@wcs-colab/plugin-fuzzy-phrase 3.1.16-custom.2 โ†’ 3.1.16-custom.22

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/LICENSE.md ADDED
@@ -0,0 +1,13 @@
1
+ Copyright 2023 OramaSearch Inc.
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.
package/dist/index.cjs CHANGED
@@ -81,17 +81,50 @@ function calculateAdaptiveTolerance(queryTokens, baseTolerance) {
81
81
  // src/candidates.ts
82
82
  function extractVocabularyFromRadixTree(radixNode) {
83
83
  const vocabulary = /* @__PURE__ */ new Set();
84
- function traverse(node) {
85
- if (node.w) {
84
+ let nodesVisited = 0;
85
+ let wordsFound = 0;
86
+ function traverse(node, depth = 0) {
87
+ if (!node) {
88
+ console.log(`\u26A0\uFE0F Null node at depth ${depth}`);
89
+ return;
90
+ }
91
+ nodesVisited++;
92
+ if (nodesVisited <= 3) {
93
+ const cInfo = node.c ? {
94
+ isArray: Array.isArray(node.c),
95
+ isMap: node.c instanceof Map,
96
+ type: typeof node.c,
97
+ constructor: node.c.constructor?.name,
98
+ keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),
99
+ valuesCount: node.c instanceof Map ? node.c.size : Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length
100
+ } : "null";
101
+ console.log(`\u{1F50D} Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });
102
+ }
103
+ if (node.e && node.w && typeof node.w === "string" && node.w.length > 0) {
86
104
  vocabulary.add(node.w);
105
+ wordsFound++;
106
+ if (wordsFound <= 5) {
107
+ console.log(`\u2705 Found word ${wordsFound}: "${node.w}"`);
108
+ }
87
109
  }
88
110
  if (node.c) {
89
- for (const child of Object.values(node.c)) {
90
- traverse(child);
111
+ if (node.c instanceof Map) {
112
+ for (const [_key, childNode] of node.c) {
113
+ traverse(childNode, depth + 1);
114
+ }
115
+ } else if (Array.isArray(node.c)) {
116
+ for (const [_key, childNode] of node.c) {
117
+ traverse(childNode, depth + 1);
118
+ }
119
+ } else if (typeof node.c === "object") {
120
+ for (const childNode of Object.values(node.c)) {
121
+ traverse(childNode, depth + 1);
122
+ }
91
123
  }
92
124
  }
93
125
  }
94
126
  traverse(radixNode);
127
+ console.log(`\u{1F4DA} Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);
95
128
  return vocabulary;
96
129
  }
97
130
  function findCandidatesForToken(queryToken, vocabulary, tolerance, synonyms, synonymScore = 0.8) {
@@ -194,7 +227,9 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
194
227
  queryTokens,
195
228
  config,
196
229
  documentFrequency,
197
- totalDocuments
230
+ totalDocuments,
231
+ wordMatches
232
+ // Pass all word matches for density calculation
198
233
  );
199
234
  if (phrase && phrase.words.length > 0) {
200
235
  phrases.push(phrase);
@@ -202,7 +237,7 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
202
237
  }
203
238
  return deduplicatePhrases(phrases);
204
239
  }
205
- function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments) {
240
+ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
206
241
  const startMatch = wordMatches[startIndex];
207
242
  const phraseWords = [startMatch];
208
243
  const coveredTokens = /* @__PURE__ */ new Set([startMatch.queryToken]);
@@ -221,12 +256,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
221
256
  }
222
257
  }
223
258
  if (phraseWords.length > 0) {
224
- const score = calculatePhraseScore(
259
+ const { score, breakdown } = calculatePhraseScore(
225
260
  phraseWords,
226
261
  queryTokens,
227
262
  config,
228
263
  documentFrequency,
229
- totalDocuments
264
+ totalDocuments,
265
+ allWordMatches
230
266
  );
231
267
  return {
232
268
  words: phraseWords,
@@ -234,12 +270,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
234
270
  endPosition: phraseWords[phraseWords.length - 1].position,
235
271
  gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,
236
272
  inOrder: isInOrder(phraseWords, queryTokens),
237
- score
273
+ score,
274
+ scoreBreakdown: breakdown
238
275
  };
239
276
  }
240
277
  return null;
241
278
  }
242
- function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments) {
279
+ function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
243
280
  let baseScore = 0;
244
281
  for (const word of phraseWords) {
245
282
  const weight = word.type === "exact" ? config.weights.exact : word.type === "fuzzy" ? config.weights.fuzzy : config.weights.fuzzy * 0.8;
@@ -250,16 +287,42 @@ function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequenc
250
287
  const orderScore = inOrder ? 1 : 0.5;
251
288
  const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;
252
289
  const proximityScore = Math.max(0, 1 - span / (queryTokens.length * 5));
253
- const densityScore = phraseWords.length / queryTokens.length;
290
+ let densityScore = 0;
291
+ if (queryTokens.length === 1) {
292
+ const totalOccurrences = allWordMatches.length;
293
+ densityScore = totalOccurrences / queryTokens.length;
294
+ } else {
295
+ densityScore = phraseWords.length / queryTokens.length;
296
+ }
254
297
  const semanticScore = calculateSemanticScore(
255
298
  phraseWords,
256
299
  documentFrequency,
257
300
  totalDocuments
258
301
  );
259
302
  const weights = config.weights;
260
- const totalScore = baseScore + orderScore * weights.order + proximityScore * weights.proximity + densityScore * weights.density + semanticScore * weights.semantic;
303
+ const weightedBase = baseScore;
304
+ const weightedOrder = orderScore * weights.order;
305
+ const weightedProximity = proximityScore * weights.proximity;
306
+ const weightedDensity = densityScore * weights.density;
307
+ const weightedSemantic = semanticScore * weights.semantic;
308
+ const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;
261
309
  const maxPossibleScore = 1 + weights.order + weights.proximity + weights.density + weights.semantic;
262
- return Math.min(1, totalScore / maxPossibleScore);
310
+ const score = totalScore / maxPossibleScore;
311
+ const base = weightedBase / maxPossibleScore;
312
+ const order = weightedOrder / maxPossibleScore;
313
+ const proximity = weightedProximity / maxPossibleScore;
314
+ const density = weightedDensity / maxPossibleScore;
315
+ const semantic = weightedSemantic / maxPossibleScore;
316
+ return {
317
+ score,
318
+ breakdown: {
319
+ base,
320
+ order,
321
+ proximity,
322
+ density,
323
+ semantic
324
+ }
325
+ };
263
326
  }
264
327
  function isInOrder(phraseWords, queryTokens) {
265
328
  const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));
@@ -273,6 +336,9 @@ function isInOrder(phraseWords, queryTokens) {
273
336
  return true;
274
337
  }
275
338
  function calculateSemanticScore(phraseWords, documentFrequency, totalDocuments) {
339
+ if (totalDocuments === 0) {
340
+ return 0;
341
+ }
276
342
  let tfidfSum = 0;
277
343
  for (const word of phraseWords) {
278
344
  const df = documentFrequency.get(word.word) || 1;
@@ -367,14 +433,22 @@ function pluginFuzzyPhrase(userConfig = {}) {
367
433
  console.error("\u26A0\uFE0F Failed to load synonyms:", error);
368
434
  }
369
435
  }
370
- if (orama.data && typeof orama.data === "object") {
371
- const docs = orama.data.docs || {};
436
+ const docs = orama.data?.docs?.docs;
437
+ if (docs) {
372
438
  state.totalDocuments = Object.keys(docs).length;
373
439
  state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);
374
440
  console.log(`\u{1F4CA} Calculated document frequencies for ${state.totalDocuments} documents`);
375
441
  }
376
442
  pluginStates.set(orama, state);
377
443
  console.log("\u2705 Fuzzy Phrase Plugin initialized");
444
+ setImmediate(() => {
445
+ if (typeof globalThis.fuzzyPhrasePluginReady === "function") {
446
+ console.log("\u{1F4E1} Signaling plugin ready...");
447
+ globalThis.fuzzyPhrasePluginReady();
448
+ } else {
449
+ console.warn("\u26A0\uFE0F fuzzyPhrasePluginReady callback not found");
450
+ }
451
+ });
378
452
  }
379
453
  };
380
454
  return plugin;
@@ -399,17 +473,23 @@ async function searchWithFuzzyPhrase(orama, params, language) {
399
473
  console.log(`\u{1F50D} Fuzzy phrase search: "${term}" (${queryTokens.length} tokens, tolerance: ${tolerance})`);
400
474
  let vocabulary;
401
475
  try {
402
- console.log("\u{1F50D} DEBUG: Index structure:", {
403
- hasIndex: !!orama.index,
404
- hasIndexes: !!orama.index?.indexes,
405
- properties: Object.keys(orama.index?.indexes || {}),
406
- textPropertyExists: !!orama.index?.indexes?.[textProperty],
407
- textPropertyStructure: orama.index?.indexes?.[textProperty] ? Object.keys(orama.index.indexes[textProperty]) : "N/A"
408
- });
409
- const radixNode = orama.index?.indexes?.[textProperty]?.node;
476
+ const indexData = orama.data?.index;
477
+ if (!indexData) {
478
+ console.error("\u274C No index data found in orama.data.index");
479
+ return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
480
+ }
481
+ console.log("\u{1F50D} DEBUG: Index data keys:", Object.keys(indexData || {}));
482
+ let radixNode = null;
483
+ if (indexData.indexes?.[textProperty]?.node) {
484
+ radixNode = indexData.indexes[textProperty].node;
485
+ console.log("\u2705 Found radix via QPS-style path (data.index.indexes)");
486
+ } else if (indexData[textProperty]?.node) {
487
+ radixNode = indexData[textProperty].node;
488
+ console.log("\u2705 Found radix via standard path (data.index[property])");
489
+ }
410
490
  if (!radixNode) {
411
491
  console.error("\u274C Radix tree not found for property:", textProperty);
412
- console.error(" Available structure:", orama.index?.indexes?.[textProperty]);
492
+ console.error(" Available properties in index:", Object.keys(indexData));
413
493
  return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
414
494
  }
415
495
  vocabulary = extractVocabularyFromRadixTree(radixNode);
@@ -431,7 +511,31 @@ async function searchWithFuzzyPhrase(orama, params, language) {
431
511
  );
432
512
  console.log(`\u{1F3AF} Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);
433
513
  const documentMatches = [];
434
- const docs = orama.data?.docs || {};
514
+ console.log("\u{1F50D} DEBUG orama.data structure:", {
515
+ dataKeys: Object.keys(orama.data || {}),
516
+ hasDocs: !!orama.data?.docs,
517
+ docsType: orama.data?.docs ? typeof orama.data.docs : "undefined"
518
+ });
519
+ let docs = {};
520
+ if (orama.data?.docs?.docs) {
521
+ docs = orama.data.docs.docs;
522
+ console.log("\u2705 Found docs at orama.data.docs.docs");
523
+ } else if (orama.data?.docs && typeof orama.data.docs === "object") {
524
+ const firstKey = Object.keys(orama.data.docs)[0];
525
+ if (firstKey && firstKey !== "sharedInternalDocumentStore" && firstKey !== "count") {
526
+ docs = orama.data.docs;
527
+ console.log("\u2705 Found docs at orama.data.docs (direct)");
528
+ }
529
+ }
530
+ if (Object.keys(docs).length === 0) {
531
+ console.log("\u274C Could not find documents - available structure:", {
532
+ hasDataDocs: !!orama.data?.docs,
533
+ dataDocsKeys: orama.data?.docs ? Object.keys(orama.data.docs) : "none",
534
+ hasDataDocsDocs: !!orama.data?.docs?.docs,
535
+ dataDocsDocsCount: orama.data?.docs?.docs ? Object.keys(orama.data.docs.docs).length : 0
536
+ });
537
+ }
538
+ console.log(`\u{1F4C4} Searching through ${Object.keys(docs).length} documents`);
435
539
  for (const [docId, doc] of Object.entries(docs)) {
436
540
  const text = doc[textProperty];
437
541
  if (!text || typeof text !== "string") {
@@ -459,7 +563,9 @@ async function searchWithFuzzyPhrase(orama, params, language) {
459
563
  }
460
564
  }
461
565
  documentMatches.sort((a, b) => b.score - a.score);
462
- const hits = documentMatches.map((match) => ({
566
+ const limit = params.limit ?? documentMatches.length;
567
+ const limitedMatches = documentMatches.slice(0, limit);
568
+ const hits = limitedMatches.map((match) => ({
463
569
  id: match.id,
464
570
  score: match.score,
465
571
  document: match.document,
@@ -467,7 +573,7 @@ async function searchWithFuzzyPhrase(orama, params, language) {
467
573
  _phrases: match.phrases
468
574
  }));
469
575
  const elapsed = performance.now() - startTime;
470
- console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);
576
+ console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);
471
577
  return {
472
578
  elapsed: {
473
579
  formatted: `${elapsed.toFixed(2)}ms`,
@@ -480,15 +586,25 @@ async function searchWithFuzzyPhrase(orama, params, language) {
480
586
  }
481
587
  async function loadSynonymsFromSupabase(supabaseConfig) {
482
588
  try {
589
+ console.log("\u{1F50D} DEBUG: Calling Supabase RPC get_synonym_map...");
483
590
  const { createClient } = await import('@supabase/supabase-js');
484
591
  const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);
485
592
  const { data, error } = await supabase.rpc("get_synonym_map");
593
+ console.log("\u{1F50D} DEBUG: Supabase RPC response:", {
594
+ hasError: !!error,
595
+ errorMessage: error?.message,
596
+ hasData: !!data,
597
+ dataType: typeof data,
598
+ dataKeys: data ? Object.keys(data).length : 0
599
+ });
486
600
  if (error) {
487
601
  throw new Error(`Supabase error: ${error.message}`);
488
602
  }
489
- return data || {};
603
+ const synonymMap = data || {};
604
+ console.log(`\u{1F4DA} Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);
605
+ return synonymMap;
490
606
  } catch (error) {
491
- console.error("Failed to load synonyms from Supabase:", error);
607
+ console.error("\u274C Failed to load synonyms from Supabase:", error);
492
608
  throw error;
493
609
  }
494
610
  }
@@ -506,8 +622,11 @@ function calculateDocumentFrequencies(docs, textProperty) {
506
622
  }
507
623
  return df;
508
624
  }
625
+ function normalizeText(text) {
626
+ return text.toLowerCase().normalize("NFD").replace(/[\u0300-\u036f]/g, "").replace(/\b[ldcjmnst][\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4](?=\w)/gi, " ").replace(/[\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4]/g, "").replace(/[\u201c\u201d]/g, '"').replace(/[.,;:!?()[\]{}\-โ€”โ€“ยซยป""]/g, " ").replace(/\s+/g, " ").trim();
627
+ }
509
628
  function tokenize(text) {
510
- return text.toLowerCase().split(/\s+/).filter((token) => token.length > 0);
629
+ return normalizeText(text).split(/\s+/).filter((token) => token.length > 0);
511
630
  }
512
631
 
513
632
  exports.pluginFuzzyPhrase = pluginFuzzyPhrase;
@@ -1 +1 @@
1
- {"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AAEnC,WAAS,SAAS,MAAW;AAC3B,QAAI,KAAK,GAAG;AACV,iBAAW,IAAI,KAAK,CAAC;AAAA,IACvB;AACA,QAAI,KAAK,GAAG;AACV,iBAAW,SAAS,OAAO,OAAO,KAAK,CAAC,GAAG;AACzC,iBAAS,KAAK;AAAA,MAChB;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;AC5IO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAaA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,QAAQ;AAAA,MACZ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACQ;AAER,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAG1E,QAAM,eAAe,YAAY,SAAS,YAAY;AAGtD,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AACvB,QAAM,aACJ,YACA,aAAa,QAAQ,QACrB,iBAAiB,QAAQ,YACzB,eAAe,QAAQ,UACvB,gBAAgB,QAAQ;AAG1B,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAC7F,SAAO,KAAK,IAAI,GAAK,aAAa,gBAAgB;AACpD;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AACR,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnRA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,UAAI,MAAM,QAAQ,OAAO,MAAM,SAAS,UAAU;AAChD,cAAM,OAAQ,MAAM,KAAa,QAAQ,CAAC;AAC1C,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAAA,IACjD;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,YAAQ,IAAI,qCAA8B;AAAA,MACxC,UAAU,CAAC,CAAE,MAAc;AAAA,MAC3B,YAAY,CAAC,CAAE,MAAc,OAAO;AAAA,MACpC,YAAY,OAAO,KAAM,MAAc,OAAO,WAAW,CAAC,CAAC;AAAA,MAC3D,oBAAoB,CAAC,CAAE,MAAc,OAAO,UAAU,YAAY;AAAA,MAClE,uBAAwB,MAAc,OAAO,UAAU,YAAY,IAAI,OAAO,KAAM,MAAc,MAAM,QAAQ,YAAY,CAAC,IAAI;AAAA,IACnI,CAAC;AAED,UAAM,YAAa,MAAc,OAAO,UAAU,YAAY,GAAG;AAEjE,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,2BAA4B,MAAc,OAAO,UAAU,YAAY,CAAC;AACtF,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAC1C,QAAM,OAAS,MAAc,MAAM,QAAQ,CAAC;AAE5C,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,OAAO,gBAAgB,IAAI,YAAU;AAAA,IACzC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,IAAI;AAEvE,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AAEF,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,WAAO,QAAQ,CAAC;AAAA,EAClB,SAAS,OAAO;AACd,YAAQ,MAAM,0CAA0C,KAAK;AAC7D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAOA,SAAS,SAAS,MAAwB;AACxC,SAAO,KACJ,YAAY,EACZ,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n \n function traverse(node: any) {\n if (node.w) {\n vocabulary.add(node.w);\n }\n if (node.c) {\n for (const child of Object.values(node.c)) {\n traverse(child);\n }\n }\n }\n \n traverse(radixNode);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const score = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase score (0-1)\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (percentage of query covered)\n const densityScore = phraseWords.length / queryTokens.length;\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n const totalScore = \n baseScore +\n orderScore * weights.order +\n proximityScore * weights.proximity +\n densityScore * weights.density +\n semanticScore * weights.semantic;\n\n // Normalize to 0-1 range\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n return Math.min(1.0, totalScore / maxPossibleScore);\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐Ÿ”ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐Ÿ“– Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โœ… Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โš ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF\n if (orama.data && typeof orama.data === 'object') {\n const docs = (orama.data as any).docs || {};\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐Ÿ“Š Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โœ… Fuzzy Phrase Plugin initialized');\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โŒ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐Ÿ” Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree directly (no QPS dependency)\n // Debug: log index structure\n console.log('๐Ÿ” DEBUG: Index structure:', {\n hasIndex: !!(orama as any).index,\n hasIndexes: !!(orama as any).index?.indexes,\n properties: Object.keys((orama as any).index?.indexes || {}),\n textPropertyExists: !!(orama as any).index?.indexes?.[textProperty],\n textPropertyStructure: (orama as any).index?.indexes?.[textProperty] ? Object.keys((orama as any).index.indexes[textProperty]) : 'N/A'\n });\n \n const radixNode = (orama as any).index?.indexes?.[textProperty]?.node;\n \n if (!radixNode) {\n console.error('โŒ Radix tree not found for property:', textProperty);\n console.error(' Available structure:', (orama as any).index?.indexes?.[textProperty]);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐Ÿ“š Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โŒ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ŸŽฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n const docs = ((orama as any).data?.docs || {}) as Record<string, any>;\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Convert to Orama results format\n const hits = documentMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โœ… Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n return data || {};\n } catch (error) {\n console.error('Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Simple tokenization (lowercase and split by whitespace)\n * \n * Note: This should match Orama's tokenization behavior\n */\nfunction tokenize(text: string): string[] {\n return text\n .toLowerCase()\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
1
+ {"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AACnC,MAAI,eAAe;AACnB,MAAI,aAAa;AAEjB,WAAS,SAAS,MAAW,QAAgB,GAAG;AAC9C,QAAI,CAAC,MAAM;AACT,cAAQ,IAAI,mCAAyB,KAAK,EAAE;AAC5C;AAAA,IACF;AAEA;AAGA,QAAI,gBAAgB,GAAG;AACrB,YAAM,QAAQ,KAAK,IAAI;AAAA,QACrB,SAAS,MAAM,QAAQ,KAAK,CAAC;AAAA,QAC7B,OAAO,KAAK,aAAa;AAAA,QACzB,MAAM,OAAO,KAAK;AAAA,QAClB,aAAa,KAAK,EAAE,aAAa;AAAA,QACjC,MAAM,KAAK,aAAa,MAAM,MAAM,KAAK,KAAK,EAAE,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC,IAAI,OAAO,KAAK,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC;AAAA,QACpG,aAAa,KAAK,aAAa,MAAM,KAAK,EAAE,OAAQ,MAAM,QAAQ,KAAK,CAAC,IAAI,KAAK,EAAE,SAAS,OAAO,KAAK,KAAK,CAAC,EAAE;AAAA,MAClH,IAAI;AACJ,cAAQ,IAAI,kBAAW,YAAY,KAAK,EAAE,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,OAAO,CAAC,CAAC,KAAK,GAAG,QAAQ,MAAM,CAAC;AAAA,IAClG;AAIA,QAAI,KAAK,KAAK,KAAK,KAAK,OAAO,KAAK,MAAM,YAAY,KAAK,EAAE,SAAS,GAAG;AACvE,iBAAW,IAAI,KAAK,CAAC;AACrB;AACA,UAAI,cAAc,GAAG;AACnB,gBAAQ,IAAI,qBAAgB,UAAU,MAAM,KAAK,CAAC,GAAG;AAAA,MACvD;AAAA,IACF;AAGA,QAAI,KAAK,GAAG;AACV,UAAI,KAAK,aAAa,KAAK;AAEzB,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,MAAM,QAAQ,KAAK,CAAC,GAAG;AAEhC,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,OAAO,KAAK,MAAM,UAAU;AAErC,mBAAW,aAAa,OAAO,OAAO,KAAK,CAAC,GAAG;AAC7C,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,UAAQ,IAAI,uBAAgB,WAAW,IAAI,eAAe,YAAY,gBAAgB;AACtF,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;ACxLO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAcA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,EAAE,OAAO,UAAU,IAAI;AAAA,MAC3B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,MACA,gBAAgB;AAAA,IAClB;AAAA,EACF;AAEA,SAAO;AACT;AAaA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACA,gBACqH;AAErH,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAI1E,MAAI,eAAe;AAEnB,MAAI,YAAY,WAAW,GAAG;AAE5B,UAAM,mBAAmB,eAAe;AAExC,mBAAe,mBAAmB,YAAY;AAAA,EAChD,OAAO;AAGL,mBAAe,YAAY,SAAS,YAAY;AAAA,EAClD;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AAGvB,QAAM,eAAe;AACrB,QAAM,gBAAgB,aAAa,QAAQ;AAC3C,QAAM,oBAAoB,iBAAiB,QAAQ;AACnD,QAAM,kBAAkB,eAAe,QAAQ;AAC/C,QAAM,mBAAmB,gBAAgB,QAAQ;AAEjD,QAAM,aAAa,eAAe,gBAAgB,oBAAoB,kBAAkB;AAIxF,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAG7F,QAAM,QAAQ,aAAa;AAG3B,QAAM,OAAO,eAAe;AAC5B,QAAM,QAAQ,gBAAgB;AAC9B,QAAM,YAAY,oBAAoB;AACtC,QAAM,UAAU,kBAAkB;AAClC,QAAM,WAAW,mBAAmB;AAEpC,SAAO;AAAA,IACL;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AAER,MAAI,mBAAmB,GAAG;AACxB,WAAO;AAAA,EACT;AAEA,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnUA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,YAAM,OAAQ,MAAM,MAAc,MAAM;AACxC,UAAI,MAAM;AACR,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAI/C,mBAAa,MAAM;AACjB,YAAI,OAAQ,WAAmB,2BAA2B,YAAY;AACpE,kBAAQ,IAAI,qCAA8B;AAC1C,UAAC,WAAmB,uBAAuB;AAAA,QAC7C,OAAO;AACL,kBAAQ,KAAK,yDAA+C;AAAA,QAC9D;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,UAAM,YAAa,MAAc,MAAM;AAEvC,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,gDAA2C;AACzD,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,YAAQ,IAAI,qCAA8B,OAAO,KAAK,aAAa,CAAC,CAAC,CAAC;AAGtE,QAAI,YAAY;AAGhB,QAAI,UAAU,UAAU,YAAY,GAAG,MAAM;AAC3C,kBAAY,UAAU,QAAQ,YAAY,EAAE;AAC5C,cAAQ,IAAI,4DAAuD;AAAA,IACrE,WAES,UAAU,YAAY,GAAG,MAAM;AACtC,kBAAY,UAAU,YAAY,EAAE;AACpC,cAAQ,IAAI,6DAAwD;AAAA,IACtE;AAEA,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,qCAAqC,OAAO,KAAK,SAAS,CAAC;AACzE,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAE1C,UAAQ,IAAI,yCAAkC;AAAA,IAC5C,UAAU,OAAO,KAAM,MAAc,QAAQ,CAAC,CAAC;AAAA,IAC/C,SAAS,CAAC,CAAG,MAAc,MAAM;AAAA,IACjC,UAAW,MAAc,MAAM,OAAO,OAAQ,MAAc,KAAK,OAAO;AAAA,EAC1E,CAAC;AAGD,MAAI,OAA4B,CAAC;AAGjC,MAAK,MAAc,MAAM,MAAM,MAAM;AACnC,WAAQ,MAAc,KAAK,KAAK;AAChC,YAAQ,IAAI,2CAAsC;AAAA,EACpD,WAEU,MAAc,MAAM,QAAQ,OAAQ,MAAc,KAAK,SAAS,UAAU;AAElF,UAAM,WAAW,OAAO,KAAM,MAAc,KAAK,IAAI,EAAE,CAAC;AACxD,QAAI,YAAY,aAAa,iCAAiC,aAAa,SAAS;AAClF,aAAQ,MAAc,KAAK;AAC3B,cAAQ,IAAI,+CAA0C;AAAA,IACxD;AAAA,EACF;AAEA,MAAI,OAAO,KAAK,IAAI,EAAE,WAAW,GAAG;AAClC,YAAQ,IAAI,0DAAqD;AAAA,MAC/D,aAAa,CAAC,CAAG,MAAc,MAAM;AAAA,MACrC,cAAe,MAAc,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,IAAI,IAAI;AAAA,MAClF,iBAAiB,CAAC,CAAG,MAAc,MAAM,MAAM;AAAA,MAC/C,mBAAoB,MAAc,MAAM,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,KAAK,IAAI,EAAE,SAAS;AAAA,IAC3G,CAAC;AAAA,EACH;AAEA,UAAQ,IAAI,+BAAwB,OAAO,KAAK,IAAI,EAAE,MAAM,YAAY;AAExE,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,QAAQ,OAAO,SAAS,gBAAgB;AAC9C,QAAM,iBAAiB,gBAAgB,MAAM,GAAG,KAAK;AAGrD,QAAM,OAAO,eAAe,IAAI,YAAU;AAAA,IACxC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,cAAc,KAAK,GAAG;AAEzF,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AACF,YAAQ,IAAI,0DAAmD;AAG/D,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,YAAQ,IAAI,2CAAoC;AAAA,MAC9C,UAAU,CAAC,CAAC;AAAA,MACZ,cAAc,OAAO;AAAA,MACrB,SAAS,CAAC,CAAC;AAAA,MACX,UAAU,OAAO;AAAA,MACjB,UAAU,OAAO,OAAO,KAAK,IAAI,EAAE,SAAS;AAAA,IAC9C,CAAC;AAED,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,UAAM,aAAa,QAAQ,CAAC;AAC5B,YAAQ,IAAI,oBAAa,OAAO,KAAK,UAAU,EAAE,MAAM,gCAAgC;AAEvF,WAAO;AAAA,EACT,SAAS,OAAO;AACd,YAAQ,MAAM,iDAA4C,KAAK;AAC/D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAQA,SAAS,cAAc,MAAsB;AAC3C,SAAO,KACJ,YAAY,EACZ,UAAU,KAAK,EACf,QAAQ,oBAAoB,EAAE,EAE9B,QAAQ,gFAAgF,GAAG,EAC3F,QAAQ,6DAA6D,EAAE,EACvE,QAAQ,mBAAmB,GAAG,EAC9B,QAAQ,4BAA4B,GAAG,EACvC,QAAQ,QAAQ,GAAG,EACnB,KAAK;AACV;AAQA,SAAS,SAAS,MAAwB;AAExC,SAAO,cAAc,IAAI,EACtB,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n let nodesVisited = 0;\n let wordsFound = 0;\n \n function traverse(node: any, depth: number = 0) {\n if (!node) {\n console.log(`โš ๏ธ Null node at depth ${depth}`);\n return;\n }\n \n nodesVisited++;\n \n // Debug first few nodes\n if (nodesVisited <= 3) {\n const cInfo = node.c ? {\n isArray: Array.isArray(node.c),\n isMap: node.c instanceof Map,\n type: typeof node.c,\n constructor: node.c.constructor?.name,\n keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),\n valuesCount: node.c instanceof Map ? node.c.size : (Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length)\n } : 'null';\n console.log(`๐Ÿ” Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });\n }\n \n // Check if this node represents a complete word\n // e = true means it's an end of a word\n if (node.e && node.w && typeof node.w === 'string' && node.w.length > 0) {\n vocabulary.add(node.w);\n wordsFound++;\n if (wordsFound <= 5) {\n console.log(`โœ… Found word ${wordsFound}: \"${node.w}\"`);\n }\n }\n \n // Children can be Map, Array, or Object\n if (node.c) {\n if (node.c instanceof Map) {\n // Map format\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (Array.isArray(node.c)) {\n // Array format: [[key, childNode], ...]\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (typeof node.c === 'object') {\n // Object format: {key: childNode, ...}\n for (const childNode of Object.values(node.c)) {\n traverse(childNode, depth + 1);\n }\n }\n }\n }\n \n traverse(radixNode);\n console.log(`๐Ÿ“š Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n wordMatches // Pass all word matches for density calculation\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const { score, breakdown } = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n allWordMatches\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score,\n scoreBreakdown: breakdown\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase score (0-1) and detailed component breakdown\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): { score: number; breakdown: { base: number; order: number; proximity: number; density: number; semantic: number } } {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (how many times query terms appear in the document)\n // Only applies to single-word queries - for phrase queries, use phrase-specific metrics\n let densityScore = 0;\n \n if (queryTokens.length === 1) {\n // Single-word query: reward repetition without capping\n const totalOccurrences = allWordMatches.length;\n // Normalize by query length but don't cap - more occurrences = higher score\n densityScore = totalOccurrences / queryTokens.length;\n } else {\n // Multi-word phrase query: density doesn't apply\n // Use phrase coverage instead (what percentage of query is in this phrase)\n densityScore = phraseWords.length / queryTokens.length;\n }\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n \n // Calculate weighted components\n const weightedBase = baseScore;\n const weightedOrder = orderScore * weights.order;\n const weightedProximity = proximityScore * weights.proximity;\n const weightedDensity = densityScore * weights.density;\n const weightedSemantic = semanticScore * weights.semantic;\n \n const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;\n\n // Calculate max possible score (all components at maximum)\n // baseScore max is 1.0 (from exact matches), other components are already 0-1\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n \n // Normalize to 0-1 range without clamping\n const score = totalScore / maxPossibleScore;\n\n // Component contributions to the final normalized score\n const base = weightedBase / maxPossibleScore;\n const order = weightedOrder / maxPossibleScore;\n const proximity = weightedProximity / maxPossibleScore;\n const density = weightedDensity / maxPossibleScore;\n const semantic = weightedSemantic / maxPossibleScore;\n\n return {\n score,\n breakdown: {\n base,\n order,\n proximity,\n density,\n semantic\n }\n };\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Handle edge case: no documents\n if (totalDocuments === 0) {\n return 0;\n }\n \n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐Ÿ”ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐Ÿ“– Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โœ… Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โš ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF from document store\n const docs = (orama.data as any)?.docs?.docs;\n if (docs) {\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐Ÿ“Š Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โœ… Fuzzy Phrase Plugin initialized');\n \n // Signal ready - emit a custom event that can be listened to\n // Use setImmediate to ensure this runs after the afterCreate hook completes\n setImmediate(() => {\n if (typeof (globalThis as any).fuzzyPhrasePluginReady === 'function') {\n console.log('๐Ÿ“ก Signaling plugin ready...');\n (globalThis as any).fuzzyPhrasePluginReady();\n } else {\n console.warn('โš ๏ธ fuzzyPhrasePluginReady callback not found');\n }\n });\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โŒ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐Ÿ” Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree - the actual index data is in orama.data.index, not orama.index\n // orama.index is just the component interface (methods)\n const indexData = (orama as any).data?.index;\n \n if (!indexData) {\n console.error('โŒ No index data found in orama.data.index');\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n \n console.log('๐Ÿ” DEBUG: Index data keys:', Object.keys(indexData || {}));\n \n // Try different paths to find the radix tree\n let radixNode = null;\n \n // Path 1: QPS-style (orama.data.index.indexes[property].node)\n if (indexData.indexes?.[textProperty]?.node) {\n radixNode = indexData.indexes[textProperty].node;\n console.log('โœ… Found radix via QPS-style path (data.index.indexes)');\n }\n // Path 2: Standard Orama (orama.data.index[property].node)\n else if (indexData[textProperty]?.node) {\n radixNode = indexData[textProperty].node;\n console.log('โœ… Found radix via standard path (data.index[property])');\n }\n \n if (!radixNode) {\n console.error('โŒ Radix tree not found for property:', textProperty);\n console.error(' Available properties in index:', Object.keys(indexData));\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐Ÿ“š Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โŒ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ŸŽฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n \n console.log('๐Ÿ” DEBUG orama.data structure:', {\n dataKeys: Object.keys((orama as any).data || {}),\n hasDocs: !!((orama as any).data?.docs),\n docsType: (orama as any).data?.docs ? typeof (orama as any).data.docs : 'undefined'\n });\n \n // Try multiple possible document storage locations\n let docs: Record<string, any> = {};\n \n // Access the actual documents - they're nested in orama.data.docs.docs\n if ((orama as any).data?.docs?.docs) {\n docs = (orama as any).data.docs.docs;\n console.log('โœ… Found docs at orama.data.docs.docs');\n }\n // Fallback: orama.data.docs (might be the correct structure in some cases)\n else if ((orama as any).data?.docs && typeof (orama as any).data.docs === 'object') {\n // Check if it has document-like properties (not sharedInternalDocumentStore, etc.)\n const firstKey = Object.keys((orama as any).data.docs)[0];\n if (firstKey && firstKey !== 'sharedInternalDocumentStore' && firstKey !== 'count') {\n docs = (orama as any).data.docs;\n console.log('โœ… Found docs at orama.data.docs (direct)');\n }\n }\n \n if (Object.keys(docs).length === 0) {\n console.log('โŒ Could not find documents - available structure:', {\n hasDataDocs: !!((orama as any).data?.docs),\n dataDocsKeys: (orama as any).data?.docs ? Object.keys((orama as any).data.docs) : 'none',\n hasDataDocsDocs: !!((orama as any).data?.docs?.docs),\n dataDocsDocsCount: (orama as any).data?.docs?.docs ? Object.keys((orama as any).data.docs.docs).length : 0\n });\n }\n \n console.log(`๐Ÿ“„ Searching through ${Object.keys(docs).length} documents`);\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Apply limit if specified\n const limit = params.limit ?? documentMatches.length;\n const limitedMatches = documentMatches.slice(0, limit);\n\n // Convert to Orama results format\n const hits = limitedMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โœ… Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n console.log('๐Ÿ” DEBUG: Calling Supabase RPC get_synonym_map...');\n \n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n console.log('๐Ÿ” DEBUG: Supabase RPC response:', {\n hasError: !!error,\n errorMessage: error?.message,\n hasData: !!data,\n dataType: typeof data,\n dataKeys: data ? Object.keys(data).length : 0\n });\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n const synonymMap = data || {};\n console.log(`๐Ÿ“š Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);\n \n return synonymMap;\n } catch (error) {\n console.error('โŒ Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Normalize text using the same rules as server-side\n * \n * CRITICAL: This must match the normalizeText() function in server/index.js exactly\n * PLUS we remove all punctuation to match Orama's French tokenizer behavior\n */\nfunction normalizeText(text: string): string {\n return text\n .toLowerCase()\n .normalize('NFD')\n .replace(/[\\u0300-\\u036f]/g, '') // Remove diacritics\n // Replace French elisions (l', d', etc.) with space to preserve word boundaries\n .replace(/\\b[ldcjmnst][\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4](?=\\w)/gi, ' ')\n .replace(/[\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4]/g, '') // Remove remaining apostrophes\n .replace(/[\\u201c\\u201d]/g, '\"') // Normalize curly quotes to straight quotes\n .replace(/[.,;:!?()[\\]{}\\-โ€”โ€“ยซยป\"\"]/g, ' ') // Remove punctuation (replace with space to preserve word boundaries)\n .replace(/\\s+/g, ' ') // Normalize multiple spaces to single space\n .trim();\n}\n\n/**\n * Tokenization matching normalized text behavior\n * \n * Note: Text should already be normalized before indexing, so we normalize again\n * to ensure plugin tokenization matches index tokenization\n */\nfunction tokenize(text: string): string[] {\n // Normalize first (same as indexing), then split by whitespace\n return normalizeText(text)\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
package/dist/index.js CHANGED
@@ -79,17 +79,50 @@ function calculateAdaptiveTolerance(queryTokens, baseTolerance) {
79
79
  // src/candidates.ts
80
80
  function extractVocabularyFromRadixTree(radixNode) {
81
81
  const vocabulary = /* @__PURE__ */ new Set();
82
- function traverse(node) {
83
- if (node.w) {
82
+ let nodesVisited = 0;
83
+ let wordsFound = 0;
84
+ function traverse(node, depth = 0) {
85
+ if (!node) {
86
+ console.log(`\u26A0\uFE0F Null node at depth ${depth}`);
87
+ return;
88
+ }
89
+ nodesVisited++;
90
+ if (nodesVisited <= 3) {
91
+ const cInfo = node.c ? {
92
+ isArray: Array.isArray(node.c),
93
+ isMap: node.c instanceof Map,
94
+ type: typeof node.c,
95
+ constructor: node.c.constructor?.name,
96
+ keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),
97
+ valuesCount: node.c instanceof Map ? node.c.size : Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length
98
+ } : "null";
99
+ console.log(`\u{1F50D} Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });
100
+ }
101
+ if (node.e && node.w && typeof node.w === "string" && node.w.length > 0) {
84
102
  vocabulary.add(node.w);
103
+ wordsFound++;
104
+ if (wordsFound <= 5) {
105
+ console.log(`\u2705 Found word ${wordsFound}: "${node.w}"`);
106
+ }
85
107
  }
86
108
  if (node.c) {
87
- for (const child of Object.values(node.c)) {
88
- traverse(child);
109
+ if (node.c instanceof Map) {
110
+ for (const [_key, childNode] of node.c) {
111
+ traverse(childNode, depth + 1);
112
+ }
113
+ } else if (Array.isArray(node.c)) {
114
+ for (const [_key, childNode] of node.c) {
115
+ traverse(childNode, depth + 1);
116
+ }
117
+ } else if (typeof node.c === "object") {
118
+ for (const childNode of Object.values(node.c)) {
119
+ traverse(childNode, depth + 1);
120
+ }
89
121
  }
90
122
  }
91
123
  }
92
124
  traverse(radixNode);
125
+ console.log(`\u{1F4DA} Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);
93
126
  return vocabulary;
94
127
  }
95
128
  function findCandidatesForToken(queryToken, vocabulary, tolerance, synonyms, synonymScore = 0.8) {
@@ -192,7 +225,9 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
192
225
  queryTokens,
193
226
  config,
194
227
  documentFrequency,
195
- totalDocuments
228
+ totalDocuments,
229
+ wordMatches
230
+ // Pass all word matches for density calculation
196
231
  );
197
232
  if (phrase && phrase.words.length > 0) {
198
233
  phrases.push(phrase);
@@ -200,7 +235,7 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
200
235
  }
201
236
  return deduplicatePhrases(phrases);
202
237
  }
203
- function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments) {
238
+ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
204
239
  const startMatch = wordMatches[startIndex];
205
240
  const phraseWords = [startMatch];
206
241
  const coveredTokens = /* @__PURE__ */ new Set([startMatch.queryToken]);
@@ -219,12 +254,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
219
254
  }
220
255
  }
221
256
  if (phraseWords.length > 0) {
222
- const score = calculatePhraseScore(
257
+ const { score, breakdown } = calculatePhraseScore(
223
258
  phraseWords,
224
259
  queryTokens,
225
260
  config,
226
261
  documentFrequency,
227
- totalDocuments
262
+ totalDocuments,
263
+ allWordMatches
228
264
  );
229
265
  return {
230
266
  words: phraseWords,
@@ -232,12 +268,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
232
268
  endPosition: phraseWords[phraseWords.length - 1].position,
233
269
  gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,
234
270
  inOrder: isInOrder(phraseWords, queryTokens),
235
- score
271
+ score,
272
+ scoreBreakdown: breakdown
236
273
  };
237
274
  }
238
275
  return null;
239
276
  }
240
- function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments) {
277
+ function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
241
278
  let baseScore = 0;
242
279
  for (const word of phraseWords) {
243
280
  const weight = word.type === "exact" ? config.weights.exact : word.type === "fuzzy" ? config.weights.fuzzy : config.weights.fuzzy * 0.8;
@@ -248,16 +285,42 @@ function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequenc
248
285
  const orderScore = inOrder ? 1 : 0.5;
249
286
  const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;
250
287
  const proximityScore = Math.max(0, 1 - span / (queryTokens.length * 5));
251
- const densityScore = phraseWords.length / queryTokens.length;
288
+ let densityScore = 0;
289
+ if (queryTokens.length === 1) {
290
+ const totalOccurrences = allWordMatches.length;
291
+ densityScore = totalOccurrences / queryTokens.length;
292
+ } else {
293
+ densityScore = phraseWords.length / queryTokens.length;
294
+ }
252
295
  const semanticScore = calculateSemanticScore(
253
296
  phraseWords,
254
297
  documentFrequency,
255
298
  totalDocuments
256
299
  );
257
300
  const weights = config.weights;
258
- const totalScore = baseScore + orderScore * weights.order + proximityScore * weights.proximity + densityScore * weights.density + semanticScore * weights.semantic;
301
+ const weightedBase = baseScore;
302
+ const weightedOrder = orderScore * weights.order;
303
+ const weightedProximity = proximityScore * weights.proximity;
304
+ const weightedDensity = densityScore * weights.density;
305
+ const weightedSemantic = semanticScore * weights.semantic;
306
+ const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;
259
307
  const maxPossibleScore = 1 + weights.order + weights.proximity + weights.density + weights.semantic;
260
- return Math.min(1, totalScore / maxPossibleScore);
308
+ const score = totalScore / maxPossibleScore;
309
+ const base = weightedBase / maxPossibleScore;
310
+ const order = weightedOrder / maxPossibleScore;
311
+ const proximity = weightedProximity / maxPossibleScore;
312
+ const density = weightedDensity / maxPossibleScore;
313
+ const semantic = weightedSemantic / maxPossibleScore;
314
+ return {
315
+ score,
316
+ breakdown: {
317
+ base,
318
+ order,
319
+ proximity,
320
+ density,
321
+ semantic
322
+ }
323
+ };
261
324
  }
262
325
  function isInOrder(phraseWords, queryTokens) {
263
326
  const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));
@@ -271,6 +334,9 @@ function isInOrder(phraseWords, queryTokens) {
271
334
  return true;
272
335
  }
273
336
  function calculateSemanticScore(phraseWords, documentFrequency, totalDocuments) {
337
+ if (totalDocuments === 0) {
338
+ return 0;
339
+ }
274
340
  let tfidfSum = 0;
275
341
  for (const word of phraseWords) {
276
342
  const df = documentFrequency.get(word.word) || 1;
@@ -365,14 +431,22 @@ function pluginFuzzyPhrase(userConfig = {}) {
365
431
  console.error("\u26A0\uFE0F Failed to load synonyms:", error);
366
432
  }
367
433
  }
368
- if (orama.data && typeof orama.data === "object") {
369
- const docs = orama.data.docs || {};
434
+ const docs = orama.data?.docs?.docs;
435
+ if (docs) {
370
436
  state.totalDocuments = Object.keys(docs).length;
371
437
  state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);
372
438
  console.log(`\u{1F4CA} Calculated document frequencies for ${state.totalDocuments} documents`);
373
439
  }
374
440
  pluginStates.set(orama, state);
375
441
  console.log("\u2705 Fuzzy Phrase Plugin initialized");
442
+ setImmediate(() => {
443
+ if (typeof globalThis.fuzzyPhrasePluginReady === "function") {
444
+ console.log("\u{1F4E1} Signaling plugin ready...");
445
+ globalThis.fuzzyPhrasePluginReady();
446
+ } else {
447
+ console.warn("\u26A0\uFE0F fuzzyPhrasePluginReady callback not found");
448
+ }
449
+ });
376
450
  }
377
451
  };
378
452
  return plugin;
@@ -397,17 +471,23 @@ async function searchWithFuzzyPhrase(orama, params, language) {
397
471
  console.log(`\u{1F50D} Fuzzy phrase search: "${term}" (${queryTokens.length} tokens, tolerance: ${tolerance})`);
398
472
  let vocabulary;
399
473
  try {
400
- console.log("\u{1F50D} DEBUG: Index structure:", {
401
- hasIndex: !!orama.index,
402
- hasIndexes: !!orama.index?.indexes,
403
- properties: Object.keys(orama.index?.indexes || {}),
404
- textPropertyExists: !!orama.index?.indexes?.[textProperty],
405
- textPropertyStructure: orama.index?.indexes?.[textProperty] ? Object.keys(orama.index.indexes[textProperty]) : "N/A"
406
- });
407
- const radixNode = orama.index?.indexes?.[textProperty]?.node;
474
+ const indexData = orama.data?.index;
475
+ if (!indexData) {
476
+ console.error("\u274C No index data found in orama.data.index");
477
+ return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
478
+ }
479
+ console.log("\u{1F50D} DEBUG: Index data keys:", Object.keys(indexData || {}));
480
+ let radixNode = null;
481
+ if (indexData.indexes?.[textProperty]?.node) {
482
+ radixNode = indexData.indexes[textProperty].node;
483
+ console.log("\u2705 Found radix via QPS-style path (data.index.indexes)");
484
+ } else if (indexData[textProperty]?.node) {
485
+ radixNode = indexData[textProperty].node;
486
+ console.log("\u2705 Found radix via standard path (data.index[property])");
487
+ }
408
488
  if (!radixNode) {
409
489
  console.error("\u274C Radix tree not found for property:", textProperty);
410
- console.error(" Available structure:", orama.index?.indexes?.[textProperty]);
490
+ console.error(" Available properties in index:", Object.keys(indexData));
411
491
  return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
412
492
  }
413
493
  vocabulary = extractVocabularyFromRadixTree(radixNode);
@@ -429,7 +509,31 @@ async function searchWithFuzzyPhrase(orama, params, language) {
429
509
  );
430
510
  console.log(`\u{1F3AF} Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);
431
511
  const documentMatches = [];
432
- const docs = orama.data?.docs || {};
512
+ console.log("\u{1F50D} DEBUG orama.data structure:", {
513
+ dataKeys: Object.keys(orama.data || {}),
514
+ hasDocs: !!orama.data?.docs,
515
+ docsType: orama.data?.docs ? typeof orama.data.docs : "undefined"
516
+ });
517
+ let docs = {};
518
+ if (orama.data?.docs?.docs) {
519
+ docs = orama.data.docs.docs;
520
+ console.log("\u2705 Found docs at orama.data.docs.docs");
521
+ } else if (orama.data?.docs && typeof orama.data.docs === "object") {
522
+ const firstKey = Object.keys(orama.data.docs)[0];
523
+ if (firstKey && firstKey !== "sharedInternalDocumentStore" && firstKey !== "count") {
524
+ docs = orama.data.docs;
525
+ console.log("\u2705 Found docs at orama.data.docs (direct)");
526
+ }
527
+ }
528
+ if (Object.keys(docs).length === 0) {
529
+ console.log("\u274C Could not find documents - available structure:", {
530
+ hasDataDocs: !!orama.data?.docs,
531
+ dataDocsKeys: orama.data?.docs ? Object.keys(orama.data.docs) : "none",
532
+ hasDataDocsDocs: !!orama.data?.docs?.docs,
533
+ dataDocsDocsCount: orama.data?.docs?.docs ? Object.keys(orama.data.docs.docs).length : 0
534
+ });
535
+ }
536
+ console.log(`\u{1F4C4} Searching through ${Object.keys(docs).length} documents`);
433
537
  for (const [docId, doc] of Object.entries(docs)) {
434
538
  const text = doc[textProperty];
435
539
  if (!text || typeof text !== "string") {
@@ -457,7 +561,9 @@ async function searchWithFuzzyPhrase(orama, params, language) {
457
561
  }
458
562
  }
459
563
  documentMatches.sort((a, b) => b.score - a.score);
460
- const hits = documentMatches.map((match) => ({
564
+ const limit = params.limit ?? documentMatches.length;
565
+ const limitedMatches = documentMatches.slice(0, limit);
566
+ const hits = limitedMatches.map((match) => ({
461
567
  id: match.id,
462
568
  score: match.score,
463
569
  document: match.document,
@@ -465,7 +571,7 @@ async function searchWithFuzzyPhrase(orama, params, language) {
465
571
  _phrases: match.phrases
466
572
  }));
467
573
  const elapsed = performance.now() - startTime;
468
- console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);
574
+ console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);
469
575
  return {
470
576
  elapsed: {
471
577
  formatted: `${elapsed.toFixed(2)}ms`,
@@ -478,15 +584,25 @@ async function searchWithFuzzyPhrase(orama, params, language) {
478
584
  }
479
585
  async function loadSynonymsFromSupabase(supabaseConfig) {
480
586
  try {
587
+ console.log("\u{1F50D} DEBUG: Calling Supabase RPC get_synonym_map...");
481
588
  const { createClient } = await import('@supabase/supabase-js');
482
589
  const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);
483
590
  const { data, error } = await supabase.rpc("get_synonym_map");
591
+ console.log("\u{1F50D} DEBUG: Supabase RPC response:", {
592
+ hasError: !!error,
593
+ errorMessage: error?.message,
594
+ hasData: !!data,
595
+ dataType: typeof data,
596
+ dataKeys: data ? Object.keys(data).length : 0
597
+ });
484
598
  if (error) {
485
599
  throw new Error(`Supabase error: ${error.message}`);
486
600
  }
487
- return data || {};
601
+ const synonymMap = data || {};
602
+ console.log(`\u{1F4DA} Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);
603
+ return synonymMap;
488
604
  } catch (error) {
489
- console.error("Failed to load synonyms from Supabase:", error);
605
+ console.error("\u274C Failed to load synonyms from Supabase:", error);
490
606
  throw error;
491
607
  }
492
608
  }
@@ -504,8 +620,11 @@ function calculateDocumentFrequencies(docs, textProperty) {
504
620
  }
505
621
  return df;
506
622
  }
623
+ function normalizeText(text) {
624
+ return text.toLowerCase().normalize("NFD").replace(/[\u0300-\u036f]/g, "").replace(/\b[ldcjmnst][\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4](?=\w)/gi, " ").replace(/[\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4]/g, "").replace(/[\u201c\u201d]/g, '"').replace(/[.,;:!?()[\]{}\-โ€”โ€“ยซยป""]/g, " ").replace(/\s+/g, " ").trim();
625
+ }
507
626
  function tokenize(text) {
508
- return text.toLowerCase().split(/\s+/).filter((token) => token.length > 0);
627
+ return normalizeText(text).split(/\s+/).filter((token) => token.length > 0);
509
628
  }
510
629
 
511
630
  export { pluginFuzzyPhrase, searchWithFuzzyPhrase };
package/dist/index.js.map CHANGED
@@ -1 +1 @@
1
- {"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AAEnC,WAAS,SAAS,MAAW;AAC3B,QAAI,KAAK,GAAG;AACV,iBAAW,IAAI,KAAK,CAAC;AAAA,IACvB;AACA,QAAI,KAAK,GAAG;AACV,iBAAW,SAAS,OAAO,OAAO,KAAK,CAAC,GAAG;AACzC,iBAAS,KAAK;AAAA,MAChB;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;AC5IO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAaA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,QAAQ;AAAA,MACZ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACQ;AAER,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAG1E,QAAM,eAAe,YAAY,SAAS,YAAY;AAGtD,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AACvB,QAAM,aACJ,YACA,aAAa,QAAQ,QACrB,iBAAiB,QAAQ,YACzB,eAAe,QAAQ,UACvB,gBAAgB,QAAQ;AAG1B,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAC7F,SAAO,KAAK,IAAI,GAAK,aAAa,gBAAgB;AACpD;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AACR,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnRA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,UAAI,MAAM,QAAQ,OAAO,MAAM,SAAS,UAAU;AAChD,cAAM,OAAQ,MAAM,KAAa,QAAQ,CAAC;AAC1C,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAAA,IACjD;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,YAAQ,IAAI,qCAA8B;AAAA,MACxC,UAAU,CAAC,CAAE,MAAc;AAAA,MAC3B,YAAY,CAAC,CAAE,MAAc,OAAO;AAAA,MACpC,YAAY,OAAO,KAAM,MAAc,OAAO,WAAW,CAAC,CAAC;AAAA,MAC3D,oBAAoB,CAAC,CAAE,MAAc,OAAO,UAAU,YAAY;AAAA,MAClE,uBAAwB,MAAc,OAAO,UAAU,YAAY,IAAI,OAAO,KAAM,MAAc,MAAM,QAAQ,YAAY,CAAC,IAAI;AAAA,IACnI,CAAC;AAED,UAAM,YAAa,MAAc,OAAO,UAAU,YAAY,GAAG;AAEjE,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,2BAA4B,MAAc,OAAO,UAAU,YAAY,CAAC;AACtF,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAC1C,QAAM,OAAS,MAAc,MAAM,QAAQ,CAAC;AAE5C,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,OAAO,gBAAgB,IAAI,YAAU;AAAA,IACzC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,IAAI;AAEvE,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AAEF,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,WAAO,QAAQ,CAAC;AAAA,EAClB,SAAS,OAAO;AACd,YAAQ,MAAM,0CAA0C,KAAK;AAC7D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAOA,SAAS,SAAS,MAAwB;AACxC,SAAO,KACJ,YAAY,EACZ,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n \n function traverse(node: any) {\n if (node.w) {\n vocabulary.add(node.w);\n }\n if (node.c) {\n for (const child of Object.values(node.c)) {\n traverse(child);\n }\n }\n }\n \n traverse(radixNode);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const score = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase score (0-1)\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (percentage of query covered)\n const densityScore = phraseWords.length / queryTokens.length;\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n const totalScore = \n baseScore +\n orderScore * weights.order +\n proximityScore * weights.proximity +\n densityScore * weights.density +\n semanticScore * weights.semantic;\n\n // Normalize to 0-1 range\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n return Math.min(1.0, totalScore / maxPossibleScore);\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐Ÿ”ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐Ÿ“– Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โœ… Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โš ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF\n if (orama.data && typeof orama.data === 'object') {\n const docs = (orama.data as any).docs || {};\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐Ÿ“Š Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โœ… Fuzzy Phrase Plugin initialized');\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โŒ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐Ÿ” Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree directly (no QPS dependency)\n // Debug: log index structure\n console.log('๐Ÿ” DEBUG: Index structure:', {\n hasIndex: !!(orama as any).index,\n hasIndexes: !!(orama as any).index?.indexes,\n properties: Object.keys((orama as any).index?.indexes || {}),\n textPropertyExists: !!(orama as any).index?.indexes?.[textProperty],\n textPropertyStructure: (orama as any).index?.indexes?.[textProperty] ? Object.keys((orama as any).index.indexes[textProperty]) : 'N/A'\n });\n \n const radixNode = (orama as any).index?.indexes?.[textProperty]?.node;\n \n if (!radixNode) {\n console.error('โŒ Radix tree not found for property:', textProperty);\n console.error(' Available structure:', (orama as any).index?.indexes?.[textProperty]);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐Ÿ“š Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โŒ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ŸŽฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n const docs = ((orama as any).data?.docs || {}) as Record<string, any>;\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Convert to Orama results format\n const hits = documentMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โœ… Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n return data || {};\n } catch (error) {\n console.error('Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Simple tokenization (lowercase and split by whitespace)\n * \n * Note: This should match Orama's tokenization behavior\n */\nfunction tokenize(text: string): string[] {\n return text\n .toLowerCase()\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
1
+ {"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AACnC,MAAI,eAAe;AACnB,MAAI,aAAa;AAEjB,WAAS,SAAS,MAAW,QAAgB,GAAG;AAC9C,QAAI,CAAC,MAAM;AACT,cAAQ,IAAI,mCAAyB,KAAK,EAAE;AAC5C;AAAA,IACF;AAEA;AAGA,QAAI,gBAAgB,GAAG;AACrB,YAAM,QAAQ,KAAK,IAAI;AAAA,QACrB,SAAS,MAAM,QAAQ,KAAK,CAAC;AAAA,QAC7B,OAAO,KAAK,aAAa;AAAA,QACzB,MAAM,OAAO,KAAK;AAAA,QAClB,aAAa,KAAK,EAAE,aAAa;AAAA,QACjC,MAAM,KAAK,aAAa,MAAM,MAAM,KAAK,KAAK,EAAE,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC,IAAI,OAAO,KAAK,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC;AAAA,QACpG,aAAa,KAAK,aAAa,MAAM,KAAK,EAAE,OAAQ,MAAM,QAAQ,KAAK,CAAC,IAAI,KAAK,EAAE,SAAS,OAAO,KAAK,KAAK,CAAC,EAAE;AAAA,MAClH,IAAI;AACJ,cAAQ,IAAI,kBAAW,YAAY,KAAK,EAAE,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,OAAO,CAAC,CAAC,KAAK,GAAG,QAAQ,MAAM,CAAC;AAAA,IAClG;AAIA,QAAI,KAAK,KAAK,KAAK,KAAK,OAAO,KAAK,MAAM,YAAY,KAAK,EAAE,SAAS,GAAG;AACvE,iBAAW,IAAI,KAAK,CAAC;AACrB;AACA,UAAI,cAAc,GAAG;AACnB,gBAAQ,IAAI,qBAAgB,UAAU,MAAM,KAAK,CAAC,GAAG;AAAA,MACvD;AAAA,IACF;AAGA,QAAI,KAAK,GAAG;AACV,UAAI,KAAK,aAAa,KAAK;AAEzB,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,MAAM,QAAQ,KAAK,CAAC,GAAG;AAEhC,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,OAAO,KAAK,MAAM,UAAU;AAErC,mBAAW,aAAa,OAAO,OAAO,KAAK,CAAC,GAAG;AAC7C,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,UAAQ,IAAI,uBAAgB,WAAW,IAAI,eAAe,YAAY,gBAAgB;AACtF,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;ACxLO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAcA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,EAAE,OAAO,UAAU,IAAI;AAAA,MAC3B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,MACA,gBAAgB;AAAA,IAClB;AAAA,EACF;AAEA,SAAO;AACT;AAaA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACA,gBACqH;AAErH,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAI1E,MAAI,eAAe;AAEnB,MAAI,YAAY,WAAW,GAAG;AAE5B,UAAM,mBAAmB,eAAe;AAExC,mBAAe,mBAAmB,YAAY;AAAA,EAChD,OAAO;AAGL,mBAAe,YAAY,SAAS,YAAY;AAAA,EAClD;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AAGvB,QAAM,eAAe;AACrB,QAAM,gBAAgB,aAAa,QAAQ;AAC3C,QAAM,oBAAoB,iBAAiB,QAAQ;AACnD,QAAM,kBAAkB,eAAe,QAAQ;AAC/C,QAAM,mBAAmB,gBAAgB,QAAQ;AAEjD,QAAM,aAAa,eAAe,gBAAgB,oBAAoB,kBAAkB;AAIxF,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAG7F,QAAM,QAAQ,aAAa;AAG3B,QAAM,OAAO,eAAe;AAC5B,QAAM,QAAQ,gBAAgB;AAC9B,QAAM,YAAY,oBAAoB;AACtC,QAAM,UAAU,kBAAkB;AAClC,QAAM,WAAW,mBAAmB;AAEpC,SAAO;AAAA,IACL;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AAER,MAAI,mBAAmB,GAAG;AACxB,WAAO;AAAA,EACT;AAEA,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnUA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,YAAM,OAAQ,MAAM,MAAc,MAAM;AACxC,UAAI,MAAM;AACR,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAI/C,mBAAa,MAAM;AACjB,YAAI,OAAQ,WAAmB,2BAA2B,YAAY;AACpE,kBAAQ,IAAI,qCAA8B;AAC1C,UAAC,WAAmB,uBAAuB;AAAA,QAC7C,OAAO;AACL,kBAAQ,KAAK,yDAA+C;AAAA,QAC9D;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,UAAM,YAAa,MAAc,MAAM;AAEvC,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,gDAA2C;AACzD,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,YAAQ,IAAI,qCAA8B,OAAO,KAAK,aAAa,CAAC,CAAC,CAAC;AAGtE,QAAI,YAAY;AAGhB,QAAI,UAAU,UAAU,YAAY,GAAG,MAAM;AAC3C,kBAAY,UAAU,QAAQ,YAAY,EAAE;AAC5C,cAAQ,IAAI,4DAAuD;AAAA,IACrE,WAES,UAAU,YAAY,GAAG,MAAM;AACtC,kBAAY,UAAU,YAAY,EAAE;AACpC,cAAQ,IAAI,6DAAwD;AAAA,IACtE;AAEA,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,qCAAqC,OAAO,KAAK,SAAS,CAAC;AACzE,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAE1C,UAAQ,IAAI,yCAAkC;AAAA,IAC5C,UAAU,OAAO,KAAM,MAAc,QAAQ,CAAC,CAAC;AAAA,IAC/C,SAAS,CAAC,CAAG,MAAc,MAAM;AAAA,IACjC,UAAW,MAAc,MAAM,OAAO,OAAQ,MAAc,KAAK,OAAO;AAAA,EAC1E,CAAC;AAGD,MAAI,OAA4B,CAAC;AAGjC,MAAK,MAAc,MAAM,MAAM,MAAM;AACnC,WAAQ,MAAc,KAAK,KAAK;AAChC,YAAQ,IAAI,2CAAsC;AAAA,EACpD,WAEU,MAAc,MAAM,QAAQ,OAAQ,MAAc,KAAK,SAAS,UAAU;AAElF,UAAM,WAAW,OAAO,KAAM,MAAc,KAAK,IAAI,EAAE,CAAC;AACxD,QAAI,YAAY,aAAa,iCAAiC,aAAa,SAAS;AAClF,aAAQ,MAAc,KAAK;AAC3B,cAAQ,IAAI,+CAA0C;AAAA,IACxD;AAAA,EACF;AAEA,MAAI,OAAO,KAAK,IAAI,EAAE,WAAW,GAAG;AAClC,YAAQ,IAAI,0DAAqD;AAAA,MAC/D,aAAa,CAAC,CAAG,MAAc,MAAM;AAAA,MACrC,cAAe,MAAc,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,IAAI,IAAI;AAAA,MAClF,iBAAiB,CAAC,CAAG,MAAc,MAAM,MAAM;AAAA,MAC/C,mBAAoB,MAAc,MAAM,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,KAAK,IAAI,EAAE,SAAS;AAAA,IAC3G,CAAC;AAAA,EACH;AAEA,UAAQ,IAAI,+BAAwB,OAAO,KAAK,IAAI,EAAE,MAAM,YAAY;AAExE,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,QAAQ,OAAO,SAAS,gBAAgB;AAC9C,QAAM,iBAAiB,gBAAgB,MAAM,GAAG,KAAK;AAGrD,QAAM,OAAO,eAAe,IAAI,YAAU;AAAA,IACxC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,cAAc,KAAK,GAAG;AAEzF,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AACF,YAAQ,IAAI,0DAAmD;AAG/D,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,YAAQ,IAAI,2CAAoC;AAAA,MAC9C,UAAU,CAAC,CAAC;AAAA,MACZ,cAAc,OAAO;AAAA,MACrB,SAAS,CAAC,CAAC;AAAA,MACX,UAAU,OAAO;AAAA,MACjB,UAAU,OAAO,OAAO,KAAK,IAAI,EAAE,SAAS;AAAA,IAC9C,CAAC;AAED,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,UAAM,aAAa,QAAQ,CAAC;AAC5B,YAAQ,IAAI,oBAAa,OAAO,KAAK,UAAU,EAAE,MAAM,gCAAgC;AAEvF,WAAO;AAAA,EACT,SAAS,OAAO;AACd,YAAQ,MAAM,iDAA4C,KAAK;AAC/D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAQA,SAAS,cAAc,MAAsB;AAC3C,SAAO,KACJ,YAAY,EACZ,UAAU,KAAK,EACf,QAAQ,oBAAoB,EAAE,EAE9B,QAAQ,gFAAgF,GAAG,EAC3F,QAAQ,6DAA6D,EAAE,EACvE,QAAQ,mBAAmB,GAAG,EAC9B,QAAQ,4BAA4B,GAAG,EACvC,QAAQ,QAAQ,GAAG,EACnB,KAAK;AACV;AAQA,SAAS,SAAS,MAAwB;AAExC,SAAO,cAAc,IAAI,EACtB,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n let nodesVisited = 0;\n let wordsFound = 0;\n \n function traverse(node: any, depth: number = 0) {\n if (!node) {\n console.log(`โš ๏ธ Null node at depth ${depth}`);\n return;\n }\n \n nodesVisited++;\n \n // Debug first few nodes\n if (nodesVisited <= 3) {\n const cInfo = node.c ? {\n isArray: Array.isArray(node.c),\n isMap: node.c instanceof Map,\n type: typeof node.c,\n constructor: node.c.constructor?.name,\n keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),\n valuesCount: node.c instanceof Map ? node.c.size : (Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length)\n } : 'null';\n console.log(`๐Ÿ” Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });\n }\n \n // Check if this node represents a complete word\n // e = true means it's an end of a word\n if (node.e && node.w && typeof node.w === 'string' && node.w.length > 0) {\n vocabulary.add(node.w);\n wordsFound++;\n if (wordsFound <= 5) {\n console.log(`โœ… Found word ${wordsFound}: \"${node.w}\"`);\n }\n }\n \n // Children can be Map, Array, or Object\n if (node.c) {\n if (node.c instanceof Map) {\n // Map format\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (Array.isArray(node.c)) {\n // Array format: [[key, childNode], ...]\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (typeof node.c === 'object') {\n // Object format: {key: childNode, ...}\n for (const childNode of Object.values(node.c)) {\n traverse(childNode, depth + 1);\n }\n }\n }\n }\n \n traverse(radixNode);\n console.log(`๐Ÿ“š Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n wordMatches // Pass all word matches for density calculation\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const { score, breakdown } = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n allWordMatches\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score,\n scoreBreakdown: breakdown\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase score (0-1) and detailed component breakdown\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): { score: number; breakdown: { base: number; order: number; proximity: number; density: number; semantic: number } } {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (how many times query terms appear in the document)\n // Only applies to single-word queries - for phrase queries, use phrase-specific metrics\n let densityScore = 0;\n \n if (queryTokens.length === 1) {\n // Single-word query: reward repetition without capping\n const totalOccurrences = allWordMatches.length;\n // Normalize by query length but don't cap - more occurrences = higher score\n densityScore = totalOccurrences / queryTokens.length;\n } else {\n // Multi-word phrase query: density doesn't apply\n // Use phrase coverage instead (what percentage of query is in this phrase)\n densityScore = phraseWords.length / queryTokens.length;\n }\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n \n // Calculate weighted components\n const weightedBase = baseScore;\n const weightedOrder = orderScore * weights.order;\n const weightedProximity = proximityScore * weights.proximity;\n const weightedDensity = densityScore * weights.density;\n const weightedSemantic = semanticScore * weights.semantic;\n \n const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;\n\n // Calculate max possible score (all components at maximum)\n // baseScore max is 1.0 (from exact matches), other components are already 0-1\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n \n // Normalize to 0-1 range without clamping\n const score = totalScore / maxPossibleScore;\n\n // Component contributions to the final normalized score\n const base = weightedBase / maxPossibleScore;\n const order = weightedOrder / maxPossibleScore;\n const proximity = weightedProximity / maxPossibleScore;\n const density = weightedDensity / maxPossibleScore;\n const semantic = weightedSemantic / maxPossibleScore;\n\n return {\n score,\n breakdown: {\n base,\n order,\n proximity,\n density,\n semantic\n }\n };\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Handle edge case: no documents\n if (totalDocuments === 0) {\n return 0;\n }\n \n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐Ÿ”ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐Ÿ“– Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โœ… Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โš ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF from document store\n const docs = (orama.data as any)?.docs?.docs;\n if (docs) {\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐Ÿ“Š Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โœ… Fuzzy Phrase Plugin initialized');\n \n // Signal ready - emit a custom event that can be listened to\n // Use setImmediate to ensure this runs after the afterCreate hook completes\n setImmediate(() => {\n if (typeof (globalThis as any).fuzzyPhrasePluginReady === 'function') {\n console.log('๐Ÿ“ก Signaling plugin ready...');\n (globalThis as any).fuzzyPhrasePluginReady();\n } else {\n console.warn('โš ๏ธ fuzzyPhrasePluginReady callback not found');\n }\n });\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โŒ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐Ÿ” Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree - the actual index data is in orama.data.index, not orama.index\n // orama.index is just the component interface (methods)\n const indexData = (orama as any).data?.index;\n \n if (!indexData) {\n console.error('โŒ No index data found in orama.data.index');\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n \n console.log('๐Ÿ” DEBUG: Index data keys:', Object.keys(indexData || {}));\n \n // Try different paths to find the radix tree\n let radixNode = null;\n \n // Path 1: QPS-style (orama.data.index.indexes[property].node)\n if (indexData.indexes?.[textProperty]?.node) {\n radixNode = indexData.indexes[textProperty].node;\n console.log('โœ… Found radix via QPS-style path (data.index.indexes)');\n }\n // Path 2: Standard Orama (orama.data.index[property].node)\n else if (indexData[textProperty]?.node) {\n radixNode = indexData[textProperty].node;\n console.log('โœ… Found radix via standard path (data.index[property])');\n }\n \n if (!radixNode) {\n console.error('โŒ Radix tree not found for property:', textProperty);\n console.error(' Available properties in index:', Object.keys(indexData));\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐Ÿ“š Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โŒ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ŸŽฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n \n console.log('๐Ÿ” DEBUG orama.data structure:', {\n dataKeys: Object.keys((orama as any).data || {}),\n hasDocs: !!((orama as any).data?.docs),\n docsType: (orama as any).data?.docs ? typeof (orama as any).data.docs : 'undefined'\n });\n \n // Try multiple possible document storage locations\n let docs: Record<string, any> = {};\n \n // Access the actual documents - they're nested in orama.data.docs.docs\n if ((orama as any).data?.docs?.docs) {\n docs = (orama as any).data.docs.docs;\n console.log('โœ… Found docs at orama.data.docs.docs');\n }\n // Fallback: orama.data.docs (might be the correct structure in some cases)\n else if ((orama as any).data?.docs && typeof (orama as any).data.docs === 'object') {\n // Check if it has document-like properties (not sharedInternalDocumentStore, etc.)\n const firstKey = Object.keys((orama as any).data.docs)[0];\n if (firstKey && firstKey !== 'sharedInternalDocumentStore' && firstKey !== 'count') {\n docs = (orama as any).data.docs;\n console.log('โœ… Found docs at orama.data.docs (direct)');\n }\n }\n \n if (Object.keys(docs).length === 0) {\n console.log('โŒ Could not find documents - available structure:', {\n hasDataDocs: !!((orama as any).data?.docs),\n dataDocsKeys: (orama as any).data?.docs ? Object.keys((orama as any).data.docs) : 'none',\n hasDataDocsDocs: !!((orama as any).data?.docs?.docs),\n dataDocsDocsCount: (orama as any).data?.docs?.docs ? Object.keys((orama as any).data.docs.docs).length : 0\n });\n }\n \n console.log(`๐Ÿ“„ Searching through ${Object.keys(docs).length} documents`);\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Apply limit if specified\n const limit = params.limit ?? documentMatches.length;\n const limitedMatches = documentMatches.slice(0, limit);\n\n // Convert to Orama results format\n const hits = limitedMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โœ… Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n console.log('๐Ÿ” DEBUG: Calling Supabase RPC get_synonym_map...');\n \n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n console.log('๐Ÿ” DEBUG: Supabase RPC response:', {\n hasError: !!error,\n errorMessage: error?.message,\n hasData: !!data,\n dataType: typeof data,\n dataKeys: data ? Object.keys(data).length : 0\n });\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n const synonymMap = data || {};\n console.log(`๐Ÿ“š Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);\n \n return synonymMap;\n } catch (error) {\n console.error('โŒ Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Normalize text using the same rules as server-side\n * \n * CRITICAL: This must match the normalizeText() function in server/index.js exactly\n * PLUS we remove all punctuation to match Orama's French tokenizer behavior\n */\nfunction normalizeText(text: string): string {\n return text\n .toLowerCase()\n .normalize('NFD')\n .replace(/[\\u0300-\\u036f]/g, '') // Remove diacritics\n // Replace French elisions (l', d', etc.) with space to preserve word boundaries\n .replace(/\\b[ldcjmnst][\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4](?=\\w)/gi, ' ')\n .replace(/[\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4]/g, '') // Remove remaining apostrophes\n .replace(/[\\u201c\\u201d]/g, '\"') // Normalize curly quotes to straight quotes\n .replace(/[.,;:!?()[\\]{}\\-โ€”โ€“ยซยป\"\"]/g, ' ') // Remove punctuation (replace with space to preserve word boundaries)\n .replace(/\\s+/g, ' ') // Normalize multiple spaces to single space\n .trim();\n}\n\n/**\n * Tokenization matching normalized text behavior\n * \n * Note: Text should already be normalized before indexing, so we normalize again\n * to ensure plugin tokenization matches index tokenization\n */\nfunction tokenize(text: string): string[] {\n // Normalize first (same as indexing), then split by whitespace\n return normalizeText(text)\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
package/package.json CHANGED
@@ -1,54 +1,62 @@
1
- {
2
- "name": "@wcs-colab/plugin-fuzzy-phrase",
3
- "version": "3.1.16-custom.2",
4
- "description": "Advanced fuzzy phrase matching plugin for Orama with semantic weighting and synonym expansion",
5
- "keywords": ["orama", "fuzzy search", "phrase matching", "synonyms", "search"],
6
- "license": "Apache-2.0",
7
- "main": "./dist/index.js",
8
- "type": "module",
9
- "exports": {
10
- ".": {
11
- "require": "./dist/index.cjs",
12
- "import": "./dist/index.js",
13
- "types": "./dist/index.d.ts",
14
- "browser": "./dist/index.global.js"
15
- }
16
- },
17
- "bugs": {
18
- "url": "https://github.com/colabx69/orama-custom/issues"
19
- },
20
- "homepage": "https://github.com/colabx69/orama-custom#readme",
21
- "repository": {
22
- "type": "git",
23
- "url": "git+https://github.com/colabx69/orama-custom.git"
24
- },
25
- "sideEffects": false,
26
- "types": "./dist/index.d.ts",
27
- "files": ["dist"],
28
- "scripts": {
29
- "build": "tsup --config tsup.lib.js",
30
- "lint": "exit 0",
31
- "test": "node --test --import tsx test/*.test.ts"
32
- },
33
- "publishConfig": {
34
- "access": "public"
35
- },
36
- "devDependencies": {
37
- "@types/node": "^20.9.0",
38
- "tap": "^21.0.1",
39
- "tsup": "^7.2.0",
40
- "tsx": "^4.19.1",
41
- "typescript": "^5.0.0"
42
- },
43
- "dependencies": {
44
- "@wcs-colab/orama": "3.1.16-custom.9"
45
- },
46
- "peerDependencies": {
47
- "@supabase/supabase-js": "^2.39.0"
48
- },
49
- "peerDependenciesMeta": {
50
- "@supabase/supabase-js": {
51
- "optional": true
52
- }
53
- }
54
- }
1
+ {
2
+ "name": "@wcs-colab/plugin-fuzzy-phrase",
3
+ "version": "3.1.16-custom.22",
4
+ "description": "Advanced fuzzy phrase matching plugin for Orama with semantic weighting and synonym expansion",
5
+ "keywords": [
6
+ "orama",
7
+ "fuzzy search",
8
+ "phrase matching",
9
+ "synonyms",
10
+ "search"
11
+ ],
12
+ "license": "Apache-2.0",
13
+ "main": "./dist/index.js",
14
+ "type": "module",
15
+ "exports": {
16
+ ".": {
17
+ "require": "./dist/index.cjs",
18
+ "import": "./dist/index.js",
19
+ "types": "./dist/index.d.ts",
20
+ "browser": "./dist/index.global.js"
21
+ }
22
+ },
23
+ "bugs": {
24
+ "url": "https://github.com/colabx69/orama-custom/issues"
25
+ },
26
+ "homepage": "https://github.com/colabx69/orama-custom#readme",
27
+ "repository": {
28
+ "type": "git",
29
+ "url": "git+https://github.com/colabx69/orama-custom.git"
30
+ },
31
+ "sideEffects": false,
32
+ "types": "./dist/index.d.ts",
33
+ "files": [
34
+ "dist"
35
+ ],
36
+ "publishConfig": {
37
+ "access": "public"
38
+ },
39
+ "devDependencies": {
40
+ "@types/node": "^20.9.0",
41
+ "tap": "^21.0.1",
42
+ "tsup": "^7.2.0",
43
+ "tsx": "^4.19.1",
44
+ "typescript": "^5.0.0"
45
+ },
46
+ "dependencies": {
47
+ "@wcs-colab/orama": "3.1.16-custom.9"
48
+ },
49
+ "peerDependencies": {
50
+ "@supabase/supabase-js": "^2.39.0"
51
+ },
52
+ "peerDependenciesMeta": {
53
+ "@supabase/supabase-js": {
54
+ "optional": true
55
+ }
56
+ },
57
+ "scripts": {
58
+ "build": "tsup --config tsup.lib.js",
59
+ "lint": "exit 0",
60
+ "test": "node --test --import tsx test/*.test.ts"
61
+ }
62
+ }