@wix/auto_sdk_stores_read-only-variants-v-3 1.0.13 → 1.0.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- import { aJ as QueryVariantsRequest$1, aO as QueryVariantsResponse$1, aR as SearchVariantsRequest$1, a as SearchVariantsResponse$1 } from './stores-catalog-v3-read-only-variant-read-only-variants-v-3.universal-DziyR5eD.mjs';
1
+ import { aJ as QueryVariantsRequest$1, aO as QueryVariantsResponse$1, aR as SearchVariantsRequest$1, a as SearchVariantsResponse$1 } from './stores-catalog-v3-read-only-variant-read-only-variants-v-3.universal-Ba22Ko-1.mjs';
2
2
  import '@wix/sdk-types';
3
3
 
4
4
  interface ReadOnlyVariant extends ReadOnlyVariantTypedPropertiesOneOf {
@@ -1257,25 +1257,25 @@ declare enum CommonSortOrder {
1257
1257
  /** @enumType */
1258
1258
  type CommonSortOrderWithLiterals = CommonSortOrder | 'ASC' | 'DESC';
1259
1259
  interface CommonAggregation extends CommonAggregationKindOneOf {
1260
- /** Value aggregation. */
1260
+ /** A value aggregation calculates metrics such as count for specific fields within a dataset, providing insights into the overall distribution and key statistics of those values. For example, use a value aggregation to get the number (count) of products for each price listed in the store. */
1261
1261
  value?: AggregationValueAggregation;
1262
- /** Range aggregation. */
1262
+ /** A range aggregation calculates the count of the values from the specified field in the dataset that fall within the range of each bucket you define. For example, use a range aggregation to compare the number of reservations made for parties of 4 or less to the number of reservations made for parties with 5 or more. */
1263
1263
  range?: AggregationRangeAggregation;
1264
- /** Scalar aggregation. */
1264
+ /** A scalar aggregation calculates a single numerical value from a dataset, summarizing the dataset into one key metric: `COUNT_DISTINCT`, `SUM`, `AVG`, `MIN`, or `MAX`. */
1265
1265
  scalar?: AggregationScalarAggregation;
1266
- /** Date histogram aggregation. */
1266
+ /** A date histogram calculates the count of time values from the specified field in the dataset that fall within each time interval you define (hour, day, week, etc.) For example, use a date histogram to find how many reservations have been made at a restaurant each week. */
1267
1267
  dateHistogram?: AggregationDateHistogramAggregation;
1268
- /** Nested aggregation. */
1268
+ /** A nested aggregation is applied within the results of another aggregation. Rather than aggregating directly on the primary dataset, first group data using one aggregation and then apply another aggregation within each group. It allows for more complex analyses where you can summarize data at different levels of detail or hierarchy. For example, to get the number of products that are in stock and out of stock for each price listed, first perform a value aggregation on `discountedPriceNumeric`, and a second value aggregation on `inStock`. */
1269
1269
  nested?: AggregationNestedAggregation;
1270
1270
  /**
1271
- * User-defined name of aggregation, should be unique, will appear in aggregation results.
1271
+ * Aggregation name, returned in `aggregations.results.name`.
1272
1272
  * @maxLength 100
1273
1273
  */
1274
1274
  name?: string | null;
1275
- /** Type of aggregation, client must provide matching aggregation field below. */
1275
+ /** Type of aggregation to perform. Must align with the corresponding aggregation field. */
1276
1276
  type?: CommonAggregationTypeWithLiterals;
1277
1277
  /**
1278
- * Field to aggregate by, use dot notation to specify json path.
1278
+ * Field to aggregate by. Use dot notation to specify a JSON path. For example, `order.address.streetName`.
1279
1279
  * @maxLength 200
1280
1280
  */
1281
1281
  fieldPath?: string;
@@ -1289,15 +1289,15 @@ interface CommonAggregation extends CommonAggregationKindOneOf {
1289
1289
  }
1290
1290
  /** @oneof */
1291
1291
  interface CommonAggregationKindOneOf {
1292
- /** Value aggregation. */
1292
+ /** A value aggregation calculates metrics such as count for specific fields within a dataset, providing insights into the overall distribution and key statistics of those values. For example, use a value aggregation to get the number (count) of products for each price listed in the store. */
1293
1293
  value?: AggregationValueAggregation;
1294
- /** Range aggregation. */
1294
+ /** A range aggregation calculates the count of the values from the specified field in the dataset that fall within the range of each bucket you define. For example, use a range aggregation to compare the number of reservations made for parties of 4 or less to the number of reservations made for parties with 5 or more. */
1295
1295
  range?: AggregationRangeAggregation;
1296
- /** Scalar aggregation. */
1296
+ /** A scalar aggregation calculates a single numerical value from a dataset, summarizing the dataset into one key metric: `COUNT_DISTINCT`, `SUM`, `AVG`, `MIN`, or `MAX`. */
1297
1297
  scalar?: AggregationScalarAggregation;
1298
- /** Date histogram aggregation. */
1298
+ /** A date histogram calculates the count of time values from the specified field in the dataset that fall within each time interval you define (hour, day, week, etc.) For example, use a date histogram to find how many reservations have been made at a restaurant each week. */
1299
1299
  dateHistogram?: AggregationDateHistogramAggregation;
1300
- /** Nested aggregation. */
1300
+ /** A nested aggregation is applied within the results of another aggregation. Rather than aggregating directly on the primary dataset, first group data using one aggregation and then apply another aggregation within each group. It allows for more complex analyses where you can summarize data at different levels of detail or hierarchy. For example, to get the number of products that are in stock and out of stock for each price listed, first perform a value aggregation on `discountedPriceNumeric`, and a second value aggregation on `inStock`. */
1301
1301
  nested?: AggregationNestedAggregation;
1302
1302
  }
1303
1303
  interface RangeAggregationRangeBucket {
@@ -1307,17 +1307,17 @@ interface RangeAggregationRangeBucket {
1307
1307
  to?: number | null;
1308
1308
  }
1309
1309
  declare enum ValueAggregationSortType {
1310
- /** Sort by number of matches. */
1310
+ /** Number of matches in the results. */
1311
1311
  COUNT = "COUNT",
1312
- /** Sort by value of the field alphabetically. */
1312
+ /** Alphabetically by the field value. */
1313
1313
  VALUE = "VALUE"
1314
1314
  }
1315
1315
  /** @enumType */
1316
1316
  type ValueAggregationSortTypeWithLiterals = ValueAggregationSortType | 'COUNT' | 'VALUE';
1317
1317
  declare enum ValueAggregationSortDirection {
1318
- /** Sort in descending order. */
1318
+ /** Descending order. */
1319
1319
  DESC = "DESC",
1320
- /** Sort in ascending order. */
1320
+ /** Ascending order. */
1321
1321
  ASC = "ASC"
1322
1322
  }
1323
1323
  /** @enumType */
@@ -1332,14 +1332,14 @@ declare enum ValueAggregationMissingValues {
1332
1332
  type ValueAggregationMissingValuesWithLiterals = ValueAggregationMissingValues | 'EXCLUDE' | 'INCLUDE';
1333
1333
  interface ValueAggregationIncludeMissingValuesOptions {
1334
1334
  /**
1335
- * Specify custom bucket name. Defaults are [string -> "N/A"], [int -> "0"], [bool -> "false"] ...
1335
+ * Specify a custom name for the bucket containing the missing values. Defaults are `"N/A"` for strings, `0` for integers, and `false` for booleans.
1336
1336
  * @maxLength 20
1337
1337
  */
1338
1338
  addToBucket?: string;
1339
1339
  }
1340
1340
  declare enum CommonScalarType {
1341
1341
  UNKNOWN_SCALAR_TYPE = "UNKNOWN_SCALAR_TYPE",
1342
- /** Count of distinct values. */
1342
+ /** Total number of distinct values. */
1343
1343
  COUNT_DISTINCT = "COUNT_DISTINCT",
1344
1344
  /** Minimum value. */
1345
1345
  MIN = "MIN",
@@ -1349,44 +1349,52 @@ declare enum CommonScalarType {
1349
1349
  /** @enumType */
1350
1350
  type CommonScalarTypeWithLiterals = CommonScalarType | 'UNKNOWN_SCALAR_TYPE' | 'COUNT_DISTINCT' | 'MIN' | 'MAX';
1351
1351
  interface AggregationValueAggregation extends AggregationValueAggregationOptionsOneOf {
1352
- /** Options for including missing values. */
1352
+ /** Options for including missing values in results. */
1353
1353
  includeOptions?: ValueAggregationIncludeMissingValuesOptions;
1354
- /** Whether to sort by number of matches or value of the field. */
1354
+ /** Sort type. */
1355
1355
  sortType?: ValueAggregationSortTypeWithLiterals;
1356
- /** Whether to sort in ascending or descending order. */
1356
+ /** Sort direction. */
1357
1357
  sortDirection?: ValueAggregationSortDirectionWithLiterals;
1358
- /** How many aggregations to return. Can be between 1 and 250. 10 is the default. */
1358
+ /**
1359
+ * Number of aggregation results to return.
1360
+ * Min: `1`
1361
+ * Max: `250`
1362
+ * Default: `10`
1363
+ */
1359
1364
  limit?: number | null;
1360
- /** Whether to include or exclude missing values from the aggregation results. Default: `EXCLUDE`. */
1365
+ /**
1366
+ * Whether to include or exclude missing values in the aggregation results.
1367
+ * Default: `EXCLUDE`.
1368
+ */
1361
1369
  missingValues?: ValueAggregationMissingValuesWithLiterals;
1362
1370
  }
1363
1371
  /** @oneof */
1364
1372
  interface AggregationValueAggregationOptionsOneOf {
1365
- /** Options for including missing values. */
1373
+ /** Options for including missing values in results. */
1366
1374
  includeOptions?: ValueAggregationIncludeMissingValuesOptions;
1367
1375
  }
1368
1376
  declare enum NestedAggregationNestedAggregationType {
1369
1377
  UNKNOWN_AGGREGATION_TYPE = "UNKNOWN_AGGREGATION_TYPE",
1370
- /** An aggregation where result buckets are dynamically built - one per unique value. */
1378
+ /** Calculates the distribution of a specific field's values within a dataset, providing insights into the overall distribution and key statistics of those values. */
1371
1379
  VALUE = "VALUE",
1372
- /** An aggregation, where user can define set of ranges - each representing a bucket. */
1380
+ /** Calculates the count of the values from the specified field in the dataset that fall within the range of each bucket you define. */
1373
1381
  RANGE = "RANGE",
1374
- /** A single-value metric aggregation. For example, min, max, sum, avg. */
1382
+ /** Calculates a single numerical value from a dataset, summarizing the dataset into one key metric: `COUNT_DISTINCT`, `SUM`, `AVG`, `MIN`, or `MAX`. */
1375
1383
  SCALAR = "SCALAR",
1376
- /** An aggregation, where result buckets are dynamically built - one per time interval (hour, day, week, etc.). */
1384
+ /** Calculates the count of time values from the specified field in the dataset that fall within each time interval you define (hour, day, week, etc.). */
1377
1385
  DATE_HISTOGRAM = "DATE_HISTOGRAM"
1378
1386
  }
1379
1387
  /** @enumType */
1380
1388
  type NestedAggregationNestedAggregationTypeWithLiterals = NestedAggregationNestedAggregationType | 'UNKNOWN_AGGREGATION_TYPE' | 'VALUE' | 'RANGE' | 'SCALAR' | 'DATE_HISTOGRAM';
1381
1389
  interface AggregationRangeAggregation {
1382
1390
  /**
1383
- * List of range buckets, where during aggregation each entity will be placed in the first bucket its value falls into, based on the provided range bounds.
1391
+ * List of range buckets. During aggregation each entity is placed in the first bucket its value falls into, based on the provided range bounds.
1384
1392
  * @maxSize 50
1385
1393
  */
1386
1394
  buckets?: RangeAggregationRangeBucket[];
1387
1395
  }
1388
1396
  interface AggregationScalarAggregation {
1389
- /** Define the operator for the scalar aggregation. */
1397
+ /** Operator type for the scalar aggregation. */
1390
1398
  type?: CommonScalarTypeWithLiterals;
1391
1399
  }
1392
1400
  interface AggregationDateHistogramAggregation {
@@ -1395,67 +1403,60 @@ interface AggregationDateHistogramAggregation {
1395
1403
  }
1396
1404
  declare enum DateHistogramAggregationInterval {
1397
1405
  UNKNOWN_INTERVAL = "UNKNOWN_INTERVAL",
1398
- /** Yearly interval */
1399
1406
  YEAR = "YEAR",
1400
- /** Monthly interval */
1401
1407
  MONTH = "MONTH",
1402
- /** Weekly interval */
1403
1408
  WEEK = "WEEK",
1404
- /** Daily interval */
1405
1409
  DAY = "DAY",
1406
- /** Hourly interval */
1407
1410
  HOUR = "HOUR",
1408
- /** Minute interval */
1409
1411
  MINUTE = "MINUTE",
1410
- /** Second interval */
1411
1412
  SECOND = "SECOND"
1412
1413
  }
1413
1414
  /** @enumType */
1414
1415
  type DateHistogramAggregationIntervalWithLiterals = DateHistogramAggregationInterval | 'UNKNOWN_INTERVAL' | 'YEAR' | 'MONTH' | 'WEEK' | 'DAY' | 'HOUR' | 'MINUTE' | 'SECOND';
1415
1416
  interface NestedAggregationNestedAggregationItem extends NestedAggregationNestedAggregationItemKindOneOf {
1416
- /** Value aggregation. */
1417
+ /** A value aggregation calculates the distribution of a specific field's values within a dataset, providing insights into the overall distribution and key statistics of those values. For example, use a value aggregation to get the number (count) of orders for each order status. */
1417
1418
  value?: AggregationValueAggregation;
1418
- /** Range aggregation. */
1419
+ /** A range aggregation calculates the count of the values from the specified field in the dataset that fall within the range of each bucket you define. For example, use a range aggregation to compare the number of reservations made for parties of 4 or less to the number of reservations made for parties with 5 or more. If ranges overlap, a record that fits more than one range will only be counted in the first range that matches the criteria. */
1419
1420
  range?: AggregationRangeAggregation;
1420
- /** Scalar aggregation. */
1421
+ /** A scalar aggregation calculates a single numerical value from a dataset, summarizing the dataset into one key metric: `COUNT_DISTINCT`, `SUM`, `AVG`, `MIN`, or `MAX`. */
1421
1422
  scalar?: AggregationScalarAggregation;
1422
- /** Date histogram aggregation. */
1423
+ /** A date histogram calculates the count of time values from the specified field in the dataset that fall within each time interval you define (hour, day, week, etc.). For example, use a date histogram to determine how many reservations have been made at a restaurant each week. If ranges overlap, a record that fits more than one range will only be counted in the first range that matches the criteria. */
1423
1424
  dateHistogram?: AggregationDateHistogramAggregation;
1424
1425
  /**
1425
- * User-defined name of aggregation, should be unique, will appear in aggregation results.
1426
+ * Unique, caller-defined aggregation name, returned in `aggregations.results`.
1426
1427
  * @maxLength 100
1427
1428
  */
1428
1429
  name?: string | null;
1429
- /** Type of aggregation, client must provide matching aggregation field below. */
1430
+ /** Type of aggregation to perform. The matching aggregation field must be passed. */
1430
1431
  type?: NestedAggregationNestedAggregationTypeWithLiterals;
1431
1432
  /**
1432
- * Field to aggregate by, use dot notation to specify json path.
1433
+ * Field to aggregate by. Use dot notation to specify a JSON path. For example, `order.address.streetName`.
1433
1434
  * @maxLength 200
1434
1435
  */
1435
1436
  fieldPath?: string;
1436
1437
  }
1437
1438
  /** @oneof */
1438
1439
  interface NestedAggregationNestedAggregationItemKindOneOf {
1439
- /** Value aggregation. */
1440
+ /** A value aggregation calculates the distribution of a specific field's values within a dataset, providing insights into the overall distribution and key statistics of those values. For example, use a value aggregation to get the number (count) of orders for each order status. */
1440
1441
  value?: AggregationValueAggregation;
1441
- /** Range aggregation. */
1442
+ /** A range aggregation calculates the count of the values from the specified field in the dataset that fall within the range of each bucket you define. For example, use a range aggregation to compare the number of reservations made for parties of 4 or less to the number of reservations made for parties with 5 or more. If ranges overlap, a record that fits more than one range will only be counted in the first range that matches the criteria. */
1442
1443
  range?: AggregationRangeAggregation;
1443
- /** Scalar aggregation. */
1444
+ /** A scalar aggregation calculates a single numerical value from a dataset, summarizing the dataset into one key metric: `COUNT_DISTINCT`, `SUM`, `AVG`, `MIN`, or `MAX`. */
1444
1445
  scalar?: AggregationScalarAggregation;
1445
- /** Date histogram aggregation. */
1446
+ /** A date histogram calculates the count of time values from the specified field in the dataset that fall within each time interval you define (hour, day, week, etc.). For example, use a date histogram to determine how many reservations have been made at a restaurant each week. If ranges overlap, a record that fits more than one range will only be counted in the first range that matches the criteria. */
1446
1447
  dateHistogram?: AggregationDateHistogramAggregation;
1447
1448
  }
1448
1449
  declare enum CommonAggregationType {
1449
1450
  UNKNOWN_AGGREGATION_TYPE = "UNKNOWN_AGGREGATION_TYPE",
1450
- /** An aggregation where result buckets are dynamically built - one per unique value. */
1451
+ /** Calculates the distribution of a specific field's values within a dataset, providing insights into the overall distribution and key statistics of those values. */
1451
1452
  VALUE = "VALUE",
1452
- /** An aggregation, where user can define set of ranges - each representing a bucket. */
1453
+ /** Calculates the count of the values from the specified field in the dataset that fall within the range of each bucket you define. */
1453
1454
  RANGE = "RANGE",
1454
- /** A single-value metric aggregation. For example, min, max, sum, avg. */
1455
+ /** Calculates a single numerical value from a dataset, summarizing the dataset into one key metric: `COUNT_DISTINCT`, `SUM`, `AVG`, `MIN`, or `MAX`. */
1455
1456
  SCALAR = "SCALAR",
1456
- /** An aggregation, where result buckets are dynamically built - one per time interval (hour, day, week, etc.) */
1457
+ /** Calculates the count of time values from the specified field in the dataset that fall within each time interval you define (hour, day, week, etc.). */
1457
1458
  DATE_HISTOGRAM = "DATE_HISTOGRAM",
1458
- /** Multi-level aggregation, where each next aggregation is nested within previous one. */
1459
+ /** Flattened list of aggregations, where each aggregation is nested within previous one. */
1459
1460
  NESTED = "NESTED"
1460
1461
  }
1461
1462
  /** @enumType */
@@ -1463,7 +1464,7 @@ type CommonAggregationTypeWithLiterals = CommonAggregationType | 'UNKNOWN_AGGREG
1463
1464
  /** Nested aggregation expressed through a list of aggregation where each next aggregation is nested within previous one. */
1464
1465
  interface AggregationNestedAggregation {
1465
1466
  /**
1466
- * Flattened list of aggregations, where each next aggregation is nested within previous one.
1467
+ * Flattened list of aggregations, where each aggregation is nested within previous one.
1467
1468
  * @minSize 2
1468
1469
  * @maxSize 3
1469
1470
  */
@@ -1473,7 +1474,7 @@ interface GroupByAggregation extends GroupByAggregationKindOneOf {
1473
1474
  /** Value aggregation configuration. */
1474
1475
  value?: AggregationValueAggregation;
1475
1476
  /**
1476
- * User-defined name of aggregation, should be unique, will appear in aggregation results.
1477
+ * Unique, caller-defined aggregation name, returned in `aggregations.results`.
1477
1478
  * @maxLength 100
1478
1479
  */
1479
1480
  name?: string | null;
@@ -1489,7 +1490,7 @@ interface GroupByAggregationKindOneOf {
1489
1490
  value?: AggregationValueAggregation;
1490
1491
  }
1491
1492
  interface CommonSearchDetails {
1492
- /** Defines how separate search terms in `expression` are combined. */
1493
+ /** Search mode. Defines the search logic for combining multiple terms in the `expression`. */
1493
1494
  mode?: SearchDetailsModeWithLiterals;
1494
1495
  /**
1495
1496
  * Search term or expression.
@@ -1497,16 +1498,16 @@ interface CommonSearchDetails {
1497
1498
  */
1498
1499
  expression?: string | null;
1499
1500
  /**
1500
- * Fields to search in. If empty - will search in all searchable fields. Use dot notation to specify json path.
1501
+ * Fields to search in. If the array is empty, all searchable fields are searched. Use dot notation to specify a JSON path. For example, For example, `order.address.streetName`.
1501
1502
  * @maxLength 200
1502
1503
  * @maxSize 20
1503
1504
  */
1504
1505
  fields?: string[];
1505
- /** Whether to use auto fuzzy search (allowing typos by a managed proximity algorithm). */
1506
+ /** Whether to enable the search function to use an algorithm to automatically find results that are close to the search expression, such as typos and declensions. */
1506
1507
  fuzzy?: boolean;
1507
1508
  }
1508
1509
  declare enum SearchDetailsMode {
1509
- /** Any of the search terms must be present. */
1510
+ /** At least one of the search terms must be present. */
1510
1511
  OR = "OR",
1511
1512
  /** All search terms must be present. */
1512
1513
  AND = "AND"
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@wix/auto_sdk_stores_read-only-variants-v-3",
3
- "version": "1.0.13",
3
+ "version": "1.0.14",
4
4
  "publishConfig": {
5
5
  "registry": "https://registry.npmjs.org/",
6
6
  "access": "public"
@@ -49,5 +49,5 @@
49
49
  "fqdn": "wix.stores.catalog.v3.read_only_variant"
50
50
  }
51
51
  },
52
- "falconPackageHash": "44a77f2327bb638035f5587d0b6f257afecb01a1dbb179c0fbea3116"
52
+ "falconPackageHash": "57ef388fc1575c047cbb437d9f1442c5b59131b1f7739f8e967487c9"
53
53
  }