@wcs-colab/plugin-fuzzy-phrase 3.1.16-custom.2 โ 3.1.16-custom.22
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE.md +13 -0
- package/dist/index.cjs +149 -30
- package/dist/index.cjs.map +1 -1
- package/dist/index.js +149 -30
- package/dist/index.js.map +1 -1
- package/package.json +62 -54
package/LICENSE.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
Copyright 2023 OramaSearch Inc.
|
|
2
|
+
|
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
you may not use this file except in compliance with the License.
|
|
5
|
+
You may obtain a copy of the License at
|
|
6
|
+
|
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
See the License for the specific language governing permissions and
|
|
13
|
+
limitations under the License.
|
package/dist/index.cjs
CHANGED
|
@@ -81,17 +81,50 @@ function calculateAdaptiveTolerance(queryTokens, baseTolerance) {
|
|
|
81
81
|
// src/candidates.ts
|
|
82
82
|
function extractVocabularyFromRadixTree(radixNode) {
|
|
83
83
|
const vocabulary = /* @__PURE__ */ new Set();
|
|
84
|
-
|
|
85
|
-
|
|
84
|
+
let nodesVisited = 0;
|
|
85
|
+
let wordsFound = 0;
|
|
86
|
+
function traverse(node, depth = 0) {
|
|
87
|
+
if (!node) {
|
|
88
|
+
console.log(`\u26A0\uFE0F Null node at depth ${depth}`);
|
|
89
|
+
return;
|
|
90
|
+
}
|
|
91
|
+
nodesVisited++;
|
|
92
|
+
if (nodesVisited <= 3) {
|
|
93
|
+
const cInfo = node.c ? {
|
|
94
|
+
isArray: Array.isArray(node.c),
|
|
95
|
+
isMap: node.c instanceof Map,
|
|
96
|
+
type: typeof node.c,
|
|
97
|
+
constructor: node.c.constructor?.name,
|
|
98
|
+
keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),
|
|
99
|
+
valuesCount: node.c instanceof Map ? node.c.size : Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length
|
|
100
|
+
} : "null";
|
|
101
|
+
console.log(`\u{1F50D} Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });
|
|
102
|
+
}
|
|
103
|
+
if (node.e && node.w && typeof node.w === "string" && node.w.length > 0) {
|
|
86
104
|
vocabulary.add(node.w);
|
|
105
|
+
wordsFound++;
|
|
106
|
+
if (wordsFound <= 5) {
|
|
107
|
+
console.log(`\u2705 Found word ${wordsFound}: "${node.w}"`);
|
|
108
|
+
}
|
|
87
109
|
}
|
|
88
110
|
if (node.c) {
|
|
89
|
-
|
|
90
|
-
|
|
111
|
+
if (node.c instanceof Map) {
|
|
112
|
+
for (const [_key, childNode] of node.c) {
|
|
113
|
+
traverse(childNode, depth + 1);
|
|
114
|
+
}
|
|
115
|
+
} else if (Array.isArray(node.c)) {
|
|
116
|
+
for (const [_key, childNode] of node.c) {
|
|
117
|
+
traverse(childNode, depth + 1);
|
|
118
|
+
}
|
|
119
|
+
} else if (typeof node.c === "object") {
|
|
120
|
+
for (const childNode of Object.values(node.c)) {
|
|
121
|
+
traverse(childNode, depth + 1);
|
|
122
|
+
}
|
|
91
123
|
}
|
|
92
124
|
}
|
|
93
125
|
}
|
|
94
126
|
traverse(radixNode);
|
|
127
|
+
console.log(`\u{1F4DA} Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);
|
|
95
128
|
return vocabulary;
|
|
96
129
|
}
|
|
97
130
|
function findCandidatesForToken(queryToken, vocabulary, tolerance, synonyms, synonymScore = 0.8) {
|
|
@@ -194,7 +227,9 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
|
|
|
194
227
|
queryTokens,
|
|
195
228
|
config,
|
|
196
229
|
documentFrequency,
|
|
197
|
-
totalDocuments
|
|
230
|
+
totalDocuments,
|
|
231
|
+
wordMatches
|
|
232
|
+
// Pass all word matches for density calculation
|
|
198
233
|
);
|
|
199
234
|
if (phrase && phrase.words.length > 0) {
|
|
200
235
|
phrases.push(phrase);
|
|
@@ -202,7 +237,7 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
|
|
|
202
237
|
}
|
|
203
238
|
return deduplicatePhrases(phrases);
|
|
204
239
|
}
|
|
205
|
-
function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments) {
|
|
240
|
+
function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
|
|
206
241
|
const startMatch = wordMatches[startIndex];
|
|
207
242
|
const phraseWords = [startMatch];
|
|
208
243
|
const coveredTokens = /* @__PURE__ */ new Set([startMatch.queryToken]);
|
|
@@ -221,12 +256,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
|
|
|
221
256
|
}
|
|
222
257
|
}
|
|
223
258
|
if (phraseWords.length > 0) {
|
|
224
|
-
const score = calculatePhraseScore(
|
|
259
|
+
const { score, breakdown } = calculatePhraseScore(
|
|
225
260
|
phraseWords,
|
|
226
261
|
queryTokens,
|
|
227
262
|
config,
|
|
228
263
|
documentFrequency,
|
|
229
|
-
totalDocuments
|
|
264
|
+
totalDocuments,
|
|
265
|
+
allWordMatches
|
|
230
266
|
);
|
|
231
267
|
return {
|
|
232
268
|
words: phraseWords,
|
|
@@ -234,12 +270,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
|
|
|
234
270
|
endPosition: phraseWords[phraseWords.length - 1].position,
|
|
235
271
|
gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,
|
|
236
272
|
inOrder: isInOrder(phraseWords, queryTokens),
|
|
237
|
-
score
|
|
273
|
+
score,
|
|
274
|
+
scoreBreakdown: breakdown
|
|
238
275
|
};
|
|
239
276
|
}
|
|
240
277
|
return null;
|
|
241
278
|
}
|
|
242
|
-
function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments) {
|
|
279
|
+
function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
|
|
243
280
|
let baseScore = 0;
|
|
244
281
|
for (const word of phraseWords) {
|
|
245
282
|
const weight = word.type === "exact" ? config.weights.exact : word.type === "fuzzy" ? config.weights.fuzzy : config.weights.fuzzy * 0.8;
|
|
@@ -250,16 +287,42 @@ function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequenc
|
|
|
250
287
|
const orderScore = inOrder ? 1 : 0.5;
|
|
251
288
|
const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;
|
|
252
289
|
const proximityScore = Math.max(0, 1 - span / (queryTokens.length * 5));
|
|
253
|
-
|
|
290
|
+
let densityScore = 0;
|
|
291
|
+
if (queryTokens.length === 1) {
|
|
292
|
+
const totalOccurrences = allWordMatches.length;
|
|
293
|
+
densityScore = totalOccurrences / queryTokens.length;
|
|
294
|
+
} else {
|
|
295
|
+
densityScore = phraseWords.length / queryTokens.length;
|
|
296
|
+
}
|
|
254
297
|
const semanticScore = calculateSemanticScore(
|
|
255
298
|
phraseWords,
|
|
256
299
|
documentFrequency,
|
|
257
300
|
totalDocuments
|
|
258
301
|
);
|
|
259
302
|
const weights = config.weights;
|
|
260
|
-
const
|
|
303
|
+
const weightedBase = baseScore;
|
|
304
|
+
const weightedOrder = orderScore * weights.order;
|
|
305
|
+
const weightedProximity = proximityScore * weights.proximity;
|
|
306
|
+
const weightedDensity = densityScore * weights.density;
|
|
307
|
+
const weightedSemantic = semanticScore * weights.semantic;
|
|
308
|
+
const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;
|
|
261
309
|
const maxPossibleScore = 1 + weights.order + weights.proximity + weights.density + weights.semantic;
|
|
262
|
-
|
|
310
|
+
const score = totalScore / maxPossibleScore;
|
|
311
|
+
const base = weightedBase / maxPossibleScore;
|
|
312
|
+
const order = weightedOrder / maxPossibleScore;
|
|
313
|
+
const proximity = weightedProximity / maxPossibleScore;
|
|
314
|
+
const density = weightedDensity / maxPossibleScore;
|
|
315
|
+
const semantic = weightedSemantic / maxPossibleScore;
|
|
316
|
+
return {
|
|
317
|
+
score,
|
|
318
|
+
breakdown: {
|
|
319
|
+
base,
|
|
320
|
+
order,
|
|
321
|
+
proximity,
|
|
322
|
+
density,
|
|
323
|
+
semantic
|
|
324
|
+
}
|
|
325
|
+
};
|
|
263
326
|
}
|
|
264
327
|
function isInOrder(phraseWords, queryTokens) {
|
|
265
328
|
const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));
|
|
@@ -273,6 +336,9 @@ function isInOrder(phraseWords, queryTokens) {
|
|
|
273
336
|
return true;
|
|
274
337
|
}
|
|
275
338
|
function calculateSemanticScore(phraseWords, documentFrequency, totalDocuments) {
|
|
339
|
+
if (totalDocuments === 0) {
|
|
340
|
+
return 0;
|
|
341
|
+
}
|
|
276
342
|
let tfidfSum = 0;
|
|
277
343
|
for (const word of phraseWords) {
|
|
278
344
|
const df = documentFrequency.get(word.word) || 1;
|
|
@@ -367,14 +433,22 @@ function pluginFuzzyPhrase(userConfig = {}) {
|
|
|
367
433
|
console.error("\u26A0\uFE0F Failed to load synonyms:", error);
|
|
368
434
|
}
|
|
369
435
|
}
|
|
370
|
-
|
|
371
|
-
|
|
436
|
+
const docs = orama.data?.docs?.docs;
|
|
437
|
+
if (docs) {
|
|
372
438
|
state.totalDocuments = Object.keys(docs).length;
|
|
373
439
|
state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);
|
|
374
440
|
console.log(`\u{1F4CA} Calculated document frequencies for ${state.totalDocuments} documents`);
|
|
375
441
|
}
|
|
376
442
|
pluginStates.set(orama, state);
|
|
377
443
|
console.log("\u2705 Fuzzy Phrase Plugin initialized");
|
|
444
|
+
setImmediate(() => {
|
|
445
|
+
if (typeof globalThis.fuzzyPhrasePluginReady === "function") {
|
|
446
|
+
console.log("\u{1F4E1} Signaling plugin ready...");
|
|
447
|
+
globalThis.fuzzyPhrasePluginReady();
|
|
448
|
+
} else {
|
|
449
|
+
console.warn("\u26A0\uFE0F fuzzyPhrasePluginReady callback not found");
|
|
450
|
+
}
|
|
451
|
+
});
|
|
378
452
|
}
|
|
379
453
|
};
|
|
380
454
|
return plugin;
|
|
@@ -399,17 +473,23 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
399
473
|
console.log(`\u{1F50D} Fuzzy phrase search: "${term}" (${queryTokens.length} tokens, tolerance: ${tolerance})`);
|
|
400
474
|
let vocabulary;
|
|
401
475
|
try {
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
476
|
+
const indexData = orama.data?.index;
|
|
477
|
+
if (!indexData) {
|
|
478
|
+
console.error("\u274C No index data found in orama.data.index");
|
|
479
|
+
return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
|
|
480
|
+
}
|
|
481
|
+
console.log("\u{1F50D} DEBUG: Index data keys:", Object.keys(indexData || {}));
|
|
482
|
+
let radixNode = null;
|
|
483
|
+
if (indexData.indexes?.[textProperty]?.node) {
|
|
484
|
+
radixNode = indexData.indexes[textProperty].node;
|
|
485
|
+
console.log("\u2705 Found radix via QPS-style path (data.index.indexes)");
|
|
486
|
+
} else if (indexData[textProperty]?.node) {
|
|
487
|
+
radixNode = indexData[textProperty].node;
|
|
488
|
+
console.log("\u2705 Found radix via standard path (data.index[property])");
|
|
489
|
+
}
|
|
410
490
|
if (!radixNode) {
|
|
411
491
|
console.error("\u274C Radix tree not found for property:", textProperty);
|
|
412
|
-
console.error(" Available
|
|
492
|
+
console.error(" Available properties in index:", Object.keys(indexData));
|
|
413
493
|
return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
|
|
414
494
|
}
|
|
415
495
|
vocabulary = extractVocabularyFromRadixTree(radixNode);
|
|
@@ -431,7 +511,31 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
431
511
|
);
|
|
432
512
|
console.log(`\u{1F3AF} Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);
|
|
433
513
|
const documentMatches = [];
|
|
434
|
-
|
|
514
|
+
console.log("\u{1F50D} DEBUG orama.data structure:", {
|
|
515
|
+
dataKeys: Object.keys(orama.data || {}),
|
|
516
|
+
hasDocs: !!orama.data?.docs,
|
|
517
|
+
docsType: orama.data?.docs ? typeof orama.data.docs : "undefined"
|
|
518
|
+
});
|
|
519
|
+
let docs = {};
|
|
520
|
+
if (orama.data?.docs?.docs) {
|
|
521
|
+
docs = orama.data.docs.docs;
|
|
522
|
+
console.log("\u2705 Found docs at orama.data.docs.docs");
|
|
523
|
+
} else if (orama.data?.docs && typeof orama.data.docs === "object") {
|
|
524
|
+
const firstKey = Object.keys(orama.data.docs)[0];
|
|
525
|
+
if (firstKey && firstKey !== "sharedInternalDocumentStore" && firstKey !== "count") {
|
|
526
|
+
docs = orama.data.docs;
|
|
527
|
+
console.log("\u2705 Found docs at orama.data.docs (direct)");
|
|
528
|
+
}
|
|
529
|
+
}
|
|
530
|
+
if (Object.keys(docs).length === 0) {
|
|
531
|
+
console.log("\u274C Could not find documents - available structure:", {
|
|
532
|
+
hasDataDocs: !!orama.data?.docs,
|
|
533
|
+
dataDocsKeys: orama.data?.docs ? Object.keys(orama.data.docs) : "none",
|
|
534
|
+
hasDataDocsDocs: !!orama.data?.docs?.docs,
|
|
535
|
+
dataDocsDocsCount: orama.data?.docs?.docs ? Object.keys(orama.data.docs.docs).length : 0
|
|
536
|
+
});
|
|
537
|
+
}
|
|
538
|
+
console.log(`\u{1F4C4} Searching through ${Object.keys(docs).length} documents`);
|
|
435
539
|
for (const [docId, doc] of Object.entries(docs)) {
|
|
436
540
|
const text = doc[textProperty];
|
|
437
541
|
if (!text || typeof text !== "string") {
|
|
@@ -459,7 +563,9 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
459
563
|
}
|
|
460
564
|
}
|
|
461
565
|
documentMatches.sort((a, b) => b.score - a.score);
|
|
462
|
-
const
|
|
566
|
+
const limit = params.limit ?? documentMatches.length;
|
|
567
|
+
const limitedMatches = documentMatches.slice(0, limit);
|
|
568
|
+
const hits = limitedMatches.map((match) => ({
|
|
463
569
|
id: match.id,
|
|
464
570
|
score: match.score,
|
|
465
571
|
document: match.document,
|
|
@@ -467,7 +573,7 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
467
573
|
_phrases: match.phrases
|
|
468
574
|
}));
|
|
469
575
|
const elapsed = performance.now() - startTime;
|
|
470
|
-
console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);
|
|
576
|
+
console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);
|
|
471
577
|
return {
|
|
472
578
|
elapsed: {
|
|
473
579
|
formatted: `${elapsed.toFixed(2)}ms`,
|
|
@@ -480,15 +586,25 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
480
586
|
}
|
|
481
587
|
async function loadSynonymsFromSupabase(supabaseConfig) {
|
|
482
588
|
try {
|
|
589
|
+
console.log("\u{1F50D} DEBUG: Calling Supabase RPC get_synonym_map...");
|
|
483
590
|
const { createClient } = await import('@supabase/supabase-js');
|
|
484
591
|
const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);
|
|
485
592
|
const { data, error } = await supabase.rpc("get_synonym_map");
|
|
593
|
+
console.log("\u{1F50D} DEBUG: Supabase RPC response:", {
|
|
594
|
+
hasError: !!error,
|
|
595
|
+
errorMessage: error?.message,
|
|
596
|
+
hasData: !!data,
|
|
597
|
+
dataType: typeof data,
|
|
598
|
+
dataKeys: data ? Object.keys(data).length : 0
|
|
599
|
+
});
|
|
486
600
|
if (error) {
|
|
487
601
|
throw new Error(`Supabase error: ${error.message}`);
|
|
488
602
|
}
|
|
489
|
-
|
|
603
|
+
const synonymMap = data || {};
|
|
604
|
+
console.log(`\u{1F4DA} Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);
|
|
605
|
+
return synonymMap;
|
|
490
606
|
} catch (error) {
|
|
491
|
-
console.error("Failed to load synonyms from Supabase:", error);
|
|
607
|
+
console.error("\u274C Failed to load synonyms from Supabase:", error);
|
|
492
608
|
throw error;
|
|
493
609
|
}
|
|
494
610
|
}
|
|
@@ -506,8 +622,11 @@ function calculateDocumentFrequencies(docs, textProperty) {
|
|
|
506
622
|
}
|
|
507
623
|
return df;
|
|
508
624
|
}
|
|
625
|
+
function normalizeText(text) {
|
|
626
|
+
return text.toLowerCase().normalize("NFD").replace(/[\u0300-\u036f]/g, "").replace(/\b[ldcjmnst][\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4](?=\w)/gi, " ").replace(/[\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4]/g, "").replace(/[\u201c\u201d]/g, '"').replace(/[.,;:!?()[\]{}\-โโยซยป""]/g, " ").replace(/\s+/g, " ").trim();
|
|
627
|
+
}
|
|
509
628
|
function tokenize(text) {
|
|
510
|
-
return text
|
|
629
|
+
return normalizeText(text).split(/\s+/).filter((token) => token.length > 0);
|
|
511
630
|
}
|
|
512
631
|
|
|
513
632
|
exports.pluginFuzzyPhrase = pluginFuzzyPhrase;
|
package/dist/index.cjs.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AAEnC,WAAS,SAAS,MAAW;AAC3B,QAAI,KAAK,GAAG;AACV,iBAAW,IAAI,KAAK,CAAC;AAAA,IACvB;AACA,QAAI,KAAK,GAAG;AACV,iBAAW,SAAS,OAAO,OAAO,KAAK,CAAC,GAAG;AACzC,iBAAS,KAAK;AAAA,MAChB;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;AC5IO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAaA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,QAAQ;AAAA,MACZ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACQ;AAER,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAG1E,QAAM,eAAe,YAAY,SAAS,YAAY;AAGtD,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AACvB,QAAM,aACJ,YACA,aAAa,QAAQ,QACrB,iBAAiB,QAAQ,YACzB,eAAe,QAAQ,UACvB,gBAAgB,QAAQ;AAG1B,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAC7F,SAAO,KAAK,IAAI,GAAK,aAAa,gBAAgB;AACpD;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AACR,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnRA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,UAAI,MAAM,QAAQ,OAAO,MAAM,SAAS,UAAU;AAChD,cAAM,OAAQ,MAAM,KAAa,QAAQ,CAAC;AAC1C,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAAA,IACjD;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,YAAQ,IAAI,qCAA8B;AAAA,MACxC,UAAU,CAAC,CAAE,MAAc;AAAA,MAC3B,YAAY,CAAC,CAAE,MAAc,OAAO;AAAA,MACpC,YAAY,OAAO,KAAM,MAAc,OAAO,WAAW,CAAC,CAAC;AAAA,MAC3D,oBAAoB,CAAC,CAAE,MAAc,OAAO,UAAU,YAAY;AAAA,MAClE,uBAAwB,MAAc,OAAO,UAAU,YAAY,IAAI,OAAO,KAAM,MAAc,MAAM,QAAQ,YAAY,CAAC,IAAI;AAAA,IACnI,CAAC;AAED,UAAM,YAAa,MAAc,OAAO,UAAU,YAAY,GAAG;AAEjE,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,2BAA4B,MAAc,OAAO,UAAU,YAAY,CAAC;AACtF,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAC1C,QAAM,OAAS,MAAc,MAAM,QAAQ,CAAC;AAE5C,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,OAAO,gBAAgB,IAAI,YAAU;AAAA,IACzC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,IAAI;AAEvE,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AAEF,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,WAAO,QAAQ,CAAC;AAAA,EAClB,SAAS,OAAO;AACd,YAAQ,MAAM,0CAA0C,KAAK;AAC7D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAOA,SAAS,SAAS,MAAwB;AACxC,SAAO,KACJ,YAAY,EACZ,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n \n function traverse(node: any) {\n if (node.w) {\n vocabulary.add(node.w);\n }\n if (node.c) {\n for (const child of Object.values(node.c)) {\n traverse(child);\n }\n }\n }\n \n traverse(radixNode);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const score = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase score (0-1)\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (percentage of query covered)\n const densityScore = phraseWords.length / queryTokens.length;\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n const totalScore = \n baseScore +\n orderScore * weights.order +\n proximityScore * weights.proximity +\n densityScore * weights.density +\n semanticScore * weights.semantic;\n\n // Normalize to 0-1 range\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n return Math.min(1.0, totalScore / maxPossibleScore);\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐ Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โ
Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โ ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF\n if (orama.data && typeof orama.data === 'object') {\n const docs = (orama.data as any).docs || {};\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐ Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โ
Fuzzy Phrase Plugin initialized');\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐ Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree directly (no QPS dependency)\n // Debug: log index structure\n console.log('๐ DEBUG: Index structure:', {\n hasIndex: !!(orama as any).index,\n hasIndexes: !!(orama as any).index?.indexes,\n properties: Object.keys((orama as any).index?.indexes || {}),\n textPropertyExists: !!(orama as any).index?.indexes?.[textProperty],\n textPropertyStructure: (orama as any).index?.indexes?.[textProperty] ? Object.keys((orama as any).index.indexes[textProperty]) : 'N/A'\n });\n \n const radixNode = (orama as any).index?.indexes?.[textProperty]?.node;\n \n if (!radixNode) {\n console.error('โ Radix tree not found for property:', textProperty);\n console.error(' Available structure:', (orama as any).index?.indexes?.[textProperty]);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐ Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n const docs = ((orama as any).data?.docs || {}) as Record<string, any>;\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Convert to Orama results format\n const hits = documentMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โ
Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n return data || {};\n } catch (error) {\n console.error('Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Simple tokenization (lowercase and split by whitespace)\n * \n * Note: This should match Orama's tokenization behavior\n */\nfunction tokenize(text: string): string[] {\n return text\n .toLowerCase()\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
|
|
1
|
+
{"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AACnC,MAAI,eAAe;AACnB,MAAI,aAAa;AAEjB,WAAS,SAAS,MAAW,QAAgB,GAAG;AAC9C,QAAI,CAAC,MAAM;AACT,cAAQ,IAAI,mCAAyB,KAAK,EAAE;AAC5C;AAAA,IACF;AAEA;AAGA,QAAI,gBAAgB,GAAG;AACrB,YAAM,QAAQ,KAAK,IAAI;AAAA,QACrB,SAAS,MAAM,QAAQ,KAAK,CAAC;AAAA,QAC7B,OAAO,KAAK,aAAa;AAAA,QACzB,MAAM,OAAO,KAAK;AAAA,QAClB,aAAa,KAAK,EAAE,aAAa;AAAA,QACjC,MAAM,KAAK,aAAa,MAAM,MAAM,KAAK,KAAK,EAAE,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC,IAAI,OAAO,KAAK,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC;AAAA,QACpG,aAAa,KAAK,aAAa,MAAM,KAAK,EAAE,OAAQ,MAAM,QAAQ,KAAK,CAAC,IAAI,KAAK,EAAE,SAAS,OAAO,KAAK,KAAK,CAAC,EAAE;AAAA,MAClH,IAAI;AACJ,cAAQ,IAAI,kBAAW,YAAY,KAAK,EAAE,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,OAAO,CAAC,CAAC,KAAK,GAAG,QAAQ,MAAM,CAAC;AAAA,IAClG;AAIA,QAAI,KAAK,KAAK,KAAK,KAAK,OAAO,KAAK,MAAM,YAAY,KAAK,EAAE,SAAS,GAAG;AACvE,iBAAW,IAAI,KAAK,CAAC;AACrB;AACA,UAAI,cAAc,GAAG;AACnB,gBAAQ,IAAI,qBAAgB,UAAU,MAAM,KAAK,CAAC,GAAG;AAAA,MACvD;AAAA,IACF;AAGA,QAAI,KAAK,GAAG;AACV,UAAI,KAAK,aAAa,KAAK;AAEzB,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,MAAM,QAAQ,KAAK,CAAC,GAAG;AAEhC,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,OAAO,KAAK,MAAM,UAAU;AAErC,mBAAW,aAAa,OAAO,OAAO,KAAK,CAAC,GAAG;AAC7C,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,UAAQ,IAAI,uBAAgB,WAAW,IAAI,eAAe,YAAY,gBAAgB;AACtF,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;ACxLO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAcA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,EAAE,OAAO,UAAU,IAAI;AAAA,MAC3B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,MACA,gBAAgB;AAAA,IAClB;AAAA,EACF;AAEA,SAAO;AACT;AAaA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACA,gBACqH;AAErH,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAI1E,MAAI,eAAe;AAEnB,MAAI,YAAY,WAAW,GAAG;AAE5B,UAAM,mBAAmB,eAAe;AAExC,mBAAe,mBAAmB,YAAY;AAAA,EAChD,OAAO;AAGL,mBAAe,YAAY,SAAS,YAAY;AAAA,EAClD;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AAGvB,QAAM,eAAe;AACrB,QAAM,gBAAgB,aAAa,QAAQ;AAC3C,QAAM,oBAAoB,iBAAiB,QAAQ;AACnD,QAAM,kBAAkB,eAAe,QAAQ;AAC/C,QAAM,mBAAmB,gBAAgB,QAAQ;AAEjD,QAAM,aAAa,eAAe,gBAAgB,oBAAoB,kBAAkB;AAIxF,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAG7F,QAAM,QAAQ,aAAa;AAG3B,QAAM,OAAO,eAAe;AAC5B,QAAM,QAAQ,gBAAgB;AAC9B,QAAM,YAAY,oBAAoB;AACtC,QAAM,UAAU,kBAAkB;AAClC,QAAM,WAAW,mBAAmB;AAEpC,SAAO;AAAA,IACL;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AAER,MAAI,mBAAmB,GAAG;AACxB,WAAO;AAAA,EACT;AAEA,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnUA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,YAAM,OAAQ,MAAM,MAAc,MAAM;AACxC,UAAI,MAAM;AACR,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAI/C,mBAAa,MAAM;AACjB,YAAI,OAAQ,WAAmB,2BAA2B,YAAY;AACpE,kBAAQ,IAAI,qCAA8B;AAC1C,UAAC,WAAmB,uBAAuB;AAAA,QAC7C,OAAO;AACL,kBAAQ,KAAK,yDAA+C;AAAA,QAC9D;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,UAAM,YAAa,MAAc,MAAM;AAEvC,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,gDAA2C;AACzD,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,YAAQ,IAAI,qCAA8B,OAAO,KAAK,aAAa,CAAC,CAAC,CAAC;AAGtE,QAAI,YAAY;AAGhB,QAAI,UAAU,UAAU,YAAY,GAAG,MAAM;AAC3C,kBAAY,UAAU,QAAQ,YAAY,EAAE;AAC5C,cAAQ,IAAI,4DAAuD;AAAA,IACrE,WAES,UAAU,YAAY,GAAG,MAAM;AACtC,kBAAY,UAAU,YAAY,EAAE;AACpC,cAAQ,IAAI,6DAAwD;AAAA,IACtE;AAEA,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,qCAAqC,OAAO,KAAK,SAAS,CAAC;AACzE,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAE1C,UAAQ,IAAI,yCAAkC;AAAA,IAC5C,UAAU,OAAO,KAAM,MAAc,QAAQ,CAAC,CAAC;AAAA,IAC/C,SAAS,CAAC,CAAG,MAAc,MAAM;AAAA,IACjC,UAAW,MAAc,MAAM,OAAO,OAAQ,MAAc,KAAK,OAAO;AAAA,EAC1E,CAAC;AAGD,MAAI,OAA4B,CAAC;AAGjC,MAAK,MAAc,MAAM,MAAM,MAAM;AACnC,WAAQ,MAAc,KAAK,KAAK;AAChC,YAAQ,IAAI,2CAAsC;AAAA,EACpD,WAEU,MAAc,MAAM,QAAQ,OAAQ,MAAc,KAAK,SAAS,UAAU;AAElF,UAAM,WAAW,OAAO,KAAM,MAAc,KAAK,IAAI,EAAE,CAAC;AACxD,QAAI,YAAY,aAAa,iCAAiC,aAAa,SAAS;AAClF,aAAQ,MAAc,KAAK;AAC3B,cAAQ,IAAI,+CAA0C;AAAA,IACxD;AAAA,EACF;AAEA,MAAI,OAAO,KAAK,IAAI,EAAE,WAAW,GAAG;AAClC,YAAQ,IAAI,0DAAqD;AAAA,MAC/D,aAAa,CAAC,CAAG,MAAc,MAAM;AAAA,MACrC,cAAe,MAAc,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,IAAI,IAAI;AAAA,MAClF,iBAAiB,CAAC,CAAG,MAAc,MAAM,MAAM;AAAA,MAC/C,mBAAoB,MAAc,MAAM,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,KAAK,IAAI,EAAE,SAAS;AAAA,IAC3G,CAAC;AAAA,EACH;AAEA,UAAQ,IAAI,+BAAwB,OAAO,KAAK,IAAI,EAAE,MAAM,YAAY;AAExE,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,QAAQ,OAAO,SAAS,gBAAgB;AAC9C,QAAM,iBAAiB,gBAAgB,MAAM,GAAG,KAAK;AAGrD,QAAM,OAAO,eAAe,IAAI,YAAU;AAAA,IACxC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,cAAc,KAAK,GAAG;AAEzF,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AACF,YAAQ,IAAI,0DAAmD;AAG/D,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,YAAQ,IAAI,2CAAoC;AAAA,MAC9C,UAAU,CAAC,CAAC;AAAA,MACZ,cAAc,OAAO;AAAA,MACrB,SAAS,CAAC,CAAC;AAAA,MACX,UAAU,OAAO;AAAA,MACjB,UAAU,OAAO,OAAO,KAAK,IAAI,EAAE,SAAS;AAAA,IAC9C,CAAC;AAED,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,UAAM,aAAa,QAAQ,CAAC;AAC5B,YAAQ,IAAI,oBAAa,OAAO,KAAK,UAAU,EAAE,MAAM,gCAAgC;AAEvF,WAAO;AAAA,EACT,SAAS,OAAO;AACd,YAAQ,MAAM,iDAA4C,KAAK;AAC/D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAQA,SAAS,cAAc,MAAsB;AAC3C,SAAO,KACJ,YAAY,EACZ,UAAU,KAAK,EACf,QAAQ,oBAAoB,EAAE,EAE9B,QAAQ,gFAAgF,GAAG,EAC3F,QAAQ,6DAA6D,EAAE,EACvE,QAAQ,mBAAmB,GAAG,EAC9B,QAAQ,4BAA4B,GAAG,EACvC,QAAQ,QAAQ,GAAG,EACnB,KAAK;AACV;AAQA,SAAS,SAAS,MAAwB;AAExC,SAAO,cAAc,IAAI,EACtB,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n let nodesVisited = 0;\n let wordsFound = 0;\n \n function traverse(node: any, depth: number = 0) {\n if (!node) {\n console.log(`โ ๏ธ Null node at depth ${depth}`);\n return;\n }\n \n nodesVisited++;\n \n // Debug first few nodes\n if (nodesVisited <= 3) {\n const cInfo = node.c ? {\n isArray: Array.isArray(node.c),\n isMap: node.c instanceof Map,\n type: typeof node.c,\n constructor: node.c.constructor?.name,\n keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),\n valuesCount: node.c instanceof Map ? node.c.size : (Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length)\n } : 'null';\n console.log(`๐ Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });\n }\n \n // Check if this node represents a complete word\n // e = true means it's an end of a word\n if (node.e && node.w && typeof node.w === 'string' && node.w.length > 0) {\n vocabulary.add(node.w);\n wordsFound++;\n if (wordsFound <= 5) {\n console.log(`โ
Found word ${wordsFound}: \"${node.w}\"`);\n }\n }\n \n // Children can be Map, Array, or Object\n if (node.c) {\n if (node.c instanceof Map) {\n // Map format\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (Array.isArray(node.c)) {\n // Array format: [[key, childNode], ...]\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (typeof node.c === 'object') {\n // Object format: {key: childNode, ...}\n for (const childNode of Object.values(node.c)) {\n traverse(childNode, depth + 1);\n }\n }\n }\n }\n \n traverse(radixNode);\n console.log(`๐ Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n wordMatches // Pass all word matches for density calculation\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const { score, breakdown } = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n allWordMatches\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score,\n scoreBreakdown: breakdown\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase score (0-1) and detailed component breakdown\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): { score: number; breakdown: { base: number; order: number; proximity: number; density: number; semantic: number } } {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (how many times query terms appear in the document)\n // Only applies to single-word queries - for phrase queries, use phrase-specific metrics\n let densityScore = 0;\n \n if (queryTokens.length === 1) {\n // Single-word query: reward repetition without capping\n const totalOccurrences = allWordMatches.length;\n // Normalize by query length but don't cap - more occurrences = higher score\n densityScore = totalOccurrences / queryTokens.length;\n } else {\n // Multi-word phrase query: density doesn't apply\n // Use phrase coverage instead (what percentage of query is in this phrase)\n densityScore = phraseWords.length / queryTokens.length;\n }\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n \n // Calculate weighted components\n const weightedBase = baseScore;\n const weightedOrder = orderScore * weights.order;\n const weightedProximity = proximityScore * weights.proximity;\n const weightedDensity = densityScore * weights.density;\n const weightedSemantic = semanticScore * weights.semantic;\n \n const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;\n\n // Calculate max possible score (all components at maximum)\n // baseScore max is 1.0 (from exact matches), other components are already 0-1\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n \n // Normalize to 0-1 range without clamping\n const score = totalScore / maxPossibleScore;\n\n // Component contributions to the final normalized score\n const base = weightedBase / maxPossibleScore;\n const order = weightedOrder / maxPossibleScore;\n const proximity = weightedProximity / maxPossibleScore;\n const density = weightedDensity / maxPossibleScore;\n const semantic = weightedSemantic / maxPossibleScore;\n\n return {\n score,\n breakdown: {\n base,\n order,\n proximity,\n density,\n semantic\n }\n };\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Handle edge case: no documents\n if (totalDocuments === 0) {\n return 0;\n }\n \n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐ Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โ
Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โ ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF from document store\n const docs = (orama.data as any)?.docs?.docs;\n if (docs) {\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐ Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โ
Fuzzy Phrase Plugin initialized');\n \n // Signal ready - emit a custom event that can be listened to\n // Use setImmediate to ensure this runs after the afterCreate hook completes\n setImmediate(() => {\n if (typeof (globalThis as any).fuzzyPhrasePluginReady === 'function') {\n console.log('๐ก Signaling plugin ready...');\n (globalThis as any).fuzzyPhrasePluginReady();\n } else {\n console.warn('โ ๏ธ fuzzyPhrasePluginReady callback not found');\n }\n });\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐ Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree - the actual index data is in orama.data.index, not orama.index\n // orama.index is just the component interface (methods)\n const indexData = (orama as any).data?.index;\n \n if (!indexData) {\n console.error('โ No index data found in orama.data.index');\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n \n console.log('๐ DEBUG: Index data keys:', Object.keys(indexData || {}));\n \n // Try different paths to find the radix tree\n let radixNode = null;\n \n // Path 1: QPS-style (orama.data.index.indexes[property].node)\n if (indexData.indexes?.[textProperty]?.node) {\n radixNode = indexData.indexes[textProperty].node;\n console.log('โ
Found radix via QPS-style path (data.index.indexes)');\n }\n // Path 2: Standard Orama (orama.data.index[property].node)\n else if (indexData[textProperty]?.node) {\n radixNode = indexData[textProperty].node;\n console.log('โ
Found radix via standard path (data.index[property])');\n }\n \n if (!radixNode) {\n console.error('โ Radix tree not found for property:', textProperty);\n console.error(' Available properties in index:', Object.keys(indexData));\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐ Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n \n console.log('๐ DEBUG orama.data structure:', {\n dataKeys: Object.keys((orama as any).data || {}),\n hasDocs: !!((orama as any).data?.docs),\n docsType: (orama as any).data?.docs ? typeof (orama as any).data.docs : 'undefined'\n });\n \n // Try multiple possible document storage locations\n let docs: Record<string, any> = {};\n \n // Access the actual documents - they're nested in orama.data.docs.docs\n if ((orama as any).data?.docs?.docs) {\n docs = (orama as any).data.docs.docs;\n console.log('โ
Found docs at orama.data.docs.docs');\n }\n // Fallback: orama.data.docs (might be the correct structure in some cases)\n else if ((orama as any).data?.docs && typeof (orama as any).data.docs === 'object') {\n // Check if it has document-like properties (not sharedInternalDocumentStore, etc.)\n const firstKey = Object.keys((orama as any).data.docs)[0];\n if (firstKey && firstKey !== 'sharedInternalDocumentStore' && firstKey !== 'count') {\n docs = (orama as any).data.docs;\n console.log('โ
Found docs at orama.data.docs (direct)');\n }\n }\n \n if (Object.keys(docs).length === 0) {\n console.log('โ Could not find documents - available structure:', {\n hasDataDocs: !!((orama as any).data?.docs),\n dataDocsKeys: (orama as any).data?.docs ? Object.keys((orama as any).data.docs) : 'none',\n hasDataDocsDocs: !!((orama as any).data?.docs?.docs),\n dataDocsDocsCount: (orama as any).data?.docs?.docs ? Object.keys((orama as any).data.docs.docs).length : 0\n });\n }\n \n console.log(`๐ Searching through ${Object.keys(docs).length} documents`);\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Apply limit if specified\n const limit = params.limit ?? documentMatches.length;\n const limitedMatches = documentMatches.slice(0, limit);\n\n // Convert to Orama results format\n const hits = limitedMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โ
Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n console.log('๐ DEBUG: Calling Supabase RPC get_synonym_map...');\n \n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n console.log('๐ DEBUG: Supabase RPC response:', {\n hasError: !!error,\n errorMessage: error?.message,\n hasData: !!data,\n dataType: typeof data,\n dataKeys: data ? Object.keys(data).length : 0\n });\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n const synonymMap = data || {};\n console.log(`๐ Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);\n \n return synonymMap;\n } catch (error) {\n console.error('โ Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Normalize text using the same rules as server-side\n * \n * CRITICAL: This must match the normalizeText() function in server/index.js exactly\n * PLUS we remove all punctuation to match Orama's French tokenizer behavior\n */\nfunction normalizeText(text: string): string {\n return text\n .toLowerCase()\n .normalize('NFD')\n .replace(/[\\u0300-\\u036f]/g, '') // Remove diacritics\n // Replace French elisions (l', d', etc.) with space to preserve word boundaries\n .replace(/\\b[ldcjmnst][\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4](?=\\w)/gi, ' ')\n .replace(/[\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4]/g, '') // Remove remaining apostrophes\n .replace(/[\\u201c\\u201d]/g, '\"') // Normalize curly quotes to straight quotes\n .replace(/[.,;:!?()[\\]{}\\-โโยซยป\"\"]/g, ' ') // Remove punctuation (replace with space to preserve word boundaries)\n .replace(/\\s+/g, ' ') // Normalize multiple spaces to single space\n .trim();\n}\n\n/**\n * Tokenization matching normalized text behavior\n * \n * Note: Text should already be normalized before indexing, so we normalize again\n * to ensure plugin tokenization matches index tokenization\n */\nfunction tokenize(text: string): string[] {\n // Normalize first (same as indexing), then split by whitespace\n return normalizeText(text)\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
|
package/dist/index.js
CHANGED
|
@@ -79,17 +79,50 @@ function calculateAdaptiveTolerance(queryTokens, baseTolerance) {
|
|
|
79
79
|
// src/candidates.ts
|
|
80
80
|
function extractVocabularyFromRadixTree(radixNode) {
|
|
81
81
|
const vocabulary = /* @__PURE__ */ new Set();
|
|
82
|
-
|
|
83
|
-
|
|
82
|
+
let nodesVisited = 0;
|
|
83
|
+
let wordsFound = 0;
|
|
84
|
+
function traverse(node, depth = 0) {
|
|
85
|
+
if (!node) {
|
|
86
|
+
console.log(`\u26A0\uFE0F Null node at depth ${depth}`);
|
|
87
|
+
return;
|
|
88
|
+
}
|
|
89
|
+
nodesVisited++;
|
|
90
|
+
if (nodesVisited <= 3) {
|
|
91
|
+
const cInfo = node.c ? {
|
|
92
|
+
isArray: Array.isArray(node.c),
|
|
93
|
+
isMap: node.c instanceof Map,
|
|
94
|
+
type: typeof node.c,
|
|
95
|
+
constructor: node.c.constructor?.name,
|
|
96
|
+
keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),
|
|
97
|
+
valuesCount: node.c instanceof Map ? node.c.size : Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length
|
|
98
|
+
} : "null";
|
|
99
|
+
console.log(`\u{1F50D} Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });
|
|
100
|
+
}
|
|
101
|
+
if (node.e && node.w && typeof node.w === "string" && node.w.length > 0) {
|
|
84
102
|
vocabulary.add(node.w);
|
|
103
|
+
wordsFound++;
|
|
104
|
+
if (wordsFound <= 5) {
|
|
105
|
+
console.log(`\u2705 Found word ${wordsFound}: "${node.w}"`);
|
|
106
|
+
}
|
|
85
107
|
}
|
|
86
108
|
if (node.c) {
|
|
87
|
-
|
|
88
|
-
|
|
109
|
+
if (node.c instanceof Map) {
|
|
110
|
+
for (const [_key, childNode] of node.c) {
|
|
111
|
+
traverse(childNode, depth + 1);
|
|
112
|
+
}
|
|
113
|
+
} else if (Array.isArray(node.c)) {
|
|
114
|
+
for (const [_key, childNode] of node.c) {
|
|
115
|
+
traverse(childNode, depth + 1);
|
|
116
|
+
}
|
|
117
|
+
} else if (typeof node.c === "object") {
|
|
118
|
+
for (const childNode of Object.values(node.c)) {
|
|
119
|
+
traverse(childNode, depth + 1);
|
|
120
|
+
}
|
|
89
121
|
}
|
|
90
122
|
}
|
|
91
123
|
}
|
|
92
124
|
traverse(radixNode);
|
|
125
|
+
console.log(`\u{1F4DA} Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);
|
|
93
126
|
return vocabulary;
|
|
94
127
|
}
|
|
95
128
|
function findCandidatesForToken(queryToken, vocabulary, tolerance, synonyms, synonymScore = 0.8) {
|
|
@@ -192,7 +225,9 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
|
|
|
192
225
|
queryTokens,
|
|
193
226
|
config,
|
|
194
227
|
documentFrequency,
|
|
195
|
-
totalDocuments
|
|
228
|
+
totalDocuments,
|
|
229
|
+
wordMatches
|
|
230
|
+
// Pass all word matches for density calculation
|
|
196
231
|
);
|
|
197
232
|
if (phrase && phrase.words.length > 0) {
|
|
198
233
|
phrases.push(phrase);
|
|
@@ -200,7 +235,7 @@ function findPhrasesInDocument(documentTokens, candidatesMap, config, documentFr
|
|
|
200
235
|
}
|
|
201
236
|
return deduplicatePhrases(phrases);
|
|
202
237
|
}
|
|
203
|
-
function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments) {
|
|
238
|
+
function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
|
|
204
239
|
const startMatch = wordMatches[startIndex];
|
|
205
240
|
const phraseWords = [startMatch];
|
|
206
241
|
const coveredTokens = /* @__PURE__ */ new Set([startMatch.queryToken]);
|
|
@@ -219,12 +254,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
|
|
|
219
254
|
}
|
|
220
255
|
}
|
|
221
256
|
if (phraseWords.length > 0) {
|
|
222
|
-
const score = calculatePhraseScore(
|
|
257
|
+
const { score, breakdown } = calculatePhraseScore(
|
|
223
258
|
phraseWords,
|
|
224
259
|
queryTokens,
|
|
225
260
|
config,
|
|
226
261
|
documentFrequency,
|
|
227
|
-
totalDocuments
|
|
262
|
+
totalDocuments,
|
|
263
|
+
allWordMatches
|
|
228
264
|
);
|
|
229
265
|
return {
|
|
230
266
|
words: phraseWords,
|
|
@@ -232,12 +268,13 @@ function buildPhraseFromPosition(wordMatches, startIndex, queryTokens, config, d
|
|
|
232
268
|
endPosition: phraseWords[phraseWords.length - 1].position,
|
|
233
269
|
gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,
|
|
234
270
|
inOrder: isInOrder(phraseWords, queryTokens),
|
|
235
|
-
score
|
|
271
|
+
score,
|
|
272
|
+
scoreBreakdown: breakdown
|
|
236
273
|
};
|
|
237
274
|
}
|
|
238
275
|
return null;
|
|
239
276
|
}
|
|
240
|
-
function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments) {
|
|
277
|
+
function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequency, totalDocuments, allWordMatches) {
|
|
241
278
|
let baseScore = 0;
|
|
242
279
|
for (const word of phraseWords) {
|
|
243
280
|
const weight = word.type === "exact" ? config.weights.exact : word.type === "fuzzy" ? config.weights.fuzzy : config.weights.fuzzy * 0.8;
|
|
@@ -248,16 +285,42 @@ function calculatePhraseScore(phraseWords, queryTokens, config, documentFrequenc
|
|
|
248
285
|
const orderScore = inOrder ? 1 : 0.5;
|
|
249
286
|
const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;
|
|
250
287
|
const proximityScore = Math.max(0, 1 - span / (queryTokens.length * 5));
|
|
251
|
-
|
|
288
|
+
let densityScore = 0;
|
|
289
|
+
if (queryTokens.length === 1) {
|
|
290
|
+
const totalOccurrences = allWordMatches.length;
|
|
291
|
+
densityScore = totalOccurrences / queryTokens.length;
|
|
292
|
+
} else {
|
|
293
|
+
densityScore = phraseWords.length / queryTokens.length;
|
|
294
|
+
}
|
|
252
295
|
const semanticScore = calculateSemanticScore(
|
|
253
296
|
phraseWords,
|
|
254
297
|
documentFrequency,
|
|
255
298
|
totalDocuments
|
|
256
299
|
);
|
|
257
300
|
const weights = config.weights;
|
|
258
|
-
const
|
|
301
|
+
const weightedBase = baseScore;
|
|
302
|
+
const weightedOrder = orderScore * weights.order;
|
|
303
|
+
const weightedProximity = proximityScore * weights.proximity;
|
|
304
|
+
const weightedDensity = densityScore * weights.density;
|
|
305
|
+
const weightedSemantic = semanticScore * weights.semantic;
|
|
306
|
+
const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;
|
|
259
307
|
const maxPossibleScore = 1 + weights.order + weights.proximity + weights.density + weights.semantic;
|
|
260
|
-
|
|
308
|
+
const score = totalScore / maxPossibleScore;
|
|
309
|
+
const base = weightedBase / maxPossibleScore;
|
|
310
|
+
const order = weightedOrder / maxPossibleScore;
|
|
311
|
+
const proximity = weightedProximity / maxPossibleScore;
|
|
312
|
+
const density = weightedDensity / maxPossibleScore;
|
|
313
|
+
const semantic = weightedSemantic / maxPossibleScore;
|
|
314
|
+
return {
|
|
315
|
+
score,
|
|
316
|
+
breakdown: {
|
|
317
|
+
base,
|
|
318
|
+
order,
|
|
319
|
+
proximity,
|
|
320
|
+
density,
|
|
321
|
+
semantic
|
|
322
|
+
}
|
|
323
|
+
};
|
|
261
324
|
}
|
|
262
325
|
function isInOrder(phraseWords, queryTokens) {
|
|
263
326
|
const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));
|
|
@@ -271,6 +334,9 @@ function isInOrder(phraseWords, queryTokens) {
|
|
|
271
334
|
return true;
|
|
272
335
|
}
|
|
273
336
|
function calculateSemanticScore(phraseWords, documentFrequency, totalDocuments) {
|
|
337
|
+
if (totalDocuments === 0) {
|
|
338
|
+
return 0;
|
|
339
|
+
}
|
|
274
340
|
let tfidfSum = 0;
|
|
275
341
|
for (const word of phraseWords) {
|
|
276
342
|
const df = documentFrequency.get(word.word) || 1;
|
|
@@ -365,14 +431,22 @@ function pluginFuzzyPhrase(userConfig = {}) {
|
|
|
365
431
|
console.error("\u26A0\uFE0F Failed to load synonyms:", error);
|
|
366
432
|
}
|
|
367
433
|
}
|
|
368
|
-
|
|
369
|
-
|
|
434
|
+
const docs = orama.data?.docs?.docs;
|
|
435
|
+
if (docs) {
|
|
370
436
|
state.totalDocuments = Object.keys(docs).length;
|
|
371
437
|
state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);
|
|
372
438
|
console.log(`\u{1F4CA} Calculated document frequencies for ${state.totalDocuments} documents`);
|
|
373
439
|
}
|
|
374
440
|
pluginStates.set(orama, state);
|
|
375
441
|
console.log("\u2705 Fuzzy Phrase Plugin initialized");
|
|
442
|
+
setImmediate(() => {
|
|
443
|
+
if (typeof globalThis.fuzzyPhrasePluginReady === "function") {
|
|
444
|
+
console.log("\u{1F4E1} Signaling plugin ready...");
|
|
445
|
+
globalThis.fuzzyPhrasePluginReady();
|
|
446
|
+
} else {
|
|
447
|
+
console.warn("\u26A0\uFE0F fuzzyPhrasePluginReady callback not found");
|
|
448
|
+
}
|
|
449
|
+
});
|
|
376
450
|
}
|
|
377
451
|
};
|
|
378
452
|
return plugin;
|
|
@@ -397,17 +471,23 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
397
471
|
console.log(`\u{1F50D} Fuzzy phrase search: "${term}" (${queryTokens.length} tokens, tolerance: ${tolerance})`);
|
|
398
472
|
let vocabulary;
|
|
399
473
|
try {
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
474
|
+
const indexData = orama.data?.index;
|
|
475
|
+
if (!indexData) {
|
|
476
|
+
console.error("\u274C No index data found in orama.data.index");
|
|
477
|
+
return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
|
|
478
|
+
}
|
|
479
|
+
console.log("\u{1F50D} DEBUG: Index data keys:", Object.keys(indexData || {}));
|
|
480
|
+
let radixNode = null;
|
|
481
|
+
if (indexData.indexes?.[textProperty]?.node) {
|
|
482
|
+
radixNode = indexData.indexes[textProperty].node;
|
|
483
|
+
console.log("\u2705 Found radix via QPS-style path (data.index.indexes)");
|
|
484
|
+
} else if (indexData[textProperty]?.node) {
|
|
485
|
+
radixNode = indexData[textProperty].node;
|
|
486
|
+
console.log("\u2705 Found radix via standard path (data.index[property])");
|
|
487
|
+
}
|
|
408
488
|
if (!radixNode) {
|
|
409
489
|
console.error("\u274C Radix tree not found for property:", textProperty);
|
|
410
|
-
console.error(" Available
|
|
490
|
+
console.error(" Available properties in index:", Object.keys(indexData));
|
|
411
491
|
return { elapsed: { formatted: "0ms", raw: 0 }, hits: [], count: 0 };
|
|
412
492
|
}
|
|
413
493
|
vocabulary = extractVocabularyFromRadixTree(radixNode);
|
|
@@ -429,7 +509,31 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
429
509
|
);
|
|
430
510
|
console.log(`\u{1F3AF} Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);
|
|
431
511
|
const documentMatches = [];
|
|
432
|
-
|
|
512
|
+
console.log("\u{1F50D} DEBUG orama.data structure:", {
|
|
513
|
+
dataKeys: Object.keys(orama.data || {}),
|
|
514
|
+
hasDocs: !!orama.data?.docs,
|
|
515
|
+
docsType: orama.data?.docs ? typeof orama.data.docs : "undefined"
|
|
516
|
+
});
|
|
517
|
+
let docs = {};
|
|
518
|
+
if (orama.data?.docs?.docs) {
|
|
519
|
+
docs = orama.data.docs.docs;
|
|
520
|
+
console.log("\u2705 Found docs at orama.data.docs.docs");
|
|
521
|
+
} else if (orama.data?.docs && typeof orama.data.docs === "object") {
|
|
522
|
+
const firstKey = Object.keys(orama.data.docs)[0];
|
|
523
|
+
if (firstKey && firstKey !== "sharedInternalDocumentStore" && firstKey !== "count") {
|
|
524
|
+
docs = orama.data.docs;
|
|
525
|
+
console.log("\u2705 Found docs at orama.data.docs (direct)");
|
|
526
|
+
}
|
|
527
|
+
}
|
|
528
|
+
if (Object.keys(docs).length === 0) {
|
|
529
|
+
console.log("\u274C Could not find documents - available structure:", {
|
|
530
|
+
hasDataDocs: !!orama.data?.docs,
|
|
531
|
+
dataDocsKeys: orama.data?.docs ? Object.keys(orama.data.docs) : "none",
|
|
532
|
+
hasDataDocsDocs: !!orama.data?.docs?.docs,
|
|
533
|
+
dataDocsDocsCount: orama.data?.docs?.docs ? Object.keys(orama.data.docs.docs).length : 0
|
|
534
|
+
});
|
|
535
|
+
}
|
|
536
|
+
console.log(`\u{1F4C4} Searching through ${Object.keys(docs).length} documents`);
|
|
433
537
|
for (const [docId, doc] of Object.entries(docs)) {
|
|
434
538
|
const text = doc[textProperty];
|
|
435
539
|
if (!text || typeof text !== "string") {
|
|
@@ -457,7 +561,9 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
457
561
|
}
|
|
458
562
|
}
|
|
459
563
|
documentMatches.sort((a, b) => b.score - a.score);
|
|
460
|
-
const
|
|
564
|
+
const limit = params.limit ?? documentMatches.length;
|
|
565
|
+
const limitedMatches = documentMatches.slice(0, limit);
|
|
566
|
+
const hits = limitedMatches.map((match) => ({
|
|
461
567
|
id: match.id,
|
|
462
568
|
score: match.score,
|
|
463
569
|
document: match.document,
|
|
@@ -465,7 +571,7 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
465
571
|
_phrases: match.phrases
|
|
466
572
|
}));
|
|
467
573
|
const elapsed = performance.now() - startTime;
|
|
468
|
-
console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);
|
|
574
|
+
console.log(`\u2705 Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);
|
|
469
575
|
return {
|
|
470
576
|
elapsed: {
|
|
471
577
|
formatted: `${elapsed.toFixed(2)}ms`,
|
|
@@ -478,15 +584,25 @@ async function searchWithFuzzyPhrase(orama, params, language) {
|
|
|
478
584
|
}
|
|
479
585
|
async function loadSynonymsFromSupabase(supabaseConfig) {
|
|
480
586
|
try {
|
|
587
|
+
console.log("\u{1F50D} DEBUG: Calling Supabase RPC get_synonym_map...");
|
|
481
588
|
const { createClient } = await import('@supabase/supabase-js');
|
|
482
589
|
const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);
|
|
483
590
|
const { data, error } = await supabase.rpc("get_synonym_map");
|
|
591
|
+
console.log("\u{1F50D} DEBUG: Supabase RPC response:", {
|
|
592
|
+
hasError: !!error,
|
|
593
|
+
errorMessage: error?.message,
|
|
594
|
+
hasData: !!data,
|
|
595
|
+
dataType: typeof data,
|
|
596
|
+
dataKeys: data ? Object.keys(data).length : 0
|
|
597
|
+
});
|
|
484
598
|
if (error) {
|
|
485
599
|
throw new Error(`Supabase error: ${error.message}`);
|
|
486
600
|
}
|
|
487
|
-
|
|
601
|
+
const synonymMap = data || {};
|
|
602
|
+
console.log(`\u{1F4DA} Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);
|
|
603
|
+
return synonymMap;
|
|
488
604
|
} catch (error) {
|
|
489
|
-
console.error("Failed to load synonyms from Supabase:", error);
|
|
605
|
+
console.error("\u274C Failed to load synonyms from Supabase:", error);
|
|
490
606
|
throw error;
|
|
491
607
|
}
|
|
492
608
|
}
|
|
@@ -504,8 +620,11 @@ function calculateDocumentFrequencies(docs, textProperty) {
|
|
|
504
620
|
}
|
|
505
621
|
return df;
|
|
506
622
|
}
|
|
623
|
+
function normalizeText(text) {
|
|
624
|
+
return text.toLowerCase().normalize("NFD").replace(/[\u0300-\u036f]/g, "").replace(/\b[ldcjmnst][\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4](?=\w)/gi, " ").replace(/[\u2018\u2019\u201A\u201B\u2032\u2035\u0027\u0060\u00B4]/g, "").replace(/[\u201c\u201d]/g, '"').replace(/[.,;:!?()[\]{}\-โโยซยป""]/g, " ").replace(/\s+/g, " ").trim();
|
|
625
|
+
}
|
|
507
626
|
function tokenize(text) {
|
|
508
|
-
return text
|
|
627
|
+
return normalizeText(text).split(/\s+/).filter((token) => token.length > 0);
|
|
509
628
|
}
|
|
510
629
|
|
|
511
630
|
export { pluginFuzzyPhrase, searchWithFuzzyPhrase };
|
package/dist/index.js.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AAEnC,WAAS,SAAS,MAAW;AAC3B,QAAI,KAAK,GAAG;AACV,iBAAW,IAAI,KAAK,CAAC;AAAA,IACvB;AACA,QAAI,KAAK,GAAG;AACV,iBAAW,SAAS,OAAO,OAAO,KAAK,CAAC,GAAG;AACzC,iBAAS,KAAK;AAAA,MAChB;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;AC5IO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAaA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,QAAQ;AAAA,MACZ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACQ;AAER,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAG1E,QAAM,eAAe,YAAY,SAAS,YAAY;AAGtD,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AACvB,QAAM,aACJ,YACA,aAAa,QAAQ,QACrB,iBAAiB,QAAQ,YACzB,eAAe,QAAQ,UACvB,gBAAgB,QAAQ;AAG1B,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAC7F,SAAO,KAAK,IAAI,GAAK,aAAa,gBAAgB;AACpD;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AACR,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnRA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,UAAI,MAAM,QAAQ,OAAO,MAAM,SAAS,UAAU;AAChD,cAAM,OAAQ,MAAM,KAAa,QAAQ,CAAC;AAC1C,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAAA,IACjD;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,YAAQ,IAAI,qCAA8B;AAAA,MACxC,UAAU,CAAC,CAAE,MAAc;AAAA,MAC3B,YAAY,CAAC,CAAE,MAAc,OAAO;AAAA,MACpC,YAAY,OAAO,KAAM,MAAc,OAAO,WAAW,CAAC,CAAC;AAAA,MAC3D,oBAAoB,CAAC,CAAE,MAAc,OAAO,UAAU,YAAY;AAAA,MAClE,uBAAwB,MAAc,OAAO,UAAU,YAAY,IAAI,OAAO,KAAM,MAAc,MAAM,QAAQ,YAAY,CAAC,IAAI;AAAA,IACnI,CAAC;AAED,UAAM,YAAa,MAAc,OAAO,UAAU,YAAY,GAAG;AAEjE,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,2BAA4B,MAAc,OAAO,UAAU,YAAY,CAAC;AACtF,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAC1C,QAAM,OAAS,MAAc,MAAM,QAAQ,CAAC;AAE5C,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,OAAO,gBAAgB,IAAI,YAAU;AAAA,IACzC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,IAAI;AAEvE,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AAEF,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,WAAO,QAAQ,CAAC;AAAA,EAClB,SAAS,OAAO;AACd,YAAQ,MAAM,0CAA0C,KAAK;AAC7D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAOA,SAAS,SAAS,MAAwB;AACxC,SAAO,KACJ,YAAY,EACZ,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n \n function traverse(node: any) {\n if (node.w) {\n vocabulary.add(node.w);\n }\n if (node.c) {\n for (const child of Object.values(node.c)) {\n traverse(child);\n }\n }\n }\n \n traverse(radixNode);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const score = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Phrase score (0-1)\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (percentage of query covered)\n const densityScore = phraseWords.length / queryTokens.length;\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n const totalScore = \n baseScore +\n orderScore * weights.order +\n proximityScore * weights.proximity +\n densityScore * weights.density +\n semanticScore * weights.semantic;\n\n // Normalize to 0-1 range\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n return Math.min(1.0, totalScore / maxPossibleScore);\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐ Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โ
Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โ ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF\n if (orama.data && typeof orama.data === 'object') {\n const docs = (orama.data as any).docs || {};\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐ Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โ
Fuzzy Phrase Plugin initialized');\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐ Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree directly (no QPS dependency)\n // Debug: log index structure\n console.log('๐ DEBUG: Index structure:', {\n hasIndex: !!(orama as any).index,\n hasIndexes: !!(orama as any).index?.indexes,\n properties: Object.keys((orama as any).index?.indexes || {}),\n textPropertyExists: !!(orama as any).index?.indexes?.[textProperty],\n textPropertyStructure: (orama as any).index?.indexes?.[textProperty] ? Object.keys((orama as any).index.indexes[textProperty]) : 'N/A'\n });\n \n const radixNode = (orama as any).index?.indexes?.[textProperty]?.node;\n \n if (!radixNode) {\n console.error('โ Radix tree not found for property:', textProperty);\n console.error(' Available structure:', (orama as any).index?.indexes?.[textProperty]);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐ Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n const docs = ((orama as any).data?.docs || {}) as Record<string, any>;\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Convert to Orama results format\n const hits = documentMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โ
Found ${hits.length} results in ${elapsed.toFixed(2)}ms`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n return data || {};\n } catch (error) {\n console.error('Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Simple tokenization (lowercase and split by whitespace)\n * \n * Note: This should match Orama's tokenization behavior\n */\nfunction tokenize(text: string): string[] {\n return text\n .toLowerCase()\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
|
|
1
|
+
{"version":3,"sources":["../src/fuzzy.ts","../src/candidates.ts","../src/scoring.ts","../src/index.ts"],"names":[],"mappings":";AA4BO,SAAS,mBACd,GACA,GACA,OAC0B;AAE1B,MAAI,MAAM,GAAG;AACX,WAAO,EAAE,WAAW,MAAM,UAAU,EAAE;AAAA,EACxC;AAEA,QAAM,OAAO,EAAE;AACf,QAAM,OAAO,EAAE;AAGf,MAAI,KAAK,IAAI,OAAO,IAAI,IAAI,OAAO;AACjC,WAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,EACjD;AAGA,MAAI,OAAO,MAAM;AACf,KAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC;AAAA,EAChB;AAEA,QAAM,IAAI,EAAE;AACZ,QAAM,IAAI,EAAE;AAGZ,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAC7B,MAAI,UAAU,IAAI,MAAM,IAAI,CAAC;AAG7B,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AAAA,EACf;AAEA,WAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAQ,CAAC,IAAI;AACb,QAAI,WAAW;AAEf,aAAS,IAAI,GAAG,KAAK,GAAG,KAAK;AAC3B,YAAM,OAAO,EAAE,IAAI,CAAC,MAAM,EAAE,IAAI,CAAC,IAAI,IAAI;AAEzC,cAAQ,CAAC,IAAI,KAAK;AAAA,QAChB,QAAQ,CAAC,IAAI;AAAA;AAAA,QACb,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,QACjB,QAAQ,IAAI,CAAC,IAAI;AAAA;AAAA,MACnB;AAEA,iBAAW,KAAK,IAAI,UAAU,QAAQ,CAAC,CAAC;AAAA,IAC1C;AAGA,QAAI,WAAW,OAAO;AACpB,aAAO,EAAE,WAAW,OAAO,UAAU,QAAQ,EAAE;AAAA,IACjD;AAGA,KAAC,SAAS,OAAO,IAAI,CAAC,SAAS,OAAO;AAAA,EACxC;AAEA,QAAM,WAAW,QAAQ,CAAC;AAC1B,SAAO;AAAA,IACL,WAAW,YAAY;AAAA,IACvB;AAAA,EACF;AACF;AAUO,SAAS,WACd,MACA,YACA,WACuD;AAEvD,MAAI,SAAS,YAAY;AACvB,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,EAAI;AAAA,EAClD;AAGA,MAAI,KAAK,WAAW,UAAU,GAAG;AAC/B,WAAO,EAAE,SAAS,MAAM,UAAU,GAAG,OAAO,KAAK;AAAA,EACnD;AAGA,QAAM,SAAS,mBAAmB,MAAM,YAAY,SAAS;AAE7D,MAAI,OAAO,WAAW;AAGpB,UAAM,QAAQ,IAAO,OAAO,WAAW;AACvC,WAAO;AAAA,MACL,SAAS;AAAA,MACT,UAAU,OAAO;AAAA,MACjB,OAAO,KAAK,IAAI,KAAK,KAAK;AAAA;AAAA,IAC5B;AAAA,EACF;AAEA,SAAO,EAAE,SAAS,OAAO,UAAU,YAAY,GAAG,OAAO,EAAE;AAC7D;AAWO,SAAS,2BACd,aACA,eACQ;AACR,QAAM,cAAc,YAAY;AAEhC,MAAI,eAAe,GAAG;AACpB,WAAO;AAAA,EACT,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,WAAW,eAAe,GAAG;AAC3B,WAAO,gBAAgB;AAAA,EACzB,OAAO;AACL,WAAO,gBAAgB;AAAA,EACzB;AACF;;;ACjJO,SAAS,+BAA+B,WAA6B;AAC1E,QAAM,aAAa,oBAAI,IAAY;AACnC,MAAI,eAAe;AACnB,MAAI,aAAa;AAEjB,WAAS,SAAS,MAAW,QAAgB,GAAG;AAC9C,QAAI,CAAC,MAAM;AACT,cAAQ,IAAI,mCAAyB,KAAK,EAAE;AAC5C;AAAA,IACF;AAEA;AAGA,QAAI,gBAAgB,GAAG;AACrB,YAAM,QAAQ,KAAK,IAAI;AAAA,QACrB,SAAS,MAAM,QAAQ,KAAK,CAAC;AAAA,QAC7B,OAAO,KAAK,aAAa;AAAA,QACzB,MAAM,OAAO,KAAK;AAAA,QAClB,aAAa,KAAK,EAAE,aAAa;AAAA,QACjC,MAAM,KAAK,aAAa,MAAM,MAAM,KAAK,KAAK,EAAE,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC,IAAI,OAAO,KAAK,KAAK,CAAC,EAAE,MAAM,GAAG,CAAC;AAAA,QACpG,aAAa,KAAK,aAAa,MAAM,KAAK,EAAE,OAAQ,MAAM,QAAQ,KAAK,CAAC,IAAI,KAAK,EAAE,SAAS,OAAO,KAAK,KAAK,CAAC,EAAE;AAAA,MAClH,IAAI;AACJ,cAAQ,IAAI,kBAAW,YAAY,KAAK,EAAE,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,OAAO,CAAC,CAAC,KAAK,GAAG,QAAQ,MAAM,CAAC;AAAA,IAClG;AAIA,QAAI,KAAK,KAAK,KAAK,KAAK,OAAO,KAAK,MAAM,YAAY,KAAK,EAAE,SAAS,GAAG;AACvE,iBAAW,IAAI,KAAK,CAAC;AACrB;AACA,UAAI,cAAc,GAAG;AACnB,gBAAQ,IAAI,qBAAgB,UAAU,MAAM,KAAK,CAAC,GAAG;AAAA,MACvD;AAAA,IACF;AAGA,QAAI,KAAK,GAAG;AACV,UAAI,KAAK,aAAa,KAAK;AAEzB,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,MAAM,QAAQ,KAAK,CAAC,GAAG;AAEhC,mBAAW,CAAC,MAAM,SAAS,KAAK,KAAK,GAAG;AACtC,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF,WAAW,OAAO,KAAK,MAAM,UAAU;AAErC,mBAAW,aAAa,OAAO,OAAO,KAAK,CAAC,GAAG;AAC7C,mBAAS,WAAW,QAAQ,CAAC;AAAA,QAC/B;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAEA,WAAS,SAAS;AAClB,UAAQ,IAAI,uBAAgB,WAAW,IAAI,eAAe,YAAY,gBAAgB;AACtF,SAAO;AACT;AAYO,SAAS,uBACd,YACA,YACA,WACA,UACA,eAAuB,KACV;AACb,QAAM,aAA0B,CAAC;AACjC,QAAM,OAAO,oBAAI,IAAY;AAG7B,MAAI,WAAW,IAAI,UAAU,GAAG;AAC9B,eAAW,KAAK;AAAA,MACd,MAAM;AAAA,MACN,MAAM;AAAA,MACN;AAAA,MACA,UAAU;AAAA,MACV,OAAO;AAAA,IACT,CAAC;AACD,SAAK,IAAI,UAAU;AAAA,EACrB;AAGA,aAAW,QAAQ,YAAY;AAC7B,QAAI,KAAK,IAAI,IAAI;AAAG;AAEpB,UAAM,QAAQ,WAAW,MAAM,YAAY,SAAS;AACpD,QAAI,MAAM,SAAS;AACjB,iBAAW,KAAK;AAAA,QACd;AAAA,QACA,MAAM;AAAA,QACN;AAAA,QACA,UAAU,MAAM;AAAA,QAChB,OAAO,MAAM;AAAA,MACf,CAAC;AACD,WAAK,IAAI,IAAI;AAAA,IACf;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,UAAU,GAAG;AACpC,eAAW,WAAW,SAAS,UAAU,GAAG;AAC1C,UAAI,KAAK,IAAI,OAAO;AAAG;AACvB,UAAI,WAAW,IAAI,OAAO,GAAG;AAC3B,mBAAW,KAAK;AAAA,UACd,MAAM;AAAA,UACN,MAAM;AAAA,UACN;AAAA,UACA,UAAU;AAAA,UACV,OAAO;AAAA,QACT,CAAC;AACD,aAAK,IAAI,OAAO;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AAEA,SAAO;AACT;AAYO,SAAS,kBACd,aACA,YACA,WACA,UACA,eAAuB,KACG;AAC1B,QAAM,gBAAgB,oBAAI,IAAyB;AAEnD,aAAW,SAAS,aAAa;AAC/B,UAAM,kBAAkB;AAAA,MACtB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AACA,kBAAc,IAAI,OAAO,eAAe;AAAA,EAC1C;AAEA,SAAO;AACT;AAyBO,SAAS,wBACd,eACA,UAC0B;AAC1B,QAAM,WAAW,oBAAI,IAAyB;AAE9C,aAAW,CAAC,OAAO,UAAU,KAAK,cAAc,QAAQ,GAAG;AACzD,UAAM,qBAAqB,WAAW,OAAO,OAAK,EAAE,SAAS,QAAQ;AACrE,QAAI,mBAAmB,SAAS,GAAG;AACjC,eAAS,IAAI,OAAO,kBAAkB;AAAA,IACxC;AAAA,EACF;AAEA,SAAO;AACT;;;ACxLO,SAAS,sBACd,gBACA,eACA,QACA,mBACA,gBACe;AACf,QAAM,UAAyB,CAAC;AAChC,QAAM,cAAc,MAAM,KAAK,cAAc,KAAK,CAAC;AAGnD,QAAM,cAA2B,CAAC;AAElC,WAAS,IAAI,GAAG,IAAI,eAAe,QAAQ,KAAK;AAC9C,UAAM,UAAU,eAAe,CAAC;AAGhC,eAAW,CAAC,YAAY,UAAU,KAAK,cAAc,QAAQ,GAAG;AAC9D,iBAAW,aAAa,YAAY;AAClC,YAAI,UAAU,SAAS,SAAS;AAC9B,sBAAY,KAAK;AAAA,YACf,MAAM;AAAA,YACN;AAAA,YACA,UAAU;AAAA,YACV,MAAM,UAAU;AAAA,YAChB,UAAU,UAAU;AAAA,YACpB,OAAO,UAAU;AAAA,UACnB,CAAC;AAAA,QACH;AAAA,MACF;AAAA,IACF;AAAA,EACF;AAGA,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,SAAS;AAAA,MACb;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA;AAAA,IACF;AAEA,QAAI,UAAU,OAAO,MAAM,SAAS,GAAG;AACrC,cAAQ,KAAK,MAAM;AAAA,IACrB;AAAA,EACF;AAGA,SAAO,mBAAmB,OAAO;AACnC;AAcA,SAAS,wBACP,aACA,YACA,aACA,QACA,mBACA,gBACA,gBACoB;AACpB,QAAM,aAAa,YAAY,UAAU;AACzC,QAAM,cAA2B,CAAC,UAAU;AAC5C,QAAM,gBAAgB,oBAAI,IAAI,CAAC,WAAW,UAAU,CAAC;AAGrD,WAAS,IAAI,aAAa,GAAG,IAAI,YAAY,QAAQ,KAAK;AACxD,UAAM,QAAQ,YAAY,CAAC;AAC3B,UAAM,MAAM,MAAM,WAAW,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW;AAG5E,QAAI,MAAM,OAAO,QAAQ;AACvB;AAAA,IACF;AAGA,QAAI,CAAC,cAAc,IAAI,MAAM,UAAU,GAAG;AACxC,kBAAY,KAAK,KAAK;AACtB,oBAAc,IAAI,MAAM,UAAU;AAAA,IACpC;AAGA,QAAI,cAAc,SAAS,YAAY,QAAQ;AAC7C;AAAA,IACF;AAAA,EACF;AAGA,MAAI,YAAY,SAAS,GAAG;AAC1B,UAAM,EAAE,OAAO,UAAU,IAAI;AAAA,MAC3B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAEA,WAAO;AAAA,MACL,OAAO;AAAA,MACP,eAAe,YAAY,CAAC,EAAE;AAAA,MAC9B,aAAa,YAAY,YAAY,SAAS,CAAC,EAAE;AAAA,MACjD,KAAK,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE;AAAA,MACnE,SAAS,UAAU,aAAa,WAAW;AAAA,MAC3C;AAAA,MACA,gBAAgB;AAAA,IAClB;AAAA,EACF;AAEA,SAAO;AACT;AAaA,SAAS,qBACP,aACA,aACA,QACA,mBACA,gBACA,gBACqH;AAErH,MAAI,YAAY;AAChB,aAAW,QAAQ,aAAa;AAC9B,UAAM,SAAS,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,KAAK,SAAS,UAAU,OAAO,QAAQ,QACvC,OAAO,QAAQ,QAAQ;AACtC,iBAAa,KAAK,QAAQ;AAAA,EAC5B;AACA,eAAa,YAAY;AAGzB,QAAM,UAAU,UAAU,aAAa,WAAW;AAClD,QAAM,aAAa,UAAU,IAAM;AAGnC,QAAM,OAAO,YAAY,YAAY,SAAS,CAAC,EAAE,WAAW,YAAY,CAAC,EAAE,WAAW;AACtF,QAAM,iBAAiB,KAAK,IAAI,GAAG,IAAO,QAAQ,YAAY,SAAS,EAAG;AAI1E,MAAI,eAAe;AAEnB,MAAI,YAAY,WAAW,GAAG;AAE5B,UAAM,mBAAmB,eAAe;AAExC,mBAAe,mBAAmB,YAAY;AAAA,EAChD,OAAO;AAGL,mBAAe,YAAY,SAAS,YAAY;AAAA,EAClD;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,EACF;AAGA,QAAM,UAAU,OAAO;AAGvB,QAAM,eAAe;AACrB,QAAM,gBAAgB,aAAa,QAAQ;AAC3C,QAAM,oBAAoB,iBAAiB,QAAQ;AACnD,QAAM,kBAAkB,eAAe,QAAQ;AAC/C,QAAM,mBAAmB,gBAAgB,QAAQ;AAEjD,QAAM,aAAa,eAAe,gBAAgB,oBAAoB,kBAAkB;AAIxF,QAAM,mBAAmB,IAAM,QAAQ,QAAQ,QAAQ,YAAY,QAAQ,UAAU,QAAQ;AAG7F,QAAM,QAAQ,aAAa;AAG3B,QAAM,OAAO,eAAe;AAC5B,QAAM,QAAQ,gBAAgB;AAC9B,QAAM,YAAY,oBAAoB;AACtC,QAAM,UAAU,kBAAkB;AAClC,QAAM,WAAW,mBAAmB;AAEpC,SAAO;AAAA,IACL;AAAA,IACA,WAAW;AAAA,MACT;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IACF;AAAA,EACF;AACF;AASA,SAAS,UAAU,aAA0B,aAAgC;AAC3E,QAAM,aAAa,IAAI,IAAI,YAAY,IAAI,CAAC,OAAO,UAAU,CAAC,OAAO,KAAK,CAAC,CAAC;AAE5E,WAAS,IAAI,GAAG,IAAI,YAAY,QAAQ,KAAK;AAC3C,UAAM,YAAY,WAAW,IAAI,YAAY,IAAI,CAAC,EAAE,UAAU,KAAK;AACnE,UAAM,YAAY,WAAW,IAAI,YAAY,CAAC,EAAE,UAAU,KAAK;AAE/D,QAAI,YAAY,WAAW;AACzB,aAAO;AAAA,IACT;AAAA,EACF;AAEA,SAAO;AACT;AAUA,SAAS,uBACP,aACA,mBACA,gBACQ;AAER,MAAI,mBAAmB,GAAG;AACxB,WAAO;AAAA,EACT;AAEA,MAAI,WAAW;AAEf,aAAW,QAAQ,aAAa;AAC9B,UAAM,KAAK,kBAAkB,IAAI,KAAK,IAAI,KAAK;AAC/C,UAAM,MAAM,KAAK,IAAI,iBAAiB,EAAE;AACxC,gBAAY;AAAA,EACd;AAGA,QAAM,WAAW,WAAW,YAAY;AAGxC,SAAO,KAAK,IAAI,GAAK,WAAW,EAAE;AACpC;AAQA,SAAS,mBAAmB,SAAuC;AACjE,MAAI,QAAQ,WAAW;AAAG,WAAO,CAAC;AAGlC,QAAM,SAAS,QAAQ,MAAM,EAAE,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAC/D,QAAM,SAAwB,CAAC;AAC/B,QAAM,UAAU,oBAAI,IAAY;AAEhC,aAAW,UAAU,QAAQ;AAE3B,QAAI,WAAW;AACf,aAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,UAAI,QAAQ,IAAI,GAAG,GAAG;AACpB,mBAAW;AACX;AAAA,MACF;AAAA,IACF;AAEA,QAAI,CAAC,UAAU;AACb,aAAO,KAAK,MAAM;AAElB,eAAS,MAAM,OAAO,eAAe,OAAO,OAAO,aAAa,OAAO;AACrE,gBAAQ,IAAI,GAAG;AAAA,MACjB;AAAA,IACF;AAAA,EACF;AAEA,SAAO,OAAO,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAChD;;;ACnUA,IAAM,iBAA8C;AAAA,EAClD,cAAc;AAAA,EACd,WAAW;AAAA,EACX,mBAAmB;AAAA,EACnB,gBAAgB;AAAA,EAChB,UAAU;AAAA,EACV,mBAAmB;AAAA,EACnB,SAAS;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,OAAO;AAAA,IACP,WAAW;AAAA,IACX,SAAS;AAAA,IACT,UAAU;AAAA,EACZ;AAAA,EACA,QAAQ;AAAA,EACR,UAAU;AACZ;AAKA,IAAM,eAAe,oBAAI,QAA+B;AAQjD,SAAS,kBAAkB,aAAgC,CAAC,GAAgB;AAEjF,QAAM,SAAsC;AAAA,IAC1C,cAAc,WAAW,gBAAgB,eAAe;AAAA,IACxD,WAAW,WAAW,aAAa,eAAe;AAAA,IAClD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,gBAAgB,WAAW,kBAAkB,eAAe;AAAA,IAC5D,UAAU,WAAW,YAAY,eAAe;AAAA,IAChD,mBAAmB,WAAW,qBAAqB,eAAe;AAAA,IAClE,SAAS;AAAA,MACP,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,OAAO,WAAW,SAAS,SAAS,eAAe,QAAQ;AAAA,MAC3D,WAAW,WAAW,SAAS,aAAa,eAAe,QAAQ;AAAA,MACnE,SAAS,WAAW,SAAS,WAAW,eAAe,QAAQ;AAAA,MAC/D,UAAU,WAAW,SAAS,YAAY,eAAe,QAAQ;AAAA,IACnE;AAAA,IACA,QAAQ,WAAW,UAAU,eAAe;AAAA,IAC5C,UAAU,WAAW,YAAY,eAAe;AAAA,EAClD;AAEA,QAAM,SAAsB;AAAA,IAC1B,MAAM;AAAA;AAAA;AAAA;AAAA,IAKN,aAAa,OAAO,UAAoB;AACtC,cAAQ,IAAI,+CAAwC;AAGpD,YAAM,QAAqB;AAAA,QACzB,YAAY,CAAC;AAAA,QACb;AAAA,QACA,mBAAmB,oBAAI,IAAI;AAAA,QAC3B,gBAAgB;AAAA,MAClB;AAGA,UAAI,OAAO,kBAAkB,OAAO,UAAU;AAC5C,YAAI;AACF,kBAAQ,IAAI,6CAAsC;AAClD,gBAAM,aAAa,MAAM,yBAAyB,OAAO,QAAQ;AACjE,kBAAQ,IAAI,iBAAY,OAAO,KAAK,MAAM,UAAU,EAAE,MAAM,sBAAsB;AAAA,QACpF,SAAS,OAAO;AACd,kBAAQ,MAAM,0CAAgC,KAAK;AAAA,QAErD;AAAA,MACF;AAGA,YAAM,OAAQ,MAAM,MAAc,MAAM;AACxC,UAAI,MAAM;AACR,cAAM,iBAAiB,OAAO,KAAK,IAAI,EAAE;AACzC,cAAM,oBAAoB,6BAA6B,MAAM,OAAO,YAAY;AAChF,gBAAQ,IAAI,iDAA0C,MAAM,cAAc,YAAY;AAAA,MACxF;AAGA,mBAAa,IAAI,OAAO,KAAK;AAC7B,cAAQ,IAAI,wCAAmC;AAI/C,mBAAa,MAAM;AACjB,YAAI,OAAQ,WAAmB,2BAA2B,YAAY;AACpE,kBAAQ,IAAI,qCAA8B;AAC1C,UAAC,WAAmB,uBAAuB;AAAA,QAC7C,OAAO;AACL,kBAAQ,KAAK,yDAA+C;AAAA,QAC9D;AAAA,MACF,CAAC;AAAA,IACH;AAAA,EACF;AAEA,SAAO;AACT;AAQA,eAAsB,sBACpB,OACA,QACA,UACoC;AACpC,QAAM,YAAY,YAAY,IAAI;AAGlC,QAAM,QAAQ,aAAa,IAAI,KAAK;AAEpC,MAAI,CAAC,OAAO;AACV,YAAQ,MAAM,qCAAgC;AAC9C,UAAM,IAAI,MAAM,8CAA8C;AAAA,EAChE;AAEA,QAAM,EAAE,MAAM,WAAW,IAAI;AAE7B,MAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,eAAgB,cAAc,WAAW,CAAC,KAAM,MAAM,OAAO;AAGnE,QAAM,cAAc,SAAS,IAAI;AAEjC,MAAI,YAAY,WAAW,GAAG;AAC5B,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,YAAY,MAAM,OAAO,oBAC3B,2BAA2B,aAAa,MAAM,OAAO,SAAS,IAC9D,MAAM,OAAO;AAEjB,UAAQ,IAAI,mCAA4B,IAAI,MAAM,YAAY,MAAM,uBAAuB,SAAS,GAAG;AAGvG,MAAI;AAEJ,MAAI;AAGF,UAAM,YAAa,MAAc,MAAM;AAEvC,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,gDAA2C;AACzD,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,YAAQ,IAAI,qCAA8B,OAAO,KAAK,aAAa,CAAC,CAAC,CAAC;AAGtE,QAAI,YAAY;AAGhB,QAAI,UAAU,UAAU,YAAY,GAAG,MAAM;AAC3C,kBAAY,UAAU,QAAQ,YAAY,EAAE;AAC5C,cAAQ,IAAI,4DAAuD;AAAA,IACrE,WAES,UAAU,YAAY,GAAG,MAAM;AACtC,kBAAY,UAAU,YAAY,EAAE;AACpC,cAAQ,IAAI,6DAAwD;AAAA,IACtE;AAEA,QAAI,CAAC,WAAW;AACd,cAAQ,MAAM,6CAAwC,YAAY;AAClE,cAAQ,MAAM,qCAAqC,OAAO,KAAK,SAAS,CAAC;AACzE,aAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,IACrE;AAEA,iBAAa,+BAA+B,SAAS;AACrD,YAAQ,IAAI,uBAAgB,WAAW,IAAI,0BAA0B;AAAA,EACvE,SAAS,OAAO;AACd,YAAQ,MAAM,wCAAmC,KAAK;AACtD,WAAO,EAAE,SAAS,EAAE,WAAW,OAAO,KAAK,EAAE,GAAG,MAAM,CAAC,GAAG,OAAO,EAAE;AAAA,EACrE;AAGA,QAAM,gBAAgB;AAAA,IACpB;AAAA,IACA;AAAA,IACA;AAAA,IACA,MAAM,OAAO,iBAAiB,MAAM,aAAa;AAAA,IACjD,MAAM,OAAO;AAAA,EACf;AAGA,QAAM,qBAAqB;AAAA,IACzB;AAAA,IACA,MAAM,OAAO;AAAA,EACf;AAEA,UAAQ,IAAI,+BAAwB,MAAM,KAAK,mBAAmB,OAAO,CAAC,EAAE,OAAO,CAAC,KAAK,MAAM,MAAM,EAAE,QAAQ,CAAC,CAAC,QAAQ;AAGzH,QAAM,kBAAmC,CAAC;AAE1C,UAAQ,IAAI,yCAAkC;AAAA,IAC5C,UAAU,OAAO,KAAM,MAAc,QAAQ,CAAC,CAAC;AAAA,IAC/C,SAAS,CAAC,CAAG,MAAc,MAAM;AAAA,IACjC,UAAW,MAAc,MAAM,OAAO,OAAQ,MAAc,KAAK,OAAO;AAAA,EAC1E,CAAC;AAGD,MAAI,OAA4B,CAAC;AAGjC,MAAK,MAAc,MAAM,MAAM,MAAM;AACnC,WAAQ,MAAc,KAAK,KAAK;AAChC,YAAQ,IAAI,2CAAsC;AAAA,EACpD,WAEU,MAAc,MAAM,QAAQ,OAAQ,MAAc,KAAK,SAAS,UAAU;AAElF,UAAM,WAAW,OAAO,KAAM,MAAc,KAAK,IAAI,EAAE,CAAC;AACxD,QAAI,YAAY,aAAa,iCAAiC,aAAa,SAAS;AAClF,aAAQ,MAAc,KAAK;AAC3B,cAAQ,IAAI,+CAA0C;AAAA,IACxD;AAAA,EACF;AAEA,MAAI,OAAO,KAAK,IAAI,EAAE,WAAW,GAAG;AAClC,YAAQ,IAAI,0DAAqD;AAAA,MAC/D,aAAa,CAAC,CAAG,MAAc,MAAM;AAAA,MACrC,cAAe,MAAc,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,IAAI,IAAI;AAAA,MAClF,iBAAiB,CAAC,CAAG,MAAc,MAAM,MAAM;AAAA,MAC/C,mBAAoB,MAAc,MAAM,MAAM,OAAO,OAAO,KAAM,MAAc,KAAK,KAAK,IAAI,EAAE,SAAS;AAAA,IAC3G,CAAC;AAAA,EACH;AAEA,UAAQ,IAAI,+BAAwB,OAAO,KAAK,IAAI,EAAE,MAAM,YAAY;AAExE,aAAW,CAAC,OAAO,GAAG,KAAK,OAAO,QAAQ,IAAI,GAAG;AAC/C,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,YAAY,SAAS,IAAI;AAG/B,UAAM,UAAU;AAAA,MACd;AAAA,MACA;AAAA,MACA;AAAA,QACE,SAAS,MAAM,OAAO;AAAA,QACtB,QAAQ,MAAM,OAAO;AAAA,MACvB;AAAA,MACA,MAAM;AAAA,MACN,MAAM;AAAA,IACR;AAEA,QAAI,QAAQ,SAAS,GAAG;AAEtB,YAAM,WAAW,KAAK,IAAI,GAAG,QAAQ,IAAI,OAAK,EAAE,KAAK,CAAC;AAEtD,sBAAgB,KAAK;AAAA,QACnB,IAAI;AAAA,QACJ;AAAA,QACA,OAAO;AAAA,QACP,UAAU;AAAA,MACZ,CAAC;AAAA,IACH;AAAA,EACF;AAGA,kBAAgB,KAAK,CAAC,GAAG,MAAM,EAAE,QAAQ,EAAE,KAAK;AAGhD,QAAM,QAAQ,OAAO,SAAS,gBAAgB;AAC9C,QAAM,iBAAiB,gBAAgB,MAAM,GAAG,KAAK;AAGrD,QAAM,OAAO,eAAe,IAAI,YAAU;AAAA,IACxC,IAAI,MAAM;AAAA,IACV,OAAO,MAAM;AAAA,IACb,UAAU,MAAM;AAAA;AAAA,IAEhB,UAAU,MAAM;AAAA,EAClB,EAAE;AAEF,QAAM,UAAU,YAAY,IAAI,IAAI;AAEpC,UAAQ,IAAI,gBAAW,KAAK,MAAM,eAAe,QAAQ,QAAQ,CAAC,CAAC,cAAc,KAAK,GAAG;AAEzF,SAAO;AAAA,IACL,SAAS;AAAA,MACP,WAAW,GAAG,QAAQ,QAAQ,CAAC,CAAC;AAAA,MAChC,KAAK,KAAK,MAAM,UAAU,GAAO;AAAA;AAAA,IACnC;AAAA,IACA;AAAA,IACA,OAAO,KAAK;AAAA,EACd;AACF;AAKA,eAAe,yBACb,gBACqB;AACrB,MAAI;AACF,YAAQ,IAAI,0DAAmD;AAG/D,UAAM,EAAE,aAAa,IAAI,MAAM,OAAO,uBAAuB;AAE7D,UAAM,WAAW,aAAa,eAAe,KAAK,eAAe,UAAU;AAG3E,UAAM,EAAE,MAAM,MAAM,IAAI,MAAM,SAAS,IAAI,iBAAiB;AAE5D,YAAQ,IAAI,2CAAoC;AAAA,MAC9C,UAAU,CAAC,CAAC;AAAA,MACZ,cAAc,OAAO;AAAA,MACrB,SAAS,CAAC,CAAC;AAAA,MACX,UAAU,OAAO;AAAA,MACjB,UAAU,OAAO,OAAO,KAAK,IAAI,EAAE,SAAS;AAAA,IAC9C,CAAC;AAED,QAAI,OAAO;AACT,YAAM,IAAI,MAAM,mBAAmB,MAAM,OAAO,EAAE;AAAA,IACpD;AAEA,UAAM,aAAa,QAAQ,CAAC;AAC5B,YAAQ,IAAI,oBAAa,OAAO,KAAK,UAAU,EAAE,MAAM,gCAAgC;AAEvF,WAAO;AAAA,EACT,SAAS,OAAO;AACd,YAAQ,MAAM,iDAA4C,KAAK;AAC/D,UAAM;AAAA,EACR;AACF;AAKA,SAAS,6BACP,MACA,cACqB;AACrB,QAAM,KAAK,oBAAI,IAAoB;AAEnC,aAAW,OAAO,OAAO,OAAO,IAAI,GAAG;AACrC,UAAM,OAAO,IAAI,YAAY;AAE7B,QAAI,CAAC,QAAQ,OAAO,SAAS,UAAU;AACrC;AAAA,IACF;AAGA,UAAM,QAAQ,IAAI,IAAI,SAAS,IAAI,CAAC;AAGpC,eAAW,QAAQ,OAAO;AACxB,SAAG,IAAI,OAAO,GAAG,IAAI,IAAI,KAAK,KAAK,CAAC;AAAA,IACtC;AAAA,EACF;AAEA,SAAO;AACT;AAQA,SAAS,cAAc,MAAsB;AAC3C,SAAO,KACJ,YAAY,EACZ,UAAU,KAAK,EACf,QAAQ,oBAAoB,EAAE,EAE9B,QAAQ,gFAAgF,GAAG,EAC3F,QAAQ,6DAA6D,EAAE,EACvE,QAAQ,mBAAmB,GAAG,EAC9B,QAAQ,4BAA4B,GAAG,EACvC,QAAQ,QAAQ,GAAG,EACnB,KAAK;AACV;AAQA,SAAS,SAAS,MAAwB;AAExC,SAAO,cAAc,IAAI,EACtB,MAAM,KAAK,EACX,OAAO,WAAS,MAAM,SAAS,CAAC;AACrC","sourcesContent":["/**\n * Fuzzy matching utilities using bounded Levenshtein distance\n * \n * This is the same algorithm used by Orama's match-highlight plugin\n * for consistent fuzzy matching behavior.\n */\n\n/**\n * Result of bounded Levenshtein distance calculation\n */\nexport interface BoundedLevenshteinResult {\n /** Whether the distance is within bounds */\n isBounded: boolean;\n /** The actual distance (only valid if isBounded is true) */\n distance: number;\n}\n\n/**\n * Calculate bounded Levenshtein distance between two strings\n * \n * Stops early if distance exceeds the bound for better performance.\n * This is the same algorithm as Orama's internal boundedLevenshtein.\n * \n * @param a - First string\n * @param b - Second string\n * @param bound - Maximum allowed distance\n * @returns Result indicating if strings are within bound and the distance\n */\nexport function boundedLevenshtein(\n a: string,\n b: string,\n bound: number\n): BoundedLevenshteinResult {\n // Quick checks\n if (a === b) {\n return { isBounded: true, distance: 0 };\n }\n\n const aLen = a.length;\n const bLen = b.length;\n\n // If length difference exceeds bound, no need to calculate\n if (Math.abs(aLen - bLen) > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap to ensure a is shorter (optimization)\n if (aLen > bLen) {\n [a, b] = [b, a];\n }\n\n const m = a.length;\n const n = b.length;\n\n // Use single array instead of matrix (memory optimization)\n let prevRow = new Array(n + 1);\n let currRow = new Array(n + 1);\n\n // Initialize first row\n for (let j = 0; j <= n; j++) {\n prevRow[j] = j;\n }\n\n for (let i = 1; i <= m; i++) {\n currRow[0] = i;\n let minInRow = i;\n\n for (let j = 1; j <= n; j++) {\n const cost = a[i - 1] === b[j - 1] ? 0 : 1;\n\n currRow[j] = Math.min(\n prevRow[j] + 1, // deletion\n currRow[j - 1] + 1, // insertion\n prevRow[j - 1] + cost // substitution\n );\n\n minInRow = Math.min(minInRow, currRow[j]);\n }\n\n // Early termination: if all values in row exceed bound, we're done\n if (minInRow > bound) {\n return { isBounded: false, distance: bound + 1 };\n }\n\n // Swap rows for next iteration\n [prevRow, currRow] = [currRow, prevRow];\n }\n\n const distance = prevRow[n];\n return {\n isBounded: distance <= bound,\n distance\n };\n}\n\n/**\n * Check if a word matches a query token with fuzzy matching\n * \n * @param word - Word from document\n * @param queryToken - Token from search query\n * @param tolerance - Maximum edit distance allowed\n * @returns Match result with score\n */\nexport function fuzzyMatch(\n word: string,\n queryToken: string,\n tolerance: number\n): { matches: boolean; distance: number; score: number } {\n // Exact match\n if (word === queryToken) {\n return { matches: true, distance: 0, score: 1.0 };\n }\n\n // Prefix match (high score, no distance)\n if (word.startsWith(queryToken)) {\n return { matches: true, distance: 0, score: 0.95 };\n }\n\n // Fuzzy match with tolerance\n const result = boundedLevenshtein(word, queryToken, tolerance);\n \n if (result.isBounded) {\n // Score decreases with distance\n // distance 1 = 0.8, distance 2 = 0.6, etc.\n const score = 1.0 - (result.distance * 0.2);\n return {\n matches: true,\n distance: result.distance,\n score: Math.max(0.1, score) // Minimum score of 0.1\n };\n }\n\n return { matches: false, distance: tolerance + 1, score: 0 };\n}\n\n/**\n * Calculate adaptive tolerance based on query length\n * \n * Longer queries get higher tolerance for better fuzzy matching.\n * \n * @param queryTokens - Array of query tokens\n * @param baseTolerance - Base tolerance value\n * @returns Calculated tolerance (always an integer)\n */\nexport function calculateAdaptiveTolerance(\n queryTokens: string[],\n baseTolerance: number\n): number {\n const queryLength = queryTokens.length;\n \n if (queryLength <= 2) {\n return baseTolerance;\n } else if (queryLength <= 4) {\n return baseTolerance + 1;\n } else if (queryLength <= 6) {\n return baseTolerance + 2;\n } else {\n return baseTolerance + 3;\n }\n}\n","/**\n * Candidate expansion: Find all possible matches for query tokens\n * including exact matches, fuzzy matches, and synonyms\n */\n\nimport { fuzzyMatch } from './fuzzy.js';\nimport type { Candidate, SynonymMap } from './types.js';\n\n/**\n * Extract all unique words from the radix tree index\n * \n * @param radixNode - Root node of the radix tree\n * @returns Set of all unique words in the index\n */\nexport function extractVocabularyFromRadixTree(radixNode: any): Set<string> {\n const vocabulary = new Set<string>();\n let nodesVisited = 0;\n let wordsFound = 0;\n \n function traverse(node: any, depth: number = 0) {\n if (!node) {\n console.log(`โ ๏ธ Null node at depth ${depth}`);\n return;\n }\n \n nodesVisited++;\n \n // Debug first few nodes\n if (nodesVisited <= 3) {\n const cInfo = node.c ? {\n isArray: Array.isArray(node.c),\n isMap: node.c instanceof Map,\n type: typeof node.c,\n constructor: node.c.constructor?.name,\n keys: node.c instanceof Map ? Array.from(node.c.keys()).slice(0, 3) : Object.keys(node.c).slice(0, 3),\n valuesCount: node.c instanceof Map ? node.c.size : (Array.isArray(node.c) ? node.c.length : Object.keys(node.c).length)\n } : 'null';\n console.log(`๐ Node ${nodesVisited}:`, { w: node.w, e: node.e, has_c: !!node.c, c_info: cInfo });\n }\n \n // Check if this node represents a complete word\n // e = true means it's an end of a word\n if (node.e && node.w && typeof node.w === 'string' && node.w.length > 0) {\n vocabulary.add(node.w);\n wordsFound++;\n if (wordsFound <= 5) {\n console.log(`โ
Found word ${wordsFound}: \"${node.w}\"`);\n }\n }\n \n // Children can be Map, Array, or Object\n if (node.c) {\n if (node.c instanceof Map) {\n // Map format\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (Array.isArray(node.c)) {\n // Array format: [[key, childNode], ...]\n for (const [_key, childNode] of node.c) {\n traverse(childNode, depth + 1);\n }\n } else if (typeof node.c === 'object') {\n // Object format: {key: childNode, ...}\n for (const childNode of Object.values(node.c)) {\n traverse(childNode, depth + 1);\n }\n }\n }\n }\n \n traverse(radixNode);\n console.log(`๐ Extracted ${vocabulary.size} words from ${nodesVisited} nodes visited`);\n return vocabulary;\n}\n\n/**\n * Find all candidate matches for a single query token\n * \n * @param queryToken - Token from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Array of candidate matches\n */\nexport function findCandidatesForToken(\n queryToken: string,\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Candidate[] {\n const candidates: Candidate[] = [];\n const seen = new Set<string>();\n\n // 1. Check for exact match\n if (vocabulary.has(queryToken)) {\n candidates.push({\n word: queryToken,\n type: 'exact',\n queryToken,\n distance: 0,\n score: 1.0\n });\n seen.add(queryToken);\n }\n\n // 2. Check for fuzzy matches\n for (const word of vocabulary) {\n if (seen.has(word)) continue;\n\n const match = fuzzyMatch(word, queryToken, tolerance);\n if (match.matches) {\n candidates.push({\n word,\n type: 'fuzzy',\n queryToken,\n distance: match.distance,\n score: match.score\n });\n seen.add(word);\n }\n }\n\n // 3. Check for synonym matches\n if (synonyms && synonyms[queryToken]) {\n for (const synonym of synonyms[queryToken]) {\n if (seen.has(synonym)) continue;\n if (vocabulary.has(synonym)) {\n candidates.push({\n word: synonym,\n type: 'synonym',\n queryToken,\n distance: 0,\n score: synonymScore\n });\n seen.add(synonym);\n }\n }\n }\n\n return candidates;\n}\n\n/**\n * Find candidates for all query tokens\n * \n * @param queryTokens - Array of tokens from search query\n * @param vocabulary - Set of all words in the index\n * @param tolerance - Fuzzy matching tolerance\n * @param synonyms - Synonym map (optional)\n * @param synonymScore - Score multiplier for synonym matches\n * @returns Map of query tokens to their candidate matches\n */\nexport function findAllCandidates(\n queryTokens: string[],\n vocabulary: Set<string>,\n tolerance: number,\n synonyms?: SynonymMap,\n synonymScore: number = 0.8\n): Map<string, Candidate[]> {\n const candidatesMap = new Map<string, Candidate[]>();\n\n for (const token of queryTokens) {\n const tokenCandidates = findCandidatesForToken(\n token,\n vocabulary,\n tolerance,\n synonyms,\n synonymScore\n );\n candidatesMap.set(token, tokenCandidates);\n }\n\n return candidatesMap;\n}\n\n/**\n * Get total number of candidates across all tokens\n * \n * @param candidatesMap - Map of token to candidates\n * @returns Total count of all candidates\n */\nexport function getTotalCandidateCount(\n candidatesMap: Map<string, Candidate[]>\n): number {\n let total = 0;\n for (const candidates of candidatesMap.values()) {\n total += candidates.length;\n }\n return total;\n}\n\n/**\n * Filter candidates by minimum score threshold\n * \n * @param candidatesMap - Map of token to candidates\n * @param minScore - Minimum score threshold\n * @returns Filtered candidates map\n */\nexport function filterCandidatesByScore(\n candidatesMap: Map<string, Candidate[]>,\n minScore: number\n): Map<string, Candidate[]> {\n const filtered = new Map<string, Candidate[]>();\n\n for (const [token, candidates] of candidatesMap.entries()) {\n const filteredCandidates = candidates.filter(c => c.score >= minScore);\n if (filteredCandidates.length > 0) {\n filtered.set(token, filteredCandidates);\n }\n }\n\n return filtered;\n}\n","/**\n * Phrase scoring algorithm with semantic weighting\n */\n\nimport type { WordMatch, PhraseMatch, Candidate } from './types.js';\n\n/**\n * Configuration for phrase scoring\n */\nexport interface ScoringConfig {\n weights: {\n exact: number;\n fuzzy: number;\n order: number;\n proximity: number;\n density: number;\n semantic: number;\n };\n maxGap: number;\n}\n\n/**\n * Find all phrase matches in a document\n * \n * @param documentTokens - Tokenized document content\n * @param candidatesMap - Map of query tokens to their candidates\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map for TF-IDF\n * @param totalDocuments - Total number of documents\n * @returns Array of phrase matches\n */\nexport function findPhrasesInDocument(\n documentTokens: string[],\n candidatesMap: Map<string, Candidate[]>,\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): PhraseMatch[] {\n const phrases: PhraseMatch[] = [];\n const queryTokens = Array.from(candidatesMap.keys());\n\n // Find all word matches in document\n const wordMatches: WordMatch[] = [];\n \n for (let i = 0; i < documentTokens.length; i++) {\n const docWord = documentTokens[i];\n \n // Check if this word matches any query token\n for (const [queryToken, candidates] of candidatesMap.entries()) {\n for (const candidate of candidates) {\n if (candidate.word === docWord) {\n wordMatches.push({\n word: docWord,\n queryToken,\n position: i,\n type: candidate.type,\n distance: candidate.distance,\n score: candidate.score\n });\n }\n }\n }\n }\n\n // Build phrases from word matches using sliding window\n for (let i = 0; i < wordMatches.length; i++) {\n const phrase = buildPhraseFromPosition(\n wordMatches,\n i,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n wordMatches // Pass all word matches for density calculation\n );\n \n if (phrase && phrase.words.length > 0) {\n phrases.push(phrase);\n }\n }\n\n // Deduplicate and sort by score\n return deduplicatePhrases(phrases);\n}\n\n/**\n * Build a phrase starting from a specific word match position\n * \n * @param wordMatches - All word matches in document\n * @param startIndex - Starting index in wordMatches array\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase match or null\n */\nfunction buildPhraseFromPosition(\n wordMatches: WordMatch[],\n startIndex: number,\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): PhraseMatch | null {\n const startMatch = wordMatches[startIndex];\n const phraseWords: WordMatch[] = [startMatch];\n const coveredTokens = new Set([startMatch.queryToken]);\n\n // Look for nearby matches to complete the phrase\n for (let i = startIndex + 1; i < wordMatches.length; i++) {\n const match = wordMatches[i];\n const gap = match.position - phraseWords[phraseWords.length - 1].position - 1;\n\n // Stop if gap exceeds maximum\n if (gap > config.maxGap) {\n break;\n }\n\n // Add if it's a different query token\n if (!coveredTokens.has(match.queryToken)) {\n phraseWords.push(match);\n coveredTokens.add(match.queryToken);\n }\n\n // Stop if we have all query tokens\n if (coveredTokens.size === queryTokens.length) {\n break;\n }\n }\n\n // Calculate phrase score\n if (phraseWords.length > 0) {\n const { score, breakdown } = calculatePhraseScore(\n phraseWords,\n queryTokens,\n config,\n documentFrequency,\n totalDocuments,\n allWordMatches\n );\n\n return {\n words: phraseWords,\n startPosition: phraseWords[0].position,\n endPosition: phraseWords[phraseWords.length - 1].position,\n gap: phraseWords[phraseWords.length - 1].position - phraseWords[0].position,\n inOrder: isInOrder(phraseWords, queryTokens),\n score,\n scoreBreakdown: breakdown\n };\n }\n\n return null;\n}\n\n/**\n * Calculate overall phrase score\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @param config - Scoring configuration\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @param allWordMatches - All word matches in document (for density calculation)\n * @returns Phrase score (0-1) and detailed component breakdown\n */\nfunction calculatePhraseScore(\n phraseWords: WordMatch[],\n queryTokens: string[],\n config: ScoringConfig,\n documentFrequency: Map<string, number>,\n totalDocuments: number,\n allWordMatches: WordMatch[]\n): { score: number; breakdown: { base: number; order: number; proximity: number; density: number; semantic: number } } {\n // Base score from word matches\n let baseScore = 0;\n for (const word of phraseWords) {\n const weight = word.type === 'exact' ? config.weights.exact :\n word.type === 'fuzzy' ? config.weights.fuzzy : \n config.weights.fuzzy * 0.8; // synonym\n baseScore += word.score * weight;\n }\n baseScore /= phraseWords.length;\n\n // Order bonus\n const inOrder = isInOrder(phraseWords, queryTokens);\n const orderScore = inOrder ? 1.0 : 0.5;\n\n // Proximity bonus (closer words score higher)\n const span = phraseWords[phraseWords.length - 1].position - phraseWords[0].position + 1;\n const proximityScore = Math.max(0, 1.0 - (span / (queryTokens.length * 5)));\n\n // Density bonus (how many times query terms appear in the document)\n // Only applies to single-word queries - for phrase queries, use phrase-specific metrics\n let densityScore = 0;\n \n if (queryTokens.length === 1) {\n // Single-word query: reward repetition without capping\n const totalOccurrences = allWordMatches.length;\n // Normalize by query length but don't cap - more occurrences = higher score\n densityScore = totalOccurrences / queryTokens.length;\n } else {\n // Multi-word phrase query: density doesn't apply\n // Use phrase coverage instead (what percentage of query is in this phrase)\n densityScore = phraseWords.length / queryTokens.length;\n }\n\n // Semantic score (TF-IDF)\n const semanticScore = calculateSemanticScore(\n phraseWords,\n documentFrequency,\n totalDocuments\n );\n\n // Weighted combination\n const weights = config.weights;\n \n // Calculate weighted components\n const weightedBase = baseScore;\n const weightedOrder = orderScore * weights.order;\n const weightedProximity = proximityScore * weights.proximity;\n const weightedDensity = densityScore * weights.density;\n const weightedSemantic = semanticScore * weights.semantic;\n \n const totalScore = weightedBase + weightedOrder + weightedProximity + weightedDensity + weightedSemantic;\n\n // Calculate max possible score (all components at maximum)\n // baseScore max is 1.0 (from exact matches), other components are already 0-1\n const maxPossibleScore = 1.0 + weights.order + weights.proximity + weights.density + weights.semantic;\n \n // Normalize to 0-1 range without clamping\n const score = totalScore / maxPossibleScore;\n\n // Component contributions to the final normalized score\n const base = weightedBase / maxPossibleScore;\n const order = weightedOrder / maxPossibleScore;\n const proximity = weightedProximity / maxPossibleScore;\n const density = weightedDensity / maxPossibleScore;\n const semantic = weightedSemantic / maxPossibleScore;\n\n return {\n score,\n breakdown: {\n base,\n order,\n proximity,\n density,\n semantic\n }\n };\n}\n\n/**\n * Check if words are in the same order as query tokens\n * \n * @param phraseWords - Words in the phrase\n * @param queryTokens - Original query tokens\n * @returns True if in order\n */\nfunction isInOrder(phraseWords: WordMatch[], queryTokens: string[]): boolean {\n const tokenOrder = new Map(queryTokens.map((token, index) => [token, index]));\n \n for (let i = 1; i < phraseWords.length; i++) {\n const prevOrder = tokenOrder.get(phraseWords[i - 1].queryToken) ?? -1;\n const currOrder = tokenOrder.get(phraseWords[i].queryToken) ?? -1;\n \n if (currOrder < prevOrder) {\n return false;\n }\n }\n \n return true;\n}\n\n/**\n * Calculate semantic score using TF-IDF\n * \n * @param phraseWords - Words in the phrase\n * @param documentFrequency - Document frequency map\n * @param totalDocuments - Total document count\n * @returns Semantic score (0-1)\n */\nfunction calculateSemanticScore(\n phraseWords: WordMatch[],\n documentFrequency: Map<string, number>,\n totalDocuments: number\n): number {\n // Handle edge case: no documents\n if (totalDocuments === 0) {\n return 0;\n }\n \n let tfidfSum = 0;\n \n for (const word of phraseWords) {\n const df = documentFrequency.get(word.word) || 1;\n const idf = Math.log(totalDocuments / df);\n tfidfSum += idf;\n }\n \n // Normalize by phrase length\n const avgTfidf = tfidfSum / phraseWords.length;\n \n // Normalize to 0-1 range (assuming max IDF of ~10)\n return Math.min(1.0, avgTfidf / 10);\n}\n\n/**\n * Deduplicate overlapping phrases, keeping highest scoring ones\n * \n * @param phrases - Array of phrase matches\n * @returns Deduplicated phrases sorted by score\n */\nfunction deduplicatePhrases(phrases: PhraseMatch[]): PhraseMatch[] {\n if (phrases.length === 0) return [];\n\n // Sort by score descending\n const sorted = phrases.slice().sort((a, b) => b.score - a.score);\n const result: PhraseMatch[] = [];\n const covered = new Set<number>();\n\n for (const phrase of sorted) {\n // Check if this phrase overlaps with already selected phrases\n let overlaps = false;\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n if (covered.has(pos)) {\n overlaps = true;\n break;\n }\n }\n\n if (!overlaps) {\n result.push(phrase);\n // Mark positions as covered\n for (let pos = phrase.startPosition; pos <= phrase.endPosition; pos++) {\n covered.add(pos);\n }\n }\n }\n\n return result.sort((a, b) => b.score - a.score);\n}\n","/**\n * Fuzzy Phrase Plugin for Orama\n * \n * Advanced fuzzy phrase matching with semantic weighting and synonym expansion.\n * Completely independent from QPS - accesses Orama's radix tree directly.\n */\n\nimport type { AnyOrama, OramaPlugin, Results, TypedDocument } from '@wcs-colab/orama';\nimport type { FuzzyPhraseConfig, PluginState, SynonymMap, DocumentMatch } from './types.js';\nimport { calculateAdaptiveTolerance } from './fuzzy.js';\nimport { \n extractVocabularyFromRadixTree, \n findAllCandidates,\n filterCandidatesByScore \n} from './candidates.js';\nimport { findPhrasesInDocument } from './scoring.js';\n\n/**\n * Default configuration\n */\nconst DEFAULT_CONFIG: Required<FuzzyPhraseConfig> = {\n textProperty: 'content',\n tolerance: 1,\n adaptiveTolerance: true,\n enableSynonyms: false,\n supabase: undefined as any,\n synonymMatchScore: 0.8,\n weights: {\n exact: 1.0,\n fuzzy: 0.8,\n order: 0.3,\n proximity: 0.2,\n density: 0.2,\n semantic: 0.15\n },\n maxGap: 5,\n minScore: 0.1\n};\n\n/**\n * Plugin state storage (keyed by Orama instance)\n */\nconst pluginStates = new WeakMap<AnyOrama, PluginState>();\n\n/**\n * Create the Fuzzy Phrase Plugin\n * \n * @param userConfig - User configuration options\n * @returns Orama plugin instance\n */\nexport function pluginFuzzyPhrase(userConfig: FuzzyPhraseConfig = {}): OramaPlugin {\n // Merge user config with defaults\n const config: Required<FuzzyPhraseConfig> = {\n textProperty: userConfig.textProperty ?? DEFAULT_CONFIG.textProperty,\n tolerance: userConfig.tolerance ?? DEFAULT_CONFIG.tolerance,\n adaptiveTolerance: userConfig.adaptiveTolerance ?? DEFAULT_CONFIG.adaptiveTolerance,\n enableSynonyms: userConfig.enableSynonyms ?? DEFAULT_CONFIG.enableSynonyms,\n supabase: userConfig.supabase || DEFAULT_CONFIG.supabase,\n synonymMatchScore: userConfig.synonymMatchScore ?? DEFAULT_CONFIG.synonymMatchScore,\n weights: {\n exact: userConfig.weights?.exact ?? DEFAULT_CONFIG.weights.exact,\n fuzzy: userConfig.weights?.fuzzy ?? DEFAULT_CONFIG.weights.fuzzy,\n order: userConfig.weights?.order ?? DEFAULT_CONFIG.weights.order,\n proximity: userConfig.weights?.proximity ?? DEFAULT_CONFIG.weights.proximity,\n density: userConfig.weights?.density ?? DEFAULT_CONFIG.weights.density,\n semantic: userConfig.weights?.semantic ?? DEFAULT_CONFIG.weights.semantic\n },\n maxGap: userConfig.maxGap ?? DEFAULT_CONFIG.maxGap,\n minScore: userConfig.minScore ?? DEFAULT_CONFIG.minScore\n };\n\n const plugin: OramaPlugin = {\n name: 'fuzzy-phrase',\n\n /**\n * Initialize plugin after index is created\n */\n afterCreate: async (orama: AnyOrama) => {\n console.log('๐ฎ Initializing Fuzzy Phrase Plugin...');\n\n // Initialize state\n const state: PluginState = {\n synonymMap: {},\n config,\n documentFrequency: new Map(),\n totalDocuments: 0\n };\n\n // Load synonyms from Supabase if enabled\n if (config.enableSynonyms && config.supabase) {\n try {\n console.log('๐ Loading synonyms from Supabase...');\n state.synonymMap = await loadSynonymsFromSupabase(config.supabase);\n console.log(`โ
Loaded ${Object.keys(state.synonymMap).length} words with synonyms`);\n } catch (error) {\n console.error('โ ๏ธ Failed to load synonyms:', error);\n // Continue without synonyms\n }\n }\n\n // Calculate document frequencies for TF-IDF from document store\n const docs = (orama.data as any)?.docs?.docs;\n if (docs) {\n state.totalDocuments = Object.keys(docs).length;\n state.documentFrequency = calculateDocumentFrequencies(docs, config.textProperty);\n console.log(`๐ Calculated document frequencies for ${state.totalDocuments} documents`);\n }\n\n // Store state\n pluginStates.set(orama, state);\n console.log('โ
Fuzzy Phrase Plugin initialized');\n \n // Signal ready - emit a custom event that can be listened to\n // Use setImmediate to ensure this runs after the afterCreate hook completes\n setImmediate(() => {\n if (typeof (globalThis as any).fuzzyPhrasePluginReady === 'function') {\n console.log('๐ก Signaling plugin ready...');\n (globalThis as any).fuzzyPhrasePluginReady();\n } else {\n console.warn('โ ๏ธ fuzzyPhrasePluginReady callback not found');\n }\n });\n }\n };\n\n return plugin;\n}\n\n/**\n * Search with fuzzy phrase matching\n * \n * This function should be called instead of the regular search() function\n * to enable fuzzy phrase matching.\n */\nexport async function searchWithFuzzyPhrase<T extends AnyOrama>(\n orama: T, \n params: { term?: string; properties?: string[]; limit?: number },\n language?: string\n): Promise<Results<TypedDocument<T>>> {\n const startTime = performance.now();\n \n // Get plugin state\n const state = pluginStates.get(orama);\n \n if (!state) {\n console.error('โ Plugin state not initialized');\n throw new Error('Fuzzy Phrase Plugin not properly initialized');\n }\n\n const { term, properties } = params;\n \n if (!term || typeof term !== 'string') {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Use specified property or default\n const textProperty = (properties && properties[0]) || state.config.textProperty;\n\n // Tokenize query\n const queryTokens = tokenize(term);\n \n if (queryTokens.length === 0) {\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Calculate tolerance (adaptive or fixed)\n const tolerance = state.config.adaptiveTolerance\n ? calculateAdaptiveTolerance(queryTokens, state.config.tolerance)\n : state.config.tolerance;\n\n console.log(`๐ Fuzzy phrase search: \"${term}\" (${queryTokens.length} tokens, tolerance: ${tolerance})`);\n\n // Extract vocabulary from radix tree\n let vocabulary: Set<string>;\n \n try {\n // Access radix tree - the actual index data is in orama.data.index, not orama.index\n // orama.index is just the component interface (methods)\n const indexData = (orama as any).data?.index;\n \n if (!indexData) {\n console.error('โ No index data found in orama.data.index');\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n \n console.log('๐ DEBUG: Index data keys:', Object.keys(indexData || {}));\n \n // Try different paths to find the radix tree\n let radixNode = null;\n \n // Path 1: QPS-style (orama.data.index.indexes[property].node)\n if (indexData.indexes?.[textProperty]?.node) {\n radixNode = indexData.indexes[textProperty].node;\n console.log('โ
Found radix via QPS-style path (data.index.indexes)');\n }\n // Path 2: Standard Orama (orama.data.index[property].node)\n else if (indexData[textProperty]?.node) {\n radixNode = indexData[textProperty].node;\n console.log('โ
Found radix via standard path (data.index[property])');\n }\n \n if (!radixNode) {\n console.error('โ Radix tree not found for property:', textProperty);\n console.error(' Available properties in index:', Object.keys(indexData));\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n vocabulary = extractVocabularyFromRadixTree(radixNode);\n console.log(`๐ Extracted ${vocabulary.size} unique words from index`);\n } catch (error) {\n console.error('โ Failed to extract vocabulary:', error);\n return { elapsed: { formatted: '0ms', raw: 0 }, hits: [], count: 0 };\n }\n\n // Find candidates for all query tokens\n const candidatesMap = findAllCandidates(\n queryTokens,\n vocabulary,\n tolerance,\n state.config.enableSynonyms ? state.synonymMap : undefined,\n state.config.synonymMatchScore\n );\n\n // Filter by minimum score\n const filteredCandidates = filterCandidatesByScore(\n candidatesMap,\n state.config.minScore\n );\n\n console.log(`๐ฏ Found candidates: ${Array.from(filteredCandidates.values()).reduce((sum, c) => sum + c.length, 0)} total`);\n\n // Search through all documents\n const documentMatches: DocumentMatch[] = [];\n \n console.log('๐ DEBUG orama.data structure:', {\n dataKeys: Object.keys((orama as any).data || {}),\n hasDocs: !!((orama as any).data?.docs),\n docsType: (orama as any).data?.docs ? typeof (orama as any).data.docs : 'undefined'\n });\n \n // Try multiple possible document storage locations\n let docs: Record<string, any> = {};\n \n // Access the actual documents - they're nested in orama.data.docs.docs\n if ((orama as any).data?.docs?.docs) {\n docs = (orama as any).data.docs.docs;\n console.log('โ
Found docs at orama.data.docs.docs');\n }\n // Fallback: orama.data.docs (might be the correct structure in some cases)\n else if ((orama as any).data?.docs && typeof (orama as any).data.docs === 'object') {\n // Check if it has document-like properties (not sharedInternalDocumentStore, etc.)\n const firstKey = Object.keys((orama as any).data.docs)[0];\n if (firstKey && firstKey !== 'sharedInternalDocumentStore' && firstKey !== 'count') {\n docs = (orama as any).data.docs;\n console.log('โ
Found docs at orama.data.docs (direct)');\n }\n }\n \n if (Object.keys(docs).length === 0) {\n console.log('โ Could not find documents - available structure:', {\n hasDataDocs: !!((orama as any).data?.docs),\n dataDocsKeys: (orama as any).data?.docs ? Object.keys((orama as any).data.docs) : 'none',\n hasDataDocsDocs: !!((orama as any).data?.docs?.docs),\n dataDocsDocsCount: (orama as any).data?.docs?.docs ? Object.keys((orama as any).data.docs.docs).length : 0\n });\n }\n \n console.log(`๐ Searching through ${Object.keys(docs).length} documents`);\n\n for (const [docId, doc] of Object.entries(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Tokenize document\n const docTokens = tokenize(text);\n\n // Find phrases in this document\n const phrases = findPhrasesInDocument(\n docTokens,\n filteredCandidates,\n {\n weights: state.config.weights as Required<FuzzyPhraseConfig['weights']>,\n maxGap: state.config.maxGap\n } as any,\n state.documentFrequency,\n state.totalDocuments\n );\n\n if (phrases.length > 0) {\n // Calculate overall document score (highest phrase score)\n const docScore = Math.max(...phrases.map(p => p.score));\n\n documentMatches.push({\n id: docId,\n phrases,\n score: docScore,\n document: doc\n });\n }\n }\n\n // Sort by score descending\n documentMatches.sort((a, b) => b.score - a.score);\n\n // Apply limit if specified\n const limit = params.limit ?? documentMatches.length;\n const limitedMatches = documentMatches.slice(0, limit);\n\n // Convert to Orama results format\n const hits = limitedMatches.map(match => ({\n id: match.id,\n score: match.score,\n document: match.document,\n // Store phrases for highlighting\n _phrases: match.phrases\n })) as any[];\n\n const elapsed = performance.now() - startTime;\n\n console.log(`โ
Found ${hits.length} results in ${elapsed.toFixed(2)}ms (limit: ${limit})`);\n\n return {\n elapsed: {\n formatted: `${elapsed.toFixed(2)}ms`,\n raw: Math.floor(elapsed * 1000000) // nanoseconds\n },\n hits,\n count: hits.length\n } as any;\n}\n\n/**\n * Load synonyms from Supabase\n */\nasync function loadSynonymsFromSupabase(\n supabaseConfig: { url: string; serviceKey: string }\n): Promise<SynonymMap> {\n try {\n console.log('๐ DEBUG: Calling Supabase RPC get_synonym_map...');\n \n // Dynamic import to avoid bundling Supabase client if not needed\n const { createClient } = await import('@supabase/supabase-js');\n \n const supabase = createClient(supabaseConfig.url, supabaseConfig.serviceKey);\n \n // Call the get_synonym_map function\n const { data, error } = await supabase.rpc('get_synonym_map');\n \n console.log('๐ DEBUG: Supabase RPC response:', {\n hasError: !!error,\n errorMessage: error?.message,\n hasData: !!data,\n dataType: typeof data,\n dataKeys: data ? Object.keys(data).length : 0\n });\n \n if (error) {\n throw new Error(`Supabase error: ${error.message}`);\n }\n \n const synonymMap = data || {};\n console.log(`๐ Loaded ${Object.keys(synonymMap).length} synonym entries from Supabase`);\n \n return synonymMap;\n } catch (error) {\n console.error('โ Failed to load synonyms from Supabase:', error);\n throw error;\n }\n}\n\n/**\n * Calculate document frequencies for TF-IDF\n */\nfunction calculateDocumentFrequencies(\n docs: Record<string, any>,\n textProperty: string\n): Map<string, number> {\n const df = new Map<string, number>();\n\n for (const doc of Object.values(docs)) {\n const text = doc[textProperty];\n \n if (!text || typeof text !== 'string') {\n continue;\n }\n\n // Get unique words in this document\n const words = new Set(tokenize(text));\n\n // Increment document frequency for each unique word\n for (const word of words) {\n df.set(word, (df.get(word) || 0) + 1);\n }\n }\n\n return df;\n}\n\n/**\n * Normalize text using the same rules as server-side\n * \n * CRITICAL: This must match the normalizeText() function in server/index.js exactly\n * PLUS we remove all punctuation to match Orama's French tokenizer behavior\n */\nfunction normalizeText(text: string): string {\n return text\n .toLowerCase()\n .normalize('NFD')\n .replace(/[\\u0300-\\u036f]/g, '') // Remove diacritics\n // Replace French elisions (l', d', etc.) with space to preserve word boundaries\n .replace(/\\b[ldcjmnst][\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4](?=\\w)/gi, ' ')\n .replace(/[\\u2018\\u2019\\u201A\\u201B\\u2032\\u2035\\u0027\\u0060\\u00B4]/g, '') // Remove remaining apostrophes\n .replace(/[\\u201c\\u201d]/g, '\"') // Normalize curly quotes to straight quotes\n .replace(/[.,;:!?()[\\]{}\\-โโยซยป\"\"]/g, ' ') // Remove punctuation (replace with space to preserve word boundaries)\n .replace(/\\s+/g, ' ') // Normalize multiple spaces to single space\n .trim();\n}\n\n/**\n * Tokenization matching normalized text behavior\n * \n * Note: Text should already be normalized before indexing, so we normalize again\n * to ensure plugin tokenization matches index tokenization\n */\nfunction tokenize(text: string): string[] {\n // Normalize first (same as indexing), then split by whitespace\n return normalizeText(text)\n .split(/\\s+/)\n .filter(token => token.length > 0);\n}\n\n/**\n * Export types for external use\n */\nexport type {\n FuzzyPhraseConfig,\n WordMatch,\n PhraseMatch,\n DocumentMatch,\n SynonymMap,\n Candidate\n} from './types.js';\n"]}
|
package/package.json
CHANGED
|
@@ -1,54 +1,62 @@
|
|
|
1
|
-
{
|
|
2
|
-
"name": "@wcs-colab/plugin-fuzzy-phrase",
|
|
3
|
-
"version": "3.1.16-custom.
|
|
4
|
-
"description": "Advanced fuzzy phrase matching plugin for Orama with semantic weighting and synonym expansion",
|
|
5
|
-
"keywords": [
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
"
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
"
|
|
27
|
-
"
|
|
28
|
-
|
|
29
|
-
"
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
"
|
|
34
|
-
"
|
|
35
|
-
|
|
36
|
-
"
|
|
37
|
-
"
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
"
|
|
41
|
-
"
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
"
|
|
45
|
-
},
|
|
46
|
-
"
|
|
47
|
-
"@
|
|
48
|
-
},
|
|
49
|
-
"
|
|
50
|
-
"@supabase/supabase-js":
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
1
|
+
{
|
|
2
|
+
"name": "@wcs-colab/plugin-fuzzy-phrase",
|
|
3
|
+
"version": "3.1.16-custom.22",
|
|
4
|
+
"description": "Advanced fuzzy phrase matching plugin for Orama with semantic weighting and synonym expansion",
|
|
5
|
+
"keywords": [
|
|
6
|
+
"orama",
|
|
7
|
+
"fuzzy search",
|
|
8
|
+
"phrase matching",
|
|
9
|
+
"synonyms",
|
|
10
|
+
"search"
|
|
11
|
+
],
|
|
12
|
+
"license": "Apache-2.0",
|
|
13
|
+
"main": "./dist/index.js",
|
|
14
|
+
"type": "module",
|
|
15
|
+
"exports": {
|
|
16
|
+
".": {
|
|
17
|
+
"require": "./dist/index.cjs",
|
|
18
|
+
"import": "./dist/index.js",
|
|
19
|
+
"types": "./dist/index.d.ts",
|
|
20
|
+
"browser": "./dist/index.global.js"
|
|
21
|
+
}
|
|
22
|
+
},
|
|
23
|
+
"bugs": {
|
|
24
|
+
"url": "https://github.com/colabx69/orama-custom/issues"
|
|
25
|
+
},
|
|
26
|
+
"homepage": "https://github.com/colabx69/orama-custom#readme",
|
|
27
|
+
"repository": {
|
|
28
|
+
"type": "git",
|
|
29
|
+
"url": "git+https://github.com/colabx69/orama-custom.git"
|
|
30
|
+
},
|
|
31
|
+
"sideEffects": false,
|
|
32
|
+
"types": "./dist/index.d.ts",
|
|
33
|
+
"files": [
|
|
34
|
+
"dist"
|
|
35
|
+
],
|
|
36
|
+
"publishConfig": {
|
|
37
|
+
"access": "public"
|
|
38
|
+
},
|
|
39
|
+
"devDependencies": {
|
|
40
|
+
"@types/node": "^20.9.0",
|
|
41
|
+
"tap": "^21.0.1",
|
|
42
|
+
"tsup": "^7.2.0",
|
|
43
|
+
"tsx": "^4.19.1",
|
|
44
|
+
"typescript": "^5.0.0"
|
|
45
|
+
},
|
|
46
|
+
"dependencies": {
|
|
47
|
+
"@wcs-colab/orama": "3.1.16-custom.9"
|
|
48
|
+
},
|
|
49
|
+
"peerDependencies": {
|
|
50
|
+
"@supabase/supabase-js": "^2.39.0"
|
|
51
|
+
},
|
|
52
|
+
"peerDependenciesMeta": {
|
|
53
|
+
"@supabase/supabase-js": {
|
|
54
|
+
"optional": true
|
|
55
|
+
}
|
|
56
|
+
},
|
|
57
|
+
"scripts": {
|
|
58
|
+
"build": "tsup --config tsup.lib.js",
|
|
59
|
+
"lint": "exit 0",
|
|
60
|
+
"test": "node --test --import tsx test/*.test.ts"
|
|
61
|
+
}
|
|
62
|
+
}
|