.categoryMask) {\n throw new PermanentJobError(\"Failed to segment image: Empty result\");\n }\n\n // MediaPipe returns a single mask, create a placeholder result\n const masks = [\n {\n label: \"segment\",\n score: 1.0,\n mask: {\n data: result.categoryMask.canvas,\n width: result.categoryMask.width,\n height: result.categoryMask.height,\n },\n },\n ];\n\n return {\n masks,\n };\n};\n\n/**\n * Core implementation for image embedding using MediaPipe.\n */\nexport const TFMP_ImageEmbedding: AiProviderRunFn<\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const imageEmbedder = await getModelTask(model!, {}, onProgress, signal, ImageEmbedder);\n const result = imageEmbedder.embed(input.image as any);\n\n if (!result.embeddings?.[0]?.floatEmbedding) {\n throw new PermanentJobError(\"Failed to generate embedding: Empty result\");\n }\n\n const embedding = Float32Array.from(result.embeddings[0].floatEmbedding);\n\n return {\n vector: embedding,\n };\n};\n\n/**\n * Core implementation for image classification using MediaPipe.\n */\nexport const TFMP_ImageClassification: AiProviderRunFn<\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const imageClassifier = await getModelTask(\n model!,\n {\n maxResults: (input as any).maxCategories,\n },\n onProgress,\n signal,\n ImageClassifier\n );\n const result = imageClassifier.classify(input.image as any);\n\n if (!result.classifications?.[0]?.categories) {\n throw new PermanentJobError(\"Failed to classify image: Empty result\");\n }\n\n const categories = result.classifications[0].categories.map((category: any) => ({\n label: category.categoryName,\n score: category.score,\n }));\n\n return {\n categories,\n };\n};\n\n/**\n * Core implementation for object detection using MediaPipe.\n */\nexport const TFMP_ObjectDetection: AiProviderRunFn<\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const objectDetector = await getModelTask(\n model!,\n {\n scoreThreshold: (input as any).threshold,\n },\n onProgress,\n signal,\n ObjectDetector\n );\n const result = objectDetector.detect(input.image as any);\n\n if (!result.detections) {\n throw new PermanentJobError(\"Failed to detect objects: Empty result\");\n }\n\n const detections = result.detections.map((detection: any) => ({\n label: detection.categories?.[0]?.categoryName || \"unknown\",\n score: detection.categories?.[0]?.score || 0,\n box: {\n x: detection.boundingBox?.originX || 0,\n y: detection.boundingBox?.originY || 0,\n width: detection.boundingBox?.width || 0,\n height: detection.boundingBox?.height || 0,\n },\n }));\n\n return {\n detections,\n };\n};\n\n/**\n * Core implementation for gesture recognition using MediaPipe.\n */\nexport const TFMP_GestureRecognizer: AiProviderRunFn<\n GestureRecognizerTaskExecuteInput,\n GestureRecognizerTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const gestureRecognizer = await getModelTask(\n model!,\n {\n numHands: (input as any).numHands,\n minHandDetectionConfidence: (input as any).minHandDetectionConfidence,\n minHandPresenceConfidence: (input as any).minHandPresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n },\n onProgress,\n signal,\n GestureRecognizer\n );\n const result = gestureRecognizer.recognize(input.image as any);\n\n if (!result.gestures || !result.landmarks) {\n throw new PermanentJobError(\"Failed to recognize gestures: Empty result\");\n }\n\n const hands = result.gestures.map((gestures: any, index: number) => ({\n gestures: gestures.map((g: any) => ({\n label: g.categoryName,\n score: g.score,\n })),\n handedness: result.handedness[index].map((h: any) => ({\n label: h.categoryName,\n score: h.score,\n })),\n landmarks: result.landmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n worldLandmarks: result.worldLandmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n }));\n\n return {\n hands,\n };\n};\n\n/**\n * Core implementation for hand landmark detection using MediaPipe.\n */\nexport const TFMP_HandLandmarker: AiProviderRunFn<\n HandLandmarkerTaskExecuteInput,\n HandLandmarkerTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const handLandmarker = await getModelTask(\n model!,\n {\n numHands: (input as any).numHands,\n minHandDetectionConfidence: (input as any).minHandDetectionConfidence,\n minHandPresenceConfidence: (input as any).minHandPresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n },\n onProgress,\n signal,\n HandLandmarker\n );\n const result = handLandmarker.detect(input.image as any);\n\n if (!result.landmarks) {\n throw new PermanentJobError(\"Failed to detect hand landmarks: Empty result\");\n }\n\n const hands = result.landmarks.map((landmarks: any, index: number) => ({\n handedness: result.handedness[index].map((h: any) => ({\n label: h.categoryName,\n score: h.score,\n })),\n landmarks: landmarks.map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n worldLandmarks: result.worldLandmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n }));\n\n return {\n hands,\n };\n};\n\n/**\n * Core implementation for face detection using MediaPipe.\n */\nexport const TFMP_FaceDetector: AiProviderRunFn<\n FaceDetectorTaskExecuteInput,\n FaceDetectorTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const faceDetector = await getModelTask(\n model!,\n {\n minDetectionConfidence: (input as any).minDetectionConfidence,\n minSuppressionThreshold: (input as any).minSuppressionThreshold,\n },\n onProgress,\n signal,\n FaceDetector\n );\n const result = faceDetector.detect(input.image as any);\n\n if (!result.detections) {\n throw new PermanentJobError(\"Failed to detect faces: Empty result\");\n }\n\n const faces = result.detections.map((detection: any) => ({\n box: {\n x: detection.boundingBox?.originX || 0,\n y: detection.boundingBox?.originY || 0,\n width: detection.boundingBox?.width || 0,\n height: detection.boundingBox?.height || 0,\n },\n keypoints:\n detection.keypoints?.map((kp: any) => ({\n x: kp.x,\n y: kp.y,\n label: kp.label,\n })) || [],\n score: detection.categories?.[0]?.score || 0,\n }));\n\n return {\n faces,\n };\n};\n\n/**\n * Core implementation for face landmark detection using MediaPipe.\n */\nexport const TFMP_FaceLandmarker: AiProviderRunFn<\n FaceLandmarkerTaskExecuteInput,\n FaceLandmarkerTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const faceLandmarker = await getModelTask(\n model!,\n {\n numFaces: (input as any).numFaces,\n minFaceDetectionConfidence: (input as any).minFaceDetectionConfidence,\n minFacePresenceConfidence: (input as any).minFacePresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n outputFaceBlendshapes: (input as any).outputFaceBlendshapes,\n outputFacialTransformationMatrixes: (input as any).outputFacialTransformationMatrixes,\n },\n onProgress,\n signal,\n FaceLandmarker\n );\n const result = faceLandmarker.detect(input.image as any);\n\n if (!result.faceLandmarks) {\n throw new PermanentJobError(\"Failed to detect face landmarks: Empty result\");\n }\n\n const faces = result.faceLandmarks.map((landmarks: any, index: number) => {\n const face: any = {\n landmarks: landmarks.map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n };\n\n if (result.faceBlendshapes && result.faceBlendshapes[index]) {\n face.blendshapes = result.faceBlendshapes[index].categories.map((b: any) => ({\n label: b.categoryName,\n score: b.score,\n }));\n }\n\n if (result.facialTransformationMatrixes && result.facialTransformationMatrixes[index]) {\n face.transformationMatrix = Array.from(result.facialTransformationMatrixes[index].data);\n }\n\n return face;\n });\n\n return {\n faces,\n };\n};\n\n/**\n * Core implementation for pose landmark detection using MediaPipe.\n */\nexport const TFMP_PoseLandmarker: AiProviderRunFn<\n PoseLandmarkerTaskExecuteInput,\n PoseLandmarkerTaskExecuteOutput,\n TFMPModelRecord\n> = async (input, model, onProgress, signal) => {\n const poseLandmarker = await getModelTask(\n model!,\n {\n numPoses: (input as any).numPoses,\n minPoseDetectionConfidence: (input as any).minPoseDetectionConfidence,\n minPosePresenceConfidence: (input as any).minPosePresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n outputSegmentationMasks: (input as any).outputSegmentationMasks,\n },\n onProgress,\n signal,\n PoseLandmarker\n );\n const result = poseLandmarker.detect(input.image as any);\n\n if (!result.landmarks) {\n throw new PermanentJobError(\"Failed to detect pose landmarks: Empty result\");\n }\n\n const poses = result.landmarks.map((landmarks: any, index: number) => {\n const pose: any = {\n landmarks: landmarks.map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n visibility: l.visibility,\n presence: l.presence,\n })),\n worldLandmarks: result.worldLandmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n visibility: l.visibility,\n presence: l.presence,\n })),\n };\n\n if (result.segmentationMasks && result.segmentationMasks[index]) {\n const mask = result.segmentationMasks[index];\n pose.segmentationMask = {\n data: mask.canvas || mask,\n width: mask.width,\n height: mask.height,\n };\n }\n\n return pose;\n });\n\n return {\n poses,\n };\n};\n",
13
- "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { ModelSchema } from \"@workglow/ai\";\nimport { DataPortSchemaObject, FromSchema } from \"@workglow/util\";\nimport { TENSORFLOW_MEDIAPIPE, TextPipelineTask } from \"../common/TFMP_Constants\";\n\nexport const TFMPModelSchema = {\n type: \"object\",\n properties: {\n provider: {\n const: TENSORFLOW_MEDIAPIPE,\n description: \"Discriminator: TensorFlow MediaPipe backend.\",\n },\n providerConfig: {\n type: \"object\",\n description: \"TensorFlow MediaPipe-specific options.\",\n properties: {\n modelPath: {\n type: \"string\",\n description: \"Filesystem path or URI for the ONNX model.\",\n },\n taskEngine: {\n type: \"string\",\n enum: [\"text\", \"audio\", \"vision\", \"genai\"],\n description: \"Task engine for the MediaPipe model.\",\n },\n pipeline: {\n type: \"string\",\n enum: Object.values(TextPipelineTask),\n description: \"Pipeline task type for the MediaPipe model.\",\n },\n },\n required: [\"modelPath\", \"taskEngine\", \"pipeline\"],\n additionalProperties: false,\n },\n },\n required: [\"provider\", \"providerConfig\"],\n additionalProperties: true,\n} as const satisfies DataPortSchemaObject;\n\nconst ExtendedModelSchema = {\n type: \"object\",\n properties: {\n ...ModelSchema.properties,\n ...TFMPModelSchema.properties,\n },\n required: [...ModelSchema.required, ...TFMPModelSchema.required],\n additionalProperties: false,\n} as const satisfies DataPortSchemaObject;\n\nexport type TFMPModelRecord = FromSchema<typeof ExtendedModelSchema>;\n",
12
+ "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport {\n FilesetResolver,\n LanguageDetector,\n TextClassifier,\n TextEmbedder,\n} from \"@mediapipe/tasks-text\";\nimport {\n FaceDetector,\n FaceLandmarker,\n GestureRecognizer,\n HandLandmarker,\n ImageClassifier,\n ImageEmbedder,\n ImageSegmenter,\n ObjectDetector,\n PoseLandmarker,\n} from \"@mediapipe/tasks-vision\";\nimport type {\n AiProviderRunFn,\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n FaceDetectorTaskExecuteInput,\n FaceDetectorTaskExecuteOutput,\n FaceLandmarkerTaskExecuteInput,\n FaceLandmarkerTaskExecuteOutput,\n GestureRecognizerTaskExecuteInput,\n GestureRecognizerTaskExecuteOutput,\n HandLandmarkerTaskExecuteInput,\n HandLandmarkerTaskExecuteOutput,\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n PoseLandmarkerTaskExecuteInput,\n PoseLandmarkerTaskExecuteOutput,\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n} from \"@workglow/ai\";\nimport { PermanentJobError } from \"@workglow/job-queue\";\nimport { TFMPModelConfig } from \"./TFMP_ModelSchema\";\n\ninterface TFMPWasmFileset {\n /** The path to the Wasm loader script. */\n wasmLoaderPath: string;\n /** The path to the Wasm binary. */\n wasmBinaryPath: string;\n /** The optional path to the asset loader script. */\n assetLoaderPath?: string;\n /** The optional path to the assets binary. */\n assetBinaryPath?: string;\n}\n\n/**\n * Cache for WASM filesets by task engine (text, audio, vision, genai).\n * Multiple models may share the same WASM fileset.\n */\nconst wasm_tasks = new Map<string, TFMPWasmFileset>();\n\n/**\n * Reference counts tracking how many models are using each WASM fileset.\n * When count reaches 0, the WASM fileset can be safely unloaded.\n */\nconst wasm_reference_counts = new Map<string, number>();\n\n/**\n * Helper function to get a WASM task for a model\n */\nconst getWasmTask = async (\n model: TFMPModelConfig,\n onProgress: (progress: number, message?: string, details?: any) => void,\n signal: AbortSignal\n): Promise<TFMPWasmFileset> => {\n const taskEngine = model.providerConfig.taskEngine;\n\n if (wasm_tasks.has(taskEngine)) {\n return wasm_tasks.get(taskEngine)!;\n }\n\n if (signal.aborted) {\n throw new PermanentJobError(\"Aborted job\");\n }\n\n onProgress(0.1, \"Loading WASM task\");\n\n let wasmFileset: TFMPWasmFileset;\n\n switch (taskEngine) {\n case \"text\":\n wasmFileset = await FilesetResolver.forTextTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-text@latest/wasm\"\n );\n break;\n case \"audio\":\n wasmFileset = await FilesetResolver.forAudioTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-audio@latest/wasm\"\n );\n break;\n case \"vision\":\n wasmFileset = await FilesetResolver.forVisionTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-vision@latest/wasm\"\n );\n break;\n case \"genai\":\n wasmFileset = await FilesetResolver.forGenAiTasks(\n \"https://cdn.jsdelivr.net/npm/@mediapipe/tasks-genai@latest/wasm\"\n );\n break;\n default:\n throw new PermanentJobError(\"Invalid task engine\");\n }\n\n wasm_tasks.set(taskEngine, wasmFileset);\n return wasmFileset;\n};\n\ntype TaskType =\n | typeof TextEmbedder\n | typeof TextClassifier\n | typeof LanguageDetector\n | typeof ImageClassifier\n | typeof ImageEmbedder\n | typeof ImageSegmenter\n | typeof ObjectDetector\n | typeof GestureRecognizer\n | typeof HandLandmarker\n | typeof FaceDetector\n | typeof FaceLandmarker\n | typeof PoseLandmarker;\n\ntype TaskInstance =\n | TextEmbedder\n | TextClassifier\n | LanguageDetector\n | ImageClassifier\n | ImageEmbedder\n | ImageSegmenter\n | ObjectDetector\n | GestureRecognizer\n | HandLandmarker\n | FaceDetector\n | FaceLandmarker\n | PoseLandmarker;\n\ninterface CachedModelTask {\n readonly task: TaskInstance;\n readonly options: Record<string, unknown>;\n readonly taskEngine: string;\n}\n\nconst modelTaskCache = new Map<string, CachedModelTask[]>();\n\ntype InferTaskInstance<T> = T extends typeof TextEmbedder\n ? TextEmbedder\n : T extends typeof TextClassifier\n ? TextClassifier\n : T extends typeof LanguageDetector\n ? LanguageDetector\n : T extends typeof ImageClassifier\n ? ImageClassifier\n : T extends typeof ImageEmbedder\n ? ImageEmbedder\n : T extends typeof ImageSegmenter\n ? ImageSegmenter\n : T extends typeof ObjectDetector\n ? ObjectDetector\n : T extends typeof GestureRecognizer\n ? GestureRecognizer\n : T extends typeof HandLandmarker\n ? HandLandmarker\n : T extends typeof FaceDetector\n ? FaceDetector\n : T extends typeof FaceLandmarker\n ? FaceLandmarker\n : T extends typeof PoseLandmarker\n ? PoseLandmarker\n : never;\n\n/**\n * Checks if two option objects are deeply equal.\n */\nconst optionsMatch = (opts1: Record<string, unknown>, opts2: Record<string, unknown>): boolean => {\n const keys1 = Object.keys(opts1).sort();\n const keys2 = Object.keys(opts2).sort();\n\n if (keys1.length !== keys2.length) return false;\n\n return keys1.every((key) => {\n const val1 = opts1[key];\n const val2 = opts2[key];\n\n if (Array.isArray(val1) && Array.isArray(val2)) {\n return JSON.stringify(val1) === JSON.stringify(val2);\n }\n\n return val1 === val2;\n });\n};\n\nconst getModelTask = async <T extends TaskType>(\n model: TFMPModelConfig,\n options: Record<string, unknown>,\n onProgress: (progress: number, message?: string, details?: any) => void,\n signal: AbortSignal,\n TaskType: T\n): Promise<InferTaskInstance<T>> => {\n const modelPath = model.providerConfig.modelPath;\n const taskEngine = model.providerConfig.taskEngine;\n\n // Check if we have a cached instance with matching options\n const cachedTasks = modelTaskCache.get(modelPath);\n if (cachedTasks) {\n const matchedTask = cachedTasks.find((cached) => optionsMatch(cached.options, options));\n if (matchedTask) {\n return matchedTask.task as InferTaskInstance<T>;\n }\n }\n\n // Load WASM if needed\n const wasmFileset = await getWasmTask(model, onProgress, signal);\n\n onProgress(0.2, \"Creating model task\");\n\n // Create new model instance\n const task = await TaskType.createFromOptions(wasmFileset, {\n baseOptions: {\n modelAssetPath: modelPath,\n },\n ...options,\n });\n\n // Cache the task with its options and task engine\n const cachedTask: CachedModelTask = { task, options, taskEngine };\n if (!modelTaskCache.has(modelPath)) {\n modelTaskCache.set(modelPath, []);\n }\n modelTaskCache.get(modelPath)!.push(cachedTask);\n\n // Increment WASM reference count for this cached task\n wasm_reference_counts.set(taskEngine, (wasm_reference_counts.get(taskEngine) || 0) + 1);\n\n return task as any;\n};\n\n/**\n * Core implementation for downloading and caching a MediaPipe TFJS model.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_Download: AiProviderRunFn<\n DownloadModelTaskExecuteInput,\n DownloadModelTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n let task: TextEmbedder | TextClassifier | LanguageDetector;\n switch (model?.providerConfig.pipeline) {\n case \"text-embedder\":\n task = await getModelTask(model, {}, onProgress, signal, TextEmbedder);\n break;\n case \"text-classifier\":\n task = await getModelTask(model, {}, onProgress, signal, TextClassifier);\n break;\n case \"text-language-detector\":\n task = await getModelTask(model, {}, onProgress, signal, LanguageDetector);\n break;\n default:\n throw new PermanentJobError(\"Invalid pipeline\");\n }\n onProgress(0.9, \"Pipeline loaded\");\n task.close(); // Close the task to release the resources, but it is still in the browser cache\n // Decrease reference count for WASM fileset for this cached task since this is a fake model cache entry\n const taskEngine = model?.providerConfig.taskEngine;\n wasm_reference_counts.set(taskEngine, wasm_reference_counts.get(taskEngine)! - 1);\n\n return {\n model: input.model,\n };\n};\n\n/**\n * Core implementation for text embedding using MediaPipe TFJS.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_TextEmbedding: AiProviderRunFn<\n TextEmbeddingTaskExecuteInput,\n TextEmbeddingTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const textEmbedder = await getModelTask(model!, {}, onProgress, signal, TextEmbedder);\n const result = textEmbedder.embed(input.text);\n\n if (!result.embeddings?.[0]?.floatEmbedding) {\n throw new PermanentJobError(\"Failed to generate embedding: Empty result\");\n }\n\n const embedding = Float32Array.from(result.embeddings[0].floatEmbedding);\n\n return {\n vector: embedding,\n };\n};\n\n/**\n * Core implementation for text classification using MediaPipe TFJS.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_TextClassification: AiProviderRunFn<\n TextClassificationTaskExecuteInput,\n TextClassificationTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const TextClassification = await getModelTask(\n model!,\n {\n maxCategories: input.maxCategories,\n // scoreThreshold: input.scoreThreshold,\n // allowList: input.allowList,\n // blockList: input.blockList,\n },\n onProgress,\n signal,\n TextClassifier\n );\n const result = TextClassification.classify(input.text);\n\n if (!result.classifications?.[0]?.categories) {\n throw new PermanentJobError(\"Failed to classify text: Empty result\");\n }\n\n const categories = result.classifications[0].categories.map((category) => ({\n label: category.categoryName,\n score: category.score,\n }));\n\n return {\n categories,\n };\n};\n\n/**\n * Core implementation for language detection using MediaPipe TFJS.\n * This is shared between inline and worker implementations.\n */\nexport const TFMP_TextLanguageDetection: AiProviderRunFn<\n TextLanguageDetectionTaskExecuteInput,\n TextLanguageDetectionTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const maxLanguages = input.maxLanguages === 0 ? -1 : input.maxLanguages;\n\n const textLanguageDetector = await getModelTask(\n model!,\n {\n maxLanguages,\n // scoreThreshold: input.scoreThreshold,\n // allowList: input.allowList,\n // blockList: input.blockList,\n },\n onProgress,\n signal,\n LanguageDetector\n );\n const result = textLanguageDetector.detect(input.text);\n\n if (!result.languages?.[0]?.languageCode) {\n throw new PermanentJobError(\"Failed to detect language: Empty result\");\n }\n\n const languages = result.languages.map((language) => ({\n language: language.languageCode,\n score: language.probability,\n }));\n\n return {\n languages,\n };\n};\n\n/**\n * Core implementation for unloading a MediaPipe TFJS model.\n * This is shared between inline and worker implementations.\n *\n * When a model is unloaded, this function:\n * 1. Disposes of all cached model instances for the given model path\n * 2. Decrements the reference count for the associated WASM fileset for each instance\n * 3. If no other models are using the WASM fileset (count reaches 0), unloads the WASM\n */\nexport const TFMP_Unload: AiProviderRunFn<\n UnloadModelTaskExecuteInput,\n UnloadModelTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const modelPath = model!.providerConfig.modelPath;\n onProgress(10, \"Unloading model\");\n // Dispose of all cached model tasks if they exist\n if (modelTaskCache.has(modelPath)) {\n const cachedTasks = modelTaskCache.get(modelPath)!;\n\n for (const cachedTask of cachedTasks) {\n const task = cachedTask.task;\n if (\"close\" in task && typeof task.close === \"function\") task.close();\n\n // Decrease reference count for WASM fileset for this cached task\n const taskEngine = cachedTask.taskEngine;\n const currentCount = wasm_reference_counts.get(taskEngine) || 0;\n const newCount = currentCount - 1;\n\n if (newCount <= 0) {\n // No more models using this WASM fileset, unload it\n wasm_tasks.delete(taskEngine);\n wasm_reference_counts.delete(taskEngine);\n } else {\n wasm_reference_counts.set(taskEngine, newCount);\n }\n }\n\n modelTaskCache.delete(modelPath);\n }\n\n return {\n model: input.model,\n };\n};\n\n/**\n * Core implementation for image segmentation using MediaPipe.\n */\nexport const TFMP_ImageSegmentation: AiProviderRunFn<\n ImageSegmentationTaskExecuteInput,\n ImageSegmentationTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const imageSegmenter = await getModelTask(model!, {}, onProgress, signal, ImageSegmenter);\n const result = imageSegmenter.segment(input.image as any);\n\n if (!result.categoryMask) {\n throw new PermanentJobError(\"Failed to segment image: Empty result\");\n }\n\n // MediaPipe returns a single mask, create a placeholder result\n const masks = [\n {\n label: \"segment\",\n score: 1.0,\n mask: {\n data: result.categoryMask.canvas,\n width: result.categoryMask.width,\n height: result.categoryMask.height,\n },\n },\n ];\n\n return {\n masks,\n };\n};\n\n/**\n * Core implementation for image embedding using MediaPipe.\n */\nexport const TFMP_ImageEmbedding: AiProviderRunFn<\n ImageEmbeddingTaskExecuteInput,\n ImageEmbeddingTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const imageEmbedder = await getModelTask(model!, {}, onProgress, signal, ImageEmbedder);\n const result = imageEmbedder.embed(input.image as any);\n\n if (!result.embeddings?.[0]?.floatEmbedding) {\n throw new PermanentJobError(\"Failed to generate embedding: Empty result\");\n }\n\n const embedding = Float32Array.from(result.embeddings[0].floatEmbedding);\n\n return {\n vector: embedding,\n };\n};\n\n/**\n * Core implementation for image classification using MediaPipe.\n */\nexport const TFMP_ImageClassification: AiProviderRunFn<\n ImageClassificationTaskExecuteInput,\n ImageClassificationTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const imageClassifier = await getModelTask(\n model!,\n {\n maxResults: (input as any).maxCategories,\n },\n onProgress,\n signal,\n ImageClassifier\n );\n const result = imageClassifier.classify(input.image as any);\n\n if (!result.classifications?.[0]?.categories) {\n throw new PermanentJobError(\"Failed to classify image: Empty result\");\n }\n\n const categories = result.classifications[0].categories.map((category: any) => ({\n label: category.categoryName,\n score: category.score,\n }));\n\n return {\n categories,\n };\n};\n\n/**\n * Core implementation for object detection using MediaPipe.\n */\nexport const TFMP_ObjectDetection: AiProviderRunFn<\n ObjectDetectionTaskExecuteInput,\n ObjectDetectionTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const objectDetector = await getModelTask(\n model!,\n {\n scoreThreshold: (input as any).threshold,\n },\n onProgress,\n signal,\n ObjectDetector\n );\n const result = objectDetector.detect(input.image as any);\n\n if (!result.detections) {\n throw new PermanentJobError(\"Failed to detect objects: Empty result\");\n }\n\n const detections = result.detections.map((detection: any) => ({\n label: detection.categories?.[0]?.categoryName || \"unknown\",\n score: detection.categories?.[0]?.score || 0,\n box: {\n x: detection.boundingBox?.originX || 0,\n y: detection.boundingBox?.originY || 0,\n width: detection.boundingBox?.width || 0,\n height: detection.boundingBox?.height || 0,\n },\n }));\n\n return {\n detections,\n };\n};\n\n/**\n * Core implementation for gesture recognition using MediaPipe.\n */\nexport const TFMP_GestureRecognizer: AiProviderRunFn<\n GestureRecognizerTaskExecuteInput,\n GestureRecognizerTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const gestureRecognizer = await getModelTask(\n model!,\n {\n numHands: (input as any).numHands,\n minHandDetectionConfidence: (input as any).minHandDetectionConfidence,\n minHandPresenceConfidence: (input as any).minHandPresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n },\n onProgress,\n signal,\n GestureRecognizer\n );\n const result = gestureRecognizer.recognize(input.image as any);\n\n if (!result.gestures || !result.landmarks) {\n throw new PermanentJobError(\"Failed to recognize gestures: Empty result\");\n }\n\n const hands = result.gestures.map((gestures: any, index: number) => ({\n gestures: gestures.map((g: any) => ({\n label: g.categoryName,\n score: g.score,\n })),\n handedness: result.handedness[index].map((h: any) => ({\n label: h.categoryName,\n score: h.score,\n })),\n landmarks: result.landmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n worldLandmarks: result.worldLandmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n }));\n\n return {\n hands,\n };\n};\n\n/**\n * Core implementation for hand landmark detection using MediaPipe.\n */\nexport const TFMP_HandLandmarker: AiProviderRunFn<\n HandLandmarkerTaskExecuteInput,\n HandLandmarkerTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const handLandmarker = await getModelTask(\n model!,\n {\n numHands: (input as any).numHands,\n minHandDetectionConfidence: (input as any).minHandDetectionConfidence,\n minHandPresenceConfidence: (input as any).minHandPresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n },\n onProgress,\n signal,\n HandLandmarker\n );\n const result = handLandmarker.detect(input.image as any);\n\n if (!result.landmarks) {\n throw new PermanentJobError(\"Failed to detect hand landmarks: Empty result\");\n }\n\n const hands = result.landmarks.map((landmarks: any, index: number) => ({\n handedness: result.handedness[index].map((h: any) => ({\n label: h.categoryName,\n score: h.score,\n })),\n landmarks: landmarks.map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n worldLandmarks: result.worldLandmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n }));\n\n return {\n hands,\n };\n};\n\n/**\n * Core implementation for face detection using MediaPipe.\n */\nexport const TFMP_FaceDetector: AiProviderRunFn<\n FaceDetectorTaskExecuteInput,\n FaceDetectorTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const faceDetector = await getModelTask(\n model!,\n {\n minDetectionConfidence: (input as any).minDetectionConfidence,\n minSuppressionThreshold: (input as any).minSuppressionThreshold,\n },\n onProgress,\n signal,\n FaceDetector\n );\n const result = faceDetector.detect(input.image as any);\n\n if (!result.detections) {\n throw new PermanentJobError(\"Failed to detect faces: Empty result\");\n }\n\n const faces = result.detections.map((detection: any) => ({\n box: {\n x: detection.boundingBox?.originX || 0,\n y: detection.boundingBox?.originY || 0,\n width: detection.boundingBox?.width || 0,\n height: detection.boundingBox?.height || 0,\n },\n keypoints:\n detection.keypoints?.map((kp: any) => ({\n x: kp.x,\n y: kp.y,\n label: kp.label,\n })) || [],\n score: detection.categories?.[0]?.score || 0,\n }));\n\n return {\n faces,\n };\n};\n\n/**\n * Core implementation for face landmark detection using MediaPipe.\n */\nexport const TFMP_FaceLandmarker: AiProviderRunFn<\n FaceLandmarkerTaskExecuteInput,\n FaceLandmarkerTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const faceLandmarker = await getModelTask(\n model!,\n {\n numFaces: (input as any).numFaces,\n minFaceDetectionConfidence: (input as any).minFaceDetectionConfidence,\n minFacePresenceConfidence: (input as any).minFacePresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n outputFaceBlendshapes: (input as any).outputFaceBlendshapes,\n outputFacialTransformationMatrixes: (input as any).outputFacialTransformationMatrixes,\n },\n onProgress,\n signal,\n FaceLandmarker\n );\n const result = faceLandmarker.detect(input.image as any);\n\n if (!result.faceLandmarks) {\n throw new PermanentJobError(\"Failed to detect face landmarks: Empty result\");\n }\n\n const faces = result.faceLandmarks.map((landmarks: any, index: number) => {\n const face: any = {\n landmarks: landmarks.map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n })),\n };\n\n if (result.faceBlendshapes && result.faceBlendshapes[index]) {\n face.blendshapes = result.faceBlendshapes[index].categories.map((b: any) => ({\n label: b.categoryName,\n score: b.score,\n }));\n }\n\n if (result.facialTransformationMatrixes && result.facialTransformationMatrixes[index]) {\n face.transformationMatrix = Array.from(result.facialTransformationMatrixes[index].data);\n }\n\n return face;\n });\n\n return {\n faces,\n };\n};\n\n/**\n * Core implementation for pose landmark detection using MediaPipe.\n */\nexport const TFMP_PoseLandmarker: AiProviderRunFn<\n PoseLandmarkerTaskExecuteInput,\n PoseLandmarkerTaskExecuteOutput,\n TFMPModelConfig\n> = async (input, model, onProgress, signal) => {\n const poseLandmarker = await getModelTask(\n model!,\n {\n numPoses: (input as any).numPoses,\n minPoseDetectionConfidence: (input as any).minPoseDetectionConfidence,\n minPosePresenceConfidence: (input as any).minPosePresenceConfidence,\n minTrackingConfidence: (input as any).minTrackingConfidence,\n outputSegmentationMasks: (input as any).outputSegmentationMasks,\n },\n onProgress,\n signal,\n PoseLandmarker\n );\n const result = poseLandmarker.detect(input.image as any);\n\n if (!result.landmarks) {\n throw new PermanentJobError(\"Failed to detect pose landmarks: Empty result\");\n }\n\n const poses = result.landmarks.map((landmarks: any, index: number) => {\n const pose: any = {\n landmarks: landmarks.map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n visibility: l.visibility,\n presence: l.presence,\n })),\n worldLandmarks: result.worldLandmarks[index].map((l: any) => ({\n x: l.x,\n y: l.y,\n z: l.z,\n visibility: l.visibility,\n presence: l.presence,\n })),\n };\n\n if (result.segmentationMasks && result.segmentationMasks[index]) {\n const mask = result.segmentationMasks[index];\n pose.segmentationMask = {\n data: mask.canvas || mask,\n width: mask.width,\n height: mask.height,\n };\n }\n\n return pose;\n });\n\n return {\n poses,\n };\n};\n",
13
+ "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { ModelConfigSchema, ModelRecordSchema } from \"@workglow/ai\";\nimport { DataPortSchemaObject, FromSchema } from \"@workglow/util\";\nimport { TENSORFLOW_MEDIAPIPE, TextPipelineTask } from \"../common/TFMP_Constants\";\n\nexport const TFMPModelSchema = {\n type: \"object\",\n properties: {\n provider: {\n const: TENSORFLOW_MEDIAPIPE,\n description: \"Discriminator: TensorFlow MediaPipe backend.\",\n },\n providerConfig: {\n type: \"object\",\n description: \"TensorFlow MediaPipe-specific options.\",\n properties: {\n modelPath: {\n type: \"string\",\n description: \"Filesystem path or URI for the ONNX model.\",\n },\n taskEngine: {\n type: \"string\",\n enum: [\"text\", \"audio\", \"vision\", \"genai\"],\n description: \"Task engine for the MediaPipe model.\",\n },\n pipeline: {\n type: \"string\",\n enum: Object.values(TextPipelineTask),\n description: \"Pipeline task type for the MediaPipe model.\",\n },\n },\n required: [\"modelPath\", \"taskEngine\", \"pipeline\"],\n additionalProperties: false,\n },\n },\n required: [\"provider\", \"providerConfig\"],\n additionalProperties: true,\n} as const satisfies DataPortSchemaObject;\n\nconst ExtendedModelRecordSchema = {\n type: \"object\",\n properties: {\n ...ModelRecordSchema.properties,\n ...TFMPModelSchema.properties,\n },\n required: [...ModelRecordSchema.required, ...TFMPModelSchema.required],\n additionalProperties: false,\n} as const satisfies DataPortSchemaObject;\n\nexport type TFMPModelRecord = FromSchema<typeof ExtendedModelRecordSchema>;\n\nconst ExtendedModelConfigSchema = {\n type: \"object\",\n properties: {\n ...ModelConfigSchema.properties,\n ...TFMPModelSchema.properties,\n },\n required: [...ModelConfigSchema.required, ...TFMPModelSchema.required],\n additionalProperties: false,\n} as const satisfies DataPortSchemaObject;\n\nexport type TFMPModelConfig = FromSchema<typeof ExtendedModelConfigSchema>;\n",
14
14
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { AiJob, AiJobInput, getAiProviderRegistry } from \"@workglow/ai\";\nimport { ConcurrencyLimiter, JobQueueClient, JobQueueServer } from \"@workglow/job-queue\";\nimport { InMemoryQueueStorage } from \"@workglow/storage\";\nimport { getTaskQueueRegistry, TaskInput, TaskOutput } from \"@workglow/task-graph\";\nimport { globalServiceRegistry, WORKER_MANAGER } from \"@workglow/util\";\nimport { TENSORFLOW_MEDIAPIPE } from \"../common/TFMP_Constants\";\n\n/**\n * Registers the TensorFlow MediaPipe client job functions with a web worker.\n * If no client is provided, creates a default in-memory queue and registers it.\n *\n * @param worker - The web worker to use for job execution\n * @param client - Optional existing JobQueueClient. If not provided, creates a default in-memory queue.\n */\nexport async function register_TFMP_ClientJobFns(\n worker: Worker,\n client?: JobQueueClient<AiJobInput<TaskInput>, TaskOutput>\n): Promise<void> {\n const workerManager = globalServiceRegistry.get(WORKER_MANAGER);\n workerManager.registerWorker(TENSORFLOW_MEDIAPIPE, worker);\n\n const aiProviderRegistry = getAiProviderRegistry();\n const names = [\n \"DownloadModelTask\",\n \"UnloadModelTask\",\n \"TextEmbeddingTask\",\n \"TextLanguageDetectionTask\",\n \"TextClassificationTask\",\n \"ImageSegmentationTask\",\n \"ImageEmbeddingTask\",\n \"ImageClassificationTask\",\n \"ObjectDetectionTask\",\n ];\n for (const name of names) {\n aiProviderRegistry.registerAsWorkerRunFn(TENSORFLOW_MEDIAPIPE, name);\n }\n\n // If no client provided, create a default in-memory queue\n if (!client) {\n const storage = new InMemoryQueueStorage<AiJobInput<TaskInput>, TaskOutput>(\n TENSORFLOW_MEDIAPIPE\n );\n await storage.setupDatabase();\n\n const server = new JobQueueServer<AiJobInput<TaskInput>, TaskOutput>(AiJob, {\n storage,\n queueName: TENSORFLOW_MEDIAPIPE,\n limiter: new ConcurrencyLimiter(1, 100),\n });\n\n client = new JobQueueClient<AiJobInput<TaskInput>, TaskOutput>({\n storage,\n queueName: TENSORFLOW_MEDIAPIPE,\n });\n\n client.attach(server);\n\n getTaskQueueRegistry().registerQueue({ server, client, storage });\n await server.start();\n }\n}\n",
15
15
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport { AiJob, AiJobInput, getAiProviderRegistry } from \"@workglow/ai\";\nimport { ConcurrencyLimiter, JobQueueClient, JobQueueServer } from \"@workglow/job-queue\";\nimport { InMemoryQueueStorage } from \"@workglow/storage\";\nimport { getTaskQueueRegistry, TaskInput, TaskOutput } from \"@workglow/task-graph\";\nimport { TENSORFLOW_MEDIAPIPE } from \"../common/TFMP_Constants\";\nimport {\n TFMP_Download,\n TFMP_FaceDetector,\n TFMP_FaceLandmarker,\n TFMP_GestureRecognizer,\n TFMP_HandLandmarker,\n TFMP_ImageClassification,\n TFMP_ImageEmbedding,\n TFMP_ImageSegmentation,\n TFMP_ObjectDetection,\n TFMP_PoseLandmarker,\n TFMP_TextClassification,\n TFMP_TextEmbedding,\n TFMP_TextLanguageDetection,\n TFMP_Unload,\n} from \"../common/TFMP_JobRunFns\";\n\n/**\n * Registers the TensorFlow MediaPipe inline job functions for same-thread execution.\n * If no client is provided, creates a default in-memory queue and registers it.\n *\n * @param client - Optional existing JobQueueClient. If not provided, creates a default in-memory queue.\n */\nexport async function register_TFMP_InlineJobFns(\n client?: JobQueueClient<AiJobInput<TaskInput>, TaskOutput>\n): Promise<void> {\n const aiProviderRegistry = getAiProviderRegistry();\n\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"DownloadModelTask\",\n TFMP_Download as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"UnloadModelTask\",\n TFMP_Unload as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"TextEmbeddingTask\",\n TFMP_TextEmbedding as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"TextLanguageDetectionTask\",\n TFMP_TextLanguageDetection as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"TextClassificationTask\",\n TFMP_TextClassification as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"ImageSegmentationTask\",\n TFMP_ImageSegmentation as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"ImageEmbeddingTask\",\n TFMP_ImageEmbedding as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"ImageClassificationTask\",\n TFMP_ImageClassification as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"ObjectDetectionTask\",\n TFMP_ObjectDetection as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"GestureRecognizerTask\",\n TFMP_GestureRecognizer as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"HandLandmarkerTask\",\n TFMP_HandLandmarker as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"FaceDetectorTask\",\n TFMP_FaceDetector as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"FaceLandmarkerTask\",\n TFMP_FaceLandmarker as any\n );\n aiProviderRegistry.registerRunFn<any, any>(\n TENSORFLOW_MEDIAPIPE,\n \"PoseLandmarkerTask\",\n TFMP_PoseLandmarker as any\n );\n\n // If no client provided, create a default in-memory queue\n if (!client) {\n const storage = new InMemoryQueueStorage<AiJobInput<TaskInput>, TaskOutput>(\n TENSORFLOW_MEDIAPIPE\n );\n await storage.setupDatabase();\n\n const server = new JobQueueServer<AiJobInput<TaskInput>, TaskOutput>(AiJob, {\n storage,\n queueName: TENSORFLOW_MEDIAPIPE,\n limiter: new ConcurrencyLimiter(1, 100),\n });\n\n client = new JobQueueClient<AiJobInput<TaskInput>, TaskOutput>({\n storage,\n queueName: TENSORFLOW_MEDIAPIPE,\n });\n\n client.attach(server);\n\n getTaskQueueRegistry().registerQueue({ server, client, storage });\n await server.start();\n }\n}\n",
16
16
  "/**\n * @license\n * Copyright 2025 Steven Roussey <sroussey@gmail.com>\n * SPDX-License-Identifier: Apache-2.0\n */\n\nimport {\n createServiceToken,\n globalServiceRegistry,\n parentPort,\n WORKER_SERVER,\n} from \"@workglow/util\";\nimport {\n TFMP_Download,\n TFMP_ImageClassification,\n TFMP_ImageEmbedding,\n TFMP_ImageSegmentation,\n TFMP_ObjectDetection,\n TFMP_TextClassification,\n TFMP_TextEmbedding,\n TFMP_TextLanguageDetection,\n TFMP_Unload,\n} from \"../common/TFMP_JobRunFns\";\n\n// Register the worker functions\nexport const TFMP_WORKER_JOBRUN = createServiceToken(\"worker.ai-provider.tfmp\");\n\nexport const TFMP_WORKER_JOBRUN_REGISTER = globalServiceRegistry.register(\n TFMP_WORKER_JOBRUN,\n () => {\n const workerServer = globalServiceRegistry.get(WORKER_SERVER);\n workerServer.registerFunction(\"DownloadModelTask\", TFMP_Download);\n workerServer.registerFunction(\"UnloadModelTask\", TFMP_Unload);\n workerServer.registerFunction(\"TextEmbeddingTask\", TFMP_TextEmbedding);\n workerServer.registerFunction(\"TextLanguageDetectionTask\", TFMP_TextLanguageDetection);\n workerServer.registerFunction(\"TextClassificationTask\", TFMP_TextClassification);\n workerServer.registerFunction(\"ImageSegmentationTask\", TFMP_ImageSegmentation);\n workerServer.registerFunction(\"ImageEmbeddingTask\", TFMP_ImageEmbedding);\n workerServer.registerFunction(\"ImageClassificationTask\", TFMP_ImageClassification);\n workerServer.registerFunction(\"ObjectDetectionTask\", TFMP_ObjectDetection);\n parentPort.postMessage({ type: \"ready\" });\n console.log(\"TFMP_WORKER_JOBRUN registered\");\n return workerServer;\n },\n true\n);\n"
17
17
  ],
18
- "mappings": ";AAMO,IAAM,uBAAuB;AAC7B,IAAM,iBAAiB;AAavB,IAAM,uBAAuB;AAAA,EAClC,MAAM;AAAA,EACN,MAAM;AAAA,EACN,MAAM;AAAA,EACN,IAAI;AAAA,EACJ,MAAM;AAAA,EACN,OAAO;AAAA,EACP,IAAI;AAAA,EACJ,MAAM;AAAA,EACN,OAAO;AACT;AAcO,IAAM,sBAAsB;AAAA,EACjC,aAAa;AAAA,EACb,wBAAwB;AAAA,EACxB,mBAAmB;AAAA,EACnB,wBAAwB;AAAA,EACxB,uBAAuB;AAAA,EACvB,eAAe;AAAA,EACf,aAAa;AAAA,EACb,sBAAsB;AAAA,EACtB,4BAA4B;AAAA,EAC5B,sBAAsB;AACxB;AAWO,IAAM,wBAAwB;AAAA,EACnC,sBAAsB;AAAA,EACtB,sBAAsB;AAAA,EACtB,oBAAoB;AAAA,EACpB,wBAAwB;AAAA,EACxB,kBAAkB;AAAA,EAClB,oBAAoB;AAAA,EACpB,4BAA4B;AAC9B;AAOO,IAAM,uBAAuB;AAAA,EAClC,wBAAwB;AAAA,EACxB,gCAAgC;AAAA,EAChC,kBAAkB;AACpB;AASO,IAAM,4BAA4B;AAAA,EACvC,+BAA+B;AAAA,EAC/B,iBAAiB;AAAA,EACjB,kCAAkC;AAAA,EAClC,kCAAkC;AAAA,EAClC,8BAA8B;AAChC;AAQO,IAAM,kBAAkB;AAAA,KAC1B;AAAA,KACA;AAAA,KACA;AAAA,KACA;AACL;;AC3GA;AAAA;AAAA;AAAA;AA2EA,IAAM,YAAY,IAAI;AAKf,SAAS,kBAAkB,GAAS;AAAA,EACzC,UAAU,MAAM;AAAA;AAOlB,IAAM,cAAc,OAClB,OACA,YACA,UAAkC,CAAC,GACnC,mBAA2B,OACxB;AAAA,EACH,MAAM,WAAW,GAAG,MAAM,YAAY,MAAM,eAAe;AAAA,EAC3D,IAAI,UAAU,IAAI,QAAQ,GAAG;AAAA,IAC3B,OAAO,UAAU,IAAI,QAAQ;AAAA,EAC/B;AAAA,EAGA,MAAM,YAAY,IAAI;AAAA,EACtB,MAAM,eAAe,IAAI;AAAA,EACzB,MAAM,gBAAgB,IAAI;AAAA,EAC1B,MAAM,gBAAgB,IAAI;AAAA,EAC1B,MAAM,eAAe,IAAI;AAAA,EACzB,MAAM,oBAAoB,IAAI;AAAA,EAC9B,MAAM,wBAAwB,IAAI;AAAA,EAIlC,IAAI,gBAAsD;AAAA,EAC1D,MAAM,cAAc;AAAA,EAIpB,MAAM,qBAAqB;AAAA,EAC3B,MAAM,uBAAuB;AAAA,EAC7B,MAAM,oBAAoB;AAAA,EAC1B,MAAM,sBAAsB,KAAK,OAAO;AAAA,EACxC,MAAM,qBAAqB,OAAO,OAAO;AAAA,EAGzC,MAAM,eACJ,qBAAqB,oBAAoB,uBAAuB;AAAA,EAKlE,MAAM,eAAe,CACnB,iBACA,MACA,mBACA,SACA,WACS;AAAA,IACT,MAAM,MAAM,KAAK,IAAI;AAAA,IACrB,MAAM,WAAW,kBAAkB,IAAI,IAAI,KAAK;AAAA,IAChD,MAAM,qBAAqB,MAAM;AAAA,IACjC,MAAM,iBAAiB,CAAC,WAAW,CAAC,UAAU,qBAAqB;AAAA,IAEnE,IAAI,gBAAgB;AAAA,MAElB,sBAAsB,IAAI,MAAM;AAAA,QAC9B,UAAU;AAAA,QACV;AAAA,QACA,cAAc;AAAA,MAChB,CAAC;AAAA,MAED,IAAI,CAAC,eAAe;AAAA,QAClB,MAAM,gBAAgB,KAAK,IAAI,GAAG,cAAc,kBAAkB;AAAA,QAClE,gBAAgB,WAAW,MAAM;AAAA,UAE/B,YAAY,aAAa,YAAY,sBAAsB,QAAQ,GAAG;AAAA,YACpE,WAAW,KAAK,MAAM,QAAQ,QAAQ,GAAG,qBAAqB;AAAA,cAC5D,MAAM;AAAA,cACN,UAAU,QAAQ;AAAA,YACpB,CAAC;AAAA,YACD,kBAAkB,IAAI,aAAa,KAAK,IAAI,CAAC;AAAA,UAC/C;AAAA,UACA,sBAAsB,MAAM;AAAA,UAC5B,gBAAgB;AAAA,WACf,aAAa;AAAA,MAClB;AAAA,MACA;AAAA,IACF;AAAA,IAGA,WAAW,KAAK,MAAM,eAAe,GAAG,qBAAqB;AAAA,MAC3D;AAAA,MACA,UAAU;AAAA,IACZ,CAAC;AAAA,IACD,kBAAkB,IAAI,MAAM,GAAG;AAAA,IAE/B,sBAAsB,OAAO,IAAI;AAAA,IACjC,IAAI,iBAAiB,sBAAsB,SAAS,GAAG;AAAA,MACrD,aAAa,aAAa;AAAA,MAC1B,gBAAgB;AAAA,IAClB;AAAA;AAAA,EAIF,IAAI,yBAAyB;AAAA,EAC7B,MAAM,2BAA2B,OAAO;AAAA,EAGxC,MAAM,cAAc,QAAQ;AAAA,EAG5B,MAAM,mBAAmB,CAAC,WAA2B;AAAA,IAEnD,IAAI,aAAa,SAAS;AAAA,MACxB;AAAA,IACF;AAAA,IAEA,IAAI,OAAO,WAAW,YAAY;AAAA,MAChC,MAAM,OAAO,OAAO;AAAA,MACpB,MAAM,YAAY,OAAO;AAAA,MACzB,MAAM,oBAAoB,OAAO;AAAA,MAGjC,IAAI,CAAC,UAAU,IAAI,IAAI,GAAG;AAAA,QACxB,UAAU,IAAI,MAAM,SAAS;AAAA,QAC7B,aAAa,IAAI,MAAM,CAAC;AAAA,QAGxB,IAAI,aAAa,0BAA0B;AAAA,UACzC,yBAAyB;AAAA,QAC3B;AAAA,MACF;AAAA,MAGA,aAAa,IAAI,MAAM,iBAAiB;AAAA,MAGxC,MAAM,aAAa,qBAAqB;AAAA,MACxC,IAAI,cAAc,CAAC,cAAc,IAAI,IAAI,GAAG;AAAA,QAC1C,cAAc,IAAI,IAAI;AAAA,QACtB,aAAa,IAAI,MAAM,GAAG;AAAA,MAC5B;AAAA,MAGA,IAAI,mBAAmB;AAAA,MACvB,IAAI,kBAAkB;AAAA,MAGtB,MAAM,gBAAgB,MAAM;AAAA,MAC5B,MAAM,kBAAkB,MAAM,OAAO;AAAA,MACrC,IAAI,gBAAgB;AAAA,MACpB,IAAI,kBAAkB;AAAA,MACtB,IAAI,iBAAiB;AAAA,MAErB,YAAY,aAAa,SAAS,UAAU,QAAQ,GAAG;AAAA,QACrD,mBAAmB;AAAA,QACnB,MAAM,WAAW,aAAa,IAAI,WAAW,KAAK;AAAA,QAClD,oBAAqB,OAAO,WAAY;AAAA,QAGxC,IAAI,OAAO,eAAe;AAAA,UACxB;AAAA,QACF,EAAO,SAAI,OAAO,iBAAiB;AAAA,UACjC;AAAA,QACF,EAAO;AAAA,UACL;AAAA;AAAA,MAEJ;AAAA,MAMA,MAAM,kBAAkB,KAAK,IAAI,GAAG,qBAAqB,aAAa;AAAA,MACtE,MAAM,oBAAoB,KAAK,IAAI,GAAG,uBAAuB,eAAe;AAAA,MAM5E,IAAI;AAAA,MACJ,IAAI,iBAAiB,GAAG;AAAA,QACtB,sBAAsB;AAAA,MACxB,EAAO;AAAA,QACL,sBAAsB;AAAA;AAAA,MAExB,MAAM,mBAAmB,KAAK,IAAI,GAAG,sBAAsB,cAAc;AAAA,MAEzE,MAAM,oBACJ,kBACA,kBAAkB,oBAClB,oBAAoB,sBACpB,mBAAmB;AAAA,MAGrB,MAAM,cAAc,oBAAoB,IAAK,mBAAmB,oBAAqB,MAAM;AAAA,MAC3F,MAAM,kBAAmB,cAAc,mBAAoB;AAAA,MAG3D,MAAM,UAAU,CAAC,cAAc,IAAI,IAAI;AAAA,MACvC,MAAM,SAAS,cAAc,CAAC,aAAa,IAAI,IAAI;AAAA,MAEnD,IAAI,SAAS;AAAA,QACX,cAAc,IAAI,IAAI;AAAA,MACxB;AAAA,MACA,IAAI,QAAQ;AAAA,QACV,aAAa,IAAI,IAAI;AAAA,MACvB;AAAA,MAGA,IAAI,wBAAwB;AAAA,QAC1B,aAAa,iBAAiB,MAAM,mBAAmB,SAAS,MAAM;AAAA,MACxE;AAAA,IACF,EAAO,SAAI,OAAO,WAAW,UAAU,OAAO,WAAW,YAAY;AAAA,MAEnE,MAAM,OAAO,OAAO;AAAA,MAGpB,MAAM,WAAW,UAAU,IAAI,IAAI,KAAK;AAAA,MACxC,IAAI,YAAY,0BAA0B;AAAA,QACxC,yBAAyB;AAAA,MAC3B;AAAA,MAEA,IAAI,CAAC,cAAc,IAAI,IAAI,GAAG;AAAA,QAC5B,cAAc,IAAI,IAAI;AAAA,QACtB,aAAa,IAAI,MAAM,GAAG;AAAA,QAG1B,IAAI,mBAAmB;AAAA,QACvB,IAAI,kBAAkB;AAAA,QAEtB,MAAM,gBAAgB,MAAM;AAAA,QAC5B,MAAM,kBAAkB,MAAM,OAAO;AAAA,QACrC,IAAI,gBAAgB;AAAA,QACpB,IAAI,kBAAkB;AAAA,QACtB,IAAI,iBAAiB;AAAA,QAErB,YAAY,aAAa,SAAS,UAAU,QAAQ,GAAG;AAAA,UACrD,mBAAmB;AAAA,UACnB,MAAM,WAAW,aAAa,IAAI,WAAW,KAAK;AAAA,UAClD,oBAAqB,OAAO,WAAY;AAAA,UAGxC,IAAI,OAAO,eAAe;AAAA,YACxB;AAAA,UACF,EAAO,SAAI,OAAO,iBAAiB;AAAA,YACjC;AAAA,UACF,EAAO;AAAA,YACL;AAAA;AAAA,QAEJ;AAAA,QAGA,MAAM,kBAAkB,KAAK,IAAI,GAAG,qBAAqB,aAAa;AAAA,QACtE,MAAM,oBAAoB,KAAK,IAAI,GAAG,uBAAuB,eAAe;AAAA,QAG5E,IAAI;AAAA,QACJ,IAAI,iBAAiB,GAAG;AAAA,UACtB,sBAAsB;AAAA,QACxB,EAAO;AAAA,UACL,sBAAsB;AAAA;AAAA,QAExB,MAAM,mBAAmB,KAAK,IAAI,GAAG,sBAAsB,cAAc;AAAA,QAEzE,MAAM,oBACJ,kBACA,kBAAkB,oBAClB,oBAAoB,sBACpB,mBAAmB;AAAA,QAGrB,MAAM,cACJ,oBAAoB,IAAK,mBAAmB,oBAAqB,MAAM;AAAA,QACzE,MAAM,kBAAmB,cAAc,mBAAoB;AAAA,QAC3D,MAAM,SAAS,CAAC,aAAa,IAAI,IAAI;AAAA,QACrC,IAAI,QAAQ;AAAA,UACV,aAAa,IAAI,IAAI;AAAA,UAErB,IAAI,wBAAwB;AAAA,YAC1B,aAAa,iBAAiB,MAAM,KAAK,OAAO,IAAI;AAAA,UACtD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA;AAAA,EAGF,MAAM,kBAA0C;AAAA,IAC9C,OAAO,MAAM,eAAe,SAAS;AAAA,OACjC,MAAM,eAAe,wBACrB,EAAE,0BAA0B,MAAM,eAAe,sBAAsB,IACvE,CAAC;AAAA,OACD,MAAM,eAAe,SAAS,EAAE,QAAQ,MAAM,eAAe,OAAc,IAAI,CAAC;AAAA,OACjF;AAAA,IACH,mBAAmB;AAAA,EACrB;AAAA,EAGA,IAAI,aAAa,SAAS;AAAA,IACxB,MAAM,IAAI,MAAM,4CAA4C;AAAA,EAC9D;AAAA,EAEA,MAAM,eAAe,MAAM,eAAe;AAAA,EAI1C,MAAM,eAAe,IAAI,QAAe,CAAC,GAAG,WAAW;AAAA,IACrD,IAAI,aAAa;AAAA,MACf,MAAM,cAAc,MAAM;AAAA,QACxB,OAAO,IAAI,MAAM,2BAA2B,CAAC;AAAA;AAAA,MAG/C,IAAI,YAAY,SAAS;AAAA,QACvB,YAAY;AAAA,MACd,EAAO;AAAA,QACL,YAAY,iBAAiB,SAAS,aAAa,EAAE,MAAM,KAAK,CAAC;AAAA;AAAA,IAErE;AAAA,GACD;AAAA,EAGD,MAAM,kBAAkB,SAAS,cAAc,MAAM,eAAe,WAAW,eAAe;AAAA,EAE9F,IAAI;AAAA,IACF,MAAM,SAAS,OAAO,cAClB,QAAQ,KAAK,CAAC,iBAAiB,YAAY,CAAC,IAC5C;AAAA,IAGJ,IAAI,aAAa,SAAS;AAAA,MACxB,MAAM,IAAI,MAAM,2CAA2C;AAAA,IAC7D;AAAA,IAEA,UAAU,IAAI,UAAU,MAAM;AAAA,IAC9B,OAAO;AAAA,IACP,OAAO,OAAY;AAAA,IAEnB,IAAI,aAAa,SAAS;AAAA,MACxB,MAAM,IAAI,MAAM,2BAA2B;AAAA,IAC7C;AAAA,IAEA,MAAM;AAAA;AAAA;AAQH,IAAM,eAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAG9C,MAAM,YAAY,OAAQ,YAAY,EAAE,cAAc,OAAO,GAAG,GAAG;AAAA,EAEnE,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAOK,IAAM,aAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAE9C,IAAI,UAAU,IAAI,MAAO,QAAQ,GAAG;AAAA,IAClC,UAAU,OAAO,MAAO,QAAQ;AAAA,IAChC,WAAW,IAAI,8BAA8B;AAAA,EAC/C;AAAA,EAGA,MAAM,YAAY,MAAO,eAAe;AAAA,EACxC,MAAM,iBAAiB,SAAS;AAAA,EAChC,WAAW,KAAK,qBAAqB;AAAA,EAErC,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAOF,IAAM,mBAAmB,OAAO,cAAqC;AAAA,EACnE,MAAM,QAAQ,MAAM,OAAO,KAAK,cAAc;AAAA,EAC9C,MAAM,OAAO,MAAM,MAAM,KAAK;AAAA,EAC9B,MAAM,SAAS,IAAI;AAAA,EAGnB,MAAM,mBAA8B,CAAC;AAAA,EACrC,WAAW,WAAW,MAAM;AAAA,IAC1B,MAAM,MAAM,IAAI,IAAI,QAAQ,GAAG;AAAA,IAC/B,IAAI,IAAI,SAAS,WAAW,MAAM,GAAG;AAAA,MACnC,iBAAiB,KAAK,OAAO;AAAA,IAC/B;AAAA,EACF;AAAA,EAGA,IAAI,eAAe;AAAA,EACnB,WAAW,WAAW,kBAAkB;AAAA,IACtC,IAAI;AAAA,MACF,MAAM,UAAU,MAAM,MAAM,OAAO,OAAO;AAAA,MAC1C,IAAI,SAAS;AAAA,QACX;AAAA,MACF,EAAO;AAAA,QAEL,MAAM,eAAe,MAAM,MAAM,OAAO,QAAQ,GAAG;AAAA,QACnD,IAAI,cAAc;AAAA,UAChB;AAAA,QACF;AAAA;AAAA,MAEF,OAAO,OAAO;AAAA,MACd,QAAQ,MAAM,iCAAiC,QAAQ,OAAO,KAAK;AAAA;AAAA,EAEvE;AAAA;AAQK,IAAM,oBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,oBAA+C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACzF,cAAc;AAAA,EAChB,CAAC;AAAA,EAGD,MAAM,WAAW,MAAM,kBAAkB,MAAM,MAAM;AAAA,IACnD,SAAS;AAAA,IACT,WAAW,OAAO,eAAe;AAAA,OAC7B,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAGD,IAAI,SAAS,SAAS,OAAO,eAAe,kBAAkB;AAAA,IAC5D,QAAQ,KACN,wEAAwE,SAAS,YAAY,OAAO,eAAe,oBACnH,OACA,QACF;AAAA,IACA,MAAM,IAAI,MACR,wEAAwE,SAAS,YAAY,OAAO,eAAe,kBACrH;AAAA,EACF;AAAA,EAEA,OAAO,EAAE,QAAQ,SAAS,KAAmB;AAAA;AAGxC,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI,OAAO,gBAAgB,aAAa,4BAA4B;AAAA,IAClE,IACE,CAAC,MAAM,mBACP,CAAC,MAAM,QAAQ,MAAM,eAAe,KACpC,MAAM,gBAAgB,WAAW,GACjC;AAAA,MACA,MAAM,IAAI,MAAM,yDAAyD;AAAA,IAC3E;AAAA,IAEA,MAAM,qBAAqD,MAAM,YAC/D,OACA,YACA;AAAA,MACE,cAAc;AAAA,IAChB,CACF;AAAA,IACA,MAAM,UAAc,MAAM,mBAAmB,MAAM,MAAM,MAAM,iBAA6B,CAAC,CAAC;AAAA,IAE9F,OAAO;AAAA,MACL,YAAY,QAAO,OAAO,IAAI,CAAC,OAAe,SAAiB;AAAA,QAC7D;AAAA,QACA,OAAO,QAAO,OAAO;AAAA,MACvB,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,MAAM,qBAAiD,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3F,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAS,MAAM,mBAAmB,MAAM,MAAM;AAAA,IAClD,OAAO,MAAM,iBAAiB;AAAA,OAC1B,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,MAAM,QAAQ,OAAO,EAAE,GAAG;AAAA,IAC5B,OAAO;AAAA,MACL,YAAY,OAAO,GAAG,IAAI,CAAC,cAAc;AAAA,QACvC,OAAO,SAAS;AAAA,QAChB,OAAO,SAAS;AAAA,MAClB,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,OAAO;AAAA,IACL,YAAa,OAAoC,IAAI,CAAC,cAAc;AAAA,MAClE,OAAO,SAAS;AAAA,MAChB,OAAO,SAAS;AAAA,IAClB,EAAE;AAAA,EACJ;AAAA;AAGK,IAAM,4BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,qBAAiD,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3F,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAS,MAAM,mBAAmB,MAAM,MAAM;AAAA,IAClD,OAAO,MAAM,gBAAgB;AAAA,OACzB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,MAAM,QAAQ,OAAO,EAAE,GAAG;AAAA,IAC5B,OAAO;AAAA,MACL,WAAW,OAAO,GAAG,IAAI,CAAC,cAAc;AAAA,QACtC,UAAU,SAAS;AAAA,QACnB,OAAO,SAAS;AAAA,MAClB,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,OAAO;AAAA,IACL,WAAY,OAAoC,IAAI,CAAC,cAAc;AAAA,MACjE,UAAU,SAAS;AAAA,MACnB,OAAO,SAAS;AAAA,IAClB,EAAE;AAAA,EACJ;AAAA;AAGK,IAAM,iCAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,6BAA0D,MAAM,YACpE,OACA,YACA;AAAA,IACE,cAAc;AAAA,EAChB,CACF;AAAA,EACA,IAAI,UAAU,MAAM,2BAA2B,MAAM,MAAM;AAAA,IACzD,eAAe,MAAM;AAAA,OACjB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EACD,IAAI,WAAwC,CAAC;AAAA,EAC7C,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,WAAW,CAAC,OAAO;AAAA,EACrB,EAAO;AAAA,IACL,WAAW;AAAA;AAAA,EAEb,OAAO;AAAA,IACL,UAAU,SAAS,IAAI,CAAC,YAAY;AAAA,MAClC,QAAQ,OAAO;AAAA,MACf,OAAO,OAAO;AAAA,MACd,MAAM,OAAO;AAAA,IACf,EAAE;AAAA,EACJ;AAAA;AAGK,IAAM,mBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,WAA6B,MAAM,YAAY,OAAQ,YAAY;AAAA,IACvE,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,IAAI,UAAU,MAAM,SAAS,MAAM,IAAI;AAAA,EACvC,IAAI,cAAgC,CAAC;AAAA,EACrC,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,cAAc,CAAC,OAAO;AAAA,EACxB,EAAO;AAAA,IACL,cAAc;AAAA;AAAA,EAEhB,OAAO;AAAA,IACL,aAAa,YAAY,IAAI,CAAC,gBAAgB;AAAA,MAC5C,QAAQ,WAAW;AAAA,MACnB,OAAO,WAAW;AAAA,MAClB,UAAU,WAAW;AAAA,IACvB,EAAE;AAAA,EACJ;AAAA;AAOK,IAAM,qBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAuC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACjF,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,WAAW,mBAAmB,aAAa,WAAW,YAAY,MAAM;AAAA,EAE9E,IAAI,UAAU,MAAM,aAAa,MAAM,QAAQ;AAAA,IAC7C;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,UAAU,CAAC,OAAO;AAAA,EACpB;AAAA,EACA,IAAI,OAAQ,QAAQ,IAA6B;AAAA,EAEjD,IAAI,MAAM,QAAQ,IAAI,GAAG;AAAA,IACvB,OAAO,KAAK,KAAK,SAAS,IAAI;AAAA,EAChC;AAAA,EACA,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAOK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAiC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3E,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,UAAU,WAAW,UAAU;AAAA,EAEnE,MAAM,SAAS,MAAM,UAAU,MAAM,MAAM;AAAA,IACzC,UAAU,MAAM;AAAA,IAChB,UAAU,MAAM;AAAA,IAChB;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAQ;AAAA,EAER,IAAI,iBAAoC;AAAA,EACxC,IAAI,MAAM,QAAQ,MAAM,GAAG;AAAA,IACzB,iBAAiB,OAAO,IAAI,CAAC,MAAO,GAAyB,oBAAoB,EAAE;AAAA,EACrF,EAAO;AAAA,IACL,iBAAkB,QAA8B,oBAAoB;AAAA;AAAA,EAGtE,OAAO;AAAA,IACL,MAAM;AAAA,IACN,aAAa,MAAM;AAAA,EACrB;AAAA;AAOK,IAAM,mBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAuC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACjF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,aAAa,WAAW,UAAU;AAAA,EAGtE,MAAM,gBAAgB,MAAM,SAAS,MAAM,SAAS;AAAA,IAAO,MAAM,MAAM;AAAA,EAEvE,IAAI,UAAU,MAAM,aAAa,cAAc;AAAA,IAC7C;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,UAAU,CAAC,OAAO;AAAA,EACpB;AAAA,EAEA,IAAI,OAAQ,QAAQ,IAA6B;AAAA,EACjD,IAAI,MAAM,QAAQ,IAAI,GAAG;AAAA,IACvB,OAAO,KAAK,KAAK,SAAS,IAAI;AAAA,EAChC;AAAA,EAEA,IAAI,SAAS,cAAc;AAAA,IACzB,MAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AAAA,EAEA,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAOK,IAAM,kBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,kBAAyC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACnF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,gBAAgB,WAAW,UAAU;AAAA,EAEzE,IAAI,SAAS,MAAM,gBAAgB,MAAM,MAAM;AAAA,IAC7C;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAQ;AAAA,EAER,IAAI,cAAc;AAAA,EAClB,IAAI,MAAM,QAAQ,MAAM,GAAG;AAAA,IACzB,cAAe,OAAO,IAA4B,gBAAgB;AAAA,EACpE,EAAO;AAAA,IACL,cAAe,QAAgC,gBAAgB;AAAA;AAAA,EAGjE,OAAO;AAAA,IACL,MAAM;AAAA,EACR;AAAA;AAOK,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAE9C,MAAM,iBAA4C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACtF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,eAAe,WAAW,UAAU;AAAA,EAExE,MAAM,SAAS,MAAM,eAAe,MAAM,UAAU,MAAM,SAAS;AAAA,IACjE;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAQ;AAAA,EAER,IAAI,aAAa;AAAA,EACjB,IAAI,MAAM,QAAQ,MAAM,GAAG;AAAA,IACzB,aAAc,OAAO,IAAwC,UAAU;AAAA,EACzE,EAAO;AAAA,IACL,aAAc,QAA4C,UAAU;AAAA;AAAA,EAGtE,OAAO;AAAA,IACL,MAAM;AAAA,EACR;AAAA;AAMK,IAAM,wBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAuC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACjF,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAS,MAAM,UAAU,MAAM,OAAc;AAAA,IACjD,WAAW,MAAM;AAAA,IACjB,gBAAgB,MAAM;AAAA,OAClB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,QAAQ,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AAAA,EAEtD,MAAM,iBAAiB,MAAM,QAAQ,IACnC,MAAM,IAAI,OAAO,UAAU;AAAA,IACzB,OAAO,KAAK,SAAS;AAAA,IACrB,OAAO,KAAK,SAAS;AAAA,IACrB,MAAM,CAAC;AAAA,EACT,EAAE,CACJ;AAAA,EAEA,OAAO;AAAA,IACL,OAAO;AAAA,EACT;AAAA;AAMK,IAAM,kBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAiC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3E,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAc,MAAM,UAAU,MAAM,OAAiB;AAAA,IACzD,gBAAgB,MAAM;AAAA,OAClB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,OAAO,MAAM,QAAQ,MAAM,IAAI,OAAO,IAAI,iBAAiB,QAAQ;AAAA,EAEzE,OAAO;AAAA,IACL,MAAM,QAAQ;AAAA,EAChB;AAAA;AAMK,IAAM,wBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,UAAqC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC/E,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAS,MAAM,QAAQ,MAAM,OAAiB;AAAA,OAC9C,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,cAAc,MAAM,QAAQ,MAAM,IAAI,OAAO,KAAK;AAAA,EAExD,OAAO;AAAA,IACL,OAAO,cAAc,WAAW;AAAA,EAClC;AAAA;AAMK,IAAM,qBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,WAA2C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACrF,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAc,MAAM,SAAS,MAAM,KAAe;AAAA,EAExD,OAAO;AAAA,IACL,QAAQ,OAAO;AAAA,EACjB;AAAA;AAOK,IAAM,0BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI,OAAO,gBAAgB,aAAa,kCAAkC;AAAA,IACxE,IAAI,CAAC,MAAM,cAAc,CAAC,MAAM,QAAQ,MAAM,UAAU,KAAK,MAAM,WAAW,WAAW,GAAG;AAAA,MAC1F,QAAQ,KAAK,sDAAsD,KAAK;AAAA,MACxE,MAAM,IAAI,MAAM,oDAAoD;AAAA,IACtE;AAAA,IACA,MAAM,qBAA0D,MAAM,YACpE,OACA,YACA;AAAA,MACE,cAAc;AAAA,IAChB,CACF;AAAA,IACA,MAAM,UAAc,MAAM,mBACxB,MAAM,OACN,MAAM,YACN,CAAC,CACH;AAAA,IAEA,MAAM,WAAU,MAAM,QAAQ,OAAM,IAAI,UAAS,CAAC,OAAM;AAAA,IAExD,OAAO;AAAA,MACL,YAAY,SAAQ,IAAI,CAAC,OAAY;AAAA,QACnC,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,MACX,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,MAAM,aAA0C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACpF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAc,MAAM,WAAW,MAAM,OAAiB;AAAA,IAC1D,OAAQ,MAAc;AAAA,OAClB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,UAAU,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AAAA,EAExD,OAAO;AAAA,IACL,YAAY,QAAQ,IAAI,CAAC,OAAY;AAAA,MACnC,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,EACJ;AAAA;AAOK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI,OAAO,gBAAgB,aAAa,8BAA8B;AAAA,IACpE,IAAI,CAAC,MAAM,UAAU,CAAC,MAAM,QAAQ,MAAM,MAAM,KAAK,MAAM,OAAO,WAAW,GAAG;AAAA,MAC9E,MAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AAAA,IACA,MAAM,mBAAoD,MAAM,YAC9D,OACA,YACA;AAAA,MACE,cAAc;AAAA,IAChB,CACF;AAAA,IACA,MAAM,UAAc,MAAM,iBAAiB,MAAM,OAAiB,MAAM,KAAK,MAAM,MAAO,GAAG;AAAA,MAC3F,WAAY,MAAc;AAAA,IAC5B,CAAC;AAAA,IAED,MAAM,cAAa,MAAM,QAAQ,OAAM,IAAI,UAAS,CAAC,OAAM;AAAA,IAE3D,OAAO;AAAA,MACL,YAAY,YAAW,IAAI,CAAC,OAAY;AAAA,QACtC,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT,KAAK,EAAE;AAAA,MACT,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,MAAM,WAAoC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC9E,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAc,MAAM,SAAS,MAAM,OAAiB;AAAA,IACxD,WAAY,MAAc;AAAA,OACtB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,aAAa,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AAAA,EAE3D,OAAO;AAAA,IACL,YAAY,WAAW,IAAI,CAAC,OAAY;AAAA,MACtC,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,MACT,KAAK,EAAE;AAAA,IACT,EAAE;AAAA,EACJ;AAAA;AAKF,SAAS,aAAa,CAAC,OAAyB;AAAA,EAG9C,OAAQ,MAAc,WAAW,KAAK;AAAA;AAWxC,SAAS,kBAAkB,CACzB,WACA,gBACA,QACA;AAAA,EACA,IAAI,QAAQ;AAAA,EACZ,OAAO,IAAI,aAAa,WAAW;AAAA,IACjC,aAAa;AAAA,IACb,eAAe,EAAE,qBAAqB,KAAK;AAAA,IAC3C,mBAAmB,CAAC,SAAiB;AAAA,MACnC;AAAA,MACA,MAAM,SAAS,OAAO,IAAI,KAAK,IAAI,QAAQ,KAAK;AAAA,MAChD,MAAM,WAAW,KAAK,MAAM,KAAK,IAAI,QAAQ,GAAG,CAAC;AAAA,MACjD,eAAe,UAAU,cAAc,EAAE,MAAM,SAAS,CAAC;AAAA;AAAA,OAEvD,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA;;AClkCH;AAIO,IAAM,gCAAgC;AAAA,EAC3C,MAAM;AAAA,EACN,YAAY;AAAA,IACV,UAAU;AAAA,MACR,OAAO;AAAA,MACP,aAAa;AAAA,IACf;AAAA,IACA,gBAAgB;AAAA,MACd,MAAM;AAAA,MACN,aAAa;AAAA,MACb,YAAY;AAAA,QACV,UAAU;AAAA,UACR,MAAM;AAAA,UACN,MAAM,OAAO,OAAO,eAAe;AAAA,UACnC,aAAa;AAAA,UACb,SAAS;AAAA,QACX;AAAA,QACA,WAAW;AAAA,UACT,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,OAAO;AAAA,UACL,MAAM;AAAA,UACN,MAAM,OAAO,OAAO,oBAAoB;AAAA,UACxC,aAAa;AAAA,UACb,SAAS;AAAA,QACX;AAAA,QACA,QAAQ;AAAA,UACN,MAAM;AAAA,UACN,MAAM,CAAC,OAAO,OAAO,UAAU,QAAQ,OAAO;AAAA,UAC9C,aAAa;AAAA,UACb,SAAS;AAAA,QACX;AAAA,QACA,oBAAoB;AAAA,UAClB,MAAM;AAAA,UACN,OAAO,EAAE,MAAM,SAAS;AAAA,UACxB,aAAa;AAAA,QACf;AAAA,QACA,mBAAmB;AAAA,UACjB,MAAM;AAAA,UACN,SAAS;AAAA,QACX;AAAA,QACA,mBAAmB;AAAA,UACjB,MAAM;AAAA,UACN,SAAS;AAAA,QACX;AAAA,QACA,uBAAuB;AAAA,UACrB,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,kBAAkB;AAAA,UAChB,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,WAAW;AAAA,UACT,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,eAAe;AAAA,UACb,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,MACF;AAAA,MACA,UAAU,CAAC,aAAa,UAAU;AAAA,MAClC,sBAAsB;AAAA,MACtB,IAAI;AAAA,QACF,YAAY;AAAA,UACV,UAAU;AAAA,YACR,OAAO;AAAA,UACT;AAAA,QACF;AAAA,MACF;AAAA,MACA,MAAM;AAAA,QACJ,UAAU,CAAC,kBAAkB;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU,CAAC,YAAY,gBAAgB;AAAA,EACvC,sBAAsB;AACxB;AAEA,IAAM,sBAAsB;AAAA,EAC1B,MAAM;AAAA,EACN,YAAY;AAAA,OACP,YAAY;AAAA,OACZ,8BAA8B;AAAA,EACnC;AAAA,EACA,UAAU,CAAC,GAAG,YAAY,UAAU,GAAG,8BAA8B,QAAQ;AAAA,EAC7E,sBAAsB;AACxB;;AC7FA;AACA;AACA;AACA;AACA;AAUA,eAAsB,yBAAyB,CAC7C,QACA,QACe;AAAA,EACf,MAAM,gBAAgB,sBAAsB,IAAI,cAAc;AAAA,EAE9D,cAAc,eAAe,sBAAsB,MAAM;AAAA,EAEzD,MAAM,mBAAmB,sBAAsB;AAAA,EAC/C,MAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAAA,EACA,WAAW,QAAQ,OAAO;AAAA,IACxB,iBAAiB,sBAAsB,sBAAsB,IAAI;AAAA,EACnE;AAAA,EAEA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,qBAClB,oBACF;AAAA,IAEA,MAAM,SAAS,IAAI,eAAkD,OAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,mBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,eAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,qBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,EAElE;AAAA;;ACnEF;AACA,kBAAS,iCAAoC;AAC7C,+BAAS,uCAAoB,mCAAgB;AAC7C,iCAAS;AACT,iCAAS;AA6BT,eAAsB,yBAAyB,CAC7C,QACe;AAAA,EAEf,IAAI,SAAS,KAAK,KAAK,QAAQ;AAAA,EAC/B,MAAM,mBAAmB,uBAAsB;AAAA,EAC/C,MAAM,MAAsD;AAAA,KACzD,sBAAsB;AAAA,KACtB,oBAAoB;AAAA,KACpB,sBAAsB;AAAA,KACtB,uBAAuB;AAAA,KACvB,2BAA2B;AAAA,KAC3B,8BAA8B;AAAA,KAC9B,2BAA2B;AAAA,KAC3B,qBAAqB;AAAA,KACrB,mCAAmC;AAAA,KACnC,qBAAqB;AAAA,KACrB,oBAAoB;AAAA,KACpB,wBAAwB;AAAA,KACxB,0BAA0B;AAAA,KAC1B,oBAAoB;AAAA,KACpB,0BAA0B;AAAA,KAC1B,uBAAuB;AAAA,KACvB,4BAA4B;AAAA,KAC5B,wBAAwB;AAAA,EAC3B;AAAA,EACA,YAAY,SAAS,OAAO,OAAO,QAAQ,GAAG,GAAG;AAAA,IAC/C,iBAAiB,cAAwB,sBAAsB,SAAS,EAAE;AAAA,EAC5E;AAAA,EAGA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,sBAClB,oBACF;AAAA,IACA,MAAM,QAAQ,cAAc;AAAA,IAE5B,MAAM,SAAS,IAAI,gBAAkD,QAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,oBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,gBAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,sBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,IAChE,MAAM,OAAO,MAAM;AAAA,EACrB;AAAA;;ACrFF;AAAA;AAAA,2BAEE;AAAA;AAAA;AAAA;AAyBK,IAAM,oBAAoB,mBAAmB,wBAAwB;AAErE,IAAM,6BAA6B,uBAAsB,SAC9D,mBACA,MAAM;AAAA,EACJ,MAAM,eAAe,uBAAsB,IAAI,aAAa;AAAA,EAC5D,aAAa,iBAAiB,qBAAqB,YAAY;AAAA,EAC/D,aAAa,iBAAiB,mBAAmB,UAAU;AAAA,EAC3D,aAAa,iBAAiB,qBAAqB,iBAAiB;AAAA,EACpE,aAAa,iBAAiB,sBAAsB,kBAAkB;AAAA,EACtE,aAAa,iBAAiB,6BAA6B,yBAAyB;AAAA,EACpF,aAAa,iBAAiB,0BAA0B,sBAAsB;AAAA,EAC9E,aAAa,iBAAiB,oBAAoB,gBAAgB;AAAA,EAClE,aAAa,iBAAiB,kCAAkC,8BAA8B;AAAA,EAC9F,aAAa,iBAAiB,uBAAuB,mBAAmB;AAAA,EACxE,aAAa,iBAAiB,oBAAoB,gBAAgB;AAAA,EAClE,aAAa,iBAAiB,mBAAmB,eAAe;AAAA,EAChE,aAAa,iBAAiB,0BAA0B,sBAAsB;AAAA,EAC9E,aAAa,iBAAiB,yBAAyB,qBAAqB;AAAA,EAC5E,aAAa,iBAAiB,mBAAmB,eAAe;AAAA,EAChE,aAAa,iBAAiB,yBAAyB,qBAAqB;AAAA,EAC5E,aAAa,iBAAiB,sBAAsB,kBAAkB;AAAA,EACtE,aAAa,iBAAiB,2BAA2B,uBAAuB;AAAA,EAChF,aAAa,iBAAiB,uBAAuB,mBAAmB;AAAA,EACxE,WAAW,YAAY,EAAE,MAAM,QAAQ,CAAC;AAAA,EACxC,QAAQ,IAAI,8BAA8B;AAAA,EAC1C,OAAO;AAAA,GAET,IACF;;ACxDO,IAAM,uBAAuB;AAsB7B,IAAM,mBAAmB;AAAA,EAC9B,iBAAiB;AAAA,EACjB,mBAAmB;AAAA,EACnB,0BAA0B;AAAA,EAC1B,cAAc;AAAA,EACd,oBAAoB;AAAA,EACpB,kBAAkB;AAAA,EAClB,wBAAwB;AAAA,EACxB,0BAA0B;AAAA,EAC1B,wBAAwB;AAAA,EACxB,6BAA6B;AAAA,EAC7B,0BAA0B;AAAA,EAC1B,8BAA8B;AAAA,EAC9B,2BAA2B;AAAA,EAC3B,yBAAyB;AAAA,EACzB,0BAA0B;AAAA,EAC1B,sCAAsC;AAAA,EACtC,0BAA0B;AAAA,EAC1B,0BAA0B;AAC5B;;ACzCA;AAAA;AAAA;AAAA;AAAA;AAAA;AAMA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA0CA;AAkBA,IAAM,aAAa,IAAI;AAMvB,IAAM,wBAAwB,IAAI;AAKlC,IAAM,cAAc,OAClB,OACA,YACA,WAC6B;AAAA,EAC7B,MAAM,aAAa,MAAM,eAAe;AAAA,EAExC,IAAI,WAAW,IAAI,UAAU,GAAG;AAAA,IAC9B,OAAO,WAAW,IAAI,UAAU;AAAA,EAClC;AAAA,EAEA,IAAI,OAAO,SAAS;AAAA,IAClB,MAAM,IAAI,kBAAkB,aAAa;AAAA,EAC3C;AAAA,EAEA,WAAW,KAAK,mBAAmB;AAAA,EAEnC,IAAI;AAAA,EAEJ,QAAQ;AAAA,SACD;AAAA,MACH,cAAc,MAAM,gBAAgB,aAClC,gEACF;AAAA,MACA;AAAA,SACG;AAAA,MACH,cAAc,MAAM,gBAAgB,cAClC,iEACF;AAAA,MACA;AAAA,SACG;AAAA,MACH,cAAc,MAAM,gBAAgB,eAClC,kEACF;AAAA,MACA;AAAA,SACG;AAAA,MACH,cAAc,MAAM,gBAAgB,cAClC,iEACF;AAAA,MACA;AAAA;AAAA,MAEA,MAAM,IAAI,kBAAkB,qBAAqB;AAAA;AAAA,EAGrD,WAAW,IAAI,YAAY,WAAW;AAAA,EACtC,OAAO;AAAA;AAqCT,IAAM,iBAAiB,IAAI;AA+B3B,IAAM,eAAe,CAAC,OAAgC,UAA4C;AAAA,EAChG,MAAM,QAAQ,OAAO,KAAK,KAAK,EAAE,KAAK;AAAA,EACtC,MAAM,QAAQ,OAAO,KAAK,KAAK,EAAE,KAAK;AAAA,EAEtC,IAAI,MAAM,WAAW,MAAM;AAAA,IAAQ,OAAO;AAAA,EAE1C,OAAO,MAAM,MAAM,CAAC,QAAQ;AAAA,IAC1B,MAAM,OAAO,MAAM;AAAA,IACnB,MAAM,OAAO,MAAM;AAAA,IAEnB,IAAI,MAAM,QAAQ,IAAI,KAAK,MAAM,QAAQ,IAAI,GAAG;AAAA,MAC9C,OAAO,KAAK,UAAU,IAAI,MAAM,KAAK,UAAU,IAAI;AAAA,IACrD;AAAA,IAEA,OAAO,SAAS;AAAA,GACjB;AAAA;AAGH,IAAM,eAAe,OACnB,OACA,SACA,YACA,QACA,aACkC;AAAA,EAClC,MAAM,YAAY,MAAM,eAAe;AAAA,EACvC,MAAM,aAAa,MAAM,eAAe;AAAA,EAGxC,MAAM,cAAc,eAAe,IAAI,SAAS;AAAA,EAChD,IAAI,aAAa;AAAA,IACf,MAAM,cAAc,YAAY,KAAK,CAAC,WAAW,aAAa,OAAO,SAAS,OAAO,CAAC;AAAA,IACtF,IAAI,aAAa;AAAA,MACf,OAAO,YAAY;AAAA,IACrB;AAAA,EACF;AAAA,EAGA,MAAM,cAAc,MAAM,YAAY,OAAO,YAAY,MAAM;AAAA,EAE/D,WAAW,KAAK,qBAAqB;AAAA,EAGrC,MAAM,OAAO,MAAM,SAAS,kBAAkB,aAAa;AAAA,IACzD,aAAa;AAAA,MACX,gBAAgB;AAAA,IAClB;AAAA,OACG;AAAA,EACL,CAAC;AAAA,EAGD,MAAM,aAA8B,EAAE,MAAM,SAAS,WAAW;AAAA,EAChE,IAAI,CAAC,eAAe,IAAI,SAAS,GAAG;AAAA,IAClC,eAAe,IAAI,WAAW,CAAC,CAAC;AAAA,EAClC;AAAA,EACA,eAAe,IAAI,SAAS,EAAG,KAAK,UAAU;AAAA,EAG9C,sBAAsB,IAAI,aAAa,sBAAsB,IAAI,UAAU,KAAK,KAAK,CAAC;AAAA,EAEtF,OAAO;AAAA;AAOF,IAAM,gBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI;AAAA,EACJ,QAAQ,OAAO,eAAe;AAAA,SACvB;AAAA,MACH,OAAO,MAAM,aAAa,OAAO,CAAC,GAAG,YAAY,QAAQ,YAAY;AAAA,MACrE;AAAA,SACG;AAAA,MACH,OAAO,MAAM,aAAa,OAAO,CAAC,GAAG,YAAY,QAAQ,cAAc;AAAA,MACvE;AAAA,SACG;AAAA,MACH,OAAO,MAAM,aAAa,OAAO,CAAC,GAAG,YAAY,QAAQ,gBAAgB;AAAA,MACzE;AAAA;AAAA,MAEA,MAAM,IAAI,kBAAkB,kBAAkB;AAAA;AAAA,EAElD,WAAW,KAAK,iBAAiB;AAAA,EACjC,KAAK,MAAM;AAAA,EAEX,MAAM,aAAa,OAAO,eAAe;AAAA,EACzC,sBAAsB,IAAI,YAAY,sBAAsB,IAAI,UAAU,IAAK,CAAC;AAAA,EAEhF,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAOK,IAAM,qBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAe,MAAM,aAAa,OAAQ,CAAC,GAAG,YAAY,QAAQ,YAAY;AAAA,EACpF,MAAM,SAAS,aAAa,MAAM,MAAM,IAAI;AAAA,EAE5C,IAAI,CAAC,OAAO,aAAa,IAAI,gBAAgB;AAAA,IAC3C,MAAM,IAAI,kBAAkB,4CAA4C;AAAA,EAC1E;AAAA,EAEA,MAAM,YAAY,aAAa,KAAK,OAAO,WAAW,GAAG,cAAc;AAAA,EAEvE,OAAO;AAAA,IACL,QAAQ;AAAA,EACV;AAAA;AAOK,IAAM,0BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,qBAAqB,MAAM,aAC/B,OACA;AAAA,IACE,eAAe,MAAM;AAAA,EAIvB,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,mBAAmB,SAAS,MAAM,IAAI;AAAA,EAErD,IAAI,CAAC,OAAO,kBAAkB,IAAI,YAAY;AAAA,IAC5C,MAAM,IAAI,kBAAkB,uCAAuC;AAAA,EACrE;AAAA,EAEA,MAAM,aAAa,OAAO,gBAAgB,GAAG,WAAW,IAAI,CAAC,cAAc;AAAA,IACzE,OAAO,SAAS;AAAA,IAChB,OAAO,SAAS;AAAA,EAClB,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAOK,IAAM,6BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAe,MAAM,iBAAiB,IAAI,KAAK,MAAM;AAAA,EAE3D,MAAM,uBAAuB,MAAM,aACjC,OACA;AAAA,IACE;AAAA,EAIF,GACA,YACA,QACA,gBACF;AAAA,EACA,MAAM,SAAS,qBAAqB,OAAO,MAAM,IAAI;AAAA,EAErD,IAAI,CAAC,OAAO,YAAY,IAAI,cAAc;AAAA,IACxC,MAAM,IAAI,kBAAkB,yCAAyC;AAAA,EACvE;AAAA,EAEA,MAAM,YAAY,OAAO,UAAU,IAAI,CAAC,cAAc;AAAA,IACpD,UAAU,SAAS;AAAA,IACnB,OAAO,SAAS;AAAA,EAClB,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAYK,IAAM,cAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAY,MAAO,eAAe;AAAA,EACxC,WAAW,IAAI,iBAAiB;AAAA,EAEhC,IAAI,eAAe,IAAI,SAAS,GAAG;AAAA,IACjC,MAAM,cAAc,eAAe,IAAI,SAAS;AAAA,IAEhD,WAAW,cAAc,aAAa;AAAA,MACpC,MAAM,OAAO,WAAW;AAAA,MACxB,IAAI,WAAW,QAAQ,OAAO,KAAK,UAAU;AAAA,QAAY,KAAK,MAAM;AAAA,MAGpE,MAAM,aAAa,WAAW;AAAA,MAC9B,MAAM,eAAe,sBAAsB,IAAI,UAAU,KAAK;AAAA,MAC9D,MAAM,WAAW,eAAe;AAAA,MAEhC,IAAI,YAAY,GAAG;AAAA,QAEjB,WAAW,OAAO,UAAU;AAAA,QAC5B,sBAAsB,OAAO,UAAU;AAAA,MACzC,EAAO;AAAA,QACL,sBAAsB,IAAI,YAAY,QAAQ;AAAA;AAAA,IAElD;AAAA,IAEA,eAAe,OAAO,SAAS;AAAA,EACjC;AAAA,EAEA,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAMK,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAAa,OAAQ,CAAC,GAAG,YAAY,QAAQ,cAAc;AAAA,EACxF,MAAM,SAAS,eAAe,QAAQ,MAAM,KAAY;AAAA,EAExD,IAAI,CAAC,OAAO,cAAc;AAAA,IACxB,MAAM,IAAI,kBAAkB,uCAAuC;AAAA,EACrE;AAAA,EAGA,MAAM,QAAQ;AAAA,IACZ;AAAA,MACE,OAAO;AAAA,MACP,OAAO;AAAA,MACP,MAAM;AAAA,QACJ,MAAM,OAAO,aAAa;AAAA,QAC1B,OAAO,OAAO,aAAa;AAAA,QAC3B,QAAQ,OAAO,aAAa;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAAA,EAEA,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,gBAAgB,MAAM,aAAa,OAAQ,CAAC,GAAG,YAAY,QAAQ,aAAa;AAAA,EACtF,MAAM,SAAS,cAAc,MAAM,MAAM,KAAY;AAAA,EAErD,IAAI,CAAC,OAAO,aAAa,IAAI,gBAAgB;AAAA,IAC3C,MAAM,IAAI,kBAAkB,4CAA4C;AAAA,EAC1E;AAAA,EAEA,MAAM,YAAY,aAAa,KAAK,OAAO,WAAW,GAAG,cAAc;AAAA,EAEvE,OAAO;AAAA,IACL,QAAQ;AAAA,EACV;AAAA;AAMK,IAAM,2BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,kBAAkB,MAAM,aAC5B,OACA;AAAA,IACE,YAAa,MAAc;AAAA,EAC7B,GACA,YACA,QACA,eACF;AAAA,EACA,MAAM,SAAS,gBAAgB,SAAS,MAAM,KAAY;AAAA,EAE1D,IAAI,CAAC,OAAO,kBAAkB,IAAI,YAAY;AAAA,IAC5C,MAAM,IAAI,kBAAkB,wCAAwC;AAAA,EACtE;AAAA,EAEA,MAAM,aAAa,OAAO,gBAAgB,GAAG,WAAW,IAAI,CAAC,cAAmB;AAAA,IAC9E,OAAO,SAAS;AAAA,IAChB,OAAO,SAAS;AAAA,EAClB,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,uBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,gBAAiB,MAAc;AAAA,EACjC,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,YAAY;AAAA,IACtB,MAAM,IAAI,kBAAkB,wCAAwC;AAAA,EACtE;AAAA,EAEA,MAAM,aAAa,OAAO,WAAW,IAAI,CAAC,eAAoB;AAAA,IAC5D,OAAO,UAAU,aAAa,IAAI,gBAAgB;AAAA,IAClD,OAAO,UAAU,aAAa,IAAI,SAAS;AAAA,IAC3C,KAAK;AAAA,MACH,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,OAAO,UAAU,aAAa,SAAS;AAAA,MACvC,QAAQ,UAAU,aAAa,UAAU;AAAA,IAC3C;AAAA,EACF,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,oBAAoB,MAAM,aAC9B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,EACxC,GACA,YACA,QACA,iBACF;AAAA,EACA,MAAM,SAAS,kBAAkB,UAAU,MAAM,KAAY;AAAA,EAE7D,IAAI,CAAC,OAAO,YAAY,CAAC,OAAO,WAAW;AAAA,IACzC,MAAM,IAAI,kBAAkB,4CAA4C;AAAA,EAC1E;AAAA,EAEA,MAAM,QAAQ,OAAO,SAAS,IAAI,CAAC,UAAe,WAAmB;AAAA,IACnE,UAAU,SAAS,IAAI,CAAC,OAAY;AAAA,MAClC,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,IACF,YAAY,OAAO,WAAW,OAAO,IAAI,CAAC,OAAY;AAAA,MACpD,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,IACF,WAAW,OAAO,UAAU,OAAO,IAAI,CAAC,OAAY;AAAA,MAClD,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,IACF,gBAAgB,OAAO,eAAe,OAAO,IAAI,CAAC,OAAY;AAAA,MAC5D,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,EACJ,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,EACxC,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,WAAW;AAAA,IACrB,MAAM,IAAI,kBAAkB,+CAA+C;AAAA,EAC7E;AAAA,EAEA,MAAM,QAAQ,OAAO,UAAU,IAAI,CAAC,WAAgB,WAAmB;AAAA,IACrE,YAAY,OAAO,WAAW,OAAO,IAAI,CAAC,OAAY;AAAA,MACpD,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,IACF,WAAW,UAAU,IAAI,CAAC,OAAY;AAAA,MACpC,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,IACF,gBAAgB,OAAO,eAAe,OAAO,IAAI,CAAC,OAAY;AAAA,MAC5D,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,EACJ,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,oBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAe,MAAM,aACzB,OACA;AAAA,IACE,wBAAyB,MAAc;AAAA,IACvC,yBAA0B,MAAc;AAAA,EAC1C,GACA,YACA,QACA,YACF;AAAA,EACA,MAAM,SAAS,aAAa,OAAO,MAAM,KAAY;AAAA,EAErD,IAAI,CAAC,OAAO,YAAY;AAAA,IACtB,MAAM,IAAI,kBAAkB,sCAAsC;AAAA,EACpE;AAAA,EAEA,MAAM,QAAQ,OAAO,WAAW,IAAI,CAAC,eAAoB;AAAA,IACvD,KAAK;AAAA,MACH,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,OAAO,UAAU,aAAa,SAAS;AAAA,MACvC,QAAQ,UAAU,aAAa,UAAU;AAAA,IAC3C;AAAA,IACA,WACE,UAAU,WAAW,IAAI,CAAC,QAAa;AAAA,MACrC,GAAG,GAAG;AAAA,MACN,GAAG,GAAG;AAAA,MACN,OAAO,GAAG;AAAA,IACZ,EAAE,KAAK,CAAC;AAAA,IACV,OAAO,UAAU,aAAa,IAAI,SAAS;AAAA,EAC7C,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,IACtC,uBAAwB,MAAc;AAAA,IACtC,oCAAqC,MAAc;AAAA,EACrD,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,eAAe;AAAA,IACzB,MAAM,IAAI,kBAAkB,+CAA+C;AAAA,EAC7E;AAAA,EAEA,MAAM,QAAQ,OAAO,cAAc,IAAI,CAAC,WAAgB,UAAkB;AAAA,IACxE,MAAM,OAAY;AAAA,MAChB,WAAW,UAAU,IAAI,CAAC,OAAY;AAAA,QACpC,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,MACP,EAAE;AAAA,IACJ;AAAA,IAEA,IAAI,OAAO,mBAAmB,OAAO,gBAAgB,QAAQ;AAAA,MAC3D,KAAK,cAAc,OAAO,gBAAgB,OAAO,WAAW,IAAI,CAAC,OAAY;AAAA,QAC3E,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,MACX,EAAE;AAAA,IACJ;AAAA,IAEA,IAAI,OAAO,gCAAgC,OAAO,6BAA6B,QAAQ;AAAA,MACrF,KAAK,uBAAuB,MAAM,KAAK,OAAO,6BAA6B,OAAO,IAAI;AAAA,IACxF;AAAA,IAEA,OAAO;AAAA,GACR;AAAA,EAED,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,IACtC,yBAA0B,MAAc;AAAA,EAC1C,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,WAAW;AAAA,IACrB,MAAM,IAAI,kBAAkB,+CAA+C;AAAA,EAC7E;AAAA,EAEA,MAAM,QAAQ,OAAO,UAAU,IAAI,CAAC,WAAgB,UAAkB;AAAA,IACpE,MAAM,OAAY;AAAA,MAChB,WAAW,UAAU,IAAI,CAAC,OAAY;AAAA,QACpC,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,YAAY,EAAE;AAAA,QACd,UAAU,EAAE;AAAA,MACd,EAAE;AAAA,MACF,gBAAgB,OAAO,eAAe,OAAO,IAAI,CAAC,OAAY;AAAA,QAC5D,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,YAAY,EAAE;AAAA,QACd,UAAU,EAAE;AAAA,MACd,EAAE;AAAA,IACJ;AAAA,IAEA,IAAI,OAAO,qBAAqB,OAAO,kBAAkB,QAAQ;AAAA,MAC/D,MAAM,OAAO,OAAO,kBAAkB;AAAA,MACtC,KAAK,mBAAmB;AAAA,QACtB,MAAM,KAAK,UAAU;AAAA,QACrB,OAAO,KAAK;AAAA,QACZ,QAAQ,KAAK;AAAA,MACf;AAAA,IACF;AAAA,IAEA,OAAO;AAAA,GACR;AAAA,EAED,OAAO;AAAA,IACL;AAAA,EACF;AAAA;;ACnzBF,wBAAS;AAIF,IAAM,kBAAkB;AAAA,EAC7B,MAAM;AAAA,EACN,YAAY;AAAA,IACV,UAAU;AAAA,MACR,OAAO;AAAA,MACP,aAAa;AAAA,IACf;AAAA,IACA,gBAAgB;AAAA,MACd,MAAM;AAAA,MACN,aAAa;AAAA,MACb,YAAY;AAAA,QACV,WAAW;AAAA,UACT,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,YAAY;AAAA,UACV,MAAM;AAAA,UACN,MAAM,CAAC,QAAQ,SAAS,UAAU,OAAO;AAAA,UACzC,aAAa;AAAA,QACf;AAAA,QACA,UAAU;AAAA,UACR,MAAM;AAAA,UACN,MAAM,OAAO,OAAO,gBAAgB;AAAA,UACpC,aAAa;AAAA,QACf;AAAA,MACF;AAAA,MACA,UAAU,CAAC,aAAa,cAAc,UAAU;AAAA,MAChD,sBAAsB;AAAA,IACxB;AAAA,EACF;AAAA,EACA,UAAU,CAAC,YAAY,gBAAgB;AAAA,EACvC,sBAAsB;AACxB;AAEA,IAAM,uBAAsB;AAAA,EAC1B,MAAM;AAAA,EACN,YAAY;AAAA,OACP,aAAY;AAAA,OACZ,gBAAgB;AAAA,EACrB;AAAA,EACA,UAAU,CAAC,GAAG,aAAY,UAAU,GAAG,gBAAgB,QAAQ;AAAA,EAC/D,sBAAsB;AACxB;;AC9CA,kBAAS,iCAAmB;AAC5B,+BAAS,uCAAoB,mCAAgB;AAC7C,iCAAS;AACT,iCAAS;AACT,kCAAS,0CAAuB;AAUhC,eAAsB,0BAA0B,CAC9C,QACA,QACe;AAAA,EACf,MAAM,gBAAgB,uBAAsB,IAAI,eAAc;AAAA,EAC9D,cAAc,eAAe,sBAAsB,MAAM;AAAA,EAEzD,MAAM,qBAAqB,uBAAsB;AAAA,EACjD,MAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAAA,EACA,WAAW,QAAQ,OAAO;AAAA,IACxB,mBAAmB,sBAAsB,sBAAsB,IAAI;AAAA,EACrE;AAAA,EAGA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,sBAClB,oBACF;AAAA,IACA,MAAM,QAAQ,cAAc;AAAA,IAE5B,MAAM,SAAS,IAAI,gBAAkD,QAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,oBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,gBAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,sBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,IAChE,MAAM,OAAO,MAAM;AAAA,EACrB;AAAA;;AC3DF,kBAAS,iCAAmB;AAC5B,+BAAS,uCAAoB,mCAAgB;AAC7C,iCAAS;AACT,iCAAS;AAyBT,eAAsB,0BAA0B,CAC9C,QACe;AAAA,EACf,MAAM,qBAAqB,uBAAsB;AAAA,EAEjD,mBAAmB,cACjB,sBACA,qBACA,aACF;AAAA,EACA,mBAAmB,cACjB,sBACA,mBACA,WACF;AAAA,EACA,mBAAmB,cACjB,sBACA,qBACA,kBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,6BACA,0BACF;AAAA,EACA,mBAAmB,cACjB,sBACA,0BACA,uBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,yBACA,sBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,2BACA,wBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,uBACA,oBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,yBACA,sBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,oBACA,iBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EAGA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,sBAClB,oBACF;AAAA,IACA,MAAM,QAAQ,cAAc;AAAA,IAE5B,MAAM,SAAS,IAAI,gBAAkD,QAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,oBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,gBAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,sBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,IAChE,MAAM,OAAO,MAAM;AAAA,EACrB;AAAA;;AC9HF;AAAA,wBACE;AAAA,2BACA;AAAA,gBACA;AAAA,mBACA;AAAA;AAeK,IAAM,qBAAqB,oBAAmB,yBAAyB;AAEvE,IAAM,8BAA8B,uBAAsB,SAC/D,oBACA,MAAM;AAAA,EACJ,MAAM,eAAe,uBAAsB,IAAI,cAAa;AAAA,EAC5D,aAAa,iBAAiB,qBAAqB,aAAa;AAAA,EAChE,aAAa,iBAAiB,mBAAmB,WAAW;AAAA,EAC5D,aAAa,iBAAiB,qBAAqB,kBAAkB;AAAA,EACrE,aAAa,iBAAiB,6BAA6B,0BAA0B;AAAA,EACrF,aAAa,iBAAiB,0BAA0B,uBAAuB;AAAA,EAC/E,aAAa,iBAAiB,yBAAyB,sBAAsB;AAAA,EAC7E,aAAa,iBAAiB,sBAAsB,mBAAmB;AAAA,EACvE,aAAa,iBAAiB,2BAA2B,wBAAwB;AAAA,EACjF,aAAa,iBAAiB,uBAAuB,oBAAoB;AAAA,EACzE,YAAW,YAAY,EAAE,MAAM,QAAQ,CAAC;AAAA,EACxC,QAAQ,IAAI,+BAA+B;AAAA,EAC3C,OAAO;AAAA,GAET,IACF;",
19
- "debugId": "505DFD36058D439364756E2164756E21",
18
+ "mappings": ";AAMO,IAAM,uBAAuB;AAC7B,IAAM,iBAAiB;AAavB,IAAM,uBAAuB;AAAA,EAClC,MAAM;AAAA,EACN,MAAM;AAAA,EACN,MAAM;AAAA,EACN,IAAI;AAAA,EACJ,MAAM;AAAA,EACN,OAAO;AAAA,EACP,IAAI;AAAA,EACJ,MAAM;AAAA,EACN,OAAO;AACT;AAcO,IAAM,sBAAsB;AAAA,EACjC,aAAa;AAAA,EACb,wBAAwB;AAAA,EACxB,mBAAmB;AAAA,EACnB,wBAAwB;AAAA,EACxB,uBAAuB;AAAA,EACvB,eAAe;AAAA,EACf,aAAa;AAAA,EACb,sBAAsB;AAAA,EACtB,4BAA4B;AAAA,EAC5B,sBAAsB;AACxB;AAWO,IAAM,wBAAwB;AAAA,EACnC,sBAAsB;AAAA,EACtB,sBAAsB;AAAA,EACtB,oBAAoB;AAAA,EACpB,wBAAwB;AAAA,EACxB,kBAAkB;AAAA,EAClB,oBAAoB;AAAA,EACpB,4BAA4B;AAC9B;AAOO,IAAM,uBAAuB;AAAA,EAClC,wBAAwB;AAAA,EACxB,gCAAgC;AAAA,EAChC,kBAAkB;AACpB;AASO,IAAM,4BAA4B;AAAA,EACvC,+BAA+B;AAAA,EAC/B,iBAAiB;AAAA,EACjB,kCAAkC;AAAA,EAClC,kCAAkC;AAAA,EAClC,8BAA8B;AAChC;AAQO,IAAM,kBAAkB;AAAA,KAC1B;AAAA,KACA;AAAA,KACA;AAAA,KACA;AACL;;AC3GA;AAAA;AAAA;AAAA;AA2EA,IAAM,YAAY,IAAI;AAKf,SAAS,kBAAkB,GAAS;AAAA,EACzC,UAAU,MAAM;AAAA;AAOlB,SAAS,mBAAmB,CAAC,OAA8C;AAAA,EACzE,MAAM,QAAQ,MAAM,eAAe,SAAS;AAAA,EAC5C,MAAM,SAAS,MAAM,eAAe,UAAU;AAAA,EAC9C,OAAO,GAAG,MAAM,eAAe,aAAa,MAAM,eAAe,YAAY,SAAS;AAAA;AAOxF,IAAM,cAAc,OAClB,OACA,YACA,UAAkC,CAAC,GACnC,mBAA2B,OACxB;AAAA,EACH,MAAM,WAAW,oBAAoB,KAAK;AAAA,EAC1C,IAAI,UAAU,IAAI,QAAQ,GAAG;AAAA,IAC3B,OAAO,UAAU,IAAI,QAAQ;AAAA,EAC/B;AAAA,EAGA,MAAM,YAAY,IAAI;AAAA,EACtB,MAAM,eAAe,IAAI;AAAA,EACzB,MAAM,gBAAgB,IAAI;AAAA,EAC1B,MAAM,gBAAgB,IAAI;AAAA,EAC1B,MAAM,eAAe,IAAI;AAAA,EACzB,MAAM,oBAAoB,IAAI;AAAA,EAC9B,MAAM,wBAAwB,IAAI;AAAA,EAIlC,IAAI,gBAAsD;AAAA,EAC1D,MAAM,cAAc;AAAA,EAIpB,MAAM,qBAAqB;AAAA,EAC3B,MAAM,uBAAuB;AAAA,EAC7B,MAAM,oBAAoB;AAAA,EAC1B,MAAM,sBAAsB,KAAK,OAAO;AAAA,EACxC,MAAM,qBAAqB,OAAO,OAAO;AAAA,EAGzC,MAAM,eACJ,qBAAqB,oBAAoB,uBAAuB;AAAA,EAKlE,MAAM,eAAe,CACnB,iBACA,MACA,mBACA,SACA,WACS;AAAA,IACT,MAAM,MAAM,KAAK,IAAI;AAAA,IACrB,MAAM,WAAW,kBAAkB,IAAI,IAAI,KAAK;AAAA,IAChD,MAAM,qBAAqB,MAAM;AAAA,IACjC,MAAM,iBAAiB,CAAC,WAAW,CAAC,UAAU,qBAAqB;AAAA,IAEnE,IAAI,gBAAgB;AAAA,MAElB,sBAAsB,IAAI,MAAM;AAAA,QAC9B,UAAU;AAAA,QACV;AAAA,QACA,cAAc;AAAA,MAChB,CAAC;AAAA,MAED,IAAI,CAAC,eAAe;AAAA,QAClB,MAAM,gBAAgB,KAAK,IAAI,GAAG,cAAc,kBAAkB;AAAA,QAClE,gBAAgB,WAAW,MAAM;AAAA,UAE/B,YAAY,aAAa,YAAY,sBAAsB,QAAQ,GAAG;AAAA,YACpE,WAAW,KAAK,MAAM,QAAQ,QAAQ,GAAG,qBAAqB;AAAA,cAC5D,MAAM;AAAA,cACN,UAAU,QAAQ;AAAA,YACpB,CAAC;AAAA,YACD,kBAAkB,IAAI,aAAa,KAAK,IAAI,CAAC;AAAA,UAC/C;AAAA,UACA,sBAAsB,MAAM;AAAA,UAC5B,gBAAgB;AAAA,WACf,aAAa;AAAA,MAClB;AAAA,MACA;AAAA,IACF;AAAA,IAGA,WAAW,KAAK,MAAM,eAAe,GAAG,qBAAqB;AAAA,MAC3D;AAAA,MACA,UAAU;AAAA,IACZ,CAAC;AAAA,IACD,kBAAkB,IAAI,MAAM,GAAG;AAAA,IAE/B,sBAAsB,OAAO,IAAI;AAAA,IACjC,IAAI,iBAAiB,sBAAsB,SAAS,GAAG;AAAA,MACrD,aAAa,aAAa;AAAA,MAC1B,gBAAgB;AAAA,IAClB;AAAA;AAAA,EAIF,IAAI,yBAAyB;AAAA,EAC7B,MAAM,2BAA2B,OAAO;AAAA,EAGxC,MAAM,cAAc,QAAQ;AAAA,EAG5B,MAAM,mBAAmB,CAAC,WAA2B;AAAA,IAEnD,IAAI,aAAa,SAAS;AAAA,MACxB;AAAA,IACF;AAAA,IAEA,IAAI,OAAO,WAAW,YAAY;AAAA,MAChC,MAAM,OAAO,OAAO;AAAA,MACpB,MAAM,YAAY,OAAO;AAAA,MACzB,MAAM,oBAAoB,OAAO;AAAA,MAGjC,IAAI,CAAC,UAAU,IAAI,IAAI,GAAG;AAAA,QACxB,UAAU,IAAI,MAAM,SAAS;AAAA,QAC7B,aAAa,IAAI,MAAM,CAAC;AAAA,QAGxB,IAAI,aAAa,0BAA0B;AAAA,UACzC,yBAAyB;AAAA,QAC3B;AAAA,MACF;AAAA,MAGA,aAAa,IAAI,MAAM,iBAAiB;AAAA,MAGxC,MAAM,aAAa,qBAAqB;AAAA,MACxC,IAAI,cAAc,CAAC,cAAc,IAAI,IAAI,GAAG;AAAA,QAC1C,cAAc,IAAI,IAAI;AAAA,QACtB,aAAa,IAAI,MAAM,GAAG;AAAA,MAC5B;AAAA,MAGA,IAAI,mBAAmB;AAAA,MACvB,IAAI,kBAAkB;AAAA,MAGtB,MAAM,gBAAgB,MAAM;AAAA,MAC5B,MAAM,kBAAkB,MAAM,OAAO;AAAA,MACrC,IAAI,gBAAgB;AAAA,MACpB,IAAI,kBAAkB;AAAA,MACtB,IAAI,iBAAiB;AAAA,MAErB,YAAY,aAAa,SAAS,UAAU,QAAQ,GAAG;AAAA,QACrD,mBAAmB;AAAA,QACnB,MAAM,WAAW,aAAa,IAAI,WAAW,KAAK;AAAA,QAClD,oBAAqB,OAAO,WAAY;AAAA,QAGxC,IAAI,OAAO,eAAe;AAAA,UACxB;AAAA,QACF,EAAO,SAAI,OAAO,iBAAiB;AAAA,UACjC;AAAA,QACF,EAAO;AAAA,UACL;AAAA;AAAA,MAEJ;AAAA,MAMA,MAAM,kBAAkB,KAAK,IAAI,GAAG,qBAAqB,aAAa;AAAA,MACtE,MAAM,oBAAoB,KAAK,IAAI,GAAG,uBAAuB,eAAe;AAAA,MAM5E,IAAI;AAAA,MACJ,IAAI,iBAAiB,GAAG;AAAA,QACtB,sBAAsB;AAAA,MACxB,EAAO;AAAA,QACL,sBAAsB;AAAA;AAAA,MAExB,MAAM,mBAAmB,KAAK,IAAI,GAAG,sBAAsB,cAAc;AAAA,MAEzE,MAAM,oBACJ,kBACA,kBAAkB,oBAClB,oBAAoB,sBACpB,mBAAmB;AAAA,MAGrB,MAAM,cAAc,oBAAoB,IAAK,mBAAmB,oBAAqB,MAAM;AAAA,MAC3F,MAAM,kBAAmB,cAAc,mBAAoB;AAAA,MAG3D,MAAM,UAAU,CAAC,cAAc,IAAI,IAAI;AAAA,MACvC,MAAM,SAAS,cAAc,CAAC,aAAa,IAAI,IAAI;AAAA,MAEnD,IAAI,SAAS;AAAA,QACX,cAAc,IAAI,IAAI;AAAA,MACxB;AAAA,MACA,IAAI,QAAQ;AAAA,QACV,aAAa,IAAI,IAAI;AAAA,MACvB;AAAA,MAGA,IAAI,wBAAwB;AAAA,QAC1B,aAAa,iBAAiB,MAAM,mBAAmB,SAAS,MAAM;AAAA,MACxE;AAAA,IACF,EAAO,SAAI,OAAO,WAAW,UAAU,OAAO,WAAW,YAAY;AAAA,MAEnE,MAAM,OAAO,OAAO;AAAA,MAGpB,MAAM,WAAW,UAAU,IAAI,IAAI,KAAK;AAAA,MACxC,IAAI,YAAY,0BAA0B;AAAA,QACxC,yBAAyB;AAAA,MAC3B;AAAA,MAEA,IAAI,CAAC,cAAc,IAAI,IAAI,GAAG;AAAA,QAC5B,cAAc,IAAI,IAAI;AAAA,QACtB,aAAa,IAAI,MAAM,GAAG;AAAA,QAG1B,IAAI,mBAAmB;AAAA,QACvB,IAAI,kBAAkB;AAAA,QAEtB,MAAM,gBAAgB,MAAM;AAAA,QAC5B,MAAM,kBAAkB,MAAM,OAAO;AAAA,QACrC,IAAI,gBAAgB;AAAA,QACpB,IAAI,kBAAkB;AAAA,QACtB,IAAI,iBAAiB;AAAA,QAErB,YAAY,aAAa,SAAS,UAAU,QAAQ,GAAG;AAAA,UACrD,mBAAmB;AAAA,UACnB,MAAM,WAAW,aAAa,IAAI,WAAW,KAAK;AAAA,UAClD,oBAAqB,OAAO,WAAY;AAAA,UAGxC,IAAI,OAAO,eAAe;AAAA,YACxB;AAAA,UACF,EAAO,SAAI,OAAO,iBAAiB;AAAA,YACjC;AAAA,UACF,EAAO;AAAA,YACL;AAAA;AAAA,QAEJ;AAAA,QAGA,MAAM,kBAAkB,KAAK,IAAI,GAAG,qBAAqB,aAAa;AAAA,QACtE,MAAM,oBAAoB,KAAK,IAAI,GAAG,uBAAuB,eAAe;AAAA,QAG5E,IAAI;AAAA,QACJ,IAAI,iBAAiB,GAAG;AAAA,UACtB,sBAAsB;AAAA,QACxB,EAAO;AAAA,UACL,sBAAsB;AAAA;AAAA,QAExB,MAAM,mBAAmB,KAAK,IAAI,GAAG,sBAAsB,cAAc;AAAA,QAEzE,MAAM,oBACJ,kBACA,kBAAkB,oBAClB,oBAAoB,sBACpB,mBAAmB;AAAA,QAGrB,MAAM,cACJ,oBAAoB,IAAK,mBAAmB,oBAAqB,MAAM;AAAA,QACzE,MAAM,kBAAmB,cAAc,mBAAoB;AAAA,QAC3D,MAAM,SAAS,CAAC,aAAa,IAAI,IAAI;AAAA,QACrC,IAAI,QAAQ;AAAA,UACV,aAAa,IAAI,IAAI;AAAA,UAErB,IAAI,wBAAwB;AAAA,YAC1B,aAAa,iBAAiB,MAAM,KAAK,OAAO,IAAI;AAAA,UACtD;AAAA,QACF;AAAA,MACF;AAAA,IACF;AAAA;AAAA,EAGF,MAAM,kBAA0C;AAAA,IAC9C,OAAO,MAAM,eAAe,SAAS;AAAA,OACjC,MAAM,eAAe,wBACrB,EAAE,0BAA0B,MAAM,eAAe,sBAAsB,IACvE,CAAC;AAAA,OACD,MAAM,eAAe,SAAS,EAAE,QAAQ,MAAM,eAAe,OAAc,IAAI,CAAC;AAAA,OACjF;AAAA,IACH,mBAAmB;AAAA,EACrB;AAAA,EAGA,IAAI,aAAa,SAAS;AAAA,IACxB,MAAM,IAAI,MAAM,4CAA4C;AAAA,EAC9D;AAAA,EAEA,MAAM,eAAe,MAAM,eAAe;AAAA,EAI1C,MAAM,eAAe,IAAI,QAAe,CAAC,GAAG,WAAW;AAAA,IACrD,IAAI,aAAa;AAAA,MACf,MAAM,cAAc,MAAM;AAAA,QACxB,OAAO,IAAI,MAAM,2BAA2B,CAAC;AAAA;AAAA,MAG/C,IAAI,YAAY,SAAS;AAAA,QACvB,YAAY;AAAA,MACd,EAAO;AAAA,QACL,YAAY,iBAAiB,SAAS,aAAa,EAAE,MAAM,KAAK,CAAC;AAAA;AAAA,IAErE;AAAA,GACD;AAAA,EAGD,MAAM,kBAAkB,SAAS,cAAc,MAAM,eAAe,WAAW,eAAe;AAAA,EAE9F,IAAI;AAAA,IACF,MAAM,SAAS,OAAO,cAClB,QAAQ,KAAK,CAAC,iBAAiB,YAAY,CAAC,IAC5C;AAAA,IAGJ,IAAI,aAAa,SAAS;AAAA,MACxB,MAAM,IAAI,MAAM,2CAA2C;AAAA,IAC7D;AAAA,IAEA,UAAU,IAAI,UAAU,MAAM;AAAA,IAC9B,OAAO;AAAA,IACP,OAAO,OAAY;AAAA,IAEnB,IAAI,aAAa,SAAS;AAAA,MACxB,MAAM,IAAI,MAAM,2BAA2B;AAAA,IAC7C;AAAA,IAEA,MAAM;AAAA;AAAA;AAQH,IAAM,eAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAG9C,MAAM,YAAY,OAAQ,YAAY,EAAE,cAAc,OAAO,GAAG,GAAG;AAAA,EAEnE,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAOK,IAAM,aAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAE9C,MAAM,WAAW,oBAAoB,KAAM;AAAA,EAC3C,IAAI,UAAU,IAAI,QAAQ,GAAG;AAAA,IAC3B,UAAU,OAAO,QAAQ;AAAA,IACzB,WAAW,IAAI,8BAA8B;AAAA,EAC/C;AAAA,EAGA,MAAM,YAAY,MAAO,eAAe;AAAA,EACxC,MAAM,iBAAiB,SAAS;AAAA,EAChC,WAAW,KAAK,qBAAqB;AAAA,EAErC,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAOF,IAAM,mBAAmB,OAAO,cAAqC;AAAA,EACnE,MAAM,QAAQ,MAAM,OAAO,KAAK,cAAc;AAAA,EAC9C,MAAM,OAAO,MAAM,MAAM,KAAK;AAAA,EAC9B,MAAM,SAAS,IAAI;AAAA,EAGnB,MAAM,mBAA8B,CAAC;AAAA,EACrC,WAAW,WAAW,MAAM;AAAA,IAC1B,MAAM,MAAM,IAAI,IAAI,QAAQ,GAAG;AAAA,IAC/B,IAAI,IAAI,SAAS,WAAW,MAAM,GAAG;AAAA,MACnC,iBAAiB,KAAK,OAAO;AAAA,IAC/B;AAAA,EACF;AAAA,EAGA,IAAI,eAAe;AAAA,EACnB,WAAW,WAAW,kBAAkB;AAAA,IACtC,IAAI;AAAA,MACF,MAAM,UAAU,MAAM,MAAM,OAAO,OAAO;AAAA,MAC1C,IAAI,SAAS;AAAA,QACX;AAAA,MACF,EAAO;AAAA,QAEL,MAAM,eAAe,MAAM,MAAM,OAAO,QAAQ,GAAG;AAAA,QACnD,IAAI,cAAc;AAAA,UAChB;AAAA,QACF;AAAA;AAAA,MAEF,OAAO,OAAO;AAAA,MACd,QAAQ,MAAM,iCAAiC,QAAQ,OAAO,KAAK;AAAA;AAAA,EAEvE;AAAA;AAQK,IAAM,oBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,oBAA+C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACzF,cAAc;AAAA,EAChB,CAAC;AAAA,EAGD,MAAM,WAAW,MAAM,kBAAkB,MAAM,MAAM;AAAA,IACnD,SAAS;AAAA,IACT,WAAW,OAAO,eAAe;AAAA,OAC7B,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAGD,IAAI,SAAS,SAAS,OAAO,eAAe,kBAAkB;AAAA,IAC5D,QAAQ,KACN,wEAAwE,SAAS,YAAY,OAAO,eAAe,oBACnH,OACA,QACF;AAAA,IACA,MAAM,IAAI,MACR,wEAAwE,SAAS,YAAY,OAAO,eAAe,kBACrH;AAAA,EACF;AAAA,EAEA,OAAO,EAAE,QAAQ,SAAS,KAAmB;AAAA;AAGxC,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI,OAAO,gBAAgB,aAAa,4BAA4B;AAAA,IAClE,IACE,CAAC,MAAM,mBACP,CAAC,MAAM,QAAQ,MAAM,eAAe,KACpC,MAAM,gBAAgB,WAAW,GACjC;AAAA,MACA,MAAM,IAAI,MAAM,yDAAyD;AAAA,IAC3E;AAAA,IAEA,MAAM,qBAAqD,MAAM,YAC/D,OACA,YACA;AAAA,MACE,cAAc;AAAA,IAChB,CACF;AAAA,IACA,MAAM,UAAc,MAAM,mBAAmB,MAAM,MAAM,MAAM,iBAA6B,CAAC,CAAC;AAAA,IAE9F,OAAO;AAAA,MACL,YAAY,QAAO,OAAO,IAAI,CAAC,OAAe,SAAiB;AAAA,QAC7D;AAAA,QACA,OAAO,QAAO,OAAO;AAAA,MACvB,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,MAAM,qBAAiD,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3F,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAS,MAAM,mBAAmB,MAAM,MAAM;AAAA,IAClD,OAAO,MAAM,iBAAiB;AAAA,OAC1B,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,MAAM,QAAQ,OAAO,EAAE,GAAG;AAAA,IAC5B,OAAO;AAAA,MACL,YAAY,OAAO,GAAG,IAAI,CAAC,cAAc;AAAA,QACvC,OAAO,SAAS;AAAA,QAChB,OAAO,SAAS;AAAA,MAClB,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,OAAO;AAAA,IACL,YAAa,OAAoC,IAAI,CAAC,cAAc;AAAA,MAClE,OAAO,SAAS;AAAA,MAChB,OAAO,SAAS;AAAA,IAClB,EAAE;AAAA,EACJ;AAAA;AAGK,IAAM,4BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,qBAAiD,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3F,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAS,MAAM,mBAAmB,MAAM,MAAM;AAAA,IAClD,OAAO,MAAM,gBAAgB;AAAA,OACzB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,MAAM,QAAQ,OAAO,EAAE,GAAG;AAAA,IAC5B,OAAO;AAAA,MACL,WAAW,OAAO,GAAG,IAAI,CAAC,cAAc;AAAA,QACtC,UAAU,SAAS;AAAA,QACnB,OAAO,SAAS;AAAA,MAClB,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,OAAO;AAAA,IACL,WAAY,OAAoC,IAAI,CAAC,cAAc;AAAA,MACjE,UAAU,SAAS;AAAA,MACnB,OAAO,SAAS;AAAA,IAClB,EAAE;AAAA,EACJ;AAAA;AAGK,IAAM,iCAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,6BAA0D,MAAM,YACpE,OACA,YACA;AAAA,IACE,cAAc;AAAA,EAChB,CACF;AAAA,EACA,IAAI,UAAU,MAAM,2BAA2B,MAAM,MAAM;AAAA,IACzD,eAAe,MAAM;AAAA,OACjB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EACD,IAAI,WAAwC,CAAC;AAAA,EAC7C,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,WAAW,CAAC,OAAO;AAAA,EACrB,EAAO;AAAA,IACL,WAAW;AAAA;AAAA,EAEb,OAAO;AAAA,IACL,UAAU,SAAS,IAAI,CAAC,YAAY;AAAA,MAClC,QAAQ,OAAO;AAAA,MACf,OAAO,OAAO;AAAA,MACd,MAAM,OAAO;AAAA,IACf,EAAE;AAAA,EACJ;AAAA;AAGK,IAAM,mBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,WAA6B,MAAM,YAAY,OAAQ,YAAY;AAAA,IACvE,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,IAAI,UAAU,MAAM,SAAS,MAAM,IAAI;AAAA,EACvC,IAAI,cAAgC,CAAC;AAAA,EACrC,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,cAAc,CAAC,OAAO;AAAA,EACxB,EAAO;AAAA,IACL,cAAc;AAAA;AAAA,EAEhB,OAAO;AAAA,IACL,aAAa,YAAY,IAAI,CAAC,gBAAgB;AAAA,MAC5C,QAAQ,WAAW;AAAA,MACnB,OAAO,WAAW;AAAA,MAClB,UAAU,WAAW;AAAA,IACvB,EAAE;AAAA,EACJ;AAAA;AAOK,IAAM,qBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAuC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACjF,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,WAAW,mBAAmB,aAAa,WAAW,YAAY,MAAM;AAAA,EAE9E,IAAI,UAAU,MAAM,aAAa,MAAM,QAAQ;AAAA,IAC7C;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,UAAU,CAAC,OAAO;AAAA,EACpB;AAAA,EACA,IAAI,OAAQ,QAAQ,IAA6B;AAAA,EAEjD,IAAI,MAAM,QAAQ,IAAI,GAAG;AAAA,IACvB,OAAO,KAAK,KAAK,SAAS,IAAI;AAAA,EAChC;AAAA,EACA,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAOK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAiC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3E,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,UAAU,WAAW,UAAU;AAAA,EAEnE,MAAM,SAAS,MAAM,UAAU,MAAM,MAAM;AAAA,IACzC,UAAU,MAAM;AAAA,IAChB,UAAU,MAAM;AAAA,IAChB;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAQ;AAAA,EAER,IAAI,iBAAoC;AAAA,EACxC,IAAI,MAAM,QAAQ,MAAM,GAAG;AAAA,IACzB,iBAAiB,OAAO,IAAI,CAAC,MAAO,GAAyB,oBAAoB,EAAE;AAAA,EACrF,EAAO;AAAA,IACL,iBAAkB,QAA8B,oBAAoB;AAAA;AAAA,EAGtE,OAAO;AAAA,IACL,MAAM;AAAA,IACN,aAAa,MAAM;AAAA,EACrB;AAAA;AAOK,IAAM,mBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAuC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACjF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,aAAa,WAAW,UAAU;AAAA,EAGtE,MAAM,gBAAgB,MAAM,SAAS,MAAM,SAAS;AAAA,IAAO,MAAM,MAAM;AAAA,EAEvE,IAAI,UAAU,MAAM,aAAa,cAAc;AAAA,IAC7C;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,IAAI,CAAC,MAAM,QAAQ,OAAO,GAAG;AAAA,IAC3B,UAAU,CAAC,OAAO;AAAA,EACpB;AAAA,EAEA,IAAI,OAAQ,QAAQ,IAA6B;AAAA,EACjD,IAAI,MAAM,QAAQ,IAAI,GAAG;AAAA,IACvB,OAAO,KAAK,KAAK,SAAS,IAAI;AAAA,EAChC;AAAA,EAEA,IAAI,SAAS,cAAc;AAAA,IACzB,MAAM,IAAI,MAAM,sCAAsC;AAAA,EACxD;AAAA,EAEA,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAOK,IAAM,kBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,kBAAyC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACnF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,gBAAgB,WAAW,UAAU;AAAA,EAEzE,IAAI,SAAS,MAAM,gBAAgB,MAAM,MAAM;AAAA,IAC7C;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAQ;AAAA,EAER,IAAI,cAAc;AAAA,EAClB,IAAI,MAAM,QAAQ,MAAM,GAAG;AAAA,IACzB,cAAe,OAAO,IAA4B,gBAAgB;AAAA,EACpE,EAAO;AAAA,IACL,cAAe,QAAgC,gBAAgB;AAAA;AAAA,EAGjE,OAAO;AAAA,IACL,MAAM;AAAA,EACR;AAAA;AAOK,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAE9C,MAAM,iBAA4C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACtF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,WAAW,mBAAmB,eAAe,WAAW,UAAU;AAAA,EAExE,MAAM,SAAS,MAAM,eAAe,MAAM,UAAU,MAAM,SAAS;AAAA,IACjE;AAAA,OACI,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAQ;AAAA,EAER,IAAI,aAAa;AAAA,EACjB,IAAI,MAAM,QAAQ,MAAM,GAAG;AAAA,IACzB,aAAc,OAAO,IAAwC,UAAU;AAAA,EACzE,EAAO;AAAA,IACL,aAAc,QAA4C,UAAU;AAAA;AAAA,EAGtE,OAAO;AAAA,IACL,MAAM;AAAA,EACR;AAAA;AAMK,IAAM,wBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAuC,MAAM,YAAY,OAAQ,YAAY;AAAA,IACjF,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAS,MAAM,UAAU,MAAM,OAAc;AAAA,IACjD,WAAW,MAAM;AAAA,IACjB,gBAAgB,MAAM;AAAA,OAClB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,QAAQ,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AAAA,EAEtD,MAAM,iBAAiB,MAAM,QAAQ,IACnC,MAAM,IAAI,OAAO,UAAU;AAAA,IACzB,OAAO,KAAK,SAAS;AAAA,IACrB,OAAO,KAAK,SAAS;AAAA,IACrB,MAAM,CAAC;AAAA,EACT,EAAE,CACJ;AAAA,EAEA,OAAO;AAAA,IACL,OAAO;AAAA,EACT;AAAA;AAMK,IAAM,kBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAiC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC3E,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAc,MAAM,UAAU,MAAM,OAAiB;AAAA,IACzD,gBAAgB,MAAM;AAAA,OAClB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,OAAO,MAAM,QAAQ,MAAM,IAAI,OAAO,IAAI,iBAAiB,QAAQ;AAAA,EAEzE,OAAO;AAAA,IACL,MAAM,QAAQ;AAAA,EAChB;AAAA;AAMK,IAAM,wBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,UAAqC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC/E,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAS,MAAM,QAAQ,MAAM,OAAiB;AAAA,OAC9C,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,cAAc,MAAM,QAAQ,MAAM,IAAI,OAAO,KAAK;AAAA,EAExD,OAAO;AAAA,IACL,OAAO,cAAc,WAAW;AAAA,EAClC;AAAA;AAMK,IAAM,qBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,WAA2C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACrF,cAAc;AAAA,EAChB,CAAC;AAAA,EAED,MAAM,SAAc,MAAM,SAAS,MAAM,KAAe;AAAA,EAExD,OAAO;AAAA,IACL,QAAQ,OAAO;AAAA,EACjB;AAAA;AAOK,IAAM,0BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI,OAAO,gBAAgB,aAAa,kCAAkC;AAAA,IACxE,IAAI,CAAC,MAAM,cAAc,CAAC,MAAM,QAAQ,MAAM,UAAU,KAAK,MAAM,WAAW,WAAW,GAAG;AAAA,MAC1F,QAAQ,KAAK,sDAAsD,KAAK;AAAA,MACxE,MAAM,IAAI,MAAM,oDAAoD;AAAA,IACtE;AAAA,IACA,MAAM,qBAA0D,MAAM,YACpE,OACA,YACA;AAAA,MACE,cAAc;AAAA,IAChB,CACF;AAAA,IACA,MAAM,UAAc,MAAM,mBACxB,MAAM,OACN,MAAM,YACN,CAAC,CACH;AAAA,IAEA,MAAM,WAAU,MAAM,QAAQ,OAAM,IAAI,UAAS,CAAC,OAAM;AAAA,IAExD,OAAO;AAAA,MACL,YAAY,SAAQ,IAAI,CAAC,OAAY;AAAA,QACnC,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,MACX,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,MAAM,aAA0C,MAAM,YAAY,OAAQ,YAAY;AAAA,IACpF,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAc,MAAM,WAAW,MAAM,OAAiB;AAAA,IAC1D,OAAQ,MAAc;AAAA,OAClB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,UAAU,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AAAA,EAExD,OAAO;AAAA,IACL,YAAY,QAAQ,IAAI,CAAC,OAAY;AAAA,MACnC,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,EACJ;AAAA;AAOK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI,OAAO,gBAAgB,aAAa,8BAA8B;AAAA,IACpE,IAAI,CAAC,MAAM,UAAU,CAAC,MAAM,QAAQ,MAAM,MAAM,KAAK,MAAM,OAAO,WAAW,GAAG;AAAA,MAC9E,MAAM,IAAI,MAAM,4CAA4C;AAAA,IAC9D;AAAA,IACA,MAAM,mBAAoD,MAAM,YAC9D,OACA,YACA;AAAA,MACE,cAAc;AAAA,IAChB,CACF;AAAA,IACA,MAAM,UAAc,MAAM,iBAAiB,MAAM,OAAiB,MAAM,KAAK,MAAM,MAAO,GAAG;AAAA,MAC3F,WAAY,MAAc;AAAA,IAC5B,CAAC;AAAA,IAED,MAAM,cAAa,MAAM,QAAQ,OAAM,IAAI,UAAS,CAAC,OAAM;AAAA,IAE3D,OAAO;AAAA,MACL,YAAY,YAAW,IAAI,CAAC,OAAY;AAAA,QACtC,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,QACT,KAAK,EAAE;AAAA,MACT,EAAE;AAAA,IACJ;AAAA,EACF;AAAA,EAEA,MAAM,WAAoC,MAAM,YAAY,OAAQ,YAAY;AAAA,IAC9E,cAAc;AAAA,EAChB,CAAC;AAAA,EACD,MAAM,SAAc,MAAM,SAAS,MAAM,OAAiB;AAAA,IACxD,WAAY,MAAc;AAAA,OACtB,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA,EAED,MAAM,aAAa,MAAM,QAAQ,MAAM,IAAI,SAAS,CAAC,MAAM;AAAA,EAE3D,OAAO;AAAA,IACL,YAAY,WAAW,IAAI,CAAC,OAAY;AAAA,MACtC,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,MACT,KAAK,EAAE;AAAA,IACT,EAAE;AAAA,EACJ;AAAA;AAKF,SAAS,aAAa,CAAC,OAAyB;AAAA,EAG9C,OAAQ,MAAc,WAAW,KAAK;AAAA;AAUxC,SAAS,kBAAkB,CACzB,WACA,gBACA,QACA;AAAA,EACA,IAAI,QAAQ;AAAA,EACZ,OAAO,IAAI,aAAa,WAAW;AAAA,IACjC,aAAa;AAAA,IACb,eAAe,EAAE,qBAAqB,KAAK;AAAA,IAC3C,mBAAmB,CAAC,SAAiB;AAAA,MACnC;AAAA,MACA,MAAM,SAAS,OAAO,IAAI,KAAK,IAAI,QAAQ,KAAK;AAAA,MAChD,MAAM,WAAW,KAAK,MAAM,KAAK,IAAI,QAAQ,GAAG,CAAC;AAAA,MACjD,eAAe,UAAU,cAAc,EAAE,MAAM,SAAS,CAAC;AAAA;AAAA,OAEvD,SAAS,EAAE,cAAc,OAAO,IAAI,CAAC;AAAA,EAC3C,CAAC;AAAA;;AC5kCH;AAIO,IAAM,gCAAgC;AAAA,EAC3C,MAAM;AAAA,EACN,YAAY;AAAA,IACV,UAAU;AAAA,MACR,OAAO;AAAA,MACP,aAAa;AAAA,IACf;AAAA,IACA,gBAAgB;AAAA,MACd,MAAM;AAAA,MACN,aAAa;AAAA,MACb,YAAY;AAAA,QACV,UAAU;AAAA,UACR,MAAM;AAAA,UACN,MAAM,OAAO,OAAO,eAAe;AAAA,UACnC,aAAa;AAAA,UACb,SAAS;AAAA,QACX;AAAA,QACA,WAAW;AAAA,UACT,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,OAAO;AAAA,UACL,MAAM;AAAA,UACN,MAAM,OAAO,OAAO,oBAAoB;AAAA,UACxC,aAAa;AAAA,UACb,SAAS;AAAA,QACX;AAAA,QACA,QAAQ;AAAA,UACN,MAAM;AAAA,UACN,MAAM,CAAC,OAAO,OAAO,UAAU,QAAQ,OAAO;AAAA,UAC9C,aAAa;AAAA,UACb,SAAS;AAAA,QACX;AAAA,QACA,oBAAoB;AAAA,UAClB,MAAM;AAAA,UACN,OAAO,EAAE,MAAM,SAAS;AAAA,UACxB,aAAa;AAAA,QACf;AAAA,QACA,mBAAmB;AAAA,UACjB,MAAM;AAAA,UACN,SAAS;AAAA,QACX;AAAA,QACA,mBAAmB;AAAA,UACjB,MAAM;AAAA,UACN,SAAS;AAAA,QACX;AAAA,QACA,uBAAuB;AAAA,UACrB,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,kBAAkB;AAAA,UAChB,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,WAAW;AAAA,UACT,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,eAAe;AAAA,UACb,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,MACF;AAAA,MACA,UAAU,CAAC,aAAa,UAAU;AAAA,MAClC,sBAAsB;AAAA,MACtB,IAAI;AAAA,QACF,YAAY;AAAA,UACV,UAAU;AAAA,YACR,OAAO;AAAA,UACT;AAAA,QACF;AAAA,MACF;AAAA,MACA,MAAM;AAAA,QACJ,UAAU,CAAC,kBAAkB;AAAA,MAC/B;AAAA,IACF;AAAA,EACF;AAAA,EACA,UAAU,CAAC,YAAY,gBAAgB;AAAA,EACvC,sBAAsB;AACxB;AAEA,IAAM,4BAA4B;AAAA,EAChC,MAAM;AAAA,EACN,YAAY;AAAA,OACP,kBAAkB;AAAA,OAClB,8BAA8B;AAAA,EACnC;AAAA,EACA,UAAU,CAAC,GAAG,kBAAkB,UAAU,GAAG,8BAA8B,QAAQ;AAAA,EACnF,sBAAsB;AACxB;AAIA,IAAM,4BAA4B;AAAA,EAChC,MAAM;AAAA,EACN,YAAY;AAAA,OACP,kBAAkB;AAAA,OAClB,8BAA8B;AAAA,EACnC;AAAA,EACA,UAAU,CAAC,GAAG,kBAAkB,UAAU,GAAG,8BAA8B,QAAQ;AAAA,EACnF,sBAAsB;AACxB;;ACzGA;AACA;AACA;AACA;AACA;AAUA,eAAsB,yBAAyB,CAC7C,QACA,QACe;AAAA,EACf,MAAM,gBAAgB,sBAAsB,IAAI,cAAc;AAAA,EAE9D,cAAc,eAAe,sBAAsB,MAAM;AAAA,EAEzD,MAAM,mBAAmB,sBAAsB;AAAA,EAC/C,MAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAAA,EACA,WAAW,QAAQ,OAAO;AAAA,IACxB,iBAAiB,sBAAsB,sBAAsB,IAAI;AAAA,EACnE;AAAA,EAEA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,qBAClB,oBACF;AAAA,IAEA,MAAM,SAAS,IAAI,eAAkD,OAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,mBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,eAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,qBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,EAElE;AAAA;;ACnEF;AACA,kBAAS,iCAAoC;AAC7C,+BAAS,uCAAoB,mCAAgB;AAC7C,iCAAS;AACT,iCAAS;AA6BT,eAAsB,yBAAyB,CAC7C,QACe;AAAA,EAEf,IAAI,SAAS,KAAK,KAAK,QAAQ;AAAA,EAC/B,MAAM,mBAAmB,uBAAsB;AAAA,EAC/C,MAAM,MAAsD;AAAA,KACzD,sBAAsB;AAAA,KACtB,oBAAoB;AAAA,KACpB,sBAAsB;AAAA,KACtB,uBAAuB;AAAA,KACvB,2BAA2B;AAAA,KAC3B,8BAA8B;AAAA,KAC9B,2BAA2B;AAAA,KAC3B,qBAAqB;AAAA,KACrB,mCAAmC;AAAA,KACnC,qBAAqB;AAAA,KACrB,oBAAoB;AAAA,KACpB,wBAAwB;AAAA,KACxB,0BAA0B;AAAA,KAC1B,oBAAoB;AAAA,KACpB,0BAA0B;AAAA,KAC1B,uBAAuB;AAAA,KACvB,4BAA4B;AAAA,KAC5B,wBAAwB;AAAA,EAC3B;AAAA,EACA,YAAY,SAAS,OAAO,OAAO,QAAQ,GAAG,GAAG;AAAA,IAC/C,iBAAiB,cAAwB,sBAAsB,SAAS,EAAE;AAAA,EAC5E;AAAA,EAGA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,sBAClB,oBACF;AAAA,IACA,MAAM,QAAQ,cAAc;AAAA,IAE5B,MAAM,SAAS,IAAI,gBAAkD,QAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,oBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,gBAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,sBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,IAChE,MAAM,OAAO,MAAM;AAAA,EACrB;AAAA;;ACrFF;AAAA;AAAA,2BAEE;AAAA;AAAA;AAAA;AAyBK,IAAM,oBAAoB,mBAAmB,wBAAwB;AAErE,IAAM,6BAA6B,uBAAsB,SAC9D,mBACA,MAAM;AAAA,EACJ,MAAM,eAAe,uBAAsB,IAAI,aAAa;AAAA,EAC5D,aAAa,iBAAiB,qBAAqB,YAAY;AAAA,EAC/D,aAAa,iBAAiB,mBAAmB,UAAU;AAAA,EAC3D,aAAa,iBAAiB,qBAAqB,iBAAiB;AAAA,EACpE,aAAa,iBAAiB,sBAAsB,kBAAkB;AAAA,EACtE,aAAa,iBAAiB,6BAA6B,yBAAyB;AAAA,EACpF,aAAa,iBAAiB,0BAA0B,sBAAsB;AAAA,EAC9E,aAAa,iBAAiB,oBAAoB,gBAAgB;AAAA,EAClE,aAAa,iBAAiB,kCAAkC,8BAA8B;AAAA,EAC9F,aAAa,iBAAiB,uBAAuB,mBAAmB;AAAA,EACxE,aAAa,iBAAiB,oBAAoB,gBAAgB;AAAA,EAClE,aAAa,iBAAiB,mBAAmB,eAAe;AAAA,EAChE,aAAa,iBAAiB,0BAA0B,sBAAsB;AAAA,EAC9E,aAAa,iBAAiB,yBAAyB,qBAAqB;AAAA,EAC5E,aAAa,iBAAiB,mBAAmB,eAAe;AAAA,EAChE,aAAa,iBAAiB,yBAAyB,qBAAqB;AAAA,EAC5E,aAAa,iBAAiB,sBAAsB,kBAAkB;AAAA,EACtE,aAAa,iBAAiB,2BAA2B,uBAAuB;AAAA,EAChF,aAAa,iBAAiB,uBAAuB,mBAAmB;AAAA,EACxE,WAAW,YAAY,EAAE,MAAM,QAAQ,CAAC;AAAA,EACxC,QAAQ,IAAI,8BAA8B;AAAA,EAC1C,OAAO;AAAA,GAET,IACF;;ACxDO,IAAM,uBAAuB;AAsB7B,IAAM,mBAAmB;AAAA,EAC9B,iBAAiB;AAAA,EACjB,mBAAmB;AAAA,EACnB,0BAA0B;AAAA,EAC1B,cAAc;AAAA,EACd,oBAAoB;AAAA,EACpB,kBAAkB;AAAA,EAClB,wBAAwB;AAAA,EACxB,0BAA0B;AAAA,EAC1B,wBAAwB;AAAA,EACxB,6BAA6B;AAAA,EAC7B,0BAA0B;AAAA,EAC1B,8BAA8B;AAAA,EAC9B,2BAA2B;AAAA,EAC3B,yBAAyB;AAAA,EACzB,0BAA0B;AAAA,EAC1B,sCAAsC;AAAA,EACtC,0BAA0B;AAAA,EAC1B,0BAA0B;AAC5B;;ACzCA;AAAA;AAAA;AAAA;AAAA;AAAA;AAMA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AA0CA;AAkBA,IAAM,aAAa,IAAI;AAMvB,IAAM,wBAAwB,IAAI;AAKlC,IAAM,cAAc,OAClB,OACA,YACA,WAC6B;AAAA,EAC7B,MAAM,aAAa,MAAM,eAAe;AAAA,EAExC,IAAI,WAAW,IAAI,UAAU,GAAG;AAAA,IAC9B,OAAO,WAAW,IAAI,UAAU;AAAA,EAClC;AAAA,EAEA,IAAI,OAAO,SAAS;AAAA,IAClB,MAAM,IAAI,kBAAkB,aAAa;AAAA,EAC3C;AAAA,EAEA,WAAW,KAAK,mBAAmB;AAAA,EAEnC,IAAI;AAAA,EAEJ,QAAQ;AAAA,SACD;AAAA,MACH,cAAc,MAAM,gBAAgB,aAClC,gEACF;AAAA,MACA;AAAA,SACG;AAAA,MACH,cAAc,MAAM,gBAAgB,cAClC,iEACF;AAAA,MACA;AAAA,SACG;AAAA,MACH,cAAc,MAAM,gBAAgB,eAClC,kEACF;AAAA,MACA;AAAA,SACG;AAAA,MACH,cAAc,MAAM,gBAAgB,cAClC,iEACF;AAAA,MACA;AAAA;AAAA,MAEA,MAAM,IAAI,kBAAkB,qBAAqB;AAAA;AAAA,EAGrD,WAAW,IAAI,YAAY,WAAW;AAAA,EACtC,OAAO;AAAA;AAqCT,IAAM,iBAAiB,IAAI;AA+B3B,IAAM,eAAe,CAAC,OAAgC,UAA4C;AAAA,EAChG,MAAM,QAAQ,OAAO,KAAK,KAAK,EAAE,KAAK;AAAA,EACtC,MAAM,QAAQ,OAAO,KAAK,KAAK,EAAE,KAAK;AAAA,EAEtC,IAAI,MAAM,WAAW,MAAM;AAAA,IAAQ,OAAO;AAAA,EAE1C,OAAO,MAAM,MAAM,CAAC,QAAQ;AAAA,IAC1B,MAAM,OAAO,MAAM;AAAA,IACnB,MAAM,OAAO,MAAM;AAAA,IAEnB,IAAI,MAAM,QAAQ,IAAI,KAAK,MAAM,QAAQ,IAAI,GAAG;AAAA,MAC9C,OAAO,KAAK,UAAU,IAAI,MAAM,KAAK,UAAU,IAAI;AAAA,IACrD;AAAA,IAEA,OAAO,SAAS;AAAA,GACjB;AAAA;AAGH,IAAM,eAAe,OACnB,OACA,SACA,YACA,QACA,aACkC;AAAA,EAClC,MAAM,YAAY,MAAM,eAAe;AAAA,EACvC,MAAM,aAAa,MAAM,eAAe;AAAA,EAGxC,MAAM,cAAc,eAAe,IAAI,SAAS;AAAA,EAChD,IAAI,aAAa;AAAA,IACf,MAAM,cAAc,YAAY,KAAK,CAAC,WAAW,aAAa,OAAO,SAAS,OAAO,CAAC;AAAA,IACtF,IAAI,aAAa;AAAA,MACf,OAAO,YAAY;AAAA,IACrB;AAAA,EACF;AAAA,EAGA,MAAM,cAAc,MAAM,YAAY,OAAO,YAAY,MAAM;AAAA,EAE/D,WAAW,KAAK,qBAAqB;AAAA,EAGrC,MAAM,OAAO,MAAM,SAAS,kBAAkB,aAAa;AAAA,IACzD,aAAa;AAAA,MACX,gBAAgB;AAAA,IAClB;AAAA,OACG;AAAA,EACL,CAAC;AAAA,EAGD,MAAM,aAA8B,EAAE,MAAM,SAAS,WAAW;AAAA,EAChE,IAAI,CAAC,eAAe,IAAI,SAAS,GAAG;AAAA,IAClC,eAAe,IAAI,WAAW,CAAC,CAAC;AAAA,EAClC;AAAA,EACA,eAAe,IAAI,SAAS,EAAG,KAAK,UAAU;AAAA,EAG9C,sBAAsB,IAAI,aAAa,sBAAsB,IAAI,UAAU,KAAK,KAAK,CAAC;AAAA,EAEtF,OAAO;AAAA;AAOF,IAAM,gBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,IAAI;AAAA,EACJ,QAAQ,OAAO,eAAe;AAAA,SACvB;AAAA,MACH,OAAO,MAAM,aAAa,OAAO,CAAC,GAAG,YAAY,QAAQ,YAAY;AAAA,MACrE;AAAA,SACG;AAAA,MACH,OAAO,MAAM,aAAa,OAAO,CAAC,GAAG,YAAY,QAAQ,cAAc;AAAA,MACvE;AAAA,SACG;AAAA,MACH,OAAO,MAAM,aAAa,OAAO,CAAC,GAAG,YAAY,QAAQ,gBAAgB;AAAA,MACzE;AAAA;AAAA,MAEA,MAAM,IAAI,kBAAkB,kBAAkB;AAAA;AAAA,EAElD,WAAW,KAAK,iBAAiB;AAAA,EACjC,KAAK,MAAM;AAAA,EAEX,MAAM,aAAa,OAAO,eAAe;AAAA,EACzC,sBAAsB,IAAI,YAAY,sBAAsB,IAAI,UAAU,IAAK,CAAC;AAAA,EAEhF,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAOK,IAAM,qBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAe,MAAM,aAAa,OAAQ,CAAC,GAAG,YAAY,QAAQ,YAAY;AAAA,EACpF,MAAM,SAAS,aAAa,MAAM,MAAM,IAAI;AAAA,EAE5C,IAAI,CAAC,OAAO,aAAa,IAAI,gBAAgB;AAAA,IAC3C,MAAM,IAAI,kBAAkB,4CAA4C;AAAA,EAC1E;AAAA,EAEA,MAAM,YAAY,aAAa,KAAK,OAAO,WAAW,GAAG,cAAc;AAAA,EAEvE,OAAO;AAAA,IACL,QAAQ;AAAA,EACV;AAAA;AAOK,IAAM,0BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,qBAAqB,MAAM,aAC/B,OACA;AAAA,IACE,eAAe,MAAM;AAAA,EAIvB,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,mBAAmB,SAAS,MAAM,IAAI;AAAA,EAErD,IAAI,CAAC,OAAO,kBAAkB,IAAI,YAAY;AAAA,IAC5C,MAAM,IAAI,kBAAkB,uCAAuC;AAAA,EACrE;AAAA,EAEA,MAAM,aAAa,OAAO,gBAAgB,GAAG,WAAW,IAAI,CAAC,cAAc;AAAA,IACzE,OAAO,SAAS;AAAA,IAChB,OAAO,SAAS;AAAA,EAClB,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAOK,IAAM,6BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAe,MAAM,iBAAiB,IAAI,KAAK,MAAM;AAAA,EAE3D,MAAM,uBAAuB,MAAM,aACjC,OACA;AAAA,IACE;AAAA,EAIF,GACA,YACA,QACA,gBACF;AAAA,EACA,MAAM,SAAS,qBAAqB,OAAO,MAAM,IAAI;AAAA,EAErD,IAAI,CAAC,OAAO,YAAY,IAAI,cAAc;AAAA,IACxC,MAAM,IAAI,kBAAkB,yCAAyC;AAAA,EACvE;AAAA,EAEA,MAAM,YAAY,OAAO,UAAU,IAAI,CAAC,cAAc;AAAA,IACpD,UAAU,SAAS;AAAA,IACnB,OAAO,SAAS;AAAA,EAClB,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAYK,IAAM,cAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,YAAY,MAAO,eAAe;AAAA,EACxC,WAAW,IAAI,iBAAiB;AAAA,EAEhC,IAAI,eAAe,IAAI,SAAS,GAAG;AAAA,IACjC,MAAM,cAAc,eAAe,IAAI,SAAS;AAAA,IAEhD,WAAW,cAAc,aAAa;AAAA,MACpC,MAAM,OAAO,WAAW;AAAA,MACxB,IAAI,WAAW,QAAQ,OAAO,KAAK,UAAU;AAAA,QAAY,KAAK,MAAM;AAAA,MAGpE,MAAM,aAAa,WAAW;AAAA,MAC9B,MAAM,eAAe,sBAAsB,IAAI,UAAU,KAAK;AAAA,MAC9D,MAAM,WAAW,eAAe;AAAA,MAEhC,IAAI,YAAY,GAAG;AAAA,QAEjB,WAAW,OAAO,UAAU;AAAA,QAC5B,sBAAsB,OAAO,UAAU;AAAA,MACzC,EAAO;AAAA,QACL,sBAAsB,IAAI,YAAY,QAAQ;AAAA;AAAA,IAElD;AAAA,IAEA,eAAe,OAAO,SAAS;AAAA,EACjC;AAAA,EAEA,OAAO;AAAA,IACL,OAAO,MAAM;AAAA,EACf;AAAA;AAMK,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAAa,OAAQ,CAAC,GAAG,YAAY,QAAQ,cAAc;AAAA,EACxF,MAAM,SAAS,eAAe,QAAQ,MAAM,KAAY;AAAA,EAExD,IAAI,CAAC,OAAO,cAAc;AAAA,IACxB,MAAM,IAAI,kBAAkB,uCAAuC;AAAA,EACrE;AAAA,EAGA,MAAM,QAAQ;AAAA,IACZ;AAAA,MACE,OAAO;AAAA,MACP,OAAO;AAAA,MACP,MAAM;AAAA,QACJ,MAAM,OAAO,aAAa;AAAA,QAC1B,OAAO,OAAO,aAAa;AAAA,QAC3B,QAAQ,OAAO,aAAa;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAAA,EAEA,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,gBAAgB,MAAM,aAAa,OAAQ,CAAC,GAAG,YAAY,QAAQ,aAAa;AAAA,EACtF,MAAM,SAAS,cAAc,MAAM,MAAM,KAAY;AAAA,EAErD,IAAI,CAAC,OAAO,aAAa,IAAI,gBAAgB;AAAA,IAC3C,MAAM,IAAI,kBAAkB,4CAA4C;AAAA,EAC1E;AAAA,EAEA,MAAM,YAAY,aAAa,KAAK,OAAO,WAAW,GAAG,cAAc;AAAA,EAEvE,OAAO;AAAA,IACL,QAAQ;AAAA,EACV;AAAA;AAMK,IAAM,2BAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,kBAAkB,MAAM,aAC5B,OACA;AAAA,IACE,YAAa,MAAc;AAAA,EAC7B,GACA,YACA,QACA,eACF;AAAA,EACA,MAAM,SAAS,gBAAgB,SAAS,MAAM,KAAY;AAAA,EAE1D,IAAI,CAAC,OAAO,kBAAkB,IAAI,YAAY;AAAA,IAC5C,MAAM,IAAI,kBAAkB,wCAAwC;AAAA,EACtE;AAAA,EAEA,MAAM,aAAa,OAAO,gBAAgB,GAAG,WAAW,IAAI,CAAC,cAAmB;AAAA,IAC9E,OAAO,SAAS;AAAA,IAChB,OAAO,SAAS;AAAA,EAClB,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,uBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,gBAAiB,MAAc;AAAA,EACjC,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,YAAY;AAAA,IACtB,MAAM,IAAI,kBAAkB,wCAAwC;AAAA,EACtE;AAAA,EAEA,MAAM,aAAa,OAAO,WAAW,IAAI,CAAC,eAAoB;AAAA,IAC5D,OAAO,UAAU,aAAa,IAAI,gBAAgB;AAAA,IAClD,OAAO,UAAU,aAAa,IAAI,SAAS;AAAA,IAC3C,KAAK;AAAA,MACH,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,OAAO,UAAU,aAAa,SAAS;AAAA,MACvC,QAAQ,UAAU,aAAa,UAAU;AAAA,IAC3C;AAAA,EACF,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,yBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,oBAAoB,MAAM,aAC9B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,EACxC,GACA,YACA,QACA,iBACF;AAAA,EACA,MAAM,SAAS,kBAAkB,UAAU,MAAM,KAAY;AAAA,EAE7D,IAAI,CAAC,OAAO,YAAY,CAAC,OAAO,WAAW;AAAA,IACzC,MAAM,IAAI,kBAAkB,4CAA4C;AAAA,EAC1E;AAAA,EAEA,MAAM,QAAQ,OAAO,SAAS,IAAI,CAAC,UAAe,WAAmB;AAAA,IACnE,UAAU,SAAS,IAAI,CAAC,OAAY;AAAA,MAClC,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,IACF,YAAY,OAAO,WAAW,OAAO,IAAI,CAAC,OAAY;AAAA,MACpD,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,IACF,WAAW,OAAO,UAAU,OAAO,IAAI,CAAC,OAAY;AAAA,MAClD,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,IACF,gBAAgB,OAAO,eAAe,OAAO,IAAI,CAAC,OAAY;AAAA,MAC5D,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,EACJ,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,EACxC,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,WAAW;AAAA,IACrB,MAAM,IAAI,kBAAkB,+CAA+C;AAAA,EAC7E;AAAA,EAEA,MAAM,QAAQ,OAAO,UAAU,IAAI,CAAC,WAAgB,WAAmB;AAAA,IACrE,YAAY,OAAO,WAAW,OAAO,IAAI,CAAC,OAAY;AAAA,MACpD,OAAO,EAAE;AAAA,MACT,OAAO,EAAE;AAAA,IACX,EAAE;AAAA,IACF,WAAW,UAAU,IAAI,CAAC,OAAY;AAAA,MACpC,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,IACF,gBAAgB,OAAO,eAAe,OAAO,IAAI,CAAC,OAAY;AAAA,MAC5D,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,MACL,GAAG,EAAE;AAAA,IACP,EAAE;AAAA,EACJ,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,oBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,eAAe,MAAM,aACzB,OACA;AAAA,IACE,wBAAyB,MAAc;AAAA,IACvC,yBAA0B,MAAc;AAAA,EAC1C,GACA,YACA,QACA,YACF;AAAA,EACA,MAAM,SAAS,aAAa,OAAO,MAAM,KAAY;AAAA,EAErD,IAAI,CAAC,OAAO,YAAY;AAAA,IACtB,MAAM,IAAI,kBAAkB,sCAAsC;AAAA,EACpE;AAAA,EAEA,MAAM,QAAQ,OAAO,WAAW,IAAI,CAAC,eAAoB;AAAA,IACvD,KAAK;AAAA,MACH,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,GAAG,UAAU,aAAa,WAAW;AAAA,MACrC,OAAO,UAAU,aAAa,SAAS;AAAA,MACvC,QAAQ,UAAU,aAAa,UAAU;AAAA,IAC3C;AAAA,IACA,WACE,UAAU,WAAW,IAAI,CAAC,QAAa;AAAA,MACrC,GAAG,GAAG;AAAA,MACN,GAAG,GAAG;AAAA,MACN,OAAO,GAAG;AAAA,IACZ,EAAE,KAAK,CAAC;AAAA,IACV,OAAO,UAAU,aAAa,IAAI,SAAS;AAAA,EAC7C,EAAE;AAAA,EAEF,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,IACtC,uBAAwB,MAAc;AAAA,IACtC,oCAAqC,MAAc;AAAA,EACrD,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,eAAe;AAAA,IACzB,MAAM,IAAI,kBAAkB,+CAA+C;AAAA,EAC7E;AAAA,EAEA,MAAM,QAAQ,OAAO,cAAc,IAAI,CAAC,WAAgB,UAAkB;AAAA,IACxE,MAAM,OAAY;AAAA,MAChB,WAAW,UAAU,IAAI,CAAC,OAAY;AAAA,QACpC,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,MACP,EAAE;AAAA,IACJ;AAAA,IAEA,IAAI,OAAO,mBAAmB,OAAO,gBAAgB,QAAQ;AAAA,MAC3D,KAAK,cAAc,OAAO,gBAAgB,OAAO,WAAW,IAAI,CAAC,OAAY;AAAA,QAC3E,OAAO,EAAE;AAAA,QACT,OAAO,EAAE;AAAA,MACX,EAAE;AAAA,IACJ;AAAA,IAEA,IAAI,OAAO,gCAAgC,OAAO,6BAA6B,QAAQ;AAAA,MACrF,KAAK,uBAAuB,MAAM,KAAK,OAAO,6BAA6B,OAAO,IAAI;AAAA,IACxF;AAAA,IAEA,OAAO;AAAA,GACR;AAAA,EAED,OAAO;AAAA,IACL;AAAA,EACF;AAAA;AAMK,IAAM,sBAIT,OAAO,OAAO,OAAO,YAAY,WAAW;AAAA,EAC9C,MAAM,iBAAiB,MAAM,aAC3B,OACA;AAAA,IACE,UAAW,MAAc;AAAA,IACzB,4BAA6B,MAAc;AAAA,IAC3C,2BAA4B,MAAc;AAAA,IAC1C,uBAAwB,MAAc;AAAA,IACtC,yBAA0B,MAAc;AAAA,EAC1C,GACA,YACA,QACA,cACF;AAAA,EACA,MAAM,SAAS,eAAe,OAAO,MAAM,KAAY;AAAA,EAEvD,IAAI,CAAC,OAAO,WAAW;AAAA,IACrB,MAAM,IAAI,kBAAkB,+CAA+C;AAAA,EAC7E;AAAA,EAEA,MAAM,QAAQ,OAAO,UAAU,IAAI,CAAC,WAAgB,UAAkB;AAAA,IACpE,MAAM,OAAY;AAAA,MAChB,WAAW,UAAU,IAAI,CAAC,OAAY;AAAA,QACpC,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,YAAY,EAAE;AAAA,QACd,UAAU,EAAE;AAAA,MACd,EAAE;AAAA,MACF,gBAAgB,OAAO,eAAe,OAAO,IAAI,CAAC,OAAY;AAAA,QAC5D,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,GAAG,EAAE;AAAA,QACL,YAAY,EAAE;AAAA,QACd,UAAU,EAAE;AAAA,MACd,EAAE;AAAA,IACJ;AAAA,IAEA,IAAI,OAAO,qBAAqB,OAAO,kBAAkB,QAAQ;AAAA,MAC/D,MAAM,OAAO,OAAO,kBAAkB;AAAA,MACtC,KAAK,mBAAmB;AAAA,QACtB,MAAM,KAAK,UAAU;AAAA,QACrB,OAAO,KAAK;AAAA,QACZ,QAAQ,KAAK;AAAA,MACf;AAAA,IACF;AAAA,IAEA,OAAO;AAAA,GACR;AAAA,EAED,OAAO;AAAA,IACL;AAAA,EACF;AAAA;;ACnzBF,8BAAS,yCAAmB;AAIrB,IAAM,kBAAkB;AAAA,EAC7B,MAAM;AAAA,EACN,YAAY;AAAA,IACV,UAAU;AAAA,MACR,OAAO;AAAA,MACP,aAAa;AAAA,IACf;AAAA,IACA,gBAAgB;AAAA,MACd,MAAM;AAAA,MACN,aAAa;AAAA,MACb,YAAY;AAAA,QACV,WAAW;AAAA,UACT,MAAM;AAAA,UACN,aAAa;AAAA,QACf;AAAA,QACA,YAAY;AAAA,UACV,MAAM;AAAA,UACN,MAAM,CAAC,QAAQ,SAAS,UAAU,OAAO;AAAA,UACzC,aAAa;AAAA,QACf;AAAA,QACA,UAAU;AAAA,UACR,MAAM;AAAA,UACN,MAAM,OAAO,OAAO,gBAAgB;AAAA,UACpC,aAAa;AAAA,QACf;AAAA,MACF;AAAA,MACA,UAAU,CAAC,aAAa,cAAc,UAAU;AAAA,MAChD,sBAAsB;AAAA,IACxB;AAAA,EACF;AAAA,EACA,UAAU,CAAC,YAAY,gBAAgB;AAAA,EACvC,sBAAsB;AACxB;AAEA,IAAM,6BAA4B;AAAA,EAChC,MAAM;AAAA,EACN,YAAY;AAAA,OACP,mBAAkB;AAAA,OAClB,gBAAgB;AAAA,EACrB;AAAA,EACA,UAAU,CAAC,GAAG,mBAAkB,UAAU,GAAG,gBAAgB,QAAQ;AAAA,EACrE,sBAAsB;AACxB;AAIA,IAAM,6BAA4B;AAAA,EAChC,MAAM;AAAA,EACN,YAAY;AAAA,OACP,mBAAkB;AAAA,OAClB,gBAAgB;AAAA,EACrB;AAAA,EACA,UAAU,CAAC,GAAG,mBAAkB,UAAU,GAAG,gBAAgB,QAAQ;AAAA,EACrE,sBAAsB;AACxB;;AC1DA,kBAAS,iCAAmB;AAC5B,+BAAS,uCAAoB,mCAAgB;AAC7C,iCAAS;AACT,iCAAS;AACT,kCAAS,0CAAuB;AAUhC,eAAsB,0BAA0B,CAC9C,QACA,QACe;AAAA,EACf,MAAM,gBAAgB,uBAAsB,IAAI,eAAc;AAAA,EAC9D,cAAc,eAAe,sBAAsB,MAAM;AAAA,EAEzD,MAAM,qBAAqB,uBAAsB;AAAA,EACjD,MAAM,QAAQ;AAAA,IACZ;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAAA,EACA,WAAW,QAAQ,OAAO;AAAA,IACxB,mBAAmB,sBAAsB,sBAAsB,IAAI;AAAA,EACrE;AAAA,EAGA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,sBAClB,oBACF;AAAA,IACA,MAAM,QAAQ,cAAc;AAAA,IAE5B,MAAM,SAAS,IAAI,gBAAkD,QAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,oBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,gBAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,sBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,IAChE,MAAM,OAAO,MAAM;AAAA,EACrB;AAAA;;AC3DF,kBAAS,iCAAmB;AAC5B,+BAAS,uCAAoB,mCAAgB;AAC7C,iCAAS;AACT,iCAAS;AAyBT,eAAsB,0BAA0B,CAC9C,QACe;AAAA,EACf,MAAM,qBAAqB,uBAAsB;AAAA,EAEjD,mBAAmB,cACjB,sBACA,qBACA,aACF;AAAA,EACA,mBAAmB,cACjB,sBACA,mBACA,WACF;AAAA,EACA,mBAAmB,cACjB,sBACA,qBACA,kBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,6BACA,0BACF;AAAA,EACA,mBAAmB,cACjB,sBACA,0BACA,uBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,yBACA,sBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,2BACA,wBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,uBACA,oBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,yBACA,sBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,oBACA,iBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EACA,mBAAmB,cACjB,sBACA,sBACA,mBACF;AAAA,EAGA,IAAI,CAAC,QAAQ;AAAA,IACX,MAAM,UAAU,IAAI,sBAClB,oBACF;AAAA,IACA,MAAM,QAAQ,cAAc;AAAA,IAE5B,MAAM,SAAS,IAAI,gBAAkD,QAAO;AAAA,MAC1E;AAAA,MACA,WAAW;AAAA,MACX,SAAS,IAAI,oBAAmB,GAAG,GAAG;AAAA,IACxC,CAAC;AAAA,IAED,SAAS,IAAI,gBAAkD;AAAA,MAC7D;AAAA,MACA,WAAW;AAAA,IACb,CAAC;AAAA,IAED,OAAO,OAAO,MAAM;AAAA,IAEpB,sBAAqB,EAAE,cAAc,EAAE,QAAQ,QAAQ,QAAQ,CAAC;AAAA,IAChE,MAAM,OAAO,MAAM;AAAA,EACrB;AAAA;;AC9HF;AAAA,wBACE;AAAA,2BACA;AAAA,gBACA;AAAA,mBACA;AAAA;AAeK,IAAM,qBAAqB,oBAAmB,yBAAyB;AAEvE,IAAM,8BAA8B,uBAAsB,SAC/D,oBACA,MAAM;AAAA,EACJ,MAAM,eAAe,uBAAsB,IAAI,cAAa;AAAA,EAC5D,aAAa,iBAAiB,qBAAqB,aAAa;AAAA,EAChE,aAAa,iBAAiB,mBAAmB,WAAW;AAAA,EAC5D,aAAa,iBAAiB,qBAAqB,kBAAkB;AAAA,EACrE,aAAa,iBAAiB,6BAA6B,0BAA0B;AAAA,EACrF,aAAa,iBAAiB,0BAA0B,uBAAuB;AAAA,EAC/E,aAAa,iBAAiB,yBAAyB,sBAAsB;AAAA,EAC7E,aAAa,iBAAiB,sBAAsB,mBAAmB;AAAA,EACvE,aAAa,iBAAiB,2BAA2B,wBAAwB;AAAA,EACjF,aAAa,iBAAiB,uBAAuB,oBAAoB;AAAA,EACzE,YAAW,YAAY,EAAE,MAAM,QAAQ,CAAC;AAAA,EACxC,QAAQ,IAAI,+BAA+B;AAAA,EAC3C,OAAO;AAAA,GAET,IACF;",
19
+ "debugId": "CE5E7FE3C44E626A64756E2164756E21",
20
20
  "names": []
21
21
  }
@@ -4,27 +4,27 @@
4
4
  * SPDX-License-Identifier: Apache-2.0
5
5
  */
6
6
  import type { AiProviderRunFn, DownloadModelTaskExecuteInput, DownloadModelTaskExecuteOutput, FaceDetectorTaskExecuteInput, FaceDetectorTaskExecuteOutput, FaceLandmarkerTaskExecuteInput, FaceLandmarkerTaskExecuteOutput, GestureRecognizerTaskExecuteInput, GestureRecognizerTaskExecuteOutput, HandLandmarkerTaskExecuteInput, HandLandmarkerTaskExecuteOutput, ImageClassificationTaskExecuteInput, ImageClassificationTaskExecuteOutput, ImageEmbeddingTaskExecuteInput, ImageEmbeddingTaskExecuteOutput, ImageSegmentationTaskExecuteInput, ImageSegmentationTaskExecuteOutput, ObjectDetectionTaskExecuteInput, ObjectDetectionTaskExecuteOutput, PoseLandmarkerTaskExecuteInput, PoseLandmarkerTaskExecuteOutput, TextClassificationTaskExecuteInput, TextClassificationTaskExecuteOutput, TextEmbeddingTaskExecuteInput, TextEmbeddingTaskExecuteOutput, TextLanguageDetectionTaskExecuteInput, TextLanguageDetectionTaskExecuteOutput, UnloadModelTaskExecuteInput, UnloadModelTaskExecuteOutput } from "@workglow/ai";
7
- import { TFMPModelRecord } from "./TFMP_ModelSchema";
7
+ import { TFMPModelConfig } from "./TFMP_ModelSchema";
8
8
  /**
9
9
  * Core implementation for downloading and caching a MediaPipe TFJS model.
10
10
  * This is shared between inline and worker implementations.
11
11
  */
12
- export declare const TFMP_Download: AiProviderRunFn<DownloadModelTaskExecuteInput, DownloadModelTaskExecuteOutput, TFMPModelRecord>;
12
+ export declare const TFMP_Download: AiProviderRunFn<DownloadModelTaskExecuteInput, DownloadModelTaskExecuteOutput, TFMPModelConfig>;
13
13
  /**
14
14
  * Core implementation for text embedding using MediaPipe TFJS.
15
15
  * This is shared between inline and worker implementations.
16
16
  */
17
- export declare const TFMP_TextEmbedding: AiProviderRunFn<TextEmbeddingTaskExecuteInput, TextEmbeddingTaskExecuteOutput, TFMPModelRecord>;
17
+ export declare const TFMP_TextEmbedding: AiProviderRunFn<TextEmbeddingTaskExecuteInput, TextEmbeddingTaskExecuteOutput, TFMPModelConfig>;
18
18
  /**
19
19
  * Core implementation for text classification using MediaPipe TFJS.
20
20
  * This is shared between inline and worker implementations.
21
21
  */
22
- export declare const TFMP_TextClassification: AiProviderRunFn<TextClassificationTaskExecuteInput, TextClassificationTaskExecuteOutput, TFMPModelRecord>;
22
+ export declare const TFMP_TextClassification: AiProviderRunFn<TextClassificationTaskExecuteInput, TextClassificationTaskExecuteOutput, TFMPModelConfig>;
23
23
  /**
24
24
  * Core implementation for language detection using MediaPipe TFJS.
25
25
  * This is shared between inline and worker implementations.
26
26
  */
27
- export declare const TFMP_TextLanguageDetection: AiProviderRunFn<TextLanguageDetectionTaskExecuteInput, TextLanguageDetectionTaskExecuteOutput, TFMPModelRecord>;
27
+ export declare const TFMP_TextLanguageDetection: AiProviderRunFn<TextLanguageDetectionTaskExecuteInput, TextLanguageDetectionTaskExecuteOutput, TFMPModelConfig>;
28
28
  /**
29
29
  * Core implementation for unloading a MediaPipe TFJS model.
30
30
  * This is shared between inline and worker implementations.
@@ -34,41 +34,41 @@ export declare const TFMP_TextLanguageDetection: AiProviderRunFn<TextLanguageDet
34
34
  * 2. Decrements the reference count for the associated WASM fileset for each instance
35
35
  * 3. If no other models are using the WASM fileset (count reaches 0), unloads the WASM
36
36
  */
37
- export declare const TFMP_Unload: AiProviderRunFn<UnloadModelTaskExecuteInput, UnloadModelTaskExecuteOutput, TFMPModelRecord>;
37
+ export declare const TFMP_Unload: AiProviderRunFn<UnloadModelTaskExecuteInput, UnloadModelTaskExecuteOutput, TFMPModelConfig>;
38
38
  /**
39
39
  * Core implementation for image segmentation using MediaPipe.
40
40
  */
41
- export declare const TFMP_ImageSegmentation: AiProviderRunFn<ImageSegmentationTaskExecuteInput, ImageSegmentationTaskExecuteOutput, TFMPModelRecord>;
41
+ export declare const TFMP_ImageSegmentation: AiProviderRunFn<ImageSegmentationTaskExecuteInput, ImageSegmentationTaskExecuteOutput, TFMPModelConfig>;
42
42
  /**
43
43
  * Core implementation for image embedding using MediaPipe.
44
44
  */
45
- export declare const TFMP_ImageEmbedding: AiProviderRunFn<ImageEmbeddingTaskExecuteInput, ImageEmbeddingTaskExecuteOutput, TFMPModelRecord>;
45
+ export declare const TFMP_ImageEmbedding: AiProviderRunFn<ImageEmbeddingTaskExecuteInput, ImageEmbeddingTaskExecuteOutput, TFMPModelConfig>;
46
46
  /**
47
47
  * Core implementation for image classification using MediaPipe.
48
48
  */
49
- export declare const TFMP_ImageClassification: AiProviderRunFn<ImageClassificationTaskExecuteInput, ImageClassificationTaskExecuteOutput, TFMPModelRecord>;
49
+ export declare const TFMP_ImageClassification: AiProviderRunFn<ImageClassificationTaskExecuteInput, ImageClassificationTaskExecuteOutput, TFMPModelConfig>;
50
50
  /**
51
51
  * Core implementation for object detection using MediaPipe.
52
52
  */
53
- export declare const TFMP_ObjectDetection: AiProviderRunFn<ObjectDetectionTaskExecuteInput, ObjectDetectionTaskExecuteOutput, TFMPModelRecord>;
53
+ export declare const TFMP_ObjectDetection: AiProviderRunFn<ObjectDetectionTaskExecuteInput, ObjectDetectionTaskExecuteOutput, TFMPModelConfig>;
54
54
  /**
55
55
  * Core implementation for gesture recognition using MediaPipe.
56
56
  */
57
- export declare const TFMP_GestureRecognizer: AiProviderRunFn<GestureRecognizerTaskExecuteInput, GestureRecognizerTaskExecuteOutput, TFMPModelRecord>;
57
+ export declare const TFMP_GestureRecognizer: AiProviderRunFn<GestureRecognizerTaskExecuteInput, GestureRecognizerTaskExecuteOutput, TFMPModelConfig>;
58
58
  /**
59
59
  * Core implementation for hand landmark detection using MediaPipe.
60
60
  */
61
- export declare const TFMP_HandLandmarker: AiProviderRunFn<HandLandmarkerTaskExecuteInput, HandLandmarkerTaskExecuteOutput, TFMPModelRecord>;
61
+ export declare const TFMP_HandLandmarker: AiProviderRunFn<HandLandmarkerTaskExecuteInput, HandLandmarkerTaskExecuteOutput, TFMPModelConfig>;
62
62
  /**
63
63
  * Core implementation for face detection using MediaPipe.
64
64
  */
65
- export declare const TFMP_FaceDetector: AiProviderRunFn<FaceDetectorTaskExecuteInput, FaceDetectorTaskExecuteOutput, TFMPModelRecord>;
65
+ export declare const TFMP_FaceDetector: AiProviderRunFn<FaceDetectorTaskExecuteInput, FaceDetectorTaskExecuteOutput, TFMPModelConfig>;
66
66
  /**
67
67
  * Core implementation for face landmark detection using MediaPipe.
68
68
  */
69
- export declare const TFMP_FaceLandmarker: AiProviderRunFn<FaceLandmarkerTaskExecuteInput, FaceLandmarkerTaskExecuteOutput, TFMPModelRecord>;
69
+ export declare const TFMP_FaceLandmarker: AiProviderRunFn<FaceLandmarkerTaskExecuteInput, FaceLandmarkerTaskExecuteOutput, TFMPModelConfig>;
70
70
  /**
71
71
  * Core implementation for pose landmark detection using MediaPipe.
72
72
  */
73
- export declare const TFMP_PoseLandmarker: AiProviderRunFn<PoseLandmarkerTaskExecuteInput, PoseLandmarkerTaskExecuteOutput, TFMPModelRecord>;
73
+ export declare const TFMP_PoseLandmarker: AiProviderRunFn<PoseLandmarkerTaskExecuteInput, PoseLandmarkerTaskExecuteOutput, TFMPModelConfig>;
74
74
  //# sourceMappingURL=TFMP_JobRunFns.d.ts.map
@@ -37,7 +37,7 @@ export declare const TFMPModelSchema: {
37
37
  readonly required: readonly ["provider", "providerConfig"];
38
38
  readonly additionalProperties: true;
39
39
  };
40
- declare const ExtendedModelSchema: {
40
+ declare const ExtendedModelRecordSchema: {
41
41
  readonly type: "object";
42
42
  readonly properties: {
43
43
  readonly provider: {
@@ -89,6 +89,59 @@ declare const ExtendedModelSchema: {
89
89
  readonly required: readonly ["model_id", "tasks", "provider", "title", "description", "providerConfig", "metadata", "provider", "providerConfig"];
90
90
  readonly additionalProperties: false;
91
91
  };
92
- export type TFMPModelRecord = FromSchema<typeof ExtendedModelSchema>;
92
+ export type TFMPModelRecord = FromSchema<typeof ExtendedModelRecordSchema>;
93
+ declare const ExtendedModelConfigSchema: {
94
+ readonly type: "object";
95
+ readonly properties: {
96
+ readonly provider: {
97
+ readonly const: "TENSORFLOW_MEDIAPIPE";
98
+ readonly description: "Discriminator: TensorFlow MediaPipe backend.";
99
+ };
100
+ readonly providerConfig: {
101
+ readonly type: "object";
102
+ readonly description: "TensorFlow MediaPipe-specific options.";
103
+ readonly properties: {
104
+ readonly modelPath: {
105
+ readonly type: "string";
106
+ readonly description: "Filesystem path or URI for the ONNX model.";
107
+ };
108
+ readonly taskEngine: {
109
+ readonly type: "string";
110
+ readonly enum: readonly ["text", "audio", "vision", "genai"];
111
+ readonly description: "Task engine for the MediaPipe model.";
112
+ };
113
+ readonly pipeline: {
114
+ readonly type: "string";
115
+ readonly enum: ("text-embedder" | "text-classifier" | "text-language-detector" | "genai-text" | "audio-classifier" | "audio-embedder" | "vision-face-detector" | "vision-face-landmarker" | "vision-face-stylizer" | "vision-gesture-recognizer" | "vision-hand-landmarker" | "vision-holistic-landmarker" | "vision-image-classifier" | "vision-image-embedder" | "vision-image-segmenter" | "vision-image-interactive-segmenter" | "vision-object-detector" | "vision-pose-landmarker")[];
116
+ readonly description: "Pipeline task type for the MediaPipe model.";
117
+ };
118
+ };
119
+ readonly required: readonly ["modelPath", "taskEngine", "pipeline"];
120
+ readonly additionalProperties: false;
121
+ };
122
+ readonly model_id: {
123
+ readonly type: "string";
124
+ };
125
+ readonly tasks: {
126
+ readonly type: "array";
127
+ readonly items: {
128
+ readonly type: "string";
129
+ };
130
+ };
131
+ readonly title: {
132
+ readonly type: "string";
133
+ };
134
+ readonly description: {
135
+ readonly type: "string";
136
+ };
137
+ readonly metadata: {
138
+ readonly type: "object";
139
+ readonly default: {};
140
+ };
141
+ };
142
+ readonly required: readonly ["provider", "providerConfig", "provider", "providerConfig"];
143
+ readonly additionalProperties: false;
144
+ };
145
+ export type TFMPModelConfig = FromSchema<typeof ExtendedModelConfigSchema>;
93
146
  export {};
94
147
  //# sourceMappingURL=TFMP_ModelSchema.d.ts.map
@@ -1 +1 @@
1
- {"version":3,"file":"TFMP_ModelSchema.d.ts","sourceRoot":"","sources":["../../../src/tf-mediapipe/common/TFMP_ModelSchema.ts"],"names":[],"mappings":"AAAA;;;;GAIG;AAGH,OAAO,EAAwB,UAAU,EAAE,MAAM,gBAAgB,CAAC;AAGlE,eAAO,MAAM,eAAe;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAgCa,CAAC;AAE1C,QAAA,MAAM,mBAAmB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAQgB,CAAC;AAE1C,MAAM,MAAM,eAAe,GAAG,UAAU,CAAC,OAAO,mBAAmB,CAAC,CAAC"}
1
+ {"version":3,"file":"TFMP_ModelSchema.d.ts","sourceRoot":"","sources":["../../../src/tf-mediapipe/common/TFMP_ModelSchema.ts"],"names":[],"mappings":"AAAA;;;;GAIG;AAGH,OAAO,EAAwB,UAAU,EAAE,MAAM,gBAAgB,CAAC;AAGlE,eAAO,MAAM,eAAe;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAgCa,CAAC;AAE1C,QAAA,MAAM,yBAAyB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAQU,CAAC;AAE1C,MAAM,MAAM,eAAe,GAAG,UAAU,CAAC,OAAO,yBAAyB,CAAC,CAAC;AAE3E,QAAA,MAAM,yBAAyB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;CAQU,CAAC;AAE1C,MAAM,MAAM,eAAe,GAAG,UAAU,CAAC,OAAO,yBAAyB,CAAC,CAAC"}
package/package.json CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "name": "@workglow/ai-provider",
3
3
  "type": "module",
4
- "version": "0.0.78",
4
+ "version": "0.0.80",
5
5
  "description": "AI provider integrations for Workglow, supporting OpenAI, Hugging Face Transformers, MediaPipe, and GGML models.",
6
6
  "scripts": {
7
7
  "watch": "concurrently -c 'auto' 'bun:watch-*'",
@@ -30,11 +30,11 @@
30
30
  "access": "public"
31
31
  },
32
32
  "peerDependencies": {
33
- "@workglow/ai": "0.0.78",
34
- "@workglow/job-queue": "0.0.78",
35
- "@workglow/storage": "0.0.78",
36
- "@workglow/task-graph": "0.0.78",
37
- "@workglow/util": "0.0.78",
33
+ "@workglow/ai": "0.0.80",
34
+ "@workglow/job-queue": "0.0.80",
35
+ "@workglow/storage": "0.0.80",
36
+ "@workglow/task-graph": "0.0.80",
37
+ "@workglow/util": "0.0.80",
38
38
  "@sroussey/transformers": "3.8.2",
39
39
  "@mediapipe/tasks-text": "^0.10.22-rc.20250304",
40
40
  "@mediapipe/tasks-vision": "^0.10.22-rc.20250304",
@@ -59,11 +59,11 @@
59
59
  }
60
60
  },
61
61
  "devDependencies": {
62
- "@workglow/ai": "0.0.78",
63
- "@workglow/job-queue": "0.0.78",
64
- "@workglow/storage": "0.0.78",
65
- "@workglow/task-graph": "0.0.78",
66
- "@workglow/util": "0.0.78",
62
+ "@workglow/ai": "0.0.80",
63
+ "@workglow/job-queue": "0.0.80",
64
+ "@workglow/storage": "0.0.80",
65
+ "@workglow/task-graph": "0.0.80",
66
+ "@workglow/util": "0.0.80",
67
67
  "@sroussey/transformers": "3.8.2",
68
68
  "@mediapipe/tasks-text": "^0.10.22-rc.20250304",
69
69
  "@mediapipe/tasks-vision": "^0.10.22-rc.20250304",